JP2009167752A - Steel pipe for ground reinforcement and method of ground reinforcement using it - Google Patents

Steel pipe for ground reinforcement and method of ground reinforcement using it Download PDF

Info

Publication number
JP2009167752A
JP2009167752A JP2008009570A JP2008009570A JP2009167752A JP 2009167752 A JP2009167752 A JP 2009167752A JP 2008009570 A JP2008009570 A JP 2008009570A JP 2008009570 A JP2008009570 A JP 2008009570A JP 2009167752 A JP2009167752 A JP 2009167752A
Authority
JP
Japan
Prior art keywords
steel pipe
ground
ground reinforcement
reinforcement
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008009570A
Other languages
Japanese (ja)
Inventor
Tomohiro Nakaji
智博 中治
Yuki Motegi
優輝 茂手木
Tatsuya Yamamoto
達也 山本
Satoru Sato
哲 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008009570A priority Critical patent/JP2009167752A/en
Priority to KR1020107015640A priority patent/KR20100093117A/en
Priority to PCT/JP2009/050568 priority patent/WO2009091041A1/en
Priority to CN2009801015105A priority patent/CN101910560A/en
Publication of JP2009167752A publication Critical patent/JP2009167752A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D35/00Straightening, lifting, or lowering of foundation structures or of constructions erected on foundations

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel pipe for ground reinforcement which is suitable for use in a prelining construction method for tunnel work or the like and for use as a reinforcement of a tunnel to be excavated, which can improve adhesion between a filling material and the steel pipe, and which can firmly fix the steel pipe to the ground or a concrete foundation. <P>SOLUTION: The steel pipe used for natural ground reinforcement has a concavity in its peripheral direction, and is provided with a plurality of through-holes in the concavity or on the other peripheral surfaces of the steel pipe. The plurality of through-holes are used for making the filling material leak to the outside of the steel pipe, and are connected to the inside and the outside of the steel pipe. The outer diameter (D) of the steel pipe is 50 mm or more. The depth of the concavity is 0.005D to 0.2D, and the width of the concavity is 0.015D to 2D. When the width and the depth of the concavity are made (B) and (H) respectively, it is preferable that B/H=3-20 when the cross section of the concavity is triangular (1), that B/H=4-20 when the cross section of the concavity is rectangular (2), and that B/H=3-20 when the cross section of the concavity is semicircular or trapezoidal (3). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、トンネル工事等における先受け工法や掘削壁面の補強工法等に使用するに適した地盤強化用鋼管、及びそれを使用した地盤強化方法、並びにコンクリート基礎などの構造体を補強する方法に関するものである。   The present invention relates to a steel pipe for ground reinforcement suitable for use in a receiving method in tunnel construction or the like, a reinforcement method for excavation wall surfaces, a ground reinforcement method using the same, and a method for reinforcing a structure such as a concrete foundation. Is.

例えば、軟弱な地山におけるトンネル工事では、地山を補強するために、鋼管を埋設する先受け工法が採用されることが多い。この工法では、先端部にビットを装着したさく孔ロッドに鋼管を外嵌して穿孔を行い。所定深さの穿孔を行ったら、鋼管をそのまま残してさく孔ロッドを引き抜き、鋼管の内部にモルタル等の強化材を注入する。鋼管の胴部には内外に通ずる多数の通孔が穿孔されており、内部に注入された強化材が、その通孔を通って地山に浸透して固化することにより、軟弱な地山が強化される。なお、先受け工法については、多数の特許出願がなされている(例えば、特許文献1及び特許文献2参照)。
上記先受け工法に使用される鋼管は、地山に埋設されるものであるから、比較的安価で強度が大きい材質の鋼管が使用される。注入材の注入時には、上記通孔を通して流出する注入材が地山に十分に浸透し、かつ地山と鋼管との隙間に密に充填される必要がある。また、埋設された鋼管が強固に固定されるためには、該鋼管とその外周部の注入材の層とが強固に一体化しているのが望ましい。
For example, in a tunnel construction in a soft ground, in order to reinforce the ground, a receiving construction method in which a steel pipe is buried is often adopted. In this method, a steel pipe is externally fitted to a drill rod with a bit attached to the tip. After drilling at a predetermined depth, the drill rod is pulled out while leaving the steel pipe as it is, and a reinforcing material such as mortar is injected into the steel pipe. A large number of through-holes leading to the inside and outside are drilled in the body of the steel pipe, and the reinforcing material injected inside penetrates into the natural ground through the through-hole and solidifies, so that a soft natural ground is formed. Strengthened. A number of patent applications have been filed for the prior construction method (see, for example, Patent Document 1 and Patent Document 2).
Since the steel pipe used for the above-mentioned prior receiving method is buried in the natural ground, a steel pipe made of a material that is relatively inexpensive and has high strength is used. When injecting the injection material, it is necessary that the injection material flowing out through the through hole sufficiently penetrates into the natural ground and is tightly filled in the gap between the natural mountain and the steel pipe. Further, in order to firmly fix the embedded steel pipe, it is desirable that the steel pipe and the layer of the injecting material on the outer periphery thereof are firmly integrated.

しかしながら、従来の鋼管は、外面が平滑な面として形成されているので、外部の注入材の層との引っ掛かりがなく、両者がしっかりと固定されているとは言えなかった。これを改良するため、鋼管の外面にサンドブラスト処理等を施して、面を荒くすることも試みられ、それなりの効果が得られたが、鋼管を地山に強固に固定するという面では未だ満足できるものではなかった。
また、特許文献3には、地盤強化用鋼管として、外周部に螺旋状の凸条が形成され、該螺旋状凸条の間隔部に注入材を鋼管の外部に流出させるための内外に通ずる複数の通孔が設けられた地盤強化用鋼管が開示されている。
特開2000−204870号公報 特開2001−020657号公報 特開2006−022501号公報
However, since the conventional steel pipe is formed with a smooth outer surface, it cannot be said that both are firmly fixed without being caught by an external injection material layer. In order to improve this, sandblasting etc. was applied to the outer surface of the steel pipe to roughen the surface, and a certain effect was obtained, but it is still satisfactory in terms of firmly fixing the steel pipe to the ground It was not a thing.
Further, in Patent Document 3, as a steel pipe for ground reinforcement, a plurality of spiral ridges are formed on the outer peripheral portion, and the gaps between the spiral ridges are connected to the inside and outside for allowing an injection material to flow out of the steel pipe. A steel pipe for ground reinforcement provided with a through hole is disclosed.
JP 2000-204870 A JP 2001-020657 A JP 2006-022501 A

しかし、上記特許文献3に開示される鋼管では、鋼管外周面に凸部があるので、鋼管打設時の邪魔になり、外表面側からの土砂排出の邪魔となるため、凸部を大きな形状とすることができず、十分な密着性が確保し難い。また、鋼管外周面に凸部を付与することは鋼管製造後に別工程で凸形状物を付与する加工が必要となるため、生産性が劣り、また、コストが高くなるとの問題がある。
本発明は上記問題を解決するものであり、製造コストを高くすることなく地盤に埋設するときは抵抗が小さく、且つ、補強材を流し込んだ際には、鋼管とその周辺とがしっかりと強固に密着する地盤強化用鋼管、及びそれを使用した地盤強化方法、並びに構造物の強化方法を提供することを目的としている。
However, in the steel pipe disclosed in Patent Document 3, since there is a convex portion on the outer peripheral surface of the steel pipe, it becomes an obstacle at the time of placing the steel pipe and disturbs discharge of earth and sand from the outer surface side. It is difficult to ensure sufficient adhesion. Moreover, since giving a convex part to a steel pipe outer peripheral surface requires the process which provides a convex-shaped thing by another process after steel pipe manufacture, there exists a problem that productivity is inferior and cost becomes high.
The present invention solves the above problems, and when embedded in the ground without increasing the manufacturing cost, the resistance is small, and when the reinforcing material is poured, the steel pipe and its periphery are firmly and firmly fixed. It aims at providing the steel pipe for ground reinforcement which adheres, the ground reinforcement method using the same, and the reinforcement method of a structure.

上記課題を解決するため、本発明は、次のような構成とした。
(1)地盤に打設し、当該地盤の中に強化材を注入するための地盤強化用鋼管であって、
当該鋼管の外周面に凹部を有し、且つ、当該凹部あるいはその他の平滑部に、注入材を鋼管の外部に流出させるための鋼管内外に通ずる複数の通孔が設けられていることを特徴とする地盤強化用鋼管。
(2)前記凹部の断面形状が、鋼管外径が(D)の時、凹部の深さが0.005D〜0.2D、凹部の幅が0.015D〜2Dで、凹部の幅を(B)、凹部の深さを(H)としたときに
(1)凹断面形状が三角形状の時、B/H=3〜20
(2)凹断面形状が四角形状の時、B/H=4〜20
(3)凹断面形状が半円状、台形状の時、B/H=3〜20
であることを特徴とする(1)記載の地盤強化用鋼管。
(3)前記凹部を、鋼管の同一円周上に複数設けたことを特徴とする(1)又は(2)記載の地盤強化用鋼管。
(4)前記凹部が、円周方向に複数設けられ、少なくとも向かい合う凹部が同一円周上に存在しないことを特徴とする請求項1乃至2記載の地盤強化用鋼管。
(5)前記凹部が、鋼管軸に対し、斜め方向に複数設けたことを特徴とする(1)又は(2)記載の地盤強化用鋼管。
(6)前記凹部が、鋼管軸に対し、平行に複数設けたことを特徴とする(1)又は(2)記載の地盤強化用鋼管。
(7)前記凹部が、スポット状に複数設けたことを特徴とする(1)又は(2)記載の地盤強化用鋼管。
(8)前記鋼管の表面にめっき、あるいは、樹脂被覆を施したことを特徴とする(1)又は(7)のいずれか1項記載の地盤強化用鋼管。
(9)地盤強化に際して、地盤を掘削しながら(1)乃至(8)記載の地盤強化用鋼管を打設し、鋼管を打設後、当該鋼管の内部から前記複数の通孔を通して当該鋼管の外部に強化材を注入することを特徴とする地盤強化方法。
(10)前記地盤強化用鋼管の最小内径が、前記地盤を掘削する際に用いる内側ビットの外径よりも大きいことを特徴とする(8)記載の地盤強化方法。
(11)前記地盤強化用鋼管の最大外径が、前記地盤の掘削に用いる外側ビットの外径よりも小さいことを特徴とする(8)記載の地盤強化方法。
(12)(9)〜(11)記載の地盤強化方法において、前記地盤に替えて、建造物の基礎等のコンクリート、セメント等の構造体を強化することを特徴とする構造体の強化方法。
In order to solve the above problems, the present invention has the following configuration.
(1) A steel pipe for ground reinforcement for placing in the ground and injecting a reinforcing material into the ground,
The steel pipe has a concave portion on the outer peripheral surface, and the concave portion or other smooth portion is provided with a plurality of through-holes through which the injected material flows into and out of the steel pipe for allowing the injected material to flow out of the steel pipe. Steel pipe for ground strengthening.
(2) When the cross-sectional shape of the recess is a steel pipe outer diameter (D), the depth of the recess is 0.005D to 0.2D, the width of the recess is 0.015D to 2D, and the width of the recess is (B ), When the depth of the recess is (H) (1) When the concave cross-sectional shape is triangular, B / H = 3-20
(2) When the concave cross-sectional shape is a square shape, B / H = 4 to 20
(3) When the concave cross-sectional shape is semicircular or trapezoidal, B / H = 3-20
(1) The steel pipe for ground reinforcement according to (1).
(3) The ground reinforcing steel pipe according to (1) or (2), wherein a plurality of the concave portions are provided on the same circumference of the steel pipe.
(4) The ground reinforcing steel pipe according to claim 1 or 2, wherein a plurality of the concave portions are provided in a circumferential direction, and at least the facing concave portions do not exist on the same circumference.
(5) The steel pipe for ground reinforcement according to (1) or (2), wherein a plurality of the concave portions are provided obliquely with respect to the steel pipe shaft.
(6) The ground reinforcing steel pipe according to (1) or (2), wherein a plurality of the recesses are provided in parallel to the steel pipe axis.
(7) The ground reinforcing steel pipe according to (1) or (2), wherein a plurality of the concave portions are provided in a spot shape.
(8) The steel pipe for ground reinforcement according to any one of (1) and (7), wherein the surface of the steel pipe is plated or resin-coated.
(9) During ground strengthening, the steel pipe for ground reinforcement described in (1) to (8) is placed while excavating the ground, and after placing the steel pipe, the steel pipe A ground strengthening method characterized by injecting a reinforcing material outside.
(10) The ground strengthening method according to (8), wherein a minimum inner diameter of the ground reinforcing steel pipe is larger than an outer diameter of an inner bit used when excavating the ground.
(11) The ground reinforcing method according to (8), wherein a maximum outer diameter of the ground reinforcing steel pipe is smaller than an outer diameter of an outer bit used for excavation of the ground.
(12) In the ground strengthening method according to any one of (9) to (11), a structure strengthening method characterized by strengthening a structure such as concrete or cement such as a foundation of a building instead of the ground.

本発明による地盤強化用鋼管を使用することにより、鋼管外周面に凹部が形成されているので、地盤への埋設時には抵抗にならず、且つ、鋼管外周面に強化材を流し込んだ際には、凹部にも強化材が充填され、地盤との密着性が向上する。その結果、施工時の埋設本数の削減が可能となり、施工コストおよび施工工期の短縮が可能となる。
また、本発明に係る鋼管は、外周面に凹部を設けるのみなので、例えば、鋼管を造管後、そのまま凸部を有したロール間を通すだけで製造可能であり、生産能率も低下せず、製造コストも従来方法に比較して低減可能である。
また、本発明の地盤強化用鋼管を使用すれば、例えば建造物のコンクリート基礎などの構造物の補強にも同様に適用が可能で、低コストで強固な補強が可能である。
By using the steel pipe for ground reinforcement according to the present invention, since the concave portion is formed on the outer peripheral surface of the steel pipe, it does not become resistance when buried in the ground, and when the reinforcing material is poured into the outer peripheral surface of the steel pipe, The concave portion is also filled with a reinforcing material, and adhesion with the ground is improved. As a result, it is possible to reduce the number of burials at the time of construction, and it is possible to shorten the construction cost and the construction period.
Moreover, since the steel pipe according to the present invention is only provided with a concave portion on the outer peripheral surface, for example, after forming the steel pipe, it can be produced simply by passing between the rolls having the convex portion as it is, without reducing the production efficiency. The manufacturing cost can also be reduced as compared with the conventional method.
Moreover, if the steel pipe for ground reinforcement | strengthening of this invention is used, it can apply similarly to reinforcement of structures, such as a concrete foundation of a building, for example, and a strong reinforcement is possible at low cost.

以下、図面によって本発明を具体的に説明する。
図1は本発明に係る地盤強化用鋼管1を例示するもので、この鋼管は、外周部に一定間隔で周状に凹部2を設けたものである。
図1の鋼管では、その周状に複数の箇所に凹部を有し、且つ、周面全面に鋼管1の内外を通ずる複数の通孔3があり、これらの通孔3を通して鋼管外面に強化材を注入した場合、鋼管の凹部が鋼管と地盤あるいはコンクリート等との摩擦力を高めることができる。4は外側ビットを示す。
またこの鋼管の製造方法は、鋼管製造ラインにおいて造管後、熱間あるいは温間で、押圧手段により鋼管表面に凹部を付与するのみであり、生産性は通常の造管工程と殆ど変わらない。
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 illustrates a steel pipe 1 for ground reinforcement according to the present invention, and this steel pipe is provided with recesses 2 in a circumferential shape at regular intervals on an outer peripheral portion.
In the steel pipe of FIG. 1, there are a plurality of through holes 3 that have recesses at a plurality of locations in the circumference and that pass through the inside and outside of the steel pipe 1 on the entire circumferential surface, and the reinforcing material is provided on the outer surface of the steel pipe through these through holes 3. When injecting, the concave portion of the steel pipe can increase the frictional force between the steel pipe and the ground or concrete. 4 indicates an outer bit.
In addition, this steel pipe manufacturing method is such that, after the pipe is formed in the steel pipe manufacturing line, the steel pipe surface is simply provided with a concave portion by a pressing means either hot or warm, and the productivity is almost the same as a normal pipe forming process.

図2(a)〜(k)は、その他の凹部形状を示した具体例を示す。
図2の(a)(b)(c)は、いずれの鋼管1Aの円周方向に凹部2を有し、該凹部2が軸方向に一定間隔で複数形成されている。図2(a)の鋼管では、凹部2を鋼管1Aの同一円周上に複数(図では対向して2個)設けた例であり、(b)は、凹部2を圧延ロールではなく、鋼管1Aに対し、近接、退避可能な往復式の押圧装置により形成したもので、凹部2が円周上でほぼ同一の深さとなっている。(c)の鋼管では、凹部2は鋼管1Aの円周方向に複数設けられ、これらのうち少なくとも向かい合う凹部が同一円周上には存在しない例である。
図2(c)の鋼管のように、向かい合う凹部2が同一円周上に存在しないように千鳥配置としたのは、(a)の鋼管に比べて凹部位置の強度を向上させるためであり、特にこの部分の強度がより高く要求される場合に適応するに適している。なお、凹部2の千鳥配置の例では、対向する凹部部分の全幅がラップしないように形成することが望ましい。
2A to 2K show specific examples showing other concave shapes.
2 (a), 2 (b), and 2 (c) have a recess 2 in the circumferential direction of any steel pipe 1A, and a plurality of the recesses 2 are formed at regular intervals in the axial direction. 2A is an example in which a plurality of recesses 2 are provided on the same circumference of the steel pipe 1A (two in opposition to each other in the figure), and FIG. 2B is a steel pipe instead of a rolling roll. 1A is formed by a reciprocating pressing device that can approach and retract, and the recess 2 has substantially the same depth on the circumference. In the steel pipe of (c), a plurality of concave portions 2 are provided in the circumferential direction of the steel pipe 1A, and at least the concave portions facing each other are not present on the same circumference.
The staggered arrangement so that the concavities 2 facing each other do not exist on the same circumference as in the steel pipe of FIG. 2 (c) is to improve the strength of the concavity position compared to the steel pipe of (a), In particular, this portion is suitable for adaptation when the strength of the portion is required to be higher. Note that, in the example of the staggered arrangement of the recesses 2, it is desirable that the entire width of the opposing recesses is not wrapped.

図2(d)〜(g)は、鋼管軸に対し斜め方向に長辺を有する凹部2を形成した鋼管を示した図、(h)及び(i)は、鋼管軸に平行な方向に長辺を有する凹部を形成した鋼管を示した図、(j)及び(k)は、丸いスポット状の凹部を形成した鋼管を示した図である。スポット状の凹部形状は、形成し易さなどから楕円や多角形などから自由に選択できる。また、凹部を同一円周上に配置するかあるいは交互に千鳥状に配置するかなども自由に選択できる。
ここで、凹形状の制約は高さのみで、管内面を掘削ビッドが通過できるだけのスペースを確保してやればよい。
2 (d) to (g) are views showing a steel pipe in which a recess 2 having a long side in an oblique direction with respect to the steel pipe axis is shown, and (h) and (i) are long in a direction parallel to the steel pipe axis. The figure which showed the steel pipe which formed the recessed part which has a side, (j) and (k) are the figures which showed the steel pipe which formed the round spot-shaped recessed part. The spot-like recess shape can be freely selected from an ellipse, a polygon, and the like for ease of formation. It is also possible to freely select whether the concave portions are arranged on the same circumference or alternately arranged in a staggered manner.
Here, the concave shape is limited only by the height, and it is sufficient to secure a space that allows the excavation bid to pass through the inner surface of the pipe.

本発明の鋼管は、後述するように熱間あるいは温間で凹部を形成するので、例えば鋼管の肉厚が2mm以上でも容易に製造可能であり、厚肉なので鋼管として例えば地盤に回転させながら打ち込む際に、鋼管にねじれ力が作用し、屈曲したり、先端が潰れたりすることがない。また、鋼管として実用可能な外径50mm以上のものも容易に製造できる。
なお、本発明に係る鋼管を、特に耐食性が要求される用途に使用する場合には、前記の如く構成した鋼管の表面にめっき、あるいは、樹脂被覆を施して、良好な耐食性を発揮させることが望ましい。
As will be described later, the steel pipe of the present invention forms a recess hot or warm, so that it can be easily manufactured even if the thickness of the steel pipe is 2 mm or more, for example. At that time, the torsional force acts on the steel pipe, and it is not bent or the tip is crushed. Also, a steel pipe having an outer diameter of 50 mm or more that can be practically used as a steel pipe can be easily manufactured.
In addition, when the steel pipe according to the present invention is used for an application in which corrosion resistance is particularly required, the surface of the steel pipe configured as described above may be plated or resin-coated to exhibit good corrosion resistance. desirable.

鋼管の凹部については、図3(a)、(b)、(c)、(d)に示す如く、基本的には断面形状が三角形状の場合と、断面四角形状の場合が考えられる。半円状、及び台形状の場合はほぼ三角形と等しいと考えてもよい。いずれの場合も、凹部の深さ(最も深い部分の深さを指す)Hは、鋼管周面と地盤あるいはコンクリート等との摩擦力を得るために0.005D(但し、D:鋼管外径)以上は必要である。しかし、0.2D超で摩擦力向上の効果も飽和してしまうので、凹部深さは0.005D〜0.2Dとする。さらに凹部の幅Bは、上記摩擦力を得るためには0.015D以上必要であるが、2D超では、摩擦力向上効果が小さいため2D以下とする必要がある。   Concerning the concave portion of the steel pipe, as shown in FIGS. 3A, 3B, 3C, and 3D, there are basically a case where the cross-sectional shape is a triangular shape and a case where the cross-sectional shape is a square shape. In the case of a semicircular shape and a trapezoidal shape, it may be considered to be substantially equal to a triangle. In either case, the depth H of the recess (which indicates the depth of the deepest portion) is 0.005D (where D is the outer diameter of the steel pipe) in order to obtain a frictional force between the steel pipe peripheral surface and the ground or concrete. The above is necessary. However, since the effect of improving the frictional force is saturated at more than 0.2D, the recess depth is set to 0.005D to 0.2D. Further, the width B of the concave portion needs to be 0.015D or more in order to obtain the above frictional force, but if it exceeds 2D, the effect of improving the frictional force is small, so it is necessary to make it 2D or less.

更に、上記の前提のもとで、凹部形状の最適化を図る上で、下記の事項を規定することが重要である。すなわち、
(1)凹断面形状が三角形状の時、B/H=3〜20
(2)凹断面形状が四角形状の時、B/H=4〜20
(3)凹断面形状が半円状、台形状の時、B/H=3〜20
である。
以下、上記のB/Hの関係が導き出された経緯を図4を用いて説明する。なお、前提として、凹部での破壊モードは、凹部の外側、図中の三角形の底辺でのソイルセメントのせん断強度と、凹部の内部でのソイルセメントの支圧強度のいずれかで決定されるものとする。このとき、いずれかの破壊モードが他方に対して、明らかに先行すると、その破壊モードで強度が決定するため、強度は低下すると考えられる。ゆえに、凹部の最適形状を考える上では、上記の二つの破壊モードが同時に発生するような形状を見出することが必要となる。
Furthermore, it is important to define the following matters in order to optimize the concave shape under the above assumption. That is,
(1) When the concave cross-sectional shape is triangular, B / H = 3-20
(2) When the concave cross-sectional shape is a square shape, B / H = 4 to 20
(3) When the concave cross-sectional shape is semicircular or trapezoidal, B / H = 3-20
It is.
Hereinafter, the process of deriving the B / H relationship will be described with reference to FIG. As a premise, the fracture mode at the recess is determined by either the shear strength of the soil cement at the outside of the recess, the bottom of the triangle in the figure, or the bearing strength of the soil cement inside the recess. And At this time, if any one of the destruction modes clearly precedes the other, the strength is determined by the destruction mode, and thus the strength is considered to decrease. Therefore, in considering the optimum shape of the recess, it is necessary to find a shape in which the above two destruction modes occur simultaneously.

その結果、最適形状においては、支圧強度を与える支圧力Pとせん断強度を与えるせん断力Sは、以下の式(1)のつりあい条件式を満たすことが求められる。
S=Pcosθ (1)
ただし、θ:鋼管表面と凹部入側面のなす角度
ここで、せん断力Sは、せん断力が作用する面積×せん断力で定義されるため、以下の式(2)で定式化される。尚、ここでは、凹部は鋼管周囲全周に配置されるものと仮定し、せん断面積は、鋼管の周長πDと、凹部の幅B(三角形の底辺部分)の積で表される。
S=τ・B・π・D (2)
一方、支圧力は、支圧応力に作用する面積を乗じたものとして以下のように定式化される。
P=H・σb・cosθ・π・D (3)
τ:せん断応力、D:鋼管外径、σb:支圧力(支圧応力、力/面積の次元)
式(1)に式(2)、(3)を代入して整理すると、以下の式が導かれる。
τ・B=(H・σb・cosθ)cosθ (4)
∴B/H=σb・cosθ/τ (4′)
式(4′)は、最適形状を与える際の力のつりあい条件式(1)を変形したものである。ここでは、凹部形状の側面、即ち図4の三角形の斜面が鋼管表面とのなす角度(θ)を45度の場合(これを以下、三角形状とする)と、90度の場合(これを以下、四角形状とする)に関して、解くこととする。
θ=90°(凹部が四角)とすると、
B/H=σb/τ (5)
例えば、ソイルセメントの支圧強度σb=1N/mm、せん断強度τ=0.1N/mmを(5)式に代入すると、B/H=10(凹部の幅が高さの10倍)となり、凹部形状は長辺10H、高さHの長方形となる。
As a result, in the optimum shape, the support pressure P that gives the support strength and the shear force S that gives the shear strength are required to satisfy the balance condition formula of the following formula (1).
S = P cos θ (1)
However, θ: an angle formed between the steel pipe surface and the recessed entry side surface Here, the shearing force S is defined by the area where the shearing force acts × shearing force, and thus is formulated by the following equation (2). Here, it is assumed that the concave portion is disposed around the entire circumference of the steel pipe, and the shear area is represented by the product of the circumferential length πD of the steel pipe and the width B (the bottom portion of the triangle) of the concave portion.
S = τ ・ B ・ π ・ D (2)
On the other hand, the support pressure is formulated as follows assuming that the area acting on the support stress is multiplied.
P = H · σb · cosθ · π · D (3)
τ: shear stress, D: steel pipe outer diameter, σb: bearing pressure (bearing stress, force / area dimension)
Substituting the formulas (2) and (3) into the formula (1) and rearranging leads to the following formula.
τ · B = (H · σb · cosθ) cosθ (4)
∴B / H = σb · cos 2 θ / τ (4 ′)
Expression (4 ′) is a modification of the force balance conditional expression (1) for giving the optimum shape. Here, the side surface of the concave shape, that is, the angle (θ) formed by the slope of the triangle in FIG. 4 with the steel pipe surface is 45 degrees (hereinafter referred to as a triangular shape) and 90 degrees (this is referred to as the following). , A square shape).
If θ = 90 ° (the concave portion is a square),
B / H = σb / τ (5)
For example, if the bearing strength σb = 1 N / mm 2 and the shear strength τ = 0.1 N / mm 2 of soil cement are substituted into the equation (5), B / H = 10 (the width of the recess is 10 times the height) Thus, the concave shape is a rectangle having a long side 10H and a height H.

一方、最終的な凹部形状が三角形状で、更にその三角形が二等辺三角形とすると、B、H、θには下記の関係式が成立する。
tanθ=2・H/B (6)
これを式(4′)に代入すると、
2/(sinθ・cosθ)=σb/τ (7)
これに、ソイルセメントの支圧強度σb=1N/mm、せん断強度τ=0.1N/mmを代入すると、
sinθ・cosθ=1/5 (8)
sin2θ=2/5=0.4 (8′)
∴θ=11.8
ソイルセメント(コンクリート)の支圧強度σbとせん断強度τの関係を
1/20≦τ/σb≦2/9
とすると(通常はτ/σb=1/10程度)、
(a)凹部形状が四角形の場合、凹部の幅Bと深さHの関係は式(5)により
4.5≦B/H≦20.0
(b)凹部形状が三角形の場合、適正なθの範囲は式(7)により
5.8≦θ≦31.4
このとき、凹部の幅Bと深さHの関係は式(6)により
3.3≦B/H≦19.8
となる。
ここで、図2(d)〜(k)に示したような鋼管軸方向に斜め、平行、あるいはスポット状の凹部形状の場合についても、(d)のA−A断面、(h)のB−B断面、(j)のC−C断面について前記式を適用すればよい。
以上のことから、本発明においては、B/Hを下記の如く規定した。
(1)凹断面形状が三角形状の時、B/H=3〜20
(2)凹断面形状が四角形状の時、B/H=4〜20
(3)凹断面形状が半円状、台形状の時、B/H=3〜20
On the other hand, if the final concave shape is a triangle and the triangle is an isosceles triangle, the following relational expression is established for B, H, and θ.
tan θ = 2 · H / B (6)
Substituting this into equation (4 ')
2 / (sin θ · cos θ) = σb / τ (7)
Substituting the bearing strength σb = 1 N / mm 2 and the shear strength τ = 0.1 N / mm 2 of the soil cement into this,
sinθ · cosθ = 1/5 (8)
sin2θ = 2/5 = 0.4 (8 ′)
∴θ = 11.8
The relation between bearing strength σb and shear strength τ of soil cement (concrete) is 1/20 ≦ τ / σb ≦ 2/9
(Usually τ / σb = 1/10)
(A) When the concave shape is a quadrangle, the relationship between the width B and the depth H of the concave portion is 4.5 ≦ B / H ≦ 20.0 according to the equation (5).
(B) When the concave shape is a triangle, an appropriate range of θ is 5.8 ≦ θ ≦ 31.4 according to Equation (7).
At this time, the relationship between the width B and the depth H of the concave portion is 3.3 ≦ B / H ≦ 19.8 according to the equation (6).
It becomes.
Here, also in the case of a concave, concave, or oblique spot shape in the steel pipe axial direction as shown in FIGS. 2 (d) to (k), the cross section AA in (d), B in (h) What is necessary is just to apply the said formula about CC cross section of -B cross section and (j).
From the above, in the present invention, B / H is defined as follows.
(1) When the concave cross-sectional shape is triangular, B / H = 3-20
(2) When the concave cross-sectional shape is a square shape, B / H = 4 to 20
(3) When the concave cross-sectional shape is semicircular or trapezoidal, B / H = 3-20

次に、本発明に係る鋼管の製造方法について説明する。
本発明においては、以下のa)、b)、c)、d)のいずれかの工程でも適用可能であるが、鍛接鋼管の製造ラインを代表例として本発明を説明する。
a)電縫鋼管製造ラインにおいて、電縫溶接後、当該鋼管を加熱し、押圧手段によりその表面を押圧すること。
b)熱間あるいは温間溶接鋼管製造ラインにおいて、溶接後、押圧手段によりその表面を押圧すること。
c)鍛接鋼管製造ラインにおいて、衝合後、押圧手段によりその表面を押圧すること。
d)シームレス鋼管製造ラインにおいて、造管後、押圧手段によりその表面を押圧する。
Next, the manufacturing method of the steel pipe which concerns on this invention is demonstrated.
Although the present invention can be applied to any of the following steps a), b), c), and d), the present invention will be described using a forged steel pipe production line as a representative example.
a) In an ERW steel pipe production line, after ERW welding, the steel pipe is heated and its surface is pressed by pressing means.
b) In a hot or warm welded steel pipe production line, the surface is pressed by pressing means after welding.
c) In the forged steel pipe production line, after the collision, the surface is pressed by pressing means.
d) In the seamless steel pipe production line, after pipe making, the surface is pressed by pressing means.

図5は通常の鍛接管の製造ラインを示す図である。
所望の幅にスリットされた鋼帯を#1ロールで断面円形状に成形し、#2ロールでその両端部を高熱に加熱し、圧接し、衝合する。衝合された管をそれ以降のロールにより所定の寸法に縮径するために絞り込み、そして切断機により所定の長さに切断し、以降のロールで形状を整えて鍛接管が製造される。
FIG. 5 is a view showing a production line of a normal forged pipe.
A steel strip slit to a desired width is formed into a circular cross section with a # 1 roll, and both ends thereof are heated to high heat with a # 2 roll, pressed, and abutted. A forged welded tube is manufactured by reducing the diameter of the abutted pipe to a predetermined size by a subsequent roll, cutting it to a predetermined length with a cutting machine, and adjusting the shape with the subsequent roll.

図6は、鍛接管製造ラインの一実施例である。
従来の製造ラインに対して、切断機前の絞りロールの最終ロールのみを変更している。当該ロールは、図7のようにロール周面にロール軸方向に1箇所あるいは複数箇所に凸部を設け、これを押圧手段としている。この凸部を設けたロールを上下両方あるいは片側に使用する。なお、図では、上下2基のロールで示しているが、1組が3基以上のロールでも構わない。このような凸部を有したロールで高温の(およそ1200〜1300℃程度)鍛接管に圧力を加えるので、その凸部の当たる鋼管の部分は容易に凹部が形成される。しかも冷間での加工に比較して凹部形状はロールの凸部形状に則した形状で形成されるのでより鋭角の凹部を得ることが可能である。その後、所定の長さに切断され、定形され、凹部付き鍛接鋼管が完成される。
ここで、鋼管上の凹部の高さ、幅、ピッチを変更したい場合は、ロールの凸部の形状やピッチを変更すれば良い。また、上下ロール両方に凸部を設け、鋼管上の凹部位置を同じ位置で形成したい場合は、上下ロールの凸部位置を初期に合せておき、例えば上下ロールを一つの駆動源およびユニバーサルジョイントなどを介して連結し、同期させて上下ロールを駆動すれば良い。
FIG. 6 is an example of a forged pipe manufacturing line.
Only the final roll of the squeeze roll before the cutting machine is changed with respect to the conventional production line. As shown in FIG. 7, the roll is provided with convex portions at one or a plurality of locations in the roll axial direction on the roll peripheral surface, and this is used as a pressing means. The roll provided with this convex part is used both up and down or one side. In the figure, the upper and lower two rolls are shown, but one set may be three or more rolls. Since pressure is applied to a high-temperature (about 1200 to 1300 ° C.) forged pipe with a roll having such a convex portion, a concave portion is easily formed in the portion of the steel pipe that the convex portion hits. Moreover, since the recess shape is formed in a shape conforming to the convex shape of the roll as compared with the cold processing, it is possible to obtain a more acute recess. Then, it is cut into a predetermined length, shaped, and a forged steel pipe with a recess is completed.
Here, when it is desired to change the height, width, and pitch of the concave portion on the steel pipe, the shape and pitch of the convex portion of the roll may be changed. Also, if both the upper and lower rolls are provided with convex portions and the concave portions on the steel pipe are to be formed at the same position, the convex portions of the upper and lower rolls are aligned at the initial stage. And the upper and lower rolls may be driven in synchronization with each other.

次に、ロールに形成する凸部の形状は、図7の下図に示すように、ロール中心部を高くし、ロール端部に向うに従い低くすることが望ましい。その理由は、ロールの中心部と端部とでは、周速が異なり、端部の方が径が大きいため周速が大きい。従って、通過する管よりも早く進行するために、鋼管に対し無用な力が加わり、必要以上の変形や歪を鋼管に与えてしまう。   Next, as shown in the lower diagram of FIG. 7, the shape of the convex portion formed on the roll is desirably made higher at the roll center and lower toward the roll end. The reason is that the peripheral speed is different between the center and the end of the roll, and the peripheral speed is large because the end has a larger diameter. Therefore, in order to advance faster than the passing pipe, an unnecessary force is applied to the steel pipe, and an unnecessary deformation or distortion is given to the steel pipe.

図8は、本発明による別の鍛接管製造ラインの例である。
本例では、絞りロールと切断機との間に、専用の鋼管への加圧装置(押圧手段)を設けた例である。加圧装置としては、前述の凸部を有したロールでも良く、また、上下から挟み込む形で鋼管に加圧するタイプのものでも良い。そしてこの加圧装置は、鋼管に対して進退、あるいは鋼管の進行方向に進退可能な機構を有することが望ましい。
鋼管に対して近接、退避可能なことにより、鋼管の任意の位置に凹部を形成することができ、また凹部のピッチを変更したいときでもロールの交換などしなくても良い。更に、この機能により、予め鋼管の切断位置を制御部が認識しておき、この切断位置に凹部が位置しないように制御することも可能となる。鋼管端部に凹部がくると鋼管毎に端面の径や形状が異なり、例えば鋼管同士の接続が困難となるからである。
また、鋼管の進行方向に移動可能とすることにより鋼管の進行と同調して縮径部形成装置を移動することができ、そのことにより、前述したようなロールの中心部と端部の周速の差による鋼管への無用な歪などが発生せずに凹部の形状も自由に形成できる。
以上、専用装置において説明したが、もちろんこれら機能を既存の最終絞りロールに凸部を設けたロールにもたせても良い。
FIG. 8 is an example of another forged pipe manufacturing line according to the present invention.
In this example, a pressurizing device (pressing means) for a dedicated steel pipe is provided between the drawing roll and the cutting machine. The pressurizing device may be a roll having the above-mentioned convex portions, or may be a type that pressurizes the steel pipe by sandwiching from above and below. And it is desirable for this pressurizing device to have a mechanism capable of moving back and forth with respect to the steel pipe or moving back and forth in the moving direction of the steel pipe.
By being close to and retractable from the steel pipe, a concave portion can be formed at an arbitrary position of the steel pipe, and even when it is desired to change the pitch of the concave portion, it is not necessary to replace the roll. Furthermore, with this function, it is also possible for the control unit to recognize the cutting position of the steel pipe in advance, and to control so that the concave portion is not positioned at this cutting position. This is because if the concave portion comes to the end of the steel pipe, the diameter and shape of the end face are different for each steel pipe, for example, it becomes difficult to connect the steel pipes.
Further, by enabling movement in the traveling direction of the steel pipe, it is possible to move the reduced diameter portion forming apparatus in synchronization with the progress of the steel pipe, and as a result, the peripheral speeds of the center portion and the end portion of the roll as described above. The shape of the concave portion can be freely formed without causing unnecessary distortion to the steel pipe due to the difference between the two.
As described above, the dedicated device has been described. Of course, these functions may be applied to a roll in which a convex portion is provided on the existing final drawing roll.

このように、造管方法は、電縫による造管方法、熱間あるいは温間で溶接する造管方法、鍛接による造管方法、シームレス造管方法のいずれでもよい。造管まま、あるいは造管後加熱などし、温間あるいは熱間の状態で押圧手段によりその造管された表面を押圧すれば良く、オンラインでの凹部付き鋼管の製造が可能である。
そして、これらの製造方法で製造された鍛接鋼管は、熱間で凹部を形成するので鋼管の肉厚が2mm以上でも容易に製造可能であり、例えば、厚肉なので鋼管杭として地盤に回転させながら打ち込む際に、鋼管にねじれ力が作用し、屈曲したり、先端が潰れたりすることがない。また、地盤強化用鋼管として実用可能な外径50mm以上のものも容易に製造できる。しかも生産能率は、通常の鍛接鋼管を製造する際と同じである。
Thus, the pipe making method may be any of a pipe making method by electric sewing, a pipe making method for hot or warm welding, a pipe making method by forging, and a seamless pipe making method. What is necessary is just to press the surface where the pipe was made by the pressing means in the warm or hot state as it is or after heating, and it is possible to manufacture a steel pipe with a recess online.
And the forged steel pipe manufactured by these manufacturing methods forms a recess hot, so it can be easily manufactured even if the thickness of the steel pipe is 2 mm or more, for example, while being rotated to the ground as a steel pipe pile because it is thick At the time of driving, a torsional force acts on the steel pipe, and it does not bend or crush the tip. In addition, a steel pipe having an outer diameter of 50 mm or more that can be practically used as a steel pipe for ground reinforcement can be easily manufactured. Moreover, the production efficiency is the same as when producing a normal forged steel pipe.

以上のような鋼管の製造方法により通常の鋼管の製造ラインにて、突起を付与した専用ロールで製管することで、鋼管製造と同時に凹形状を連続的に付与することができ、専用ロールの突起形状の変更により、任意に自在な形状、間隔、配置の凹形状を付与することが可能であり、また、別工程での加工の必要がなく、非常に安価に凹形状付の鋼管を提供することができる。   By manufacturing a steel pipe with a dedicated roll provided with protrusions in a normal steel pipe manufacturing line by the steel pipe manufacturing method as described above, a concave shape can be continuously given simultaneously with the steel pipe manufacturing. By changing the shape of the protrusion, it is possible to give a concave shape with any shape, spacing, and arrangement, and there is no need for processing in a separate process, providing a steel pipe with a concave shape at a very low cost. can do.

本発明による鋼管では、このように鋼管の外表面側でなく、内表面側へ凹形状を付与することで、鋼管打設時に邪魔になることなく、十分な密着性を確保できる大きな凹部を有する地盤強化用鋼管を、生産性を落とすことなく低コストで製造することができる。
そして凹部を設けた鋼管に、複数の通孔を穿孔する。通孔は、鋼管の円周上の凹部でも良いし、凹部以外の平滑部に設けても良い。或いはどちらにも設けても良い。通孔の径や配置は、注入材が全長にわたって万遍なく行き渡るようなものであればよく、注入する強化剤の性状や注入する地盤の状態によって任意に決定すれば良い。
In the steel pipe according to the present invention, by providing a concave shape not on the outer surface side of the steel pipe but on the inner surface side in this way, the steel pipe has a large concave portion that can ensure sufficient adhesion without interfering with the steel pipe. The steel pipe for ground reinforcement can be manufactured at low cost without reducing productivity.
And a several through-hole is drilled in the steel pipe which provided the recessed part. The through hole may be a concave portion on the circumference of the steel pipe, or may be provided in a smooth portion other than the concave portion. Or you may provide in either. The diameter and arrangement of the through-holes are not particularly limited as long as the injection material spreads over the entire length, and may be arbitrarily determined depending on the properties of the reinforcing agent to be injected and the state of the ground to be injected.

図9は掘削用のビットと鋼管の位置を示した図である。外側ビットはロッド、内側ビットから伝達された動力によって回転しながら前方の地盤などを掘削していくもので、その後方に本発明の地盤強化用鋼管を配置している。従って、地盤強化用鋼管の外径は外側ビットの外径よりも小さければ良い。
また、鋼管内側にはロッドと内側ビットが通過するので鋼管の最小内径は内側ビットの最大外径よりも大きくする必要がある。以上の条件を満足する限り鋼管周上の凹部の深さを大きくとることができる。
FIG. 9 is a diagram showing the positions of the excavation bit and the steel pipe. The outer bit excavates the ground in front while rotating by the power transmitted from the rod and the inner bit, and the ground reinforcing steel pipe of the present invention is disposed behind the outer bit. Therefore, the outer diameter of the steel pipe for ground reinforcement should just be smaller than the outer diameter of an outer side bit.
Further, since the rod and the inner bit pass inside the steel pipe, the minimum inner diameter of the steel pipe needs to be larger than the maximum outer diameter of the inner bit. As long as the above conditions are satisfied, the depth of the recess on the periphery of the steel pipe can be increased.

この地盤強化用鋼管の使用に際しては、図9に示すように、先端部に内側ビットを装着したさく孔ロッドを当該鋼管内に挿通し、先端部の内側ビットが鋼管の外側ビットよりも突出するようにして、当該さく孔ロッドと鋼管の後端部をさく岩機(図示を省略)に接続する。そして、さく孔ロッドと鋼管にさく岩機から打撃と回転と推力を与えつつ穿孔を行う。穿孔中は、さく岩機から水又は圧縮空気が供給され、ビットの先端部から吐出される。穿孔によって生じる繰り粉は大部分が鋼管の内側を通って排出されるが、一部は鋼管の外側を通って後方へ排出される。
所定深さの穿孔が終了し、鋼管が地山中に埋設されたら、さく孔ロッドを内側ビットとともに鋼管から後方へ引き抜き、鋼管の後端部に注入装置(図示を省略)を取り付けて、注入材を鋼管内に圧入する。この注入材は、鋼管内に充満し、該鋼管に設けられている多数の通孔を通って外部へ流出して、鋼管の外面に沿って流動しつつ、地山内に浸透して固化する。これにより、地山が強化されるのである。
When using this steel pipe for ground reinforcement, as shown in FIG. 9, a drill rod with an inner bit attached to the tip is inserted into the steel pipe, and the inner bit at the tip protrudes beyond the outer bit of the steel pipe. In this manner, the drill rod and the rear end of the steel pipe are connected to a drilling machine (not shown). Then, drilling is performed while hitting, rotating, and thrusting from the drilling machine to the drill rod and steel pipe. During drilling, water or compressed air is supplied from the rock drill and discharged from the tip of the bit. Most of the flour produced by drilling is discharged through the inside of the steel pipe, but a part is discharged backward through the outside of the steel pipe.
When drilling of a predetermined depth is completed and the steel pipe is buried in the natural ground, the drill rod is pulled back together with the inner bit from the steel pipe, and an injection device (not shown) is attached to the rear end of the steel pipe. Is pressed into the steel pipe. The injected material fills the steel pipe, flows out through a large number of through holes provided in the steel pipe, flows along the outer surface of the steel pipe, and penetrates into the ground and solidifies. As a result, the natural ground is strengthened.

この鋼管は、その外周部に凹部が形成されているので、当該凹部が固化した注入材の層に埋め込まれた状態となり、両者が強固に一体化する。このため、鋼管に軸方向の力が作用しても、当該凹部と注入材層との係合によって引っ掛かり抵抗が生じ、鋼管の移動が防止される。このようにして、鋼管が強固に地山中に固定されるのである。凹部は、所定の断面形状を持つので、注入材や繰り粉の流動性と逸脱防止のための引っ掛かり抵抗とを共に向上することができる。   Since this steel pipe has a recess formed in the outer peripheral portion thereof, the recess is embedded in the solidified injection material layer, and both are firmly integrated. For this reason, even if axial force acts on the steel pipe, the engagement between the concave portion and the injecting material layer causes a catching resistance and prevents the steel pipe from moving. In this way, the steel pipe is firmly fixed in the natural ground. Since the recess has a predetermined cross-sectional shape, it is possible to improve both the fluidity of the pouring material and flour and the catching resistance for preventing deviation.

上記凹部は、通常圧延ロールで形成されたもので、断面形状においてエッジ部やコーナー部のないなだらかな形状となっているので、繰り粉や注入材がスムーズに流動し、部分的に詰まりや空隙が生じない。このため、繰り粉の排出状態が良好であるのみならず、注入材と鋼管との密着性が向上し、すぐれた地盤強化を達成することができるのである。なお、以上の説明では、ビットとして、鋼管の先端部に固着したリング状の外側ビットと、さく孔ロッドの先端部に装着された内側ビットとの組み合わせを採用したが、口径が拡縮可能な拡縮ビットを使用し、穿孔時は口径を鋼管の外径よりも大きくなるように拡張して穿孔を行い、穿孔終了時には、鋼管の内径よりも小さくなるように口径を収縮して後方へ引き抜くようにしてもよい。この場合は、鋼管の先端部にリングビットを固着しておく必要がない。   The concave portion is usually formed by a rolling roll, and has a gentle shape with no edge or corner in the cross-sectional shape, so that the flour and the injected material smoothly flow, and partially clogged or voided. Does not occur. For this reason, not only the discharge state of the flour is good, but also the adhesion between the injection material and the steel pipe is improved, and excellent ground reinforcement can be achieved. In the above description, a combination of a ring-shaped outer bit fixed to the tip of the steel pipe and an inner bit attached to the tip of the drill rod is used as the bit. Using a bit, when drilling, expand the diameter so that it is larger than the outer diameter of the steel pipe, and at the end of drilling, shrink the diameter so that it is smaller than the inner diameter of the steel pipe and pull it backward. May be. In this case, it is not necessary to fix the ring bit to the tip of the steel pipe.

[実施例1]
次に、以下の水準で密着力を比較したのでそれを説明する。水準は表1の3水準とした。サイズ:76.3mmφ×3.2mmt×6mL、規格STK

Figure 2009167752
[Example 1]
Next, since the adhesion strength was compared at the following levels, it will be described. The levels are the three levels shown in Table 1. Size: 76.3mmφ × 3.2mmt × 6mL, standard STK
Figure 2009167752

密着力の評価方法は、ソイルセメント中に鋼管を埋設し、図10の通り上部より荷重をかけ最大荷重を計測した。(最大荷重にて密着度を評価した)
なお、ソイルセメントは、
・土と固化剤をまぜあわせたもの
・土は粘性土と砂質土の2例で実施
粘性土:粒径0.001〜0.005mm
砂質土:粒径0.074〜2mm
その結果、図11のように本発明は他の比較例に比べて押しぬき荷重が大きい、即ち、密着力が大きいことが認められた。
For the evaluation method of adhesion, a steel pipe was embedded in soil cement, and a load was applied from the top as shown in FIG. (Evaluation of adhesion at maximum load)
In addition, soil cement
・ Mixed soil and solidifying agent ・ Soil is implemented in two cases: viscous soil and sandy soil Cohesive soil: particle size 0.001 to 0.005 mm
Sandy soil: particle size 0.074-2mm
As a result, as shown in FIG. 11, it was confirmed that the present invention has a larger push-through load, that is, a higher adhesion force than the other comparative examples.

なお、本発明の段付鋼管は、製造コストは比較例1の直管の製造コストとほぼ同レベルであるが、比較例2の凸付鋼管は、造管コストに、凸部を形成するための肉盛り溶接コストが上乗せされるので、高コストとなる。このようにコスト面でも本発明は優れていることがわかる。   In addition, although the manufacturing cost of the stepped steel pipe of the present invention is substantially the same level as the manufacturing cost of the straight pipe of the comparative example 1, the convex steel pipe of the comparative example 2 forms a convex part in the pipe making cost. Since the overlay welding cost of the steel is added, the cost becomes high. Thus, it can be seen that the present invention is superior in terms of cost.

以上の説明から明らかなように、本発明に係る地盤強化用鋼管は、従来の鋼管の外周面に凹部を形成したもので、トンネル工事等における地盤強化あるいはコンクリート基礎などの構造体の強化を低コストで効果的に行うことができるものである。   As is apparent from the above description, the steel pipe for ground reinforcement according to the present invention has a concave portion formed on the outer peripheral surface of a conventional steel pipe, which reduces ground reinforcement in tunnel construction or the strengthening of structures such as concrete foundations. It can be done effectively at a cost.

本発明の地盤強化用鋼管の一例を示す正面図。The front view which shows an example of the steel pipe for ground reinforcement of this invention. (a)〜(c)は本発明の凹部付き地盤強化用鋼管の実施態様例を示す図。(A)-(c) is a figure which shows the embodiment example of the steel pipe for ground reinforcement with a recessed part of this invention. (d)〜(g)は本発明の凹部付き地盤強化用鋼管の実施態様例を示す図。(D)-(g) is a figure which shows the embodiment example of the steel pipe for ground reinforcement with a recessed part of this invention. (h)〜(k)は本発明の凹部付き地盤強化用鋼管の実施態様例を示す図。(H)-(k) is a figure which shows the embodiment example of the steel pipe for ground reinforcement with a recessed part of this invention. 本発明鋼管の凹部の具体例を示す図。The figure which shows the specific example of the recessed part of this invention steel pipe. 本発明鋼管の凹部の幅と深さをとの関係を示す図。The figure which shows the relationship between the width | variety and depth of the recessed part of this invention steel pipe. 通常の鍛接鋼管の製造ラインを示す図。The figure which shows the manufacturing line of a normal forge-welded steel pipe. 本発明鋼管を製造する鍛接鋼管の製造ラインの一実施例を示す図。The figure which shows one Example of the manufacturing line of the forge welded steel pipe which manufactures this invention steel pipe. 本発明鋼管の製造に使用するロールの概念図。The conceptual diagram of the roll used for manufacture of this invention steel pipe. 本発明鋼管を製造する鍛接鋼管の製造ラインの他の実施例を示す図。The figure which shows the other Example of the manufacturing line of the forge welded steel pipe which manufactures this invention steel pipe. ビット付きのさく孔ロッドを挿入した鋼管の先端部の一部断面図。The partial cross section figure of the front-end | tip part of the steel pipe which inserted the drill rod with a bit. 実施例における密着力の評価方法を示す図。The figure which shows the evaluation method of the adhesive force in an Example. 実施例1における効果を比較した図。The figure which compared the effect in Example 1. FIG.

符号の説明Explanation of symbols

1:地盤強化用鋼管 2:凹部
3:通孔 4:外側ビット
1: Steel pipe for ground reinforcement 2: Concave part 3: Through hole 4: Outer bit

Claims (12)

地盤に打設し、当該地盤の中に強化材を注入するための地盤強化用鋼管であって、当該鋼管の外周面に凹部を有し、且つ、当該凹部あるいはその他の平滑部に、注入材を鋼管の外部に流出させるための鋼管内外に通ずる複数の通孔が設けられていることを特徴とする地盤強化用鋼管。   A steel pipe for ground reinforcement for placing in the ground and injecting a reinforcing material into the ground, the steel pipe having a recess on the outer peripheral surface, and an injection material in the recess or other smooth part A ground reinforcing steel pipe, wherein a plurality of through holes are provided to allow the inside and outside of the steel pipe to flow out to the outside of the steel pipe. 前記凹部の断面形状が、鋼管外径が(D)の時、凹部の深さが0.005D〜0.2D、凹部の幅が0.015D〜2Dで、凹部の幅を(B)、凹部の深さを(H)としたときに
(1)凹断面形状が三角形状の時、B/H=3〜20
(2)凹断面形状が四角形状の時、B/H=4〜20
(3)凹断面形状が半円状、台形状の時、B/H=3〜20
であることを特徴とする請求項1記載の地盤強化用鋼管。
When the outer diameter of the steel pipe is (D), the depth of the recess is 0.005D to 0.2D, the width of the recess is 0.015D to 2D, and the width of the recess is (B). (1) When the concave cross-sectional shape is triangular, B / H = 3-20
(2) When the concave cross-sectional shape is a square shape, B / H = 4 to 20
(3) When the concave cross-sectional shape is semicircular or trapezoidal, B / H = 3-20
The steel pipe for ground reinforcement according to claim 1, wherein the steel pipe is for ground reinforcement.
前記凹部を、鋼管の同一円周上に複数設けたことを特徴とする請求項1又は2記載の地盤強化用鋼管。   The ground reinforcing steel pipe according to claim 1 or 2, wherein a plurality of the concave portions are provided on the same circumference of the steel pipe. 前記凹部が、円周方向に複数設けられ、少なくとも向かい合う凹部が同一円周上に存在しないことを特徴とする請求項1又は2記載の地盤強化用鋼管。   The ground reinforcing steel pipe according to claim 1 or 2, wherein a plurality of the concave portions are provided in a circumferential direction, and at least the concave portions facing each other do not exist on the same circumference. 前記凹部が、鋼管軸に対し、斜め方向に複数設けたことを特徴とする請求項1又は2記載の地盤強化用鋼管。   The steel pipe for ground reinforcement according to claim 1 or 2, wherein a plurality of the concave portions are provided in an oblique direction with respect to the steel pipe shaft. 前記凹部が、鋼管軸に対し、平行に複数設けたことを特徴とする請求項1又は2記載の地盤強化用鋼管。   The steel pipe for ground reinforcement according to claim 1 or 2, wherein a plurality of said concave parts are provided in parallel to the steel pipe axis. 前記凹部が、スポット状に複数設けたことを特徴とする請求項1又は2記載の地盤強化用鋼管。   The ground reinforcing steel pipe according to claim 1 or 2, wherein a plurality of the concave portions are provided in a spot shape. 前記鋼管の表面にめっき、あるいは、樹脂被覆を施したことを特徴とする請求項1〜7のいずれか1項記載の地盤強化用鋼管。   The steel pipe for ground reinforcement according to any one of claims 1 to 7, wherein the surface of the steel pipe is plated or coated with a resin. 地盤強化に際して、地盤を掘削しながら請求項1〜8のいずれか1項記載の地盤強化用鋼管を打設し、鋼管を打設後、当該鋼管の内部から前記複数の通孔を通して当該鋼管の外部に強化材を注入することを特徴とする地盤強化方法。   When the ground is reinforced, the ground reinforcing steel pipe according to any one of claims 1 to 8 is placed while excavating the ground, and after the steel pipe is placed, the steel pipe is inserted from the inside of the steel pipe through the plurality of through holes. A ground strengthening method characterized by injecting a reinforcing material outside. 前記地盤強化用鋼管の最小内径が、前記地盤を掘削する際に用いる内側ビットの外径よりも大きいことを特徴とする請求項8記載の地盤強化方法。   The ground reinforcement method according to claim 8, wherein a minimum inner diameter of the steel pipe for ground reinforcement is larger than an outer diameter of an inner bit used when excavating the ground. 前記地盤強化用鋼管の最大外径が、前記地盤の掘削に用いる外側ビットの外径よりも小さいことを特徴とする請求項8記載の地盤強化方法。   9. The ground strengthening method according to claim 8, wherein a maximum outer diameter of the steel pipe for ground reinforcement is smaller than an outer diameter of an outer bit used for excavation of the ground. 請求項9〜11のいずれか1項記載の地盤強化方法において、前記地盤に替えて、建造物の基礎等のコンクリート、セメント等の構造体を強化することを特徴とする構造体の強化方法。   The ground reinforcement method according to any one of claims 9 to 11, wherein a structure such as a concrete such as a foundation of a building or a cement is reinforced in place of the ground.
JP2008009570A 2008-01-18 2008-01-18 Steel pipe for ground reinforcement and method of ground reinforcement using it Pending JP2009167752A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008009570A JP2009167752A (en) 2008-01-18 2008-01-18 Steel pipe for ground reinforcement and method of ground reinforcement using it
KR1020107015640A KR20100093117A (en) 2008-01-18 2009-01-16 Steel pipe for reinforcing foundation, method of reinforcing foundation using the same, and method of reinforcing structure
PCT/JP2009/050568 WO2009091041A1 (en) 2008-01-18 2009-01-16 Steel pipe for reinforcing foundation, method of reinforcing foundation using the same, and method of reinforcing structure
CN2009801015105A CN101910560A (en) 2008-01-18 2009-01-16 Steel pipe for reinforcing foundation, method of reinforcing foundation using the same, and method of reinforcing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008009570A JP2009167752A (en) 2008-01-18 2008-01-18 Steel pipe for ground reinforcement and method of ground reinforcement using it

Publications (1)

Publication Number Publication Date
JP2009167752A true JP2009167752A (en) 2009-07-30

Family

ID=40885423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008009570A Pending JP2009167752A (en) 2008-01-18 2008-01-18 Steel pipe for ground reinforcement and method of ground reinforcement using it

Country Status (4)

Country Link
JP (1) JP2009167752A (en)
KR (1) KR20100093117A (en)
CN (1) CN101910560A (en)
WO (1) WO2009091041A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102071679A (en) * 2010-12-29 2011-05-25 西安建筑科技大学 Method for consolidating existing building foundation
JP2014037714A (en) * 2012-08-16 2014-02-27 St Engineering Kk Long mirror bolt construction method
JP2015044206A (en) * 2013-08-27 2015-03-12 新日鐵住金株式会社 Recess forming roll stand of stepped steel pipe, roll reducing mill mounted with the same, and method for manufacturing the stepped steel pipe
JP2016156234A (en) * 2015-02-26 2016-09-01 新日鐵住金株式会社 Reinforcement structure and reinforcement method for concrete construction
JP2016156232A (en) * 2015-02-26 2016-09-01 新日鐵住金株式会社 Reinforcement steel pipe and concrete construction reinforcement structure
JP2018053466A (en) * 2016-09-27 2018-04-05 植村 誠 Open shield method
JP2018053467A (en) * 2016-09-27 2018-04-05 植村 誠 Open shield method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226338A (en) * 2011-04-12 2011-10-26 中国十九冶集团有限公司 Foundation reinforcement treatment method when bearing capacity of foundation soil of sinking platform is lower than 0.1MPa

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221200U (en) * 1985-07-23 1987-02-07
JPH01180600U (en) * 1988-06-06 1989-12-26
JPH025500U (en) * 1988-06-17 1990-01-16
JPH03247899A (en) * 1990-02-26 1991-11-06 Taisei Corp Driving method for rock bolt or the like
JPH11280394A (en) * 1998-03-27 1999-10-12 Tokai Rubber Ind Ltd Resin-made lock-bolt and its manufacture
JPH11324595A (en) * 1998-05-19 1999-11-26 Kfc Ltd Rock bolt
JP2002081300A (en) * 2000-09-07 2002-03-22 Masato Yamada Lock bolt fixing method of mountain tunnel and water stop packing therefor
JP2005061002A (en) * 2003-08-11 2005-03-10 Nisshin Steel Co Ltd Spill-proof method for steel pipe expansion type lock bolt
JP2006022501A (en) * 2004-07-06 2006-01-26 Okumura Corp Ground reinforcing steel pipe
JP2006106085A (en) * 2004-09-30 2006-04-20 Brother Ind Ltd Karaoke system and program
JP2007085157A (en) * 2005-08-24 2007-04-05 Nippon Steel Corp Steel pipe pile with recess, its manufacturing method, and composite steel pipe pile using the steel pipe pile

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221200U (en) * 1985-07-23 1987-02-07
JPH01180600U (en) * 1988-06-06 1989-12-26
JPH025500U (en) * 1988-06-17 1990-01-16
JPH03247899A (en) * 1990-02-26 1991-11-06 Taisei Corp Driving method for rock bolt or the like
JPH11280394A (en) * 1998-03-27 1999-10-12 Tokai Rubber Ind Ltd Resin-made lock-bolt and its manufacture
JPH11324595A (en) * 1998-05-19 1999-11-26 Kfc Ltd Rock bolt
JP2002081300A (en) * 2000-09-07 2002-03-22 Masato Yamada Lock bolt fixing method of mountain tunnel and water stop packing therefor
JP2005061002A (en) * 2003-08-11 2005-03-10 Nisshin Steel Co Ltd Spill-proof method for steel pipe expansion type lock bolt
JP2006022501A (en) * 2004-07-06 2006-01-26 Okumura Corp Ground reinforcing steel pipe
JP2006106085A (en) * 2004-09-30 2006-04-20 Brother Ind Ltd Karaoke system and program
JP2007085157A (en) * 2005-08-24 2007-04-05 Nippon Steel Corp Steel pipe pile with recess, its manufacturing method, and composite steel pipe pile using the steel pipe pile

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102071679A (en) * 2010-12-29 2011-05-25 西安建筑科技大学 Method for consolidating existing building foundation
JP2014037714A (en) * 2012-08-16 2014-02-27 St Engineering Kk Long mirror bolt construction method
JP2015044206A (en) * 2013-08-27 2015-03-12 新日鐵住金株式会社 Recess forming roll stand of stepped steel pipe, roll reducing mill mounted with the same, and method for manufacturing the stepped steel pipe
JP2016156234A (en) * 2015-02-26 2016-09-01 新日鐵住金株式会社 Reinforcement structure and reinforcement method for concrete construction
JP2016156232A (en) * 2015-02-26 2016-09-01 新日鐵住金株式会社 Reinforcement steel pipe and concrete construction reinforcement structure
JP2018053466A (en) * 2016-09-27 2018-04-05 植村 誠 Open shield method
JP2018053467A (en) * 2016-09-27 2018-04-05 植村 誠 Open shield method

Also Published As

Publication number Publication date
KR20100093117A (en) 2010-08-24
WO2009091041A1 (en) 2009-07-23
CN101910560A (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP2009167752A (en) Steel pipe for ground reinforcement and method of ground reinforcement using it
EP3543406B1 (en) A pile for a pile wall and a method of manufacturing such a pile
EP2141286B1 (en) Spiral steel pipe pile
US10837154B2 (en) Coupler for soil nail and method of emplacing same
JP2007032044A (en) Supporting structure of foundation pile and steel pipe pile
JP4099199B2 (en) Open-ended type ready-made pile and excavation head used therefor
JP2010059603A (en) Method for constructing tapered pile, and the tapered pile
US20110038675A1 (en) Steel pipe for reinforcing ground, method of reinforcing ground using the same, and method of reinforcing structure
JP2006312825A (en) Rotational penetration pile and its construction method
JP6836284B2 (en) How to drive foundation piles and foundation piles
JP4502730B2 (en) Steel pipe for ground reinforcement
JP4608327B2 (en) The tip structure of a steel pipe pile used in the medium digging method.
JP6274552B2 (en) Foundation pile structure
JP4988068B2 (en) Steel pipe pile and its construction method
JP4874433B2 (en) Steel pipe pile
JP5558314B2 (en) Construction method of soil cement composite pile
KR101791211B1 (en) Helix steel pipe pile construction method for reinforcement of buckling
TWI384107B (en) Steel pipe pile
JP5177065B2 (en) Steel pipe pile and its construction method
JP5177064B2 (en) Foundation pile and its construction method
CN110153335A (en) A kind of processing method of long screw auger drilling deposited pile steel reinforcement cage
JP2013249685A (en) Band-like blade member for steel pipe pile, steel pipe pile, and composite pile and method of manufacturing the same
JP4641369B2 (en) Partially built soil cement composite pile
JP2003342953A (en) Pile
JP2004278306A (en) Rotary press-in steel pipe pile

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20090511

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Effective date: 20100720

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20100825

Free format text: JAPANESE INTERMEDIATE CODE: A02