JP2009181833A - Non-aqueous secondary battery and method of manufacturing the same - Google Patents

Non-aqueous secondary battery and method of manufacturing the same Download PDF

Info

Publication number
JP2009181833A
JP2009181833A JP2008020478A JP2008020478A JP2009181833A JP 2009181833 A JP2009181833 A JP 2009181833A JP 2008020478 A JP2008020478 A JP 2008020478A JP 2008020478 A JP2008020478 A JP 2008020478A JP 2009181833 A JP2009181833 A JP 2009181833A
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
negative electrode
active material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008020478A
Other languages
Japanese (ja)
Inventor
Mayumi Kaneda
真由美 金田
Kiyohiko Takagi
清彦 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008020478A priority Critical patent/JP2009181833A/en
Publication of JP2009181833A publication Critical patent/JP2009181833A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous secondary battery capable of inhibiting rupture of an electrode plate and dropping of an electrode mix, reduced in unevenness of its capacity and having high reliability, by adapted to have such a configuration that the density of an active material of at least one of a positive electrode plate and a negative electrode plate is partly reduced at the inner circumferential surface and the outer circumferential surface of an electrode group. <P>SOLUTION: The non-aqueous secondary battery is configured such that the density of the active material of the electrode plate is partly reduced at the inner circumferential surface and the outer circumferential surface of the electrode group through a first step of applying a coating of a positive electrode mix and a coating of a negative electrode mix so as to form at least one portion 3 of a current collector 1 where the thickness of the coating is reduced, and a second step of drying the coating of the positive electrode mix or the negative electrode mix, and then applying pressing so as to provide a portion 7 where the density of the active material of the electrode plate is reduced in at least one portion of the positive electrode plate or the negative electrode plate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に代表される非水系二次電池とその製造方法に関するものである。   The present invention relates to a non-aqueous secondary battery represented by a lithium ion secondary battery and a method for producing the same.

近年、携帯用電子機器の電源として利用が広がっているリチウムイオン二次電池は、負極板にリチウムの吸蔵・放出が可能な炭素質材料等を用い、正極板にLiCoO等の遷移金属とリチウムの複合酸化物を活物質として用いており、これによって、高電位で高放電容量の二次電池を実現しているが、近年の電子機器および通信機器の多機能化に伴ってさらなる高容量化が望まれている。ここで、高容量の非水系二次電池を実現するための電極板としては、正極板および負極板ともに各々の構成材料を塗料化した合剤塗料を集電体上に塗布乾燥後、プレス等により規定厚みまで圧縮する方法が用いられている。この際、より多くの活物質を充填してプレスすることにより活物質密度が高くなり、一層の高容量化が可能となる。 In recent years, lithium ion secondary batteries, which are widely used as power sources for portable electronic devices, use a carbonaceous material capable of occluding and releasing lithium for the negative electrode plate, and a transition metal such as LiCoO 2 and lithium for the positive electrode plate. As a result, a secondary battery with a high potential and a high discharge capacity has been realized. However, with the recent increase in functionality of electronic and communication devices, the capacity has further increased. Is desired. Here, as an electrode plate for realizing a high-capacity non-aqueous secondary battery, a mixture paint obtained by coating each constituent material for both the positive electrode plate and the negative electrode plate is applied and dried on a current collector, and then pressed. Thus, a method of compressing to a specified thickness is used. At this time, the active material density is increased by filling and pressing a larger amount of the active material, and the capacity can be further increased.

しかし、電極板の活物質密度を高くすると電極板の柔軟性が不足し、電極板を巻回する際に電極板の切れが発生するという課題があった。巻回時に切れが発生する要因として、巻回の圧縮応力によって巻回の内周側の合剤が圧縮され、合剤で吸収できない応力が集電体に及び、集電体の破断応力の限界を超えることで切れが発生する。そこで、電極板の圧縮応力を緩和するためには巻回の内周面の密度を下げる方法が考えられ、例えば図6(a)に示すように、電極板の長手方向に沿って合材塗料の塗布量を連続的に減少または増加させながら塗布し、次いで乾燥、プレスすることで図6(b)に示すように、活物質密度が連続的に減少または増加する電極合剤層を形成する方法が提案されている(例えば、特許文献1参照)。   However, when the active material density of the electrode plate is increased, the flexibility of the electrode plate is insufficient, and there is a problem that the electrode plate is broken when the electrode plate is wound. As a factor that causes breakage during winding, the mixture on the inner peripheral side of the winding is compressed by the compressive stress of the winding, and the current that cannot be absorbed by the mixture reaches the current collector, and the limit of the breaking stress of the current collector Cutting occurs when the value exceeds. Therefore, in order to relieve the compressive stress of the electrode plate, a method of reducing the density of the inner peripheral surface of the winding can be considered. For example, as shown in FIG. As shown in FIG. 6 (b), an electrode mixture layer in which the active material density continuously decreases or increases is formed by applying the coating material while continuously decreasing or increasing the coating amount, and then drying and pressing. A method has been proposed (see, for example, Patent Document 1).

また、プレスする工程における電極板の切れを抑制するために、例えば図7に示すように、塗工端の電極板の合剤層の厚みを連続的に変化させる方法が提案されている。(例えば、特許文献2参照)。
特許第3614984号公報 特開2004−303622号公報
Moreover, in order to suppress the cutting | disconnection of the electrode plate in the process of pressing, as shown, for example in FIG. 7, the method of changing continuously the thickness of the mixture layer of the electrode plate of a coating end is proposed. (For example, refer to Patent Document 2).
Japanese Patent No. 3614984 JP 2004-303622 A

しかしながら、上述した特許文献1の従来技術は、合剤の脱落を防止して電池容量の安定を目的としており、電極板の切れを考慮したものではない。密度を低くすると巻回時の切れに効果はあり、この場合も巻回の内周側の圧縮応力を吸収することは可能であるが、電極板の両面において、連続的に密度を変化させるのは、連続的に塗工重量を精密に制御することが必要であり、安定的に電極板を製造することが難しい。   However, the above-described prior art of Patent Document 1 aims to stabilize the battery capacity by preventing the mixture from falling off, and does not consider the breakage of the electrode plate. Lowering the density has an effect on cutting at the time of winding. In this case as well, it is possible to absorb the compressive stress on the inner circumference side of the winding, but the density is continuously changed on both sides of the electrode plate. However, it is necessary to continuously control the coating weight precisely, and it is difficult to stably manufacture the electrode plate.

また、特許文献2の従来技術は、圧延時の切れを抑制するものであり、巻回時の電極板の切れを考慮したものではない。一般的に厚みを薄くすれば巻回時の切れに効果は見られ、この場合も巻回の内周側の圧縮応力を吸収することは可能であるが密度に比べて電極板の切れに対する効果は小さく、一方で塗料の塗工において、連続的に精密な塗工厚み制御が必要であり、安定的に電極板を製造することは難しい。   Moreover, the prior art of patent document 2 suppresses the cutting | disconnection at the time of rolling, and does not consider the cutting | disconnection of the electrode plate at the time of winding. In general, if the thickness is reduced, an effect can be seen in cutting during winding. In this case as well, it is possible to absorb the compressive stress on the inner periphery of the winding, but the effect on cutting the electrode plate compared to the density On the other hand, in coating coating, it is necessary to continuously and accurately control the coating thickness, and it is difficult to stably produce an electrode plate.

本発明は上記従来の課題を鑑みてなされたもので、正極板および負極板を巻回して構成した電極群における巻回時の内周側の少なくとも一部分の活物質密度が巻回時の外周側の
活物質密度より小さい箇所を形成することにより、電極板の切れを抑制し、またそれらの電極板を安定的に製造できる製造方法を提供することによって、電池容量のばらつきが少なく、かつ良好な寿命特性を示す非水系二次電池を提供することを目的としている。
The present invention has been made in view of the above-described conventional problems, and in the electrode group formed by winding the positive electrode plate and the negative electrode plate, the active material density of at least a part of the inner peripheral side at the time of winding is the outer peripheral side at the time of winding. By forming a portion smaller than the active material density, it is possible to suppress the breakage of the electrode plates, and to provide a production method capable of stably producing these electrode plates, thereby reducing battery capacity variation and good It aims at providing the non-aqueous secondary battery which shows a lifetime characteristic.

上記目的を達成するために本発明の非水系二次電池は、少なくともリチウム含有複合酸化物よりなる活物質、導電材および非水溶性高分子の結着剤を分散媒にて混練分散させた正極合剤塗料を正極集電体上に塗布してなる正極板と少なくともリチウムを保持しうる材料よりなる活物質および非水溶性高分子の結着剤を分散媒にて混練分散させた負極合剤塗料を負極集電体上に塗布してなる負極板とセパレータを渦巻状に巻回して形成される電極群と非水溶媒からなる電解液により構成される非水系二次電池であって、正極板および負極板の少なくともいずれか一方の電極群の内周側の活物質密度を外周側の活物質密度より部分的に小さくしたことを特徴とするものである。   In order to achieve the above object, the non-aqueous secondary battery of the present invention is a positive electrode in which an active material composed of at least a lithium-containing composite oxide, a conductive material, and a water-insoluble polymer binder are kneaded and dispersed in a dispersion medium. A negative electrode mixture in which a positive electrode plate obtained by applying a mixture paint on a positive electrode current collector, an active material made of a material capable of holding at least lithium, and a water-insoluble polymer binder are kneaded and dispersed in a dispersion medium. A non-aqueous secondary battery comprising an electrode group formed by winding a negative electrode plate and a separator spirally coated with a paint on a negative electrode current collector and a non-aqueous solvent, The active material density on the inner peripheral side of at least one of the positive electrode plate and the negative electrode plate is partially smaller than the active material density on the outer peripheral side.

本発明の非水系二次電池によると、正極板および負極板の少なくともいずれか一方の活物質密度を電極群の内周側と外周側で部分的に小さく構成したことで、電極板の柔軟性が向上し、電極板をシート形状で加工する際および電極板を巻回する際の電極板の切れを抑制することができるため、信頼性の高い非水系二次電池を得ることができる。   According to the nonaqueous secondary battery of the present invention, the active material density of at least one of the positive electrode plate and the negative electrode plate is partially reduced on the inner peripheral side and the outer peripheral side of the electrode group, so that the flexibility of the electrode plate is increased. Since the cutting of the electrode plate when the electrode plate is processed into a sheet shape and when the electrode plate is wound can be suppressed, a highly reliable non-aqueous secondary battery can be obtained.

本発明の第1の発明においては、少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着剤を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布して構成される正極板と少なくともリチウムを保持しうる材料よりなる活物質および結着剤を分散媒にて混練分散した負極合剤塗料を負極集電体の上に塗布して構成される負極板とセパレータを渦巻状に巻回して形成される電極群と非水溶媒からなる電解液により構成される非水系二次電池であって、正極板および負極板の少なくともいずれか一方の活物質密度を電極群の内周側の活物質密度を外周側の活物質密度より小さくしたことにより、正極板、負極板、およびセパレータを渦巻状に巻回する際に、正極板または負極板の活物質密度が小さい部分での電極板への曲げ応力を緩和し、電極板の切れを抑制することが可能となり、信頼性の高い非水系二次電池を提供することができる。   In the first invention of the present invention, a positive electrode mixture paint obtained by kneading and dispersing at least an active material composed of a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium is applied onto a positive electrode current collector. A negative electrode plate constituted by applying a negative electrode mixture paint obtained by kneading and dispersing an active material made of a material capable of holding lithium and a binder in a dispersion medium onto a negative electrode current collector; A non-aqueous secondary battery comprising an electrode group formed by winding a separator in a spiral shape and an electrolyte solution comprising a non-aqueous solvent, wherein the active material density of at least one of a positive electrode plate and a negative electrode plate is By making the active material density on the inner peripheral side of the electrode group smaller than the active material density on the outer peripheral side, when the positive electrode plate, the negative electrode plate, and the separator are spirally wound, the active material density of the positive electrode plate or the negative electrode plate Bending to the electrode plate at a small area Stress relieve, it is possible to suppress the cutting of the electrode plate, it is possible to provide a highly reliable non-aqueous secondary battery.

本発明の第2の発明においては、正極板および負極板の少なくともいずれか一方に形成された活物質密度の小さい箇所を、少なくとも電極群を巻回時の最内周の塗工端部を含む構成としたことにより、巻回時の曲率の大きい部位での圧縮応力を緩和し、さらに電極板の切れを抑制することが可能である。   In the second aspect of the present invention, at least one portion of the positive electrode plate and the negative electrode plate having a small active material density includes a coating end portion at the innermost circumference when the electrode group is wound. By adopting the configuration, it is possible to relieve the compressive stress at a portion having a large curvature at the time of winding and further suppress the breakage of the electrode plate.

本発明の第3の発明においては、正極板および負極板の少なくともいずれか一方に形成された活物質密度の小さい箇所を、電極板の長手方向に対して少なくとも最内周の塗工端部から一巻き分までの範囲としたことにより、巻回時の曲率の大きい部位を広い範囲にわたって包含することができ、より電極板の切れを抑制することが可能である。   In the third aspect of the present invention, the portion having a small active material density formed on at least one of the positive electrode plate and the negative electrode plate is at least from the innermost coating end with respect to the longitudinal direction of the electrode plate. By setting the range up to one turn, it is possible to include a portion having a large curvature at the time of winding over a wide range, and it is possible to further suppress the breakage of the electrode plate.

本発明の第4の発明においては、正極板および負極板の少なくともいずれか一方に形成された前記活物質密度の小さい箇所の厚みを、他の箇所と同じとしたことにより、巻回時の電極板への曲げ応力を緩和でき、電極板の切れを抑制することが可能である。   In the fourth aspect of the present invention, the thickness of the portion having a small active material density formed on at least one of the positive electrode plate and the negative electrode plate is the same as the other portions, so that the electrode at the time of winding is obtained. It is possible to relieve the bending stress to the plate and suppress the breakage of the electrode plate.

本発明の第5の発明においては、正極板および負極板の少なくともいずれか一方に形成された活物質密度の小さい箇所の厚みを他の箇所と異なるように構成したことにより、巻回時の電極板への曲げ応力がさらに緩和され、より電極板の切れを抑制することが可能である。   In the fifth aspect of the present invention, the electrode at the time of winding is configured by differently forming the thickness of the portion having a small active material density formed on at least one of the positive electrode plate and the negative electrode plate from the other portions. The bending stress to the plate is further relaxed, and it is possible to further suppress the breakage of the electrode plate.

本発明の第6の発明においては、少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着剤を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布して構成される正極板と少なくともリチウムを保持しうる材料よりなる活物質および結着剤を分散媒にて混練分散した負極合剤塗料を負極集電体の上に塗布して構成される負極板とセパレータを渦巻状に巻回して形成される電極群と非水溶媒からなる電解液により構成される非水系二次電池の製造方法であって、正極板および負極板の少なくともいずれか一方の正極合剤塗料または負極合剤塗料の塗布量を電極群の内周側と外周側で部分的に異なるように塗布形成する第一の工程および正極合剤塗料または負極合剤塗料を乾燥した後に所定厚みにプレスされる第二の工程を経て電極群とすることにより、電極板をシート形状で加工する際および電極板を巻回する際の電極板の切れを抑制し、信頼性の高い非水系二次電池を得ることが可能となる。   In a sixth aspect of the present invention, a positive electrode mixture paint obtained by kneading and dispersing at least an active material composed of a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium is applied onto a positive electrode current collector. A negative electrode plate constituted by applying a negative electrode mixture paint obtained by kneading and dispersing an active material made of a material capable of holding lithium and a binder in a dispersion medium onto a negative electrode current collector; A method for producing a non-aqueous secondary battery comprising an electrode group formed by winding a separator in a spiral shape and an electrolyte comprising a non-aqueous solvent, the positive electrode being at least one of a positive electrode plate and a negative electrode plate The first step of applying and forming the coating amount of the mixture paint or the negative electrode mixture paint so as to be partially different between the inner peripheral side and the outer peripheral side of the electrode group, and predetermined after drying the positive electrode mixture paint or the negative electrode mixture paint Second process pressed to thickness By using the electrode group, it is possible to suppress the breakage of the electrode plate when processing the electrode plate into a sheet shape and when the electrode plate is wound, and to obtain a highly reliable non-aqueous secondary battery. .

本発明の第7の発明においては、正極集電体および負極集電体の少なくともいずれか一方の上に塗布する正極合剤塗料または負極合剤塗料の塗布量を制御することにより、電極群の正極板および負極板の少なくともいずれか一方における内周側の活物質密度を外周側の活物質密度より小さくすることにより、電極板の柔軟性を上げ、巻回時の圧縮応力を緩和し、電極板の切れを抑制することでより信頼性の高い非水系二次電池を得ることが可能となる。   In the seventh invention of the present invention, by controlling the coating amount of the positive electrode mixture paint or the negative electrode mixture paint applied on at least one of the positive electrode current collector and the negative electrode current collector, By making the active material density on the inner peripheral side of at least one of the positive electrode plate and the negative electrode plate smaller than the active material density on the outer peripheral side, the flexibility of the electrode plate is increased, the compressive stress during winding is reduced, and the electrode By suppressing the breakage of the plate, a more reliable non-aqueous secondary battery can be obtained.

本発明の第8の発明においては、正極集電体および負極集電体の少なくともいずれか一方の上に塗布する正極合剤塗料または負極合剤塗料の塗布開始時または塗布終了時における塗布量を変えることにより、正極板または負極板に少なくともいずれか一方に形成された活物質密度の小さい箇所を内周側に形成し、この活物質密度の小さい箇所が、少なくとも電極群の巻回時の最内周の塗工端部を含むようにすることにより、塗布開始時または塗布終了時における塗布量を同一表面上で変えることが可能となり、巻回時の圧縮応力を緩和し、電極板の切れを抑制し信頼性の高い非水系二次電池を得ることが可能となる。   In the eighth aspect of the present invention, the coating amount at the start or end of the application of the positive electrode mixture paint or the negative electrode mixture paint applied on at least one of the positive electrode current collector and the negative electrode current collector is determined. By changing the shape, a portion having a low active material density formed on at least one of the positive electrode plate and the negative electrode plate is formed on the inner peripheral side, and the portion having the low active material density is at least the most when the electrode group is wound. By including the coating edge on the inner circumference, it is possible to change the coating amount at the start of coating or at the end of coating on the same surface, alleviating the compressive stress during winding, and cutting the electrode plate This makes it possible to obtain a highly reliable non-aqueous secondary battery.

本発明の第9の発明においては、正極集電体および負極集電体の少なくともいずれか一方の上に塗布する正極合剤塗料または負極合剤塗料の塗布量を塗布が開始されて一定時間が経過した後に変えることにより、正極板および負極板の少なくともいずれか一方に形成された活物質密度の小さい箇所を、電極群を長手方向に対して少なくとも最内周の塗工端部から一巻き分までの範囲で形成することにより、巻回時の曲率の大きい部位を包含でき、より柔軟性の高い電極板を製造することができ、電極板の切れを抑制することでより信頼性の高い非水系二次電池を得ることが可能となる。   In the ninth aspect of the present invention, the application amount of the positive electrode mixture paint or the negative electrode mixture paint applied on at least one of the positive electrode current collector and the negative electrode current collector is applied for a certain period of time. By changing after the elapse of time, the portion having a small active material density formed on at least one of the positive electrode plate and the negative electrode plate is separated from the coating end portion at least on the innermost circumference with respect to the longitudinal direction of the electrode group. By forming in the range up to, it is possible to include a portion having a large curvature at the time of winding, and it is possible to manufacture a more flexible electrode plate, and it is more reliable by suppressing the breakage of the electrode plate An aqueous secondary battery can be obtained.

以下、本発明の一実施形態について図面を参照しながら説明する。図1は本発明の非水系二次電池を示している。複合リチウム酸化物を活物質とする正極板5とリチウムを保持しうる材料を活物質とする負極板9とをセパレータ10を介して渦巻状に巻回した電極群14を作製した後、電極群14を有底円筒形の電池ケース11の内部に絶縁板15と共に収容し、電極群14の下部より導出した負極リード16を電池ケース11の底部に溶接し、次いで電極群14の上部より導出した正極リード17を封口板12に溶接し、電池ケース11に所定量の非水溶媒からなる電解液(図示せず)を注液した後、電池ケース11の開口部に封口ガスケット13を周縁に取り付けた封口板12を挿入し、電池ケース11の開口部を内方向に折り曲げてかしめ封口して構成している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a non-aqueous secondary battery of the present invention. After preparing the electrode group 14 which wound the positive electrode plate 5 which uses a composite lithium oxide as an active material, and the negative electrode plate 9 which uses the material which can hold | maintain lithium as an active material through the separator 10, it produces electrode group 14 is housed in the bottomed cylindrical battery case 11 together with the insulating plate 15, the negative electrode lead 16 led out from the lower part of the electrode group 14 is welded to the bottom part of the battery case 11, and then led out from the upper part of the electrode group 14. After the positive electrode lead 17 is welded to the sealing plate 12 and a predetermined amount of an electrolyte solution (not shown) made of a nonaqueous solvent is injected into the battery case 11, the sealing gasket 13 is attached to the periphery of the opening of the battery case 11. The sealing plate 12 is inserted, and the opening of the battery case 11 is bent inward to be caulked and sealed.

次に、図4を用いて、実際に電極板およびセパレータを巻回し電極群を構成する際に発生する電極板の切れの状態を説明する。図4は正極板5と負極板9とセパレータ10を巻回して電極群を構成する巻回装置の模式図である。図4において正極板5を搬送する複数のローラ部を備えた正極板の搬送部25、負極板9を搬送する複数のローラ部を備えた負
極板の搬送部26、正極板5と負極板9とセパレータ10を合わせて巻回する巻回部27を備えている。巻回は、正極板5と負極板9とセパレータ10に撓みが無いように巻回部27を回転させて引っ張りながらテンションをかけて行われる。
Next, with reference to FIG. 4, the state of the electrode plate breakage that occurs when the electrode plate and the separator are actually wound to form the electrode group will be described. FIG. 4 is a schematic view of a winding device that forms a group of electrodes by winding the positive electrode plate 5, the negative electrode plate 9, and the separator 10. In FIG. 4, a positive plate transport unit 25 having a plurality of roller units for transporting the positive electrode plate 5, a negative plate transport unit 26 having a plurality of roller units for transporting the negative electrode plate 9, the positive plate 5 and the negative plate 9. And a separator 27 for winding the separator 10 together. Winding is performed by applying tension while rotating and pulling the winding portion 27 so that the positive electrode plate 5, the negative electrode plate 9, and the separator 10 are not bent.

上記の巻回装置を用いて電極群14を構成する際に発生する電極板の切れの要因は大別すると以下の二つである。まず一つ目は正極板5が搬送部25の複数のローラ部に巻き掛けて搬送される際にローラ部の曲率による曲げ応力を受けることにより、または負極板9が搬送部26の複数のローラ部に巻き掛けて搬送される際にローラ部の曲率による曲げ応力を受けることにより電極板の切れが発生する。次に二つ目は巻回部27での巻回時の曲率による曲げ応力と正極板5または負極板9に加えられたテンションによる引張応力より電極板の切れが発生する。   Factors of electrode plate breakage that occur when the electrode group 14 is configured using the winding device described above are roughly divided into the following two. First, when the positive electrode plate 5 is wound around a plurality of roller portions of the conveyance unit 25 and conveyed, the negative electrode plate 9 receives a bending stress due to the curvature of the roller unit, or the negative electrode plate 9 has a plurality of rollers of the conveyance unit 26. The electrode plate is cut by receiving bending stress due to the curvature of the roller portion when being wound around the portion. Second, the electrode plate breaks due to the bending stress caused by the curvature at the winding portion 27 and the tensile stress caused by the tension applied to the positive electrode plate 5 or the negative electrode plate 9.

また、図3を用いて、上記の巻回装置の巻回部で電極板の切れが発生する要因についてさらに詳しく説明する。図3は円筒形の電極群14の断面図を示したもので、正極板5と負極板9およびセパレータ10が巻回されて構成されている。さらに、正極板5における最内周の塗工端部5aから一巻き目5bにかけての部分、および負極板9における最内周の塗工端部9aから一巻き目9bにかけての部分は、正極板5および負極板9の曲率が最も大きくなり、巻回時の引張り応力が集中することで電極板の切れが発生し易くなる。以下、電極群14を構成する際の正極板5および負極板9における巻き数をそれぞれ最内周の塗工端部5aから巻回を始めて一周した箇所を一巻き目5b、および最内周の塗工端部9aから巻回を始めて一周した箇所を一巻き目9bと定義する。   Further, the cause of the breakage of the electrode plate at the winding part of the winding device will be described in more detail with reference to FIG. FIG. 3 shows a cross-sectional view of the cylindrical electrode group 14, in which the positive electrode plate 5, the negative electrode plate 9, and the separator 10 are wound. Further, the portion from the innermost coating end portion 5a to the first winding 5b in the positive electrode plate 5 and the portion from the innermost coating end portion 9a to the first winding 9b in the negative electrode plate 9 are the positive electrode plate. 5 and the negative electrode plate 9 have the largest curvature, and the tensile stress at the time of winding is concentrated, so that the electrode plate is easily cut. Hereinafter, the number of turns in the positive electrode plate 5 and the negative electrode plate 9 when the electrode group 14 is configured starts from the innermost coating end portion 5a, and the first round 5b, and the innermost circumference A place where the winding starts from the coating end portion 9a and makes one turn is defined as a first turn 9b.

上記のように電極群14を構成する際に発生する電極板の切れを抑制するためには、電極群14の曲率半径が小さくなる巻回箇所において、電極板に加わる曲げ応力を緩和することが重要であり、この観点より鋭意検討した結果、本発明の非水系二次電池の電極板は、図3に示すように渦巻状の電極群14を構成した際に正極板5の曲率が最も大きくなる箇所である塗工端部5aから一巻き目5bにかけての部分、および負極板9の曲率が最も大きくなる箇所である塗工端部9aから一巻き目9bにかけての範囲内に断続的あるいは連続的に活物質密度が小さい箇所を形成することで電極板切れを抑制することが可能であることを新たに見出したものである。   In order to suppress the breakage of the electrode plate that occurs when the electrode group 14 is configured as described above, the bending stress applied to the electrode plate can be relaxed at the winding portion where the radius of curvature of the electrode group 14 is reduced. As a result of intensive studies from this viewpoint, the electrode plate of the nonaqueous secondary battery of the present invention has the largest curvature of the positive electrode plate 5 when the spiral electrode group 14 is formed as shown in FIG. Intermittently or continuously within a range from the coating end portion 5a to the first winding 5b, which is a portion, and a range from the coating end portion 9a to the first winding 9b, which is a portion where the curvature of the negative electrode plate 9 is the largest. In particular, the present inventors have newly found that it is possible to suppress breakage of the electrode plate by forming a portion having a low active material density.

上記のように非水系二次電池用電極板に活物質密度が小さい箇所を形成するためには、まず正極板5または負極板9は、図5(a)に示すように集電体1の少なくとも一箇所以上に、電極合剤塗料2の厚みが薄くなる箇所3を塗布形成する第一の工程を経て作製される。この第一の工程において、電極合剤塗料2の厚みが薄くなる箇所3を塗布形成する方法としては、ダイコータ等を用い正極板5または負極板9の長手方向に集電体露出部を間欠的に形成するための間欠塗布システムを用いることができる。この間欠システムにおいては、ダイのマニホールド内部の圧力を負圧に調整することで、ダイ先端部から吐出する電極合剤塗料2を止めることができるが、図5(a)に示したような電極合剤塗料2の厚みが薄くなる箇所3を塗布形成するためには、ダイのマニホールド内部を負圧にした後に圧力を開放し、電極合剤塗料2を再吐出する際のタイミングが重要であり、電極合剤塗料2の厚みが薄くなる箇所の幅をWとすると、精度よくタイミング調整することにより電極合剤塗料2の厚みが薄くなる箇所3を幅Wで形成することが可能である。ここで幅Wは巻回における一巻き分の長さに相当し、図3における塗工端部5aから一巻き目5bにかけての部分または塗工端部9aから一巻き目9bにかけての部分である。   In order to form a portion having a low active material density on the electrode plate for a non-aqueous secondary battery as described above, first, the positive electrode plate 5 or the negative electrode plate 9 is formed of the current collector 1 as shown in FIG. It is produced through a first step of applying and forming a portion 3 where the thickness of the electrode mixture paint 2 is reduced in at least one place. In this first step, as a method of applying and forming the portion 3 where the thickness of the electrode mixture paint 2 becomes thin, a collector is intermittently provided in the longitudinal direction of the positive electrode plate 5 or the negative electrode plate 9 using a die coater or the like. An intermittent coating system can be used to form the film. In this intermittent system, the electrode mixture paint 2 discharged from the tip of the die can be stopped by adjusting the pressure inside the die manifold to a negative pressure, but the electrode as shown in FIG. In order to apply and form the portion 3 where the thickness of the mixture paint 2 is reduced, the timing at which the pressure is released after the inside of the die manifold is made negative and the electrode mixture paint 2 is re-discharged is important. When the width of the portion where the thickness of the electrode mixture paint 2 becomes thin is W, the portion 3 where the thickness of the electrode mixture paint 2 becomes thin can be formed with the width W by adjusting the timing accurately. Here, the width W corresponds to the length of one turn in the winding, and is a portion from the coating end 5a to the first turn 5b or a portion from the coating end 9a to the first turn 9b in FIG. .

次いで、この電極合剤塗料2が乾燥されたのち、所定厚みにプレスされる第二の工程を経て、正極板5または負極板9の少なくとも一箇所以上に活物質密度が小さい箇所を形成するためには、図5(a)に示すように電極合剤塗料2の厚みが薄くなる箇所3の厚みをTとすると、図5(b)に示すように厚みT以下の厚みにプレスすることで、電極合剤層
6の活物質密度が小さい箇所7を形成する方法、および図5(c)に示すように厚みT以上の厚みにプレスすることで、活物質密度は塗布乾燥後のままで電極板上に凹部8を形成する方法により正極板5または負極板9に活物質密度が小さい箇所7、凹部8を形成することが可能であるが、これらに何ら限定されるものではない。
Next, after the electrode mixture paint 2 is dried, a second step of pressing to a predetermined thickness is performed to form a portion having a low active material density in at least one portion of the positive electrode plate 5 or the negative electrode plate 9. As shown in FIG. 5A, when the thickness of the portion 3 where the thickness of the electrode mixture paint 2 is reduced as T is T, as shown in FIG. The method of forming the portion 7 where the active material density of the electrode mixture layer 6 is small, and the active material density remains after coating and drying by pressing to a thickness T or more as shown in FIG. Although it is possible to form the portion 7 and the recessed portion 8 having a low active material density on the positive electrode plate 5 or the negative electrode plate 9 by the method of forming the recessed portion 8 on the electrode plate, it is not limited to these.

以下、本発明における電極板の作製方法の一例を示す。本発明に適用される電極板は巻回して電極群を構成する際に、電極合剤層のワレや脱落が発生しない強靭性を備える必要が有る。この強靱性を発揮することができれば電極板の処方は以下の方法に限られるものではない。まず、正極活物質、導電材、結着剤を適切な分散媒中に入れ、プラネタリーミキサー等の分散機により混合分散して、集電体への塗布に最適な粘度に調整して混練を行い、正極合剤塗料を作製した。   Hereinafter, an example of a method for producing an electrode plate according to the present invention will be described. When the electrode plate applied to the present invention is wound to form an electrode group, it is necessary to have toughness that does not cause cracking or dropping of the electrode mixture layer. The prescription of the electrode plate is not limited to the following method as long as this toughness can be exhibited. First, a positive electrode active material, a conductive material, and a binder are placed in an appropriate dispersion medium, mixed and dispersed by a dispersing machine such as a planetary mixer, and adjusted to an optimum viscosity for application to a current collector. The positive electrode mixture paint was prepared.

正極活物質としては、例えばコバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)、マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。   Examples of the positive electrode active material include lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (such as nickel partially substituted with cobalt). And composite oxides such as lithium manganate and modified products thereof.

このときの導電材種としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラックや各種グラファイトを単独、あるいは組み合わせて用いても良い。   As the conductive material type at this time, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and various graphites may be used alone or in combination.

このときの正極用結着剤としては、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を有するゴム粒子結着剤等を用いることができ、この際に反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着剤中に混入させることも可能である。   As the binder for the positive electrode at this time, for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, and the like can be used. At this time, an acrylate monomer or an acrylate oligomer into which a reactive functional group is introduced can be mixed in the binder.

上記のように作製した正極合剤塗料を、ダイコータを用い、ダイコータのマニホールド内部の圧力を負圧に調整することで、アルミニウム箔上に正極合剤塗料の厚みが薄くなる箇所を塗布形成、次いで乾燥後プレスにて所定厚みまで圧縮した。   Using the die coater, the positive electrode mixture paint prepared as described above is applied to form a portion where the thickness of the positive electrode mixture paint is reduced on the aluminum foil by adjusting the pressure inside the manifold of the die coater to a negative pressure, then After drying, it was compressed to a predetermined thickness with a press.

次に、負極活物質、結着剤を適切な分散媒中に入れ、プラネタリーミキサー等の分散機により混合分散して、集電体への塗布に最適な粘度に調整して混練を行い、負極合剤塗料を作製した。負極用活物質としては、各種天然黒鉛および人造黒鉛やシリサイドなどのシリコン系複合材料、および各種合金組成材料を用いることができる。   Next, the negative electrode active material and the binder are placed in an appropriate dispersion medium, mixed and dispersed by a dispersing machine such as a planetary mixer, and adjusted to an optimum viscosity for application to the current collector, and then kneaded. A negative electrode mixture paint was prepared. As the negative electrode active material, various natural graphites, silicon-based composite materials such as artificial graphite and silicide, and various alloy composition materials can be used.

このときの負極用結着剤としてはPVdFおよびその変性体をはじめ各種バインダーを用いることができるが、リチウムイオン受入れ性向上の観点から、スチレン−ブタジエン共重合体ゴム粒子(SBR)およびその変性体に、カルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂等を併用したり少量添加するのがより好ましいといえる。   Various binders such as PVdF and modified products thereof can be used as the negative electrode binder at this time. From the viewpoint of improving lithium ion acceptability, styrene-butadiene copolymer rubber particles (SBR) and modified products thereof are used. In addition, it can be said that it is more preferable to use a cellulose resin such as carboxymethyl cellulose (CMC) in combination or to add a small amount.

電解液については、電解質塩としてLiPFおよびLiBFなどの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独および組み合わせて用いることができる。また正負極上に良好な皮膜を形成させたり、過充電時の安定性を保証するために、ビニレンカーボネート(VC)やシクロヘキシルベンゼン(CHB)およびその変性体を用いることも好ましい。 For the electrolytic solution, it is possible to use various lithium compounds such as LiPF 6 and LiBF 4 as an electrolyte salt. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent. It is also preferable to use vinylene carbonate (VC), cyclohexylbenzene (CHB), and modified products thereof in order to form a good film on the positive and negative electrodes and to ensure stability during overcharge.

上記のように作成した負極合材塗料を、ダイコータを用い、ダイコータのマニホールド
内部の圧力を負圧に調整することで、銅箔上に負極合剤塗料の厚みが薄くる箇所を塗布形成、次いで乾燥後プレスにて所定の厚みまで圧縮した。
Using the die coater, the negative electrode mixture paint prepared as described above is adjusted to a negative pressure inside the die coater manifold, thereby applying and forming a portion where the thickness of the negative electrode mixture paint is thin on the copper foil. After drying, it was compressed to a predetermined thickness with a press.

セパレータについては、リチウムイオン二次電池の使用範囲に耐えうる組成であれば特に限定されないが、ポリエチレンやポリプロピレンなどのオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが一般的でありまた態様として好ましい。このセパレータの厚みは特に限定されないが、10〜25μmとすれば良い。   The separator is not particularly limited as long as it has a composition that can withstand the range of use of the lithium ion secondary battery, but a microporous film of an olefin-based resin such as polyethylene or polypropylene is generally used singly or in combination. Also preferred as an embodiment. The thickness of the separator is not particularly limited, but may be 10 to 25 μm.

本発明の一実施例について図面および表を参照しながら説明する。まず、活物質としてコバルト酸リチウムを100重量部、導電材としてアセチレンブラックを活物質100重量部に対して2重量部、結着剤としてポリフッ化ビニリデンを活物質100重量部に対して2重量部とを適量のN−メチル−2−ピロリドンと共に双腕式練合機にて攪拌し混練することで、正極合剤塗料を作製した。   An embodiment of the present invention will be described with reference to the drawings and tables. First, 100 parts by weight of lithium cobaltate as an active material, 2 parts by weight of acetylene black as a conductive material with respect to 100 parts by weight of the active material, and 2 parts by weight of polyvinylidene fluoride as a binder with respect to 100 parts by weight of the active material Was mixed with an appropriate amount of N-methyl-2-pyrrolidone in a double-arm kneader to prepare a positive electrode mixture paint.

次いで、図5(a)に示したように、この正極合剤塗料を15μm厚のアルミニウム箔の集電体1に厚みが薄くなる箇所3の幅Wが一巻き分の長さになるように塗布し、乾燥後に片面の正極合剤層の厚みが100μmで、正極合剤層の厚みが薄くなる箇所3の厚みTが75μmとなる正極板を作製した。   Next, as shown in FIG. 5 (a), the positive electrode mixture paint is applied to the current collector 1 of aluminum foil having a thickness of 15 μm so that the width W of the portion 3 where the thickness is reduced becomes the length of one turn. After coating and drying, a positive electrode plate was prepared in which the thickness of the positive electrode mixture layer on one side was 100 μm and the thickness T of the portion 3 where the thickness of the positive electrode mixture layer was reduced was 75 μm.

さらに、図5(b)に示したように、この正極板を総厚が180μmとなるようにプレスすることで、合剤片面厚みが82.5μmの正極合剤層の活物質密度が小さい箇所7を形成した。その後、スリッタ加工し、正極板5を作製した。   Further, as shown in FIG. 5B, the positive electrode plate is pressed so that the total thickness becomes 180 μm, whereby the active material density of the positive electrode mixture layer having a mixture single-sided thickness of 82.5 μm is small. 7 was formed. Thereafter, slitting was performed, and the positive electrode plate 5 was produced.

また、前記正極板とは別に、従来通り、上記正極合剤塗料を15μm厚のアルミニウム箔の集電体1に乾燥後に正極合剤層の厚みが100μmとなるように塗布し、この正極板の総厚が180μmとなるようにプレスし、円筒形電池の規定されている幅にスリット加工し、活物質密度が一定の正極板を作成した。   Further, separately from the positive electrode plate, the positive electrode mixture paint is applied to a current collector 1 made of 15 μm thick aluminum foil so that the thickness of the positive electrode mixture layer is 100 μm after drying. Pressing was performed so that the total thickness was 180 μm, and slit processing was performed to a prescribed width of the cylindrical battery, to produce a positive electrode plate having a constant active material density.

一方、負極板の活物質として人造黒鉛を100重量部、結着剤としてスチレン−ブタジエン共重合体ゴム粒子分散体(固形分40重量%)を活物質100重量部に対して2.5重量部(結着剤の固形分換算で1重量部)、増粘剤としてカルボキシメチルセルロースを活物質100重量部に対して1重量部、および適量の水とともに双腕式練合機にて攪拌し、負極合剤塗料を作製した。   On the other hand, 100 parts by weight of artificial graphite as an active material for the negative electrode plate, and 2.5 parts by weight of styrene-butadiene copolymer rubber particle dispersion (solid content 40% by weight) as a binder for 100 parts by weight of the active material. (1 part by weight in terms of solid content of the binder), 1 part by weight of carboxymethylcellulose as a thickener with respect to 100 parts by weight of the active material, and an appropriate amount of water are stirred in a double-arm kneader, and the negative electrode A mixture paint was prepared.

次いで、図5(a)に示したように、この負極合剤塗料を10μm厚の銅箔の集電体1に厚みが薄くなる箇所3の幅Wが一巻き分の長さになるように塗布し、乾燥後に片面の負極合剤層の厚みが110μmで、合剤厚みが薄くなる箇所の厚みTが80μmとなる負極板を作製した。さらに、この負極板を総厚が170μmとなるようにプレスした後、円筒形電池の規定されている幅にスリッタ加工し、負極板を作製した。   Next, as shown in FIG. 5A, the negative electrode mixture paint is applied to the copper foil current collector 1 having a thickness of 10 μm so that the width W of the portion 3 where the thickness is reduced becomes the length of one turn. After coating and drying, a negative electrode plate was prepared in which the thickness of the negative electrode mixture layer on one side was 110 μm, and the thickness T of the portion where the mixture thickness was reduced was 80 μm. Further, this negative electrode plate was pressed to a total thickness of 170 μm, and then slitted to a specified width of the cylindrical battery to produce a negative electrode plate.

また、上記負極板とは別に、従来どおり、上記負極剤塗料を10μm厚の銅箔の集電体1に乾燥後に合剤厚みが110μmとなるように塗布し、この負極板の総厚が170μmとなるようにプレスし、円筒形電池の規定されている幅にスリット加工し、活物質密度が一定の負極板を作成した。   Separately from the negative electrode plate, the negative electrode paint is applied to a copper foil current collector 1 having a thickness of 10 μm so that the mixture thickness becomes 110 μm after drying, and the total thickness of the negative electrode plate is 170 μm. And slitting into a specified width of the cylindrical battery to prepare a negative electrode plate having a constant active material density.

これらの正極板および負極板を20μm厚のポリエチレン微多孔フィルムをセパレータとして図2に示すように巻回し、電池ケース内に挿入し、EC・DMC・MEC混合溶媒にLiPF6を1MとVCを3重量部溶解させた電解液を、添加して封口し、円筒形のリチウムイオン二次電池を作製した。 The positive electrode plate and the negative electrode plate are wound as shown in FIG. 2 using a polyethylene microporous film having a thickness of 20 μm as shown in FIG. 2, inserted into the battery case, and 1M of LiPF 6 and 3% of VC are mixed in an EC / DMC / MEC mixed solvent. An electrolytic solution in which parts by weight were dissolved was added and sealed to prepare a cylindrical lithium ion secondary battery.

上記の円筒形のリチウムイオン二次電池において、電極合剤層の活物質密度が小さい箇所を設けた正極板と活物質密度が一定の負極板を用いて作製したリチウムイオン二次電池を実施例A、電極合剤層の活物質密度が一定の正極板5と電極合剤層の活物質密度が小さい箇所を設けた負極板を用いて作製したリチウムイオン二次電池を実施例B、正極板と負極板ともに電極合剤層の活物質密度が小さい箇所を設けて作製したリチウムイオン二次電池を実施例Cとした。   In the above-described cylindrical lithium ion secondary battery, an example of a lithium ion secondary battery manufactured using a positive electrode plate provided with a portion having a small active material density in the electrode mixture layer and a negative electrode plate having a constant active material density A, a lithium ion secondary battery produced using a positive electrode plate 5 having a constant active material density of the electrode mixture layer and a negative electrode plate provided with a portion having a low active material density of the electrode mixture layer. Example B, positive electrode plate Example C was a lithium ion secondary battery prepared by providing a portion where the active material density of the electrode mixture layer was low in both the negative electrode plate and the negative electrode plate.

(比較例1)
上記の実施例1において、電極合剤層の活物質密度が一定の正極板5と電極合剤層の活物質密度が一定の負極板とを用いて作製したリチウムイオン二次電池を比較例1とした。
(Comparative Example 1)
In Example 1 above, a lithium ion secondary battery manufactured using the positive electrode plate 5 having a constant active material density of the electrode mixture layer and the negative electrode plate having a constant active material density of the electrode mixture layer was compared with Comparative Example 1. It was.

上記の条件で作製されたリチウムイオン二次電池について、図2に示すように、正極板5、負極板9、およびセパレータ10を捲回して電極群14を構成した後、電極群14を解体し、正極板5、負極板9の切れおよび合剤脱落の有無について評価を行った。各実施例につき100個ずつ評価し、そのときにおける電極板の切れの発生率と合剤脱落の発生率を(表1)に示す。   As shown in FIG. 2, the lithium ion secondary battery manufactured under the above conditions is wound around the positive electrode plate 5, the negative electrode plate 9, and the separator 10 to form the electrode group 14, and then the electrode group 14 is disassembled. Evaluation was made on whether the positive electrode plate 5 and the negative electrode plate 9 were cut and the mixture was removed. 100 pieces were evaluated for each example, and the occurrence rate of electrode plate breakage and the occurrence rate of mixture dropout at that time are shown in Table 1.

Figure 2009181833
Figure 2009181833

(表1)に示されるように電極板に活物質密度が小さい箇所が形成されていない比較例1の電極板に比べ、活物質密度が小さい箇所が形成された実施例A〜Cの電極板は電極群構成時の電極板切れおよび合剤脱落を抑制できることが分かった。   As shown in (Table 1), the electrode plates of Examples A to C in which a portion having a low active material density was formed as compared with the electrode plate of Comparative Example 1 in which a portion having a low active material density was not formed on the electrode plate. Was found to be able to suppress electrode plate breakage and mixture dropping during electrode group construction.

また、比較例1の電極板においては、電極群を構成後に解体すると、電極板の切れが発生していたのは、大部分が正極板であり、電極群にした際に最も曲率の小さな部分(図3に示した5a〜5b)での破断が確認された。一方で、合剤脱落が発生していたのは、大部分が負極板であり、電極群にした際に最も曲率の小さな部分(図3に示した9a〜9b)での合剤脱落が確認された。   Further, in the electrode plate of Comparative Example 1, when the electrode group was disassembled after being configured, the electrode plate was cut mostly because of the positive electrode plate, and the portion having the smallest curvature when the electrode group was formed. The fracture | rupture in (5a-5b shown in FIG. 3) was confirmed. On the other hand, the mixture drop occurred mostly in the negative electrode plate, and it was confirmed that the mixture was dropped at the portion with the smallest curvature (9a to 9b shown in FIG. 3) when the electrode group was formed. It was.

次いで、上記の条件で作製されたリチウムイオン二次電池について、以下の内容で評価を行なった。まず、電池容量ばらつきとしては、封口後の完成電池(巻回による電極板の破断、活物質の脱落のない良品)について初期充放電を2回行い、45℃環境で7日間保存した後の電池20個の電池容量を測定して20個中の電池容量ばらつきの測定を行なった。   Next, the lithium ion secondary battery manufactured under the above conditions was evaluated as follows. First, regarding the battery capacity variation, the battery after being sealed for 7 days in a 45 ° C environment was subjected to initial charge / discharge twice for a finished battery after sealing (a non-defective product without electrode plate breakage and active material removal). 20 battery capacities were measured, and the battery capacity variation in 20 batteries was measured.

また、500サイクル容量維持率としては、封口後の完成電池について初期充放電を2回行い、45℃環境で7日間保存した後、以下の充放電サイクルを500回繰り返した。充電については、定電圧4.2V、1400mAで充電を行い、充電電流が100mAまで低下したとき充電を終了し、放電は2000mAの定電流で終止電圧3Vまで放電することを1サイクルとして、1サイクル目に対する500サイクル目の放電容量比を500サイクル容量維持率として測定を行なった。以上の項目について評価した内容を(表2)に示す。   Moreover, as 500 cycle capacity | capacitance maintenance factor, initial charge / discharge was performed twice about the completed battery after sealing, and after storing for 7 days in a 45 degreeC environment, the following charge / discharge cycles were repeated 500 times. For charging, charging is performed at a constant voltage of 4.2 V and 1400 mA. When charging current is reduced to 100 mA, charging is terminated, and discharging is performed at a constant current of 2000 mA and discharging to a final voltage of 3 V as one cycle. The discharge capacity ratio of the 500th cycle with respect to the eyes was measured as a 500 cycle capacity retention rate. The contents evaluated for the above items are shown in (Table 2).

Figure 2009181833
Figure 2009181833

(表2)の結果より、実施例A〜Cは電池容量のばらつきが少なく、充放電500サイクルの容量維持率も向上することが分かった。これは、巻回時の切れ、合剤脱落が少ないため、集電性能が良く、初期容量のばらつきが小さいためである。また充放電サイクル時におこる電極板の膨張、収縮があっても、正極板と負極板のバランスが局所的に崩れることがないのでサイクル劣化が少ないことが分かった。それに対し、比較例1では、巻回時の切れ、合剤脱落が多いため、集電性能が悪く、容量のばらつきが大きい。また、充放電サイクル時の起こる電極板の膨張、収縮のために、正極板と負極板のバランスが局所的に崩れることがあり、その結果として容量維持率が低下することが分かった。   From the results of (Table 2), it was found that Examples A to C had little variation in battery capacity and improved the capacity maintenance rate of 500 cycles of charge / discharge. This is because the current collection performance is good and the variation in the initial capacity is small because there are few cuts during the winding and the mixture dropout. Further, it was found that even if the electrode plate expands and contracts during the charge / discharge cycle, the balance between the positive electrode plate and the negative electrode plate does not collapse locally, so that the cycle deterioration is small. On the other hand, in Comparative Example 1, since there are many cuts and droppings of the mixture during winding, the current collection performance is poor, and the variation in capacity is large. Further, it has been found that the balance between the positive electrode plate and the negative electrode plate may be locally broken due to the expansion and contraction of the electrode plate that occurs during the charge / discharge cycle, and as a result, the capacity retention rate decreases.

実施例1と同様にまず、活物質としてコバルト酸リチウムを100重量部、導電材としてアセチレンブラックを活物質100重量部に対して2重量部、結着剤としてポリフッ化ビニリデンを活物質100重量部に対して2重量部とを適量のN−メチル−2−ピロリドンと共に双腕式練合機にて攪拌し混練することで、正極合剤塗料を作製した。次いで、図5(a)に示したように、この正極合剤塗料を15μm厚のアルミニウム箔の集電体1に厚みが薄くなる箇所3を設けて塗布し、乾燥後に片面の正極合剤層の厚みが100μmで、正極合剤層の厚みが薄くなる箇所の厚みTが75μm、幅Wが3mmとなる正極板を作製した。この幅Wの3mmは、巻回において四分の一巻きに相当する。   As in Example 1, first, 100 parts by weight of lithium cobaltate as an active material, 2 parts by weight of acetylene black as a conductive material with respect to 100 parts by weight of the active material, and 100 parts by weight of polyvinylidene fluoride as a binder A positive electrode mixture paint was prepared by stirring and kneading 2 parts by weight with an appropriate amount of N-methyl-2-pyrrolidone in a double-arm kneader. Next, as shown in FIG. 5 (a), this positive electrode mixture paint is applied to a 15 μm thick aluminum foil current collector 1 with a thinned portion 3 applied, and after drying, a single-side positive electrode mixture layer A positive electrode plate with a thickness of 100 μm, a thickness T of the portion where the thickness of the positive electrode mixture layer is reduced to 75 μm, and a width W of 3 mm was produced. The width W of 3 mm corresponds to a quarter turn in the winding.

さらに、図5(b)に示したように、この正極板を総厚が180μmとなるようにプレスすることで、片面の正極合剤層の厚みが82.5μmの正極合剤層の活物質密度が小さい箇所7を形成した。その後、スリッタ加工し、正極板を作製した。   Further, as shown in FIG. 5B, the positive electrode plate is pressed so that the total thickness becomes 180 μm, whereby the active material of the positive electrode mixture layer with the thickness of the positive electrode mixture layer on one side being 82.5 μm. A portion 7 having a low density was formed. Thereafter, slitting was performed to produce a positive electrode plate.

上記正極板とは別に実施例1と同様にして負極板を作成した。これらの正極板および負極板を20μm厚のポリエチレン微多孔フィルムをセパレータとして図2に示すように巻回構成し、電池ケース内に挿入し、EC・DMC・MEC混合溶媒にLiPF6を1MとVCを3重量部溶解させた電解液を、添加して封口し、円筒形のリチウムイオン二次電池を作製し、実施例Dとした。 Apart from the positive electrode plate, a negative electrode plate was prepared in the same manner as in Example 1. These positive electrode plate and negative electrode plate are wound as shown in FIG. 2 using a 20 μm thick polyethylene microporous film as a separator, inserted into the battery case, and 1M and VC of LiPF 6 in an EC / DMC / MEC mixed solvent. An electrolytic solution in which 3 parts by weight of the electrolyte was dissolved was added and sealed to prepare a cylindrical lithium ion secondary battery, and Example D was obtained.

以下同様にして、電極合剤層の活物質密度が小さい箇所の幅Wが6mm(二分の一巻き相当)となる箇所を設けた正極板と活物質密度が一定の負極板を用いて作製したリチウムイオン二次電池を実施例E、電極合剤層の活物質密度が小さい箇所の幅Wが9mm(四分の三巻き相当)となる箇所を設けた正極板と活物質密度が一定の負極板を用いて作製したリチウムイオン二次電池を実施例F、電極合剤層の活物質密度が小さい箇所の幅Wが12mm(一巻き相当)となる箇所を設けた正極板と活物質密度が一定の負極板を用いて作製したリチウムイオン二次電池を実施例G、電極合剤層の活物質密度が小さい箇所の幅Wが24mm(二巻き相当)となる箇所を設けた正極板と活物質密度が一定の負極板を用いて作製したリチウムイオン二次電池を実施例Hとした。   In the same manner, a positive electrode plate provided with a portion where the width W of the portion where the active material density of the electrode mixture layer is small is 6 mm (corresponding to a half turn) and a negative electrode plate having a constant active material density were prepared. Example E, positive electrode plate provided with a portion where the width W of the portion where the active material density of the electrode mixture layer is small is 9 mm (equivalent to three quarter turns) and a negative electrode having a constant active material density Example F, a positive electrode plate provided with a portion where the width W of the portion where the active material density of the electrode mixture layer is small is equivalent to 12 mm (corresponding to one turn) and the active material density of the lithium ion secondary battery produced using the plate A lithium ion secondary battery manufactured using a certain negative electrode plate was manufactured in Example G. A positive electrode plate provided with a portion where the width W of the portion where the active material density of the electrode mixture layer was small was 24 mm (corresponding to two turns) and the active plate Lithium ion secondary battery fabricated using negative electrode plate with constant material density Was as in Example H.

上記の条件で作製されたリチウム電池について、図2に示すように、正極板5、負極板
9、およびセパレータ10を捲回して電極群14を構成した後、電極群14を解体し、正極板5、負極板9の切れおよび合剤脱落の有無について評価を行った。各実施例につきに100個ずつ評価し、そのときにおける電極板の切れの発生率と合剤脱落の発生率を(表3)に示す。
With respect to the lithium battery manufactured under the above conditions, as shown in FIG. 2, after the positive electrode plate 5, the negative electrode plate 9, and the separator 10 are wound to form the electrode group 14, the electrode group 14 is disassembled, and the positive electrode plate 5. Evaluation was made on whether the negative electrode plate 9 was broken and the mixture was removed. 100 pieces were evaluated for each example, and the occurrence rate of electrode plate breakage and the occurrence rate of mixture dropping at that time are shown in Table 3.

Figure 2009181833
Figure 2009181833

(表3)に示されるように、電極板に活物質密度が小さい箇所が形成されていない比較例1の電極板や、活物質密度が小さい箇所が形成されていてもその範囲が巻回の一巻き未満の実施例D〜Fにおける電極板は電極群を構成する時における電極板の切れの発生率および合剤脱落の発生率が同程度かやや低い程度で抑制効果があるとは言えない。   As shown in (Table 3), even if the electrode plate of Comparative Example 1 in which a portion having a low active material density is not formed on the electrode plate or a portion having a low active material density is formed, the range is wound. The electrode plates in Examples D to F of less than one turn cannot be said to have a suppressing effect when the rate of occurrence of electrode plate breakage and the rate of mixture dropout are the same or slightly lower when constituting the electrode group. .

一方、活物質密度が小さい箇所が巻回の一巻き以上である実施例G,Hは電極板の切れおよび合剤脱落を抑制できることが分かった。   On the other hand, it was found that Examples G and H in which the portion having a low active material density is one or more turns of the winding can suppress the breakage of the electrode plate and the dropping of the mixture.

次いで、上記の条件で作製されたリチウムイオン二次電池について、実施例1と同様に電池20個の電池容量のばらつきと500サイクルの容量維持率の測定を行った。   Next, for the lithium ion secondary battery fabricated under the above conditions, the battery capacity variation of 20 batteries and the capacity retention rate of 500 cycles were measured in the same manner as in Example 1.

以上の項目について評価した内容を(表4)に示す。   The contents evaluated for the above items are shown in (Table 4).

Figure 2009181833
Figure 2009181833

(表4)の結果より、電極板に活物質密度が小さい箇所が形成されていない比較例1や活物質密度が小さい箇所が形成されていてもその範囲が巻回の一巻き未満の実施例D〜Fでは、巻回時の電極板の切れ、合剤脱落が多いため、集電性能が悪く、容量のばらつきが大きかった。また、充放電サイクル時に起こる電極板の膨張、収縮のために、正極板と負極板のバランスが局所的に崩れることがあり、その結果として容量維持率が低下することが分かった。それに対し、活物質密度が小さい箇所が巻回の一巻き以上である実施例G〜Hは電池容量のばらつきが少なく、充放電500サイクルの容量維持率も向上することが分かった。これは、巻回時の電極板の切れ、合剤脱落が少ないため、集電性能が良く、初期容量のばらつきが小さかった。また、充放電サイクル時に起こる電極板の膨張、収縮があっても、正極板と負極板のバランスが局所的に崩れることがないのでサイクル劣化が少
ないことが分かった。
From the results of (Table 4), even if Comparative Example 1 in which a portion having a low active material density is not formed on the electrode plate or a portion having a low active material density is formed, the range is less than one turn of winding. In DF, since the electrode plate was frequently cut and the mixture dropped during winding, the current collection performance was poor, and the capacity variation was large. Further, it has been found that the balance between the positive electrode plate and the negative electrode plate may be locally broken due to the expansion and contraction of the electrode plate that occurs during the charge / discharge cycle, and as a result, the capacity retention rate decreases. On the other hand, it was found that in Examples G to H where the active material density is small in one or more turns, there is little variation in battery capacity, and the capacity retention rate of 500 cycles of charge / discharge is improved. This was because the electrode plate was not cut and the mixture was not dropped during winding, so the current collection performance was good and the initial capacity variation was small. Further, it was found that even when the electrode plate expands or contracts during the charge / discharge cycle, the balance between the positive electrode plate and the negative electrode plate does not collapse locally, so that the cycle deterioration is small.

実施例2においては正極板だけに密度が小さい箇所を形成したが、負極板に密度が小さい箇所を形成しても同様な効果が得られることは言うまでもない。また、密度が小さい箇所を連続的に形成したが、断続的に形成しても同様な効果が得られることは言うまでもない。   In Example 2, a portion having a low density was formed only on the positive electrode plate, but it goes without saying that the same effect can be obtained even if a portion having a low density is formed on the negative electrode plate. Moreover, although the location with a low density was formed continuously, it cannot be overemphasized that the same effect is acquired even if it forms intermittently.

以上の結果から、本発明を用いることにより、電極群を構成する際に電極板の切れを抑制することができ、容量バラツキが少なく、しかもサイクル特性に優れた非水系二次電池を実現することが可能である。   From the above results, by using the present invention, it is possible to suppress the breakage of the electrode plate when configuring the electrode group, to realize a non-aqueous secondary battery with less capacity variation and excellent cycle characteristics. Is possible.

本発明に係る非水系二次電池は、規定厚みに圧縮された正極板および負極板の少なくともいずれか一方の電極板に活物質密度が小さい箇所を形成し、電極群を構成する際に、この箇所を曲率が最も大きくなる箇所にすることで、従来の非水系二次電池より、容量バラツキが少なく、充放電サイクル特性に優れているので、電子機器および通信機器の多機能化に伴って高容量化が望まれているポータブル用電源等として有用である。   When the non-aqueous secondary battery according to the present invention forms a portion having a low active material density on at least one of the positive electrode plate and the negative electrode plate compressed to a specified thickness, By making the location where the curvature is the largest, there is less capacity variation and better charge / discharge cycle characteristics than conventional non-aqueous secondary batteries. It is useful as a portable power source and the like for which capacity is desired.

本発明の一実施例に係る円筒形の非水系二次電池の一部切欠斜視図1 is a partially cutaway perspective view of a cylindrical non-aqueous secondary battery according to an embodiment of the present invention. 同実施形態に係る正極板および負極板を示す概略図Schematic showing a positive electrode plate and a negative electrode plate according to the same embodiment 同実施例に係る電極群の巻回状態を示す断面図Sectional drawing which shows the winding state of the electrode group which concerns on the Example 同実施例に係る電極群の巻回装置の概略を示す断面図Sectional drawing which shows the outline of the winding apparatus of the electrode group which concerns on the Example (a)本発明における電極板の塗工後の断面図、(b)本発明における活物質密度が小さい箇所を有した電極板の断面図、(c)本発明における活物質密度が小さい凹部を有した電極板の断面図(A) Cross-sectional view after coating of electrode plate in the present invention, (b) Cross-sectional view of electrode plate having a portion with low active material density in the present invention, (c) Recessed portion with low active material density in the present invention. Cross section of electrode plate (a)従来例における連続的に塗布量を変化させた電極板の断面図、(b)従来例の電極板をプレスした後の断面図(A) Cross-sectional view of electrode plate with continuously changing coating amount in conventional example, (b) Cross-sectional view after pressing electrode plate of conventional example 従来例における塗工端部を連続的に塗布量を変化させた電極板の部分断面図Partial sectional view of an electrode plate in which the coating amount is continuously changed at the coating end in the conventional example

符号の説明Explanation of symbols

1 集電体
2 電極合剤塗料
3 厚みが薄くなる箇所
5 正極板
5a 塗工端部
5b 一巻き目
6 電極合剤層
7 活物質密度が小さい箇所
8 凹部
9 負極板
9a 塗工端部
9b 一巻き目
10 セパレータ
11 電池ケース
12 封口板
13 封口ガスケット
14 電極群
15 絶縁板
16 負極リード
17 正極リード
25 搬送部
26 搬送部
27 巻回部
T 厚み
W 幅
DESCRIPTION OF SYMBOLS 1 Current collector 2 Electrode mixture coating 3 Thickness reduction place 5 Positive electrode plate 5a Coating end part 5b First roll 6 Electrode mixture layer 7 Location where the active material density is low 8 Recessed part 9 Negative electrode plate 9a Coating end part 9b First roll 10 Separator 11 Battery case 12 Sealing plate 13 Sealing gasket 14 Electrode group 15 Insulating plate 16 Negative electrode lead 17 Positive electrode lead 25 Conveying unit 26 Conveying unit 27 Winding unit T Thickness W Width

Claims (9)

少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着剤を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布して構成される正極板と少なくともリチウムを保持しうる材料よりなる活物質および結着剤を分散媒にて混練分散した負極合剤塗料を負極集電体の上に塗布して構成される負極板とセパレータを渦巻状に巻回して形成される電極群と非水溶媒からなる電解液により構成される非水系二次電池であって、前記正極板および負極板の少なくともいずれか一方の前記電極群の内周側の活物質密度を外周側の活物質密度より部分的に小さくしたことを特徴とする非水系二次電池。   A positive electrode plate formed by applying a positive electrode mixture paint obtained by kneading and dispersing an active material composed of at least a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium on a positive electrode current collector, and at least holding lithium A negative electrode plate composed of an active material and a binder mixed with a dispersion medium and dispersed on a negative electrode current collector and a separator are wound in a spiral shape. A non-aqueous secondary battery comprising an electrode group and an electrolyte solution comprising a non-aqueous solvent, wherein the active material density on the inner circumference side of at least one of the positive electrode plate and the negative electrode plate is A non-aqueous secondary battery characterized in that it is partially smaller than the active material density on the side. 前記正極板および負極板の少なくともいずれか一方に形成された前記活物質密度の小さい箇所を、少なくとも電極群の巻回時の最内周の塗工端部を含む構成としたことを特徴とする請求項1に記載の非水系二次電池。   The portion having a low active material density formed on at least one of the positive electrode plate and the negative electrode plate is configured to include at least an innermost coating end portion when the electrode group is wound. The non-aqueous secondary battery according to claim 1. 前記正極板および負極板の少なくともいずれか一方に形成された前記活物質密度の小さい箇所を、電極板の長手方向に対して少なくとも最内周の塗工端部から一巻き分までの範囲としたことを特徴とする請求項1に記載の非水系二次電池。   The portion having a small active material density formed on at least one of the positive electrode plate and the negative electrode plate is at least in the range from the coating end of the innermost circumference to one turn with respect to the longitudinal direction of the electrode plate. The non-aqueous secondary battery according to claim 1. 前記正極板および負極板の少なくともいずれか一方に形成された前記活物質密度の小さい箇所の厚みを、他の箇所と同じとしたことを特徴とする請求項1に記載の非水系二次電池。   2. The non-aqueous secondary battery according to claim 1, wherein a thickness of the portion having a small active material density formed on at least one of the positive electrode plate and the negative electrode plate is the same as that of other portions. 前記正極板および負極板の少なくともいずれか一方に形成された前記活物質密度の小さい箇所の厚みを、他の箇所と異なるように構成したことを特徴とする請求項1に記載の非水系二次電池。   2. The non-aqueous secondary according to claim 1, wherein a thickness of a portion having a small active material density formed on at least one of the positive electrode plate and the negative electrode plate is different from other portions. battery. 少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着剤を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布して構成される正極板と少なくともリチウムを保持しうる材料よりなる活物質および結着剤を分散媒にて混練分散した負極合剤塗料を負極集電体の上に塗布して構成される負極板とセパレータを渦巻状に巻回して形成される電極群と非水溶媒からなる電解液により構成される非水系二次電池の製造方法であって、前記正極板および負極板の少なくともいずれか一方の前記正極合剤塗料または負極合剤塗料の塗布量を前記電極群の内周側と外周側より部分的に少なくなるように塗布形成する第一の工程および前記正極合剤塗料または負極合剤塗料を乾燥した後に所定厚みにプレスされる第二の工程を経て前記電極群とすることを特徴とする非水系二次電池の製造方法。   A positive electrode plate formed by applying a positive electrode mixture paint obtained by kneading and dispersing an active material composed of at least a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium on a positive electrode current collector, and at least holding lithium A negative electrode plate composed of an active material and a binder mixed with a dispersion medium and dispersed on a negative electrode current collector and a separator are wound in a spiral shape. A method for producing a non-aqueous secondary battery comprising an electrolyte solution comprising an electrode group and a non-aqueous solvent, wherein the positive electrode mixture paint or the negative electrode mixture paint of at least one of the positive electrode plate and the negative electrode plate A first step of coating and forming the coating so that the coating amount is partially smaller than the inner peripheral side and the outer peripheral side of the electrode group, and the positive electrode mixture paint or the negative electrode mixture paint is dried and then pressed to a predetermined thickness Before going through the second step Method for producing a nonaqueous secondary battery, which comprises an electrode group. 前記正極集電体および負極集電体の少なくともいずれか一方の上に塗布する前記正極合剤塗料または負極合剤塗料の塗布量を制御することにより、前記電極群の正極板および負極板の少なくともいずれか一方における内周側の活物質密度を外周側の活物質密度より小さくすることを特徴とする請求項6に記載の非水系二次電池の製造方法。   By controlling the amount of the positive electrode mixture paint or negative electrode mixture paint applied on at least one of the positive electrode current collector and the negative electrode current collector, at least the positive electrode plate and the negative electrode plate of the electrode group The method for manufacturing a non-aqueous secondary battery according to claim 6, wherein the active material density on the inner peripheral side in either one is made smaller than the active material density on the outer peripheral side. 前記正極集電体および負極集電体の少なくともいずれか一方の上に塗布する前記正極合剤塗料または負極合剤塗料の塗布開始時または塗布終了時における塗布量を変えることにより、前記正極板および負極板の少なくともいずれか一方に形成された前記活物質密度の小さい箇所を内周側に形成し、この活物質密度の小さい箇所が少なくとも電極群の巻回時の最内周の塗工端部を含むようにすることを特徴とする請求項6に記載の非水系二次電池の製造方法。   By changing the coating amount at the start or end of application of the positive electrode mixture paint or negative electrode mixture paint applied on at least one of the positive electrode current collector and the negative electrode current collector, the positive electrode plate and A portion having a low active material density formed on at least one of the negative electrode plates is formed on the inner peripheral side, and the portion having the low active material density is at least the innermost coating end when the electrode group is wound. The method for manufacturing a non-aqueous secondary battery according to claim 6, wherein: 前記正極集電体および負極集電体の少なくともいずれか一方の上に塗布する前記正極合
剤塗料または負極合剤塗料の塗布量を塗布が開始されて一定時間が経過した後に変えることにより、前記正極板および負極板の少なくともいずれか一方に形成された前記活物質密度の小さい箇所を、電極板の長手方向に対して少なくとも最内周の塗工端部から一巻き分までの範囲で形成することを特徴とする請求項6に記載の非水系二次電池の製造方法。
By changing the coating amount of the positive electrode mixture paint or the negative electrode mixture paint applied on at least one of the positive electrode current collector and the negative electrode current collector after a predetermined time has elapsed since the start of application, The portion having a small active material density formed on at least one of the positive electrode plate and the negative electrode plate is formed in a range from at least the innermost coating end to one turn with respect to the longitudinal direction of the electrode plate. The method for producing a non-aqueous secondary battery according to claim 6.
JP2008020478A 2008-01-31 2008-01-31 Non-aqueous secondary battery and method of manufacturing the same Pending JP2009181833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008020478A JP2009181833A (en) 2008-01-31 2008-01-31 Non-aqueous secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008020478A JP2009181833A (en) 2008-01-31 2008-01-31 Non-aqueous secondary battery and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009181833A true JP2009181833A (en) 2009-08-13

Family

ID=41035635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008020478A Pending JP2009181833A (en) 2008-01-31 2008-01-31 Non-aqueous secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009181833A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544589A (en) * 2010-12-13 2012-07-04 索尼公司 Secondary battery, battery pack, electronic apparatus, electric tool, electric vehicle, and power storage system
CN102856538A (en) * 2011-06-30 2013-01-02 Fdktwicell株式会社 Negative-electrode plate and cylindrical cell including same
JP2013134940A (en) * 2011-12-27 2013-07-08 Fdk Twicell Co Ltd Cylindrical battery
JP2013143190A (en) * 2012-01-06 2013-07-22 Toyota Motor Corp Nonaqueous secondary battery
JP2013165025A (en) * 2012-02-13 2013-08-22 Nissan Motor Co Ltd Device and method for transferring belt-like cell material
KR101522449B1 (en) * 2011-07-11 2015-05-21 가부시키가이샤 히타치세이사쿠쇼 Secondary battery, assembled battery, assembled battery settings, electrodes, and production method of electrodes
JP2018010764A (en) * 2016-07-12 2018-01-18 株式会社村田製作所 Battery, battery pack, electronic device, electric motor vehicle, power storage device and electric power system
JP2020510980A (en) * 2017-11-09 2020-04-09 エルジー・ケム・リミテッド Strip type electrode used for cylindrical jelly roll and lithium secondary battery including the same
WO2023133799A1 (en) * 2022-01-14 2023-07-20 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, device and manufacturing apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128956A (en) * 2010-12-13 2012-07-05 Sony Corp Secondary battery, battery pack, electronic device, electric power tool, electric-powered vehicle, and electric power storage system
CN102544589A (en) * 2010-12-13 2012-07-04 索尼公司 Secondary battery, battery pack, electronic apparatus, electric tool, electric vehicle, and power storage system
CN102856538A (en) * 2011-06-30 2013-01-02 Fdktwicell株式会社 Negative-electrode plate and cylindrical cell including same
JP2013016260A (en) * 2011-06-30 2013-01-24 Fdk Twicell Co Ltd Negative electrode plate, cylindrical battery with negative electrode plate
CN102856538B (en) * 2011-06-30 2016-08-17 Fdk株式会社 Negative plate, include the cylindrical battery of this negative plate
KR101522449B1 (en) * 2011-07-11 2015-05-21 가부시키가이샤 히타치세이사쿠쇼 Secondary battery, assembled battery, assembled battery settings, electrodes, and production method of electrodes
JP2013134940A (en) * 2011-12-27 2013-07-08 Fdk Twicell Co Ltd Cylindrical battery
JP2013143190A (en) * 2012-01-06 2013-07-22 Toyota Motor Corp Nonaqueous secondary battery
JP2013165025A (en) * 2012-02-13 2013-08-22 Nissan Motor Co Ltd Device and method for transferring belt-like cell material
JP2018010764A (en) * 2016-07-12 2018-01-18 株式会社村田製作所 Battery, battery pack, electronic device, electric motor vehicle, power storage device and electric power system
WO2018012528A1 (en) * 2016-07-12 2018-01-18 株式会社村田製作所 Battery, battery pack, electronic device, electric vehicle, electric power storage device, and electric power system
CN109314283A (en) * 2016-07-12 2019-02-05 株式会社村田制作所 Battery, battery pack, electronic equipment, electric vehicle, electrical storage device and electric system
US11038193B2 (en) 2016-07-12 2021-06-15 Murata Manufacturing Co., Ltd. Battery, battery pack, electronic device, electric vehicle, power storage device, and power system
CN109314283B (en) * 2016-07-12 2021-07-30 株式会社村田制作所 Battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2020510980A (en) * 2017-11-09 2020-04-09 エルジー・ケム・リミテッド Strip type electrode used for cylindrical jelly roll and lithium secondary battery including the same
JP7041811B2 (en) 2017-11-09 2022-03-25 エルジー エナジー ソリューション リミテッド Strip type electrodes used for cylindrical jelly rolls and lithium secondary batteries containing them
US11637274B2 (en) 2017-11-09 2023-04-25 Lg Energy Solution, Ltd. Strip-shaped electrode used for cylindrical jelly roll and lithium secondary battery comprising same
WO2023133799A1 (en) * 2022-01-14 2023-07-20 宁德时代新能源科技股份有限公司 Electrode assembly, battery cell, battery, device and manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP4362544B2 (en) Secondary battery and manufacturing method thereof
JP2009181833A (en) Non-aqueous secondary battery and method of manufacturing the same
JP2005285607A (en) Nonaqueous secondary battery and manufacturing method thereof
US20110039140A1 (en) Positive electrode for nonaqueous battery, electrode group for nonaqueous battery and method for producing the same, and rectangular nonaqueous secondary battery and method for producing the same
WO2011074098A1 (en) Lithium secondary battery
JP2006294512A (en) Electrode for non-aqueous electrolyte secondary battery and manufacturing method of the same
WO2011052126A1 (en) Electrode, secondary battery, and method for manufacturing secondary batteries
JP2009283354A (en) Electrode for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2007329077A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2010267540A (en) Nonaqueous electrolyte secondary battery
JP2009134915A (en) Non-aqueous secondary battery
JP2007234277A (en) Positive electrode for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP7041811B2 (en) Strip type electrodes used for cylindrical jelly rolls and lithium secondary batteries containing them
JP2010062136A (en) Nonaqueous electrolyte secondary battery
JP2007328977A (en) Electrode plate for non-aqueous secondary battery, its manufacturing method, and non-aqueous secondary battery
WO2014128946A1 (en) Lithium-ion secondary cell negative electrode, lithium-ion secondary cell using lithium-ion secondary cell negative electrode, and method for manufacturing said electrode and said cell
US10312520B2 (en) Non-aqueous electrolyte secondary battery
JP2011192506A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JP2007324074A (en) Electrode plate for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using this
JP6137217B2 (en) Method for producing negative electrode for non-aqueous electrolyte secondary battery
JP2009134916A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JP3697324B2 (en) Sheet electrode manufacturing method and non-aqueous electrolyte battery
JP2010062049A (en) Nonaqueous secondary battery
JP2009181831A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
WO2013031213A1 (en) Electrode plate for non-aqueous secondary battery and non-aqueous secondary battery using same