JP2007032044A - Supporting structure of foundation pile and steel pipe pile - Google Patents

Supporting structure of foundation pile and steel pipe pile Download PDF

Info

Publication number
JP2007032044A
JP2007032044A JP2005215289A JP2005215289A JP2007032044A JP 2007032044 A JP2007032044 A JP 2007032044A JP 2005215289 A JP2005215289 A JP 2005215289A JP 2005215289 A JP2005215289 A JP 2005215289A JP 2007032044 A JP2007032044 A JP 2007032044A
Authority
JP
Japan
Prior art keywords
steel pipe
protrusion
tip
root
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005215289A
Other languages
Japanese (ja)
Inventor
Hiromasa Tanaka
宏征 田中
Makoto Ikeda
真 池田
Hiroshi Matsubara
央 松原
Naoto Mori
直人 森
Yoshinori Kadowaki
佳典 門脇
Shinjiro Kaneko
信次郎 金子
Yoshiyuki Kase
芳之 綛
Ryutaro Nagasawa
龍太郎 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAWAKI KISO KOJI KK
Nippon Steel Corp
Original Assignee
TAKAWAKI KISO KOJI KK
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAWAKI KISO KOJI KK, Sumitomo Metal Industries Ltd filed Critical TAKAWAKI KISO KOJI KK
Priority to JP2005215289A priority Critical patent/JP2007032044A/en
Publication of JP2007032044A publication Critical patent/JP2007032044A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supporting structure of a foundation pile capable of ensuring the effective load transfer to a foot protection section from a pile body and to the bearing ground to exhibit high bearing power and having the excellence in workability at a low cost and a steel pipe pile. <P>SOLUTION: The supporting structure of the foundation pile is constituted of the steel pipe pile having a circular or a spiral projection 2 on the outer circumference of the front end section and the foot protection section 11 formed in a bearing layer in the ground or an area including the bearing layer, and it fulfills the following conditions. [p/h=8 to 15], [H≤S1+S2], [Dp×2≥Dg≥Dp+2×h]. Here, p is the pitch of the projection 2, H is the overall height of the foot protection section 11, Dp is the external diameter of the steel pipe pile 1, and Dg is the external diameter of the foot protection section 11. S1 is the anchorage length of the circumferential projection, S2 is the distance from the front end of the steel pipe pile to the bottom of the foot protection section, and it fulfills the following conditions. [1.75×Dg-2.45×Dp≤S1≤1.75×Dg-1.75×Dp], and [Dp×2≥S2≥(Dg-Dp)/(2×tanβ)]. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、構造物の基礎として用いられる基礎杭の先端支持構造およびそれに用いる鋼管杭に関するものである。   TECHNICAL FIELD The present invention relates to a tip support structure for a foundation pile used as a foundation of a structure and a steel pipe pile used therefor.

既製杭(既製コンクリート杭や鋼管杭)を用いた埋込み杭工法(中掘り工法、プレボーリング工法)の高支持力化・大径化の動きが盛んである。基礎杭の高支持力化は、必要な杭径・杭本数を減少させることで工費縮減を可能にするばかりではなく、結果的に建設排土を低減することにもつながる。また、大径化により杭1本あたりの支持力が大きくなり、従来の既製杭では適用できなかった大きな支持力を必要とする構造物への適用も可能になってきている。   The movement of increasing the bearing capacity and increasing the diameter of the embedded pile method (inner dig method, pre-boring method) using pre-made piles (pre-made concrete piles and steel pipe piles) is prosperous. Increasing the bearing capacity of foundation piles not only enables reduction of construction costs by reducing the required pile diameter and number of piles, but also leads to reduction of construction waste. In addition, the supporting force per pile has been increased due to the increase in diameter, and it has become possible to apply to structures that require a large supporting force that cannot be applied to conventional off-the-shelf piles.

上記の既製杭の高支持力化・大径化に伴い、杭体と支持地盤内に構築される根固め部との一体化の確保と、それによる支持地盤への効果的な荷重伝達が問題となっている。   As the above-mentioned ready-made piles have higher bearing capacity and larger diameter, there is a problem in securing integration between the pile body and the root-solidified part built in the supporting ground and effective load transmission to the supporting ground. It has become.

すなわち、杭先端の部は、杭体から根固め部、さらに根固め部から支持地盤への円滑な荷重伝達を確保するために、荷重作用時に根固め部の破壊を防止し、根固め部を介してより広範囲な地盤へ荷重を伝達して大きな支持力を発揮できるような支持構造とすることが必要である。   In other words, the tip of the pile prevents the root consolidation part from being destroyed during the load operation in order to ensure smooth load transmission from the pile body to the root consolidation part and from the root consolidation part to the supporting ground. Therefore, it is necessary to provide a support structure that can transmit a load to a wider range of grounds and exert a large support force.

これに対し、従来は、開端で施工される杭体の先端部を確実に閉塞することに注意が払われてきた。つまり、根固め部に埋設される杭体部分の内周面に鉄筋や平鋼を溶接して形成した突起を複数段設け、これと硬化した根固め部とを一体化させることで杭体先端部を閉塞し、杭体閉塞断面積で根固め部へ荷重を伝達するものである。   On the other hand, attention has been paid in the past to reliably close the tip of the pile body constructed at the open end. In other words, the pile body tip is created by providing multiple steps on the inner peripheral surface of the pile body part embedded in the root consolidation part and welding the reinforcing bars and flat steel, and integrating this with the hardened root consolidation part. The part is closed, and the load is transmitted to the root consolidation part with the pile body closed cross-sectional area.

しかし、この方法では杭体の先端断面から根固め部への荷重伝達に主眼が置かれており、得られる耐力に限界があり、近年の高支持力杭ではこれだけでは不十分な場合が生じている。   However, this method focuses on the load transmission from the cross-section of the tip of the pile body to the root consolidation part, and there is a limit to the yield strength, which may not be sufficient for recent high bearing capacity piles. Yes.

そのような問題に対処するため、以下のような発明がなされている。   In order to deal with such problems, the following inventions have been made.

特許文献1記載のものは、既製コンクリート杭や鋼管杭を後埋設施工(予め掘削した立孔内に杭体を沈設)する際に、予め地盤の支持層の根固め部に埋設される杭体の先端部領域の外周に突起部を形成しておくもので、この突起部を鋼管杭先端部領域の所定の部分を内部から局部拡径することにより形成するものである。   The one described in Patent Document 1 is a pile body that is embedded in the solidified part of the support layer of the ground in advance when post-embedding a prefabricated concrete pile or steel pipe pile (sinking the pile body in a previously excavated vertical hole) A protrusion is formed on the outer periphery of the tip portion region of the steel plate, and the protrusion is formed by locally expanding a predetermined portion of the tip portion of the steel pipe pile from the inside.

この発明の中では、鋼管外周に杭体からの荷重を伝達するための突起部が形成されることから、杭体周面から地盤へ伝達される力を増大させることで、大きな支持力を発揮させることができるとされている。しかし、以下のような問題がある。   In this invention, since the protrusion part for transmitting the load from a pile body is formed in a steel pipe outer periphery, by increasing the force transmitted to a ground from a pile body peripheral surface, a big supporting force is demonstrated. It is said that it can be made. However, there are the following problems.

鋼管に塑性変形を与えて局部拡径すると拡径部の鋼管肉厚が薄くなることに加え、あたかも鋼管に局部座屈が生じた状態になるため杭体の圧縮耐力が低下してしまう。また、加工コストがかかる。   If the steel pipe is plastically deformed to locally expand the diameter, the steel pipe wall thickness of the expanded diameter portion becomes thin, and as if the steel pipe is locally buckled, the compression strength of the pile body is reduced. In addition, processing costs are required.

突起部の高さとして杭径の5%〜35%が推奨されているが、事前に掘削した立孔内に落とし込むためには、立孔の径を突起部の分だけ大きくしておく必要があり、掘削体積・排土量が増加してしまう。   5% to 35% of the pile diameter is recommended as the height of the protrusion, but it is necessary to increase the diameter of the hole by the amount of the protrusion in order to drop it into the hole that has been excavated in advance. Yes, the excavation volume and the amount of soil removal will increase.

また、突起部により支持地盤内での周面摩擦力を増大させることで支持力を増大するとあるが、支持地盤への荷重伝達は杭体と直接ではなく、根固め部を介して行われる。したがって、杭体と根固め部の一体化が強固でも、根固め部の径が小さければ、杭体の突起部と根固め部の一体化部の耐力には余裕を残した状態で根固め部周面と地盤の間で摩擦力が決定されてしまうことになり、先端支持力を向上させるためには杭体と根固め部の一体化を強化するだけでは不十分である。   In addition, although the supporting force is increased by increasing the peripheral frictional force in the supporting ground by the projecting portion, the load transmission to the supporting ground is not performed directly with the pile body but via the rooting portion. Therefore, even if the integration of the pile body and the root-solidified part is strong, if the diameter of the root-solidified part is small, the root-solidified part will leave a margin in the proof stress of the integrated part of the protrusion part and the root-solidified part of the pile body The frictional force will be determined between the peripheral surface and the ground, and it is not sufficient to strengthen the integration of the pile body and the root-solidified portion in order to improve the tip support force.

さらに、発明者らの検討によれば、根固め杭の先端支持力は、根固め部底面での地盤からの反力が支配的であり、根固め部周面からの摩擦力の寄与度は小さいことが判明している。根固め部での周面摩擦力によって杭の先端支持力を増大させることは効率的ではなく、突起部を設けるだけでは効果的な支持力の向上は望みにくい。   Furthermore, according to the study by the inventors, the tip support force of the root-solidifying pile is dominated by the reaction force from the ground at the bottom of the root-solidified part, and the contribution of the frictional force from the periphery of the root-solidified part is It turns out to be small. It is not efficient to increase the support force at the tip of the pile by the peripheral frictional force at the root hardening portion, and it is difficult to expect an effective improvement of the support force simply by providing a protrusion.

特許文献2にも、杭体先端部の内外周面に支圧用の突起を溶接することにより、根固め部と杭体との一体化を強固にした同様の発明が開示されているが、複雑な鋼材の加工や溶接作業が必要なためコストがかかる。   Patent Document 2 also discloses a similar invention in which the integration of the root-solidified portion and the pile body is strengthened by welding the supporting protrusions to the inner and outer peripheral surfaces of the pile body tip. Costs are required due to the need for processing and welding work on steel.

さらには、前記の特許文献1と同様の理由で、杭の支持力を向上させるためには杭体と根固め部の一体化を強化するだけでは不十分で、根固めの形状・寸法に応じた支圧用突起を設定しなければ杭体と根固め部の一体化の耐力が余力を残した状態となるなど合理的な構造を構築できない。   Furthermore, for the same reason as in the above-mentioned Patent Document 1, it is not sufficient to strengthen the integration of the pile body and the root consolidation part in order to improve the bearing capacity of the pile, depending on the shape and dimensions of the root consolidation. Unless a support projection is set, a rational structure cannot be constructed, for example, the proof strength of the pile body and the root-solidified part remains in the state of remaining power.

特許文献3〜5に記載されたものは、先端部外周にスパイラル翼を設けた杭体を同時埋設(前2者)あるいは後埋設(後1者)によって地盤中に埋設し、スパイラル翼を含む杭体先端を根固め部に定着させるものである。   Patent Documents 3 to 5 include a spiral wing in which a pile body provided with a spiral wing on the outer periphery of the tip portion is buried in the ground by simultaneous burying (front two) or rear burying (back one). The pile body tip is fixed to the rooting part.

これも杭体と根固め部の一体化を強固にするものであるが、スパイラル翼を介して杭体上部から伝達される荷重を根固め部に伝達するため、スパイラル翼には大きな荷重が作用することになる。このとき、スパイラル翼と杭体との接合部には大きな応力が生じるため板厚の大きな部材が必要になり、材料費や加工費、溶接費がかさむといった欠点がある。   This also strengthens the integration of the pile body and root consolidation part, but since the load transmitted from the top of the pile body via the spiral wing is transmitted to the root consolidation part, a large load acts on the spiral wing. Will do. At this time, since a large stress is generated at the joint portion between the spiral blade and the pile body, a member having a large plate thickness is required, and there is a disadvantage that material costs, processing costs, and welding costs are increased.

大きな支持力を得るためにはスパイラル翼の外径、ひいては根固めの径を大きくする必要があるが、材料費や加工費、溶接費がかさむといった傾向がさらに顕著になるばかりではなく、掘削径も大きくなり排土量が増大する、あるいは施工時に必要な回転トルクが大きくなるなどの問題も生じる。   In order to obtain a large bearing capacity, it is necessary to increase the outer diameter of the spiral blade, and consequently the diameter of the rooting, but not only the trend of increasing material costs, processing costs and welding costs becomes more pronounced, but also the drilling diameter And the amount of soil removal increases, or the rotational torque required for construction increases.

特許文献6には、上記の課題を解決するために、杭本体外径とほぼ等しいプレオーガー孔と、螺旋翼径より大径でソイルセメントが充填された下部プレオーガー孔内に、杭本体下部外周面にほぼ一回転の複数の螺旋翼を有する既製杭が設置され、螺旋翼が下部プレオーガー孔内に埋設されることを特徴とする、既製杭とソイルセメントの複合構造体が開示されている。   In Patent Document 6, in order to solve the above-described problem, a lower outer peripheral surface of a pile main body in a pre-auger hole substantially equal to the outer diameter of the pile main body and a lower pre-auger hole having a diameter larger than the spiral blade diameter and filled with soil cement. A composite structure of a ready-made pile and soil cement is disclosed, in which a ready-made pile having a plurality of spiral blades of approximately one rotation is installed, and the spiral blade is embedded in a lower pre-auger hole.

この発明によれば、根固め部に至るまでは杭本体径で掘削するため地盤の掘削体積、ひいては排土体積を抑制することができる。   According to the present invention, since the excavation is performed with the pile main body diameter until the root consolidation part is reached, the excavation volume of the ground, and thus the soil discharge volume, can be suppressed.

しかしながら、事前に掘削された孔内に、この孔径よりも外径の大きい複数のスパイラル翼を有する杭体を回転埋設するため、地盤によっては孔壁が崩壊し孔内に土砂が落下してしまい、杭体が高止まりする、あるいは根固め部のソイルセメント内に未攪拌の上部の軟弱な地盤が混在してしまい、根固め部の品質が低下して所要の耐力が得られないことが懸念される。   However, a pile body having a plurality of spiral blades having an outer diameter larger than the hole diameter is embedded in a hole excavated in advance, so that depending on the ground, the hole wall may collapse and earth and sand may fall into the hole. Concerns that the pile body will remain high, or that the unstirred upper soft ground will be mixed in the soil cement of the root consolidation part, and the quality of the root consolidation part will deteriorate and the required yield strength will not be obtained Is done.

また、螺旋翼の外径としては杭径の1.5〜3.0倍を推奨しているが、翼の出幅が大きくなるために、上記の特許文献3〜5記載のものと同様に板厚の大きな材料を用いる必要があり、材料費、加工費、溶接費がかさむことになる。   In addition, the outer diameter of the spiral wing is recommended to be 1.5 to 3.0 times the pile diameter. However, since the wing width of the wing increases, the same as described in Patent Documents 3 to 5 above. It is necessary to use a material with a large plate thickness, which increases material costs, processing costs, and welding costs.

また、この発明では必要な支持力を得るための根固め部の形状にも言及しており、根固め部の長さは翼径の3.0倍くらいあればよく、5.0倍以上あれば十分としている。また、根固め部の径は地盤の硬さによって翼径程度から翼径の1.5倍程度あれば十分としている。   In addition, the present invention also refers to the shape of the root solidified portion for obtaining the necessary supporting force, and the length of the root solidified portion may be about 3.0 times the blade diameter, and more than 5.0 times. It is enough. The diameter of the root hardening part is sufficient if it is about 1.5 times the blade diameter from the blade diameter depending on the hardness of the ground.

しかしながら、螺旋翼の外径が杭径の1.5〜3.0倍とすると、杭体の径に比して根固め部の長さと径が非常に大きくなり、根固め部の施工に長時間を要すること、掘削翼拡大時の負荷が大きく施工機材が大型化することなど施工性の観点からの課題が多く残る。   However, if the outer diameter of the spiral blade is 1.5 to 3.0 times the pile diameter, the length and diameter of the root consolidation part will be very large compared to the diameter of the pile body. Many problems remain from the viewpoint of workability, such as the time required, the load when expanding the excavating blades, and the construction equipment becoming larger.

上記の杭体先端に螺旋翼を用いた場合の欠点を解消する方策としては、特許文献7記載の発明がある。この発明に先立って、特許文献8に、杭先端部外面および内面に所定の長さにわたり丸棒ないしは角棒材からなる高さ20mm以下のスパイラルリブを付設した回転貫入鋼管杭が開示されているが、鋼管閉塞断面積での支持地盤への荷重伝達に期待するため支持力が不足したり、径が600mm以上の鋼管杭では管内土による先端閉塞効果も低下して杭先端支持力が不足するという課題があるため、これ解決するためになされたものが特許文献7の発明である。   There exists invention of patent document 7 as a policy which eliminates the fault at the time of using a spiral wing for the above-mentioned pile body tip. Prior to this invention, Patent Document 8 discloses a rotary penetrating steel pipe pile in which a spiral rib having a height of 20 mm or less made of a round bar or a square bar material is attached to the outer surface and inner surface of the pile tip portion over a predetermined length. However, because it is expected to transmit the load to the support ground at the cross-sectional area of the steel pipe, the supporting force is insufficient, or the steel pipe pile with a diameter of 600 mm or more also has a reduced tip clogging effect due to the soil in the pipe and the pile tip supporting force is insufficient. Therefore, the invention of Patent Document 7 has been made to solve this problem.

これは、杭設置位置の地層を予め所定の根入れ深さ近くまで掘削し、根入れ先端予定位置近傍に硬化材粉末を注入したのち、特許文献8に記載の回転貫入鋼管杭を前記根入れ深さまで貫入させるものである。これにより、杭先端部が硬化粉末付近に達すると管内土および周辺土と硬化粉末が混合され、さらに地下水との混合により杭先端部にソイルセメントの固化体(以下、根固め部と称す)を形成するものである。   This is because the stratum at the pile installation position is excavated in advance to a predetermined penetration depth, and the hardened material powder is injected in the vicinity of the planned insertion tip position, and then the rotary penetration steel pipe pile described in Patent Document 8 is inserted into the pile. It penetrates to the depth. As a result, when the pile tip reaches the vicinity of the hardened powder, the soil in the pipe and the surrounding soil and the hardened powder are mixed, and by mixing with the groundwater, a solid body of soil cement (hereinafter referred to as rooting part) is added to the tip of the pile. To form.

なお、硬化粉末を使用するのは、予め液体状としたセメントミルクを使用すると現場が汚れて作業環境が悪化したり、施工時に産業廃棄物が発生したりすることを回避するためである。   The reason why the hardened powder is used is to avoid the fact that the use of cement milk that has been liquefied in advance causes the work site to become dirty and the working environment to deteriorate, and industrial waste to be generated during construction.

しかしながら、杭体の回転貫入時に得られる攪拌混合作用のみでは硬化粉末と地盤の混合は限定されており、形成される根固めの大きさ、強度が不確実であり、結果的に得られる杭先端支持力も不確実なものとなる。   However, the mixing of the hardened powder and the ground is limited only by the stirring and mixing action obtained at the time of the rotation penetration of the pile body, the size and strength of the root consolidation formed are uncertain, and the resulting pile tip Supporting power is also uncertain.

特許文献7と構造的に類似であるが、根固め部の形状・寸法にも配慮して大きな支持力を得ることを目的とした発明が特許文献9や特許文献10に開示されている。すなわち、先端部外周に高さ6mm以上の突起を設けた鋼管杭と、地盤中の支持層あるいは支持層を含む区間に形成されているとともに、前記鋼管杭の先端部が挿入され、一体化されてなる根固め柱とを有することを特徴とするものである。この発明では、特許文献5や特許文献6と同様に拡縮機構を有するオーガーヘッドを用いて機械的に根固め部を拡大掘削するため、根固め部の大きさ、強度はより確実性の高いものとなる。   Patent Document 9 and Patent Document 10 disclose an invention that is structurally similar to Patent Document 7 but aims to obtain a large support force in consideration of the shape and dimensions of the root-fixed portion. That is, a steel pipe pile provided with a projection having a height of 6 mm or more on the outer periphery of the tip and a support layer in the ground or a section including the support layer, and the tip of the steel pipe pile is inserted and integrated. It is characterized by having a solidified pillar. In the present invention, similarly to Patent Document 5 and Patent Document 6, since the agglomeration portion is mechanically enlarged and excavated using an auger head having an expansion / contraction mechanism, the size and strength of the root consolidation portion are more reliable. It becomes.

この発明では、杭先端部外周の突起によって鋼管上部から伝達されてくる荷重が根固め内に分散して伝達されることにより、根固め部に割れが生じにくくなり、大きな支持力が得られるとしており、分散効果を確実にするために、以下の条件を満足することが望ましいとしている。
Dt +2・h・tanβ≦Dg
なお、
Dtは突起を含めた杭先端部の径、
hは根固め柱に埋め込まれた最上段の突起から根固め柱底面までの長さ
とされている(上式における“h”は本願における“h”とは異なる)。
In this invention, the load transmitted from the upper part of the steel pipe by the protrusions on the outer periphery of the pile tip is dispersed and transmitted in the root consolidation, so that the root consolidation part is less likely to crack and a large support force is obtained. In order to ensure the dispersion effect, it is desirable to satisfy the following conditions.
Dt +2 ・ h ・ tanβ ≦ Dg
In addition,
Dt is the diameter of the tip of the pile including the protrusion,
h is the length from the uppermost protrusion embedded in the root consolidation pillar to the bottom of the root consolidation pillar ("h" in the above equation is different from "h" in the present application).

さらに、根固め柱と鋼管杭先端部の間に十分な固着力を与え、先端支持力を効果的に高くするために、鋼管先端部の根固め柱への挿入長さSを根固め柱高さHの0.6〜0.9倍とすることが好ましいとしている。   Furthermore, in order to give a sufficient fixing force between the root hardening column and the steel pipe pile tip, and to effectively increase the tip support force, the insertion length S of the steel pipe tip to the root hardening column is increased. The thickness H is preferably 0.6 to 0.9 times.

しかし、鋼管から根固め部を介して支持地盤へ荷重が伝達される際に、荷重分散範囲(Dt +2・h・tanβ)が根固め径Dgに比して小さいと、根固め底面全体を使って支持地盤に効果的に荷重を伝達できないばかりでなく、荷重伝達範囲の外側の根固め部は構造的に不安定となり、ひび割れやせん断破壊を生じる可能性もある。   However, when the load is transmitted from the steel pipe to the supporting ground through the root consolidation part, if the load distribution range (Dt + 2 · h · tan β) is smaller than the root consolidation diameter Dg, the entire root consolidation bottom is used. In addition to not being able to effectively transmit the load to the supporting ground, the solidified portion outside the load transmission range becomes structurally unstable and may cause cracks and shear failure.

さらに、鋼管先端から根固め底面までの距離(H−S)が根固め径Dgと鋼管径Dpの差(Dg-Dp)に比して小さいと鋼管先端断面からの圧縮力に対して根固め部が押抜きせん断破壊を起こして支持力が低下してしまう恐れがある。   Furthermore, if the distance (HS) from the steel pipe tip to the bottom of the root is smaller than the difference between the root diameter Dg and the steel pipe diameter Dp (Dg-Dp), the root is solidified against the compressive force from the cross section of the steel pipe. There is a risk that the part will cause punching shear failure and the supporting force will be reduced.

杭径Dpや根固め径Dgの条件にもよるが、根固め底面下の地盤は剛体ではなく、弾性・塑性変形を生じる材料であることも考慮すると、鋼管先端から根固め底面までの距離(H−S)をある程度確保しておくことが必要であり、厳密にはS、Dg、Dpの大きさは独立に規定されるものではなく、互いに関連づけて総合的に決定されるべきものである。   Although it depends on the conditions of the pile diameter Dp and root consolidation diameter Dg, considering that the ground below the root consolidation bottom is not a rigid body and is a material that generates elastic and plastic deformation, the distance from the steel pipe tip to the root consolidation bottom ( H−S) must be secured to some extent, and strictly speaking, the sizes of S, Dg, and Dp are not defined independently, but should be determined comprehensively in relation to each other. .

また、突起の高さとして杭径の10%以下が好ましいとしているが、杭径の10%近い高さの突起が鋼管外周に付設された鋼管が地盤中へ回転して貫入していく際の抵抗は、突起のない鋼管に比べて明らかに大きくなり、施工機材への負荷か増加するばかりでなく、貫入の際に周辺の地盤を乱して周面摩擦力が低下したり、根固め部との一体化において前記特許文献3〜5と同様に大きな荷重が作用するため、製作コストが増大することも考えられ、突起高さは特許文献8にあるように20mm程度以下としておくことが好ましい。   In addition, the height of the protrusion is preferably 10% or less of the pile diameter, but when the steel pipe with the protrusion close to 10% of the pile diameter attached to the outer periphery of the steel pipe rotates into the ground and penetrates The resistance is obviously larger than that of steel pipes without protrusions, which not only increases the load on construction equipment, but also disturbs the surrounding ground during penetration, reducing the peripheral frictional force, As in Patent Documents 3 to 5, a large load acts in the integration with the device, and thus the manufacturing cost may be increased. The protrusion height is preferably about 20 mm or less as described in Patent Document 8. .

特開2000-045274号公報JP 2000-045274 A 特公平01−025848号公報Japanese Patent Publication No. 01-025848 特開2000−291002号公報JP 2000-291002 A 特開平05−230830号公報Japanese Patent Laid-Open No. 05-230830 特開昭60−238515号公報JP-A-60-238515 特開2002−054135号公報JP 2002-054135 A 特開平05−295731号公報Japanese Patent Laid-Open No. 05-295731 特開平01−094112号公報Japanese Patent Laid-Open No. 01-094112 特開2002−356847号公報JP 2002-356847 A 特開2005−139900号公報JP 2005-139900 A

本発明は、以上の従来技術の問題点や不完全な部分を解決するためになされたものであり、荷重作用時の根固め部の破壊を防止して、杭体から根固め部、さらに根固め部から支持地盤への効果的な荷重伝達を確保して、広範囲な地盤へ荷重を伝達することにより大きな支持力を発揮でき、かつ、安価で施工性に優れた基礎杭の支持構造とその構築に用いる鋼管杭を提供するものである。   The present invention has been made in order to solve the above-described problems and incomplete portions of the prior art, and prevents the destruction of the root-solidified portion during the application of a load. A foundation pile support structure that is capable of exerting a large bearing capacity by ensuring effective load transmission from the compacted part to the support ground and transmitting the load to a wide range of ground, and that is inexpensive and has excellent workability. The steel pipe pile used for construction is provided.

本発明の基礎杭の支持構造は、先端部外周に環状またはらせん状突起を設けた鋼管杭と、地盤中の支持層あるいは支持層を含む領域に形成されているとともに、前記鋼管杭の先端部が挿入され、一体化されてなる根固め部からなり、前記根固め部が以下の形状で規定されることを特徴とするものである。   The support structure for a foundation pile according to the present invention is formed in a steel pipe pile provided with an annular or spiral projection on the outer periphery of the tip, and a support layer in the ground or a region including the support layer, and the tip of the steel pipe pile Is composed of a root-solidified portion that is inserted and integrated, and the root-solidified portion is defined by the following shape.

p/h=8〜15
H≧S1+S2
Dp×2≧Dg≧Dp+2×h
ここで、
pは先端部外周面の突起ピッチ、
hは先端部外周面の突起高さ、
Hは根固め部の全高さ、
Dpは鋼管杭の外径、
Dgは根固め部の外径
を表し、また、
S1は外周突起の定着長さ、
S2は鋼管杭先端から根固め部底面までの距離
を表し、以下の条件を満たす。
p / h = 8-15
H ≧ S1 + S2
Dp × 2 ≧ Dg ≧ Dp + 2 × h
here,
p is the protrusion pitch of the outer peripheral surface of the tip,
h is the height of the protrusion on the outer peripheral surface of the tip,
H is the total height of the root hardening part,
Dp is the outer diameter of the steel pipe pile,
Dg represents the outer diameter of the root hardening part,
S1 is the fixing length of the outer peripheral projection,
S2 represents the distance from the steel pipe pile tip to the bottom of the root portion and satisfies the following conditions.

1.75・Dg−2.45・Dp ≦S1≦1.75・Dg−1.75・Dp
Dp×2≧S2≧(Dg−Dp)/(2・tanβ)
ここで、
βは根固め部内の支持荷重の拡がり角度
を表す。
1.75 · Dg−2.45 · Dp ≦ S1 ≦ 1.75 · Dg−1.75 · Dp
Dp × 2 ≧ S2 ≧ (Dg−Dp) / (2 · tan β)
here,
β represents the spread angle of the support load in the root-solidified portion.

上記の限定理由および請求項2以下の限定理由は、後述する発明を実施するための最良の形態の項で、具体的な解析例とともに説明する。   The reasons for limitation and the reasons for limitation of claim 2 and below will be described in the best mode for carrying out the invention to be described later together with specific analysis examples.

請求項2は、請求項1の基礎杭の支持構造において、前記鋼管杭の先端部内周にも環状またはらせん状突起が設けられていることを特徴とするものである。   According to a second aspect of the present invention, in the foundation pile support structure of the first aspect, an annular or helical projection is also provided on the inner periphery of the tip of the steel pipe pile.

請求項3は、請求項2の基礎杭の支持構造において、前記鋼管杭の先端部内周に設けられた突起の定着長さS3が以下のように規定されることを特徴とするものである。
0.3・Dp≦S3≦1.5・Dp
According to a third aspect of the present invention, in the foundation pile support structure of the second aspect, the fixing length S3 of the protrusion provided on the inner periphery of the tip of the steel pipe pile is defined as follows.
0.3 ・ Dp ≦ S3 ≦ 1.5 ・ Dp

請求項4は、請求項1〜3の基礎杭の支持構造において、根固め部の固化体を構成するために注入される固化液が、繊維状の引張抵抗材料を混合したセメントミルクであることを特徴とするものである。   Claim 4 is the support structure of the foundation piles according to claims 1 to 3, wherein the solidified liquid injected to constitute the solidified portion of the root-solidified portion is cement milk mixed with a fibrous tensile resistance material. It is characterized by.

混合する引張抵抗材料としては、スチールファイバー、炭素繊維、ガラス繊維、アラミド繊維などが利用できる。   Steel fiber, carbon fiber, glass fiber, aramid fiber, etc. can be used as the tensile resistance material to be mixed.

請求項5は、請求項1〜4の基礎杭の支持構造において、根固め部の固化体を構成するために注入される固化液が、濃度W/C<60%のセメントミルクであり、粘性を低減するための混和材(流動化材、減水材、AE減水剤など)が混合されていることを特徴とするものである。   Claim 5 is the support structure of the foundation pile according to claims 1 to 4, wherein the solidification liquid injected to constitute the solidified body of the root-solidified portion is cement milk having a concentration of W / C <60%, and is viscous It is characterized in that admixtures (fluidizing material, water reducing material, AE water reducing agent, etc.) for reducing water content are mixed.

請求項6は、請求項1の基礎杭の支持構造に用いるための鋼管杭であり、先端部外周に環状またはらせん状突起を設けた鋼管杭であって、先端部外周面の突起は、突起高さhと突起ピッチpおよび突起を設置する範囲S1が以下の関係を満足するように形成されていることを特徴とするものである。
p/h=8〜15
1.75・Dg−2.45・Dp ≦S1≦1.75・Dg−1.75・Dp
Claim 6 is a steel pipe pile for use in the support structure of the foundation pile according to claim 1, and is a steel pipe pile provided with an annular or spiral protrusion on the outer periphery of the tip part. The height h, the projection pitch p, and the range S1 in which the projections are installed are formed so as to satisfy the following relationship.
p / h = 8-15
1.75 · Dg−2.45 · Dp ≦ S1 ≦ 1.75 · Dg−1.75 · Dp

請求項7は、請求項6の鋼管杭において、先端部内周にも環状またはらせん状突起が設けられ、先端部内周の突起が、突起高さhと突起ピッチpおよび突起を設置する範囲S3が以下の関係を満足するように形成されていることを特徴とするものである。
p/h=8〜15
0.3・Dp ≦S3≦1.5・Dp
In the steel pipe pile according to claim 6, in the steel pipe pile according to claim 6, an annular or spiral protrusion is also provided on the inner periphery of the tip, and the protrusion on the inner periphery of the tip has a protrusion height h, a protrusion pitch p, and a range S3 in which the protrusion is installed. It is formed so as to satisfy the following relationship.
p / h = 8-15
0.3 · Dp ≤ S3 ≤ 1.5 · Dp

請求項8は、請求項6または7の鋼管杭において、先端部外周の突起および/または内周の突起が鋼管表面に溶接ビードを盛ることにより形成されていることを特徴とするものである。   An eighth aspect of the present invention is the steel pipe pile according to the sixth or seventh aspect, wherein the protrusion on the outer periphery of the tip and / or the protrusion on the inner periphery is formed by depositing a weld bead on the surface of the steel pipe.

請求項9は、請求項7または8の鋼管杭において、先端部外周および内周の突起が、同材料、同高さ、同ピッチで、かつ、同じ方向に連続する螺旋状に形成されていることを特徴とするものである。   Claim 9 is the steel pipe pile according to claim 7 or 8, wherein the protrusions on the outer periphery and the inner periphery of the tip are formed in the same material, the same height, the same pitch, and in a spiral shape continuous in the same direction. It is characterized by this.

本発明によれば、荷重作用時の根固め部の破壊を防止して、杭体から根固め部、さらに根固め部から支持地盤への効果的な荷重伝達を確保して、広範囲な地盤へ荷重を伝達することにより大きな支持力を発揮できる。   According to the present invention, it is possible to prevent destruction of the root-solidified part during the load operation, and to ensure effective load transmission from the pile body to the root-solidified part, and further from the root-solidified part to the supporting ground, to a wide range of ground. A large supporting force can be exhibited by transmitting the load.

本発明は鋼管先端断面からの根固め部への荷重伝達を考慮した上で、不足分を鋼管先端外周面の突起を設けた部分で補うという考え方によるものであり、特許文献9や特許文献10記載の従来型の構造に比べ、鋼管の根固め部への埋込み長さや突起の加工範囲が少なくて済むことで、より経済的な構造となっている。   The present invention is based on the idea that the shortage is compensated by the portion provided with the protrusion on the outer peripheral surface of the steel pipe in consideration of load transmission from the cross section of the steel pipe to the root hardening portion. Compared to the conventional structure described, the construction length is more economical because the embedding length of the steel pipe in the root-sealed portion and the processing range of the protrusions are reduced.

以下、本発明の最良の形態を、解析結果などに基づき具体的に説明する。   Hereinafter, the best mode of the present invention will be specifically described based on analysis results and the like.

(1) 根固め部の概略構造と耐力機構について
図1は根固め部11の概略構造と耐力機構の概念図であり、固化液が充填され、全長、あるいは少なくとも鋼管杭1先端位置以深の範囲は支持層内に位置するように構築した根固め球根内に、先端部の外周面および内周面に螺旋状または環状の突起2,3を複数段設置した鋼管杭1を、該外周および内周突起2,3設置部が含まれるように挿入し、固化液が固化した後に発現される鋼管外周突起2と鋼管外側の固化体との間の付着力、および鋼管内周突起3と鋼管内の固化体との間の付着力の両者を活用することによって鋼管杭先端部を根固め球根内に定着させている。
(1) Schematic structure and strength mechanism of root consolidation part Fig. 1 is a conceptual diagram of the schematic structure and strength mechanism of root consolidation part 11, filled with solidification liquid, the entire length, or at least deeper than the tip of steel pipe pile 1 Is a steel tube pile 1 in which a plurality of spiral or annular protrusions 2 and 3 are installed on the outer peripheral surface and the inner peripheral surface of the tip end portion in a root consolidation bulb constructed so as to be located in the support layer. Inserted so as to include the circumferential protrusions 2 and 3 and the adhesion force between the steel pipe outer peripheral protrusion 2 and the solidified body outside the steel pipe expressed after the solidification liquid is solidified, and the steel pipe inner peripheral protrusion 3 and the steel pipe The tip of the steel pipe pile is rooted and fixed in the bulb by utilizing both the adhesive strength between the solidified body and the solidified body.

解析は、図2に示すように、支持層付近の根固め部のみモデル化し、モデルの上面に土被り圧に相当する下向きの等分布荷重を与えて実施した。鋼管と根固め、および根固めと地盤は接点共有(完全に結合した状態)とした。先端地盤の強度はN値60を想定している。   As shown in FIG. 2, the analysis was carried out by modeling only the solidified portion in the vicinity of the support layer and applying a downward equally distributed load corresponding to the soil covering pressure on the upper surface of the model. The steel pipe and root consolidation, and the root consolidation and ground were shared contacts (completely coupled). The strength of the tip ground assumes an N value of 60.

発明者らが実施した解析の結果から得られた構造の特性は以下のとおりである。   The characteristics of the structure obtained from the results of the analysis conducted by the inventors are as follows.

ア.根固め部の耐力は(先端支圧力+外周付着力)として評価可能で、先端支圧力と外周付着力の関係はあたかも杭の先端支持力と周面摩擦力の関係と同じである(図3(a),(b)参照)。
ここで、先端支圧力とは鋼管先端の閉塞断面から根固め部固化体に伝達される荷重、外周付着力とは鋼管先端の外周面突起での付着力によって根固め部固化体に伝達される荷重である。
A. The proof strength of the root consolidation part can be evaluated as (tip support pressure + outer periphery adhesion force), and the relationship between the tip support pressure and the outer periphery adhesion force is the same as the relationship between the tip support force of the pile and the peripheral friction force (Fig. 3). (See (a) and (b)).
Here, the tip support pressure is a load transmitted from the closed cross section of the steel pipe tip to the solidified solidified body, and the outer peripheral adhesion force is transmitted to the solidified solidified body by the adhesive force at the outer peripheral surface protrusion of the steel pipe tip. It is a load.

イ.先端支圧により分担できる耐力は、周辺地盤から根固めに作用する拘束圧が一定で、鋼管先端から根固め底面までの距離S2を、ある一定値以上確保できていれば(詳細後述)根固め形状(拡径率Dg/Dp、高さH)によらずほぼ一定である(図4(b)参照)。ただし、鋼管内周面の突起によって鋼管内部が完全に閉塞された状態であることが前提である。 I. The load bearing capacity that can be shared by the tip support pressure is that the restraint pressure that acts on the root consolidation from the surrounding ground is constant, and the distance S2 from the steel pipe tip to the bottom of the root consolidation is secured to a certain value or more (details will be described later). It is almost constant regardless of the shape (diameter expansion rate Dg / Dp, height H) (see FIG. 4B). However, the assumption is that the inside of the steel pipe is completely closed by the protrusions on the inner peripheral surface of the steel pipe.

ウ.一方、外周付着は根固めへの定着長(突起がついている範囲で埋込み長とは区別する)によって大きさが変化する(図4(c)参照)。したがって、定着長を変化させることで耐力調整が可能となる(図4(a)参照)。 C. On the other hand, the size of the outer periphery adhesion changes depending on the fixing length (which is distinguished from the embedding length in the range where the protrusion is attached) to the root (see FIG. 4C). Accordingly, the proof stress can be adjusted by changing the fixing length (see FIG. 4A).

エ.さらに、鋼管外周突起の付着性能があらかじめわかっていれば、定着長を調整することで、所要の耐力を有する根固め部の支持構造を構築可能である。 D. Furthermore, if the adhesion performance of the steel pipe outer peripheral projection is known in advance, it is possible to construct a support structure for the rooting portion having a required proof strength by adjusting the fixing length.

(2) 根固め構造部の形状(根固め固化体と鋼管からなる杭先端部の支持構造の形状)
荷重作用時の根固め部の破壊を防止して、杭体から根固め部、さらに根固め部から支持地盤への効果的な荷重伝達を確保して、広範囲な地盤へ荷重を伝達することにより大きな支持力を発揮できるような形状を特定する。
(2) Shape of root consolidation structure (shape of support structure at the tip of pile consisting of solidified solidified body and steel pipe)
By preventing the destruction of root consolidation during loading, ensuring effective load transmission from the pile body to the root consolidation, and further from the root consolidation to the supporting ground, and transmitting the load to a wide range of ground Identify a shape that can provide great support.

ア.根固め部の押抜きせん断破壊の防止(鋼管先端から根固め底面までの必要距離)
根固め部固化体のひび割れや押抜きせん断破壊を防止し、かつ、根固めの径Dg全体で底面直下の支持地盤へ荷重を効果的に伝達して大きな支持力を得るためには、少なくとも、鋼管先端から根固め底面までの距離S2は以下の条件を満足するように設定する。
Dp +2・S2・tanβ≧Dg
また、
S2≦1.5・Dp
より、
Dp×1.5≧S2≧(Dg−Dp)/(2・tanβ) … (1)
A. Prevention of punching shear fracture of root consolidation (necessary distance from steel pipe tip to root consolidation bottom)
In order to prevent cracking and punching shear fracture of the solidified root solidified body and to obtain a large supporting force by effectively transmitting the load to the supporting ground immediately below the bottom surface over the entire diameter Dg of the solidified base, The distance S2 from the steel tube tip to the bottom surface of the root is set so as to satisfy the following conditions.
Dp +2 ・ S2 ・ tanβ ≧ Dg
Also,
S2 ≦ 1.5 ・ Dp
Than,
Dp × 1.5 ≧ S2 ≧ (Dg−Dp) / (2 · tan β) (1)

式(1)は、鋼管から根固め部への荷重伝達のうち、押抜きせん断に対して最もクリティカルな鋼管先端閉塞断面からの圧縮力の伝達(図6の下側破線)に着目して、鋼管先端からの荷重の広がりを表わす破線が根固め側面を横切るようにS2を設定するものである。   Formula (1) pays attention to the transmission of the compressive force from the steel pipe tip closed cross-section that is most critical for punching shear among the load transmission from the steel pipe to the root consolidation part (lower broken line in FIG. 6). S2 is set so that the broken line representing the spread of the load from the steel pipe tip crosses the root surface.

図5のような従来ある根固め部の高さHが小さく、埋込み長との関係でS2も小さいタイプでは押抜きせん断破壊が生ずる可能性が高くなる。   In a type in which the height H of the conventional root hardening portion as shown in FIG. 5 is small and S2 is also small in relation to the embedding length, there is a high possibility of punching shear failure.

この点、本発明は鋼管先端断面からの根固め部への荷重伝達を考慮した上で、不足分を鋼管先端外周面の突起を設けた部分の付着力で補うという考え方によるものであるのに対し、特許文献9や特許文献10記載の発明では鋼管先端断面からの荷重伝達よりむしろ鋼管先端外周面からの荷重伝達でもたせようという考え方を採っており、結果的に逆の限定を行っているが、本発明の場合、鋼管の根固め部への埋込み部分や突起の加工範囲が少なくて済むことで、より経済的な構造となっている。   In this regard, the present invention is based on the idea that the shortage is compensated by the adhesive force of the portion provided with the protrusion on the outer peripheral surface of the steel pipe after considering the load transmission from the steel pipe tip cross section to the root consolidation part. On the other hand, in the inventions described in Patent Document 9 and Patent Document 10, the idea of applying load transmission from the outer peripheral surface of the steel pipe rather than load transmission from the steel pipe front end section is taken, and as a result, the reverse limitation is performed. However, in the case of the present invention, since the processing range of the embedding part and the projection in the root-clamping part of the steel pipe is small, a more economical structure is obtained.

なお、βは荷重の拡がりの角度を表し、解析的な検討によれば通常30〜45°程度である。   In addition, (beta) represents the angle of the spread of a load, and is about 30 to 45 degrees normally according to analytical examination.

発明者らが実施した解析的な検討によれば、S2の増加につれて先端支圧の耐力も上昇していくが、最終的には耐力はある一定値に収斂して行き、S2が増加しても耐力はほぼ一定値を示すようになり、根固めの拡径率Dg/Dp≦2.0と限定すれば(後述)、S2=1.5・Dp以上としても耐力は頭打ちになる結果が得られている(図8(a)参照)。   According to the analytical study conducted by the inventors, the proof stress of the tip bearing increases as S2 increases, but eventually the proof stress converges to a certain value, and S2 increases. However, the proof stress is almost constant, and if it is limited to a solidified diameter expansion ratio Dg / Dp ≦ 2.0 (described later), the proof stress will reach its peak even if S2 = 1.5 · Dp or more. It is obtained (see FIG. 8 (a)).

実証データとして、図2と同様のモデルで、鋼管外周面の突起がない(付着がない)条件で行った解析の結果を以下に示す。図7はDg/Dp=2.0、先端地盤N値60相当の条件でS2を変化させた解析例である。図8はDg/Dpを変化させて同様の解析を行った結果をまとめた図である。   As proof data, the result of the analysis performed under the condition that there is no protrusion (no adhesion) on the outer peripheral surface of the steel pipe in the same model as FIG. 2 is shown below. FIG. 7 shows an analysis example in which S2 is changed under the condition of Dg / Dp = 2.0 and the tip ground N value of 60. FIG. 8 is a table summarizing the results of similar analysis performed by changing Dg / Dp.

図7(a)より、S2の大きさによって支持力が変化することが分かる。図7(b)から、支持力低下の大きなS2≦1.0Dpのケースでは、根固め底面の変位が不均一で、鋼管直下部とその外側で大きく変位量が異なる。その結果、押抜きせん断破壊が発生する。押抜きせん断破壊が生じると、根固め径Dg全体で支持地盤へ荷重を伝達できなくなるために結果的に支持力が低下する。   From FIG. 7A, it can be seen that the supporting force varies depending on the magnitude of S2. From FIG. 7 (b), in the case of S2 ≦ 1.0Dp where the reduction in support force is large, the displacement of the bottom surface of the root is uneven, and the amount of displacement differs greatly between the portion directly below the steel pipe and the outside thereof. As a result, punch shear fracture occurs. When punching shear failure occurs, the load cannot be transmitted to the supporting ground over the entire root consolidation diameter Dg, resulting in a decrease in supporting force.

図8からDg/Dpによって支持力低下が明確になる点が異なる。必要なS2はDgとDpに依存する。Dg/Dpが大きいほど支持力低下が明確になるS2/Dpが大きい。これはDg/Dpが大きいほど根固め全体に荷重を分散させるために必要な距離が増加するためで、式(1)で表される傾向と一致する。   FIG. 8 is different in that the lowering of the supporting force is clarified by Dg / Dp. The required S2 depends on Dg and Dp. The larger the Dg / Dp, the larger the S2 / Dp that makes the reduction in bearing capacity clearer. This is because the larger the Dg / Dp, the greater the distance required to disperse the load throughout the root consolidation, which is consistent with the trend expressed by equation (1).

β=30°として、式(1)によって定まる最小のS2を表1に示す。   Table 1 shows the minimum S2 determined by the equation (1) with β = 30 °.

Figure 2007032044
Figure 2007032044

図8によれば、表1のS2であれば、S2が十分に大きい場合の80%以上の支持力が得られることがわかる。   According to FIG. 8, it can be seen that the support force of 80% or more when S2 is sufficiently large can be obtained with S2 in Table 1.

さらに、根固め底面直下が剛体ではなく弾性・塑性変形を生じる地盤であることを考慮すると、押抜きせん断の確実な防止のためには式(1)によるS2に余長を考慮しておくことがより望ましい。すなわち、式(1)'を満たすS2'としておくことが望ましい。   Furthermore, considering that the ground directly below the root is not a rigid body but an elastic / plastically deformed ground, the extra length should be taken into account in S2 according to equation (1) for reliable prevention of punching shear. Is more desirable. That is, it is desirable to set S2 ′ that satisfies Expression (1) ′.

S2'=S2+(Dg−Dp)/2
Dp×1.5≧S2≧(tanβ+1)・(Dg−Dp)/(2・tanβ) … (1)'
β=30°として、式(1)'を満たすS2'を求めた結果を表2に示す。
S2 '= S2 + (Dg-Dp) / 2
Dp × 1.5 ≧ S2 ≧ (tan β + 1) · (Dg−Dp) / (2 · tan β) (1) ′
Table 2 shows the result of obtaining S2 ′ satisfying the expression (1) ′ with β = 30 °.

Figure 2007032044
Figure 2007032044

表2のS2'とすれば、図8との比較から、S2が十分に大きい場合とほぼ同等の支持力が得られることがわかる。   If S2 'in Table 2, it can be seen from the comparison with FIG. 8 that a support force substantially equivalent to that when S2 is sufficiently large can be obtained.

イ.鋼管先端部の根固め内への必要な定着長(所要の外周付着力の確保)
前述のとおり、先端支圧により分担できる耐力は、周辺地盤から根固めに作用する拘束圧が一定で、鋼管先端から根固め底面までの距離S2を、ある一定値以上確保できていれば(詳細後述)根固め形状(拡径率Dg/Dp、高さH)によらずほぼ一定で(図4(b)参照)、発明者らが行った種々の解析・実験的な検討から先端支圧耐力(鋼管先端の閉塞断面から伝達される圧縮耐力に対する根固め固化体の耐力)の大きさは、上記アの条件を満足していれば鋼管径で支配される(λ×Ap×qu、λ:係数、Ap:鋼管の閉塞断面積、qu:固化体の一軸圧縮強度)結果が得られている。
I. Necessary fixing length within the root of the steel pipe tip (securing the required outer periphery adhesion)
As described above, the load bearing capacity that can be shared by the tip bearing pressure is constant if the restraining pressure that acts on the root consolidation from the surrounding ground is constant, and the distance S2 from the steel pipe tip to the bottom surface of the root consolidation is secured to a certain value or more (Details) As will be described later, it is almost constant regardless of the shape of root consolidation (diameter expansion rate Dg / Dp, height H) (see Fig. 4 (b)). The magnitude of the proof stress (the proof strength of the solidified solid body against the compressive proof force transmitted from the closed cross section at the tip of the steel pipe) is governed by the diameter of the steel pipe (λ × Ap × qu, λ : Coefficient, Ap: closed cross-sectional area of steel pipe, qu: uniaxial compressive strength of solidified body) results.

一方、鋼管径が同じでも根固め径によって先端地盤から得られる支持力(根固め部の支持構造の必要耐力)は変化するため、鋼管先端の閉塞断面からの圧縮耐力のみでは不足する分を鋼管外周突起と根固めの定着により確保する。根固め径Dgにより必要耐力が変化するため、必要定着長S1も変化する。   On the other hand, even if the steel pipe diameter is the same, the bearing strength (necessary proof stress of the support structure of the root consolidation part) varies depending on the root consolidation diameter. Secure by fixing peripheral protrusions and roots. Since the required proof stress changes depending on the root diameter Dg, the required fixing length S1 also changes.

したがって、外周突起設置部と根固め部の間の付着長さ(定着距離)S1は、鋼管径Dpと、根固め径DgとDpの比(Dg/Dp)を考慮して所要の耐力を有するように設定する。すなわち、定着長さS1は、S1/Dp=f(Dg/Dp)の形で規定でき、この関係を図示したものが図9である。   Therefore, the adhesion length (fixing distance) S1 between the outer peripheral protrusion installation portion and the root consolidation portion has a required yield strength in consideration of the steel pipe diameter Dp and the ratio (Dg / Dp) of the root consolidation diameters Dg and Dp. Set as follows. That is, the fixing length S1 can be defined in the form of S1 / Dp = f (Dg / Dp), and FIG. 9 illustrates this relationship.

厳密には突起の条件(突起ピッチp、突起高さh、断面形状)、根固め部の固化体強度、地盤の支持力により関係は変化するが、発明者のこれまでの実験・解析的検討によれば、後述の(3)に示す鋼管外周突起の条件で、かつ、一般的な固化体強度(20N/mm2程度)、一般的な支持地盤強度(N=50〜60)であれば、概ね図中に示した範囲にあれば所要の耐力を有する支持構造を構成可能なことを確認している。 Strictly speaking, the relationship varies depending on the conditions of the protrusion (protrusion pitch p, protrusion height h, cross-sectional shape), solidified body strength of the root consolidation part, and the supporting force of the ground, but the inventor's previous experimental and analytical examination According to (3) below, the condition of the steel pipe outer peripheral projection, and the general solidified body strength (about 20 N / mm 2 ) and the general supporting ground strength (N = 50-60) It has been confirmed that a support structure having a required proof stress can be constructed if it is approximately within the range shown in the figure.

図9に示したS1の範囲は、式(2)で表される。
1.75・Dg−2.45・Dp ≦S1≦1.75・Dg−1.75・Dp … (2)
The range of S1 shown in FIG. 9 is expressed by equation (2).
1.75 · Dg−2.45 · Dp ≦ S1 ≦ 1.75 · Dg−1.75 · Dp (2)

図9に示すように、Dg/Dpによって必要なS1は異なるが、Dg/Dp≦2の範囲であれば、外周突起を設ける範囲は鋼管先端から1.5Dp程度、大きくても2Dpまでとなる。   As shown in FIG. 9, the required S1 differs depending on Dg / Dp, but if Dg / Dp ≦ 2, the range where the outer peripheral projection is provided is about 1.5 Dp from the steel pipe tip, and at most 2Dp. .

ウ.必要な根固め高さ
ア、イの検討から、必要最小の根固め高さはH=S1+S2となる。
C. Necessary root consolidation height From the examination of a and b, the minimum necessary root consolidation height is H = S1 + S2.

施工の精度などを勘案して、確実に外周突起部が根固め内に埋込まれるよう、埋め込み長SをS≧S1とし、根固め高さHはH≧S1+S2となるように設定しておくことが望ましい。   In consideration of the accuracy of construction, the embedding length S is set to S ≧ S1 and the rooting height H is set to satisfy H ≧ S1 + S2 so that the outer peripheral protrusion is securely embedded in the root consolidation. It is desirable.

上記ア、イの検討を踏まえると、1.25≦Dg/Dp≦2.0の範囲では、必要な根固め高さHは、一般的には0.3≦H≦3.0Dp程度となる。   In consideration of the above a and b, in the range of 1.25 ≦ Dg / Dp ≦ 2.0, the necessary root-height height H is generally about 0.3 ≦ H ≦ 3.0 Dp. .

エ.拡径率Dg/Dpの上限値
式(1)または(1)’から、Dg/Dpが大きくなると必要なS2が大きくなり、また図9からDg/Dpが大きくなると必要なS1も増加する。したがって、必要な根固め高さHはDg/Dpが大きくなると急激に増加する傾向を示す。
D. Upper limit value of diameter expansion ratio Dg / Dp From the formula (1) or (1) ′, the required S2 increases as Dg / Dp increases, and the required S1 also increases as Dg / Dp increases from FIG. Therefore, the necessary root-height height H tends to increase rapidly as Dg / Dp increases.

一方、堅固な支持地盤中で拡大掘削により根固め部を構築するためには施工機材への負荷が増加するため、Dg/Dpが大きすぎると一般的な施工機材では掘進速度が極端に低下したり、あるいは掘進できなくなる状況が生じ、Dg/Dpが大きいとHも大きいことから施工効率が極端に低下することが懸念される。   On the other hand, in order to construct a rooted part by expanding excavation in solid support ground, the load on construction equipment increases. Therefore, if Dg / Dp is too large, the excavation speed will be extremely low for general construction equipment. If the Dg / Dp is large, the H is also large, so there is a concern that the construction efficiency is extremely lowered.

また、Dg、Hが大きくなると根固め部の掘削土量(体積)が大きくなって必要な固化材料(セメントなど)も増加することから、その注入に長時間を要し、根固めの構築に多大な時間が必要になる。   Also, as Dg and H increase, the amount of excavated soil (volume) in the root consolidation part increases and the amount of solidification material (cement, etc.) required increases. A lot of time is required.

さらに、Dg/Dpが大きく、必要なHが大きくなると必要な支持地盤の層厚も大きくなるため地盤の条件によっては適用できない場合が想定される。   Furthermore, when Dg / Dp is large and the necessary H is large, the layer thickness of the necessary supporting ground is also large, so that it may be impossible to apply depending on the ground conditions.

施工に要する時間、施工機材への負荷を考慮すると、実用的な根固め高さHとしては2.0〜3.0Dp程度までが望ましい。また、支持層厚はDg(根固め径=載荷径)の5〜10倍程度必要であることを考慮すると、Dg/Dp>2.0の場合、支持層の厚さ>10Dp〜20Dpとなり、適用可能な地盤が限られる。   Considering the time required for the construction and the load on construction equipment, the practical solidification height H is preferably about 2.0 to 3.0 Dp. Also, considering that the support layer thickness is required to be about 5 to 10 times as large as Dg (consolidation diameter = loading diameter), when Dg / Dp> 2.0, the thickness of the support layer> 10 Dp to 20 Dp, Applicable ground is limited.

以上のことから、根固めの拡径率はDg/Dp≦2.0としておくのが望ましい。   In view of the above, it is desirable that the root diameter expansion rate be Dg / Dp ≦ 2.0.


(3) 鋼管外周面の突起の条件と付着性能について
ア.鋼管外周面の突起による付着性能
突起による付着性能は、突起高さhと突起ピッチpの関係により変化し、従来より、p/h=8〜15程度で破壊パターンが変化することが知られている。

(3) About the projection conditions and adhesion performance of the steel pipe outer peripheral surface a. Adhesion performance due to protrusions on the outer periphery of the steel pipe Adhesion performance due to protrusions varies depending on the relationship between the protrusion height h and the protrusion pitch p, and it has been conventionally known that the fracture pattern changes at about p / h = 8-15. Yes.

すなわち、p/hがそれより小さいと突起頂部を連ねるせん断破壊を生じ(図10(a)参照)、付着面積が一定であれば耐力は一定となり、逆に、p/hがそれより大きいと突起直下部の局部破壊(支圧破壊)を生じ(図10(b)参照)、付着面積が一定であれば、p/hが大きくなるにつれて耐力が低下する。   That is, if p / h is smaller than that, shear fracture that connects the tops of the protrusions occurs (see FIG. 10 (a)). If the adhesion area is constant, the yield strength is constant, and conversely, if p / h is larger than that, If the adhesion area is constant, the yield strength decreases as p / h increases.

したがって、定着長が同一であれば、p/h=8〜15程度となるようにしておこくことが最適である。また、p/hがそれ以下の範囲であれば、付着性能は下式で表される。
τout=βout・qu
ここで、
τoutは付着応力、
quは根固め固化体の一軸強度、
βoutは係数
で、鋼管外周面に突起とモルタル材料の付着の場合には、βout=0.15〜0.5程度である。
Therefore, if the fixing length is the same, it is optimal to perform p / h = about 8-15. Moreover, if p / h is the range below it, adhesion performance will be represented by the following formula.
τout = βout · qu
here,
τout is the adhesion stress,
qu is the uniaxial strength of the solidified solidified body,
βout is a coefficient, and βout = 0.15 to 0.5 in the case where the protrusion and the mortar material adhere to the outer peripheral surface of the steel pipe.

イ.突起の高さ、ピッチ、断面形状
無駄のない最適な突起を構成する立場からp/h=8〜15とする。
I. Projection height, pitch, cross-sectional shape From the standpoint of constructing an optimum projection without waste, p / h = 8-15.

前述のとおり実用的なS1の範囲は、S1≦1.5〜2.0Dpであることを勘案すると、例えば、杭径Dpの10%の突起高さの場合、最適な突起間隔は0.8〜1.5Dpとなり、S1内の突起段数が1〜2段となり安定的な付着性能が得られない。段数を増やすのであれば、0.1Dpの突起高さは不必要となり、つまり、効率的な突起を構成できない。   Considering that the practical range of S1 is S1 ≦ 1.5 to 2.0Dp as described above, for example, when the projection height is 10% of the pile diameter Dp, the optimum projection interval is 0.8. It becomes ˜1.5 Dp, and the number of protrusions in S <b> 1 becomes 1 to 2 and stable adhesion performance cannot be obtained. If the number of steps is increased, a protrusion height of 0.1 Dp is unnecessary, that is, an efficient protrusion cannot be configured.

したがって、突起高さhはたかだか杭径の数%以下としておき、突起段数を少なくとも3段以上確保する方が合理的な構造となる。   Therefore, it is more rational to keep the protrusion height h at most several percent of the pile diameter and to secure at least three protrusion stages.

また、突起高さhを大きくすると、杭を埋設する際に掘削径が大きくなって排出土が増加するか、あるいは掘削径を鋼管径程度とした場合には貫入抵抗が大きくなるなどの問題が生じる。さらに、施工方法によっては杭近傍地盤を乱し、周面摩擦力の低下を招く恐れがある。   In addition, if the height h of the protrusion is increased, the excavation diameter increases when the pile is buried, and the discharged soil increases, or the penetration resistance increases when the excavation diameter is about the steel pipe diameter. Arise. Furthermore, depending on the construction method, the ground near the pile may be disturbed, and the peripheral frictional force may be reduced.

鋼管先端に取り付ける従来の補強板やフリクションカッターの高さが9〜15mm程度であること、従来の外面突起付き鋼管の突起高さが2.5〜5.0mm程度であることも勘案すると、施工性や周面摩擦性能の低下を生じさせることなく、かつ、確実な付着性能を得るための条件は、以下のようになる。
突起高さh:5.0〜15.0mm、
突起ピッチp:40〜200mm、
突起段数n:3段以上
Considering that the height of the conventional reinforcing plate and friction cutter attached to the tip of the steel pipe is about 9 to 15 mm, and that the projection height of the conventional steel pipe with external projection is about 2.5 to 5.0 mm. The conditions for obtaining reliable adhesion performance without causing deterioration in performance and peripheral surface friction performance are as follows.
Projection height h: 5.0 to 15.0 mm,
Protrusion pitch p: 40-200 mm,
Number of protrusions n: 3 steps or more

さらに、製造の容易さ、鋼管の地盤に回転貫入させる場合の回転数と貫入速度の関係なども勘案すると、突起高さ10mm程度、突起ピッチ100mm程度とし、所要のS1の範囲内で突起段数を3段以上確保することが最も好適である。   Furthermore, considering the ease of manufacturing, the relationship between the rotational speed and the penetration speed when rotating and penetrating into the ground of the steel pipe, the projection height is about 10 mm, the projection pitch is about 100 mm, and the number of projection steps is within the required S1 range. It is most preferable to secure three or more stages.

また、突起の幅Bに関しては高さhの0.5倍以上としておくことが望ましい。これは、根固め部固化体から突起に作用する力に対して、突起が十分なせん断耐力を有するとともに、突起内に片持ち梁に近い応力状態が生じ曲げ応力が支配的になって耐力的に不利になるのを避けるためである。   Further, the width B of the protrusion is desirably 0.5 times or more the height h. This is because the projection has sufficient shear strength against the force acting on the projection from the solidified solidified body, and a stress state close to a cantilever occurs in the projection, and the bending stress becomes dominant and the strength is increased. This is to avoid being disadvantaged.

後の溶接ビードによる突起形成を考えると、上記の突起高さと同様に入熱量(母材である鋼管材質への熱影響)、溶込み深さ、突起形状の安定性などを勘案すると高さhの1.0倍以下程度が望ましい。   Considering the formation of protrusions by the weld bead later, the height h is high considering the heat input (heat effect on the steel pipe material that is the base material), penetration depth, and stability of the protrusion shape, as well as the above protrusion height. About 1.0 times or less is desirable.

最後に突起の断面形状は、矩形、台形、山形、略三角形など何でも良いが、突起と根固め固化体の接触部におけるすべりを生じさせずに安定した付着性能を確保するためには、該突起の側面直線部の鋼管表面に対する角度を45°以上としておくことが必要である。   Finally, the cross-sectional shape of the protrusion may be any shape such as a rectangle, a trapezoid, a mountain, or a substantially triangle, but in order to ensure stable adhesion performance without causing slippage at the contact portion between the protrusion and the solidified solidified body, the protrusion It is necessary to set the angle of the side straight portion to 45 ° or more with respect to the steel pipe surface.

ウ.突起の製造方法
突起を形成する方法としては、鉄筋や丸鋼を曲げ加工し、鋼管に巻きつけて、溶接により固定したり、あらかじめ圧延で突起を設けた鋼板を鋼管に成型したものを用いたりする従来の方法でもよいが、溶接ビードで直接突起を形成することにより、鉄筋・丸鋼の材料費や曲げ加工費が省略でき、突起の必要な定着長分にのみ突起を設けることが可能になるため、安価・短時間に加工ができ経済的になる。
C. Protrusion manufacturing method As a method of forming the protrusion, bending a reinforcing bar or round steel, winding it around a steel pipe and fixing it by welding, or using a steel plate with a protrusion provided in advance by rolling into a steel pipe However, by forming the projections directly with the weld bead, material costs and bending costs for reinforcing bars and round steel can be omitted, and projections can be provided only for the required fixing length of the projections. Therefore, it can be processed inexpensively and in a short time, and becomes economical.

溶接ビードで突起を形成する場合、一般的な鋼管杭の板厚に対して、入熱量(母材である鋼管材質への熱影響)、溶込み深さ、突起形状の安定性などを勘案すると、1パス(1回の肉盛)で形成可能な突起高さは5〜10mm程度であり、前出の高さ5〜15mm程度の突起は1〜2パスで形成可能となる。突起を設ける範囲S1が1.5〜2.0Dpまでの限定的な範囲であることも考慮すると、今回の突起条件であれば、溶接ビードによる突起の形成が好適である。   When forming projections with weld beads, considering the heat input (heat effect on the steel pipe material that is the base material), penetration depth, and stability of the projection shape, etc., relative to the thickness of a general steel pipe pile The height of the protrusion that can be formed in one pass (one build-up) is about 5 to 10 mm, and the protrusion having the height of about 5 to 15 mm can be formed in one or two passes. Considering that the range S1 in which the protrusion is provided is a limited range of 1.5 to 2.0 Dp, it is preferable to form the protrusion with the weld bead under the current protrusion condition.

図11は溶接ビードによる突起の例を示したもので、寸法例としては、図11(a)において、突起高さh=8〜12mm、突起有効高さ(45°勾配接線との交点までの高さ)he=6mm以上、突起幅b=6〜10mm、図11(b)において、突起ピッチp=100±10mmを挙げることができる。また、適用鋼管の板厚としては、t=9〜28mmを挙げることができる。 FIG. 11 shows an example of a projection by a weld bead. As an example of dimensions, in FIG. 11A, the projection height h = 8 to 12 mm, the projection effective height (up to the intersection with the 45 ° gradient tangent line) height) h e = 6 mm or more, projections width b = 6 to 10 mm, in FIG. 11 (b), the can be given protrusion pitch p = 100 ± 10mm. Moreover, t = 9-28 mm can be mentioned as plate | board thickness of an applicable steel pipe.

エ.突起の延長方向の形状
突起は螺旋状の突起2aで連続(図12(a)参照)、1巻きの螺旋の突起2bで間隔を空けて断続的に複数段(図12(b)参照)、あるいは環状突起(1巻きが閉合したリング状突起2c)を間隔をあけて複数段(図12(c)参照)などが考えられるが、施工時に鋼管を回転貫入するような場合には回転により推進力が得られ鋼管の掘進を助ける機能を有することから螺旋で連続に突起を設けることが望ましい。
D. The shape of the protrusion in the extending direction The protrusion is continuous with the spiral protrusion 2a (see FIG. 12 (a)), and the winding spiral protrusion 2b is intermittently spaced at multiple stages (see FIG. 12 (b)). Alternatively, a plurality of stages (see Fig. 12 (c)) can be considered with annular projections (ring-like projections 2c with one winding closed) spaced apart, but if the steel pipe is rotated and penetrated during construction, it is propelled by rotation. It is desirable to provide a continuous projection in a spiral because it has the function of obtaining a force and assisting in the excavation of the steel pipe.

(4) 鋼管内周面の突起について
根固め部支持構造体としての耐力を確保するためには外周突起のみでなく、鋼管内周面にも突起を設けて閉塞断面を確保し、先端支圧力が得られるようにすることが必要である。前述のとおり、先端支圧耐力は拘束圧が一定であれば鋼管径によって、すなわち、先端閉塞断面積Apによってほぼ一定の値をとる。したがって、鋼管内周面の突起の高さ、必要段数等の条件は鋼管の径によって決定され、先端支圧耐力=λ×Ap×quを上回るように設定する必要がある。支圧係数λは拘束圧に依存するが、発明者らが行った実験・解析的検討によれば、杭としての実用範囲では0.9〜1.5程度である
(4) Protrusion on the inner peripheral surface of the steel pipe In order to secure the strength as a support structure for the root-clamping part, not only the outer peripheral protrusion but also the inner peripheral surface of the steel pipe is provided with a closed cross section to ensure the tip support pressure. Must be obtained. As described above, the tip bearing strength is almost constant depending on the steel pipe diameter, that is, the tip closing cross-sectional area Ap if the restraint pressure is constant. Accordingly, the conditions such as the height of the protrusions on the inner peripheral surface of the steel pipe and the required number of steps are determined by the diameter of the steel pipe, and it is necessary to set the tip bearing strength = λ × Ap × qu. Although the bearing coefficient λ depends on the restraint pressure, according to the experimental and analytical studies conducted by the inventors, the practical range as a pile is about 0.9 to 1.5.

ア.付着性能と突起設置範囲(定着長S3)
鋼管内周に関しても突起による付着性能は、外周面と同様にp/h=8〜15としておくことが最適であり、さらにこれ以下の範囲では、
τin=βin・qu
の形で付着性能を表現できる。
ここで、
τinは付着応力、
quは根固め固化体の一軸圧縮強度、
βintは係数
で、鋼管内周の突起とモルタル材料の付着の場合には、βin=0.2〜0.6程度である。
A. Adhesion performance and protrusion installation range (fixing length S3)
Regarding the steel pipe inner periphery, the adhesion performance due to the projection is optimally set to p / h = 8 to 15 like the outer peripheral surface, and in the range below this,
τin = βin · qu
The adhesion performance can be expressed in the form of
here,
τin is the adhesion stress,
qu is the uniaxial compressive strength of the solidified solidified body,
βint is a coefficient, and βin = about 0.2 to 0.6 in the case of adhesion between the protrusions on the inner periphery of the steel pipe and the mortar material.

したがって、Asを付着面積、As=Dp×S3(S3は鋼管内周面の定着長)とすれば、
λ×Ap×qu≦τin・As
の条件から、鋼管内周面の定着長S3は以下の範囲となる。
0.3・Dp≦S3≦1.5・Dp … (3)
Therefore, if As is the adhesion area, As = Dp × S3 (S3 is the fixing length of the inner peripheral surface of the steel pipe),
λ × Ap × qu ≦ τin · As
Therefore, the fixing length S3 of the inner peripheral surface of the steel pipe is in the following range.
0.3 · Dp ≦ S3 ≦ 1.5 · Dp (3)

イ.突起の高さ、ピッチ、断面形状
鋼管内周面に関しても、同一定着長で最も効率的に付着力を確保するためには、外周と同様に突起高さは5〜15mm程度とするのが好ましい。
I. Protrusion height, pitch, and cross-sectional shape As for the inner peripheral surface of the steel pipe, in order to ensure the most efficient adhesion with the same fixing length, the protrusion height is preferably about 5 to 15 mm as in the outer periphery. .

突起が大きすぎると、施工時に突起部に土が付着し鋼管先端部の中空部が小さくなり鋼管の埋設の妨げとなるほか、付着した土塊のために十分な付着力が得られないことが懸念される。また、中掘り施工(掘削ロッド+掘削ヘッドを鋼管内に挿入した状態で同時埋設)の場合を考えると、施工性の面で突起高さが大きいことは好ましくない。   If the protrusions are too large, soil will adhere to the protrusions during construction, and the hollow part at the tip of the steel pipe will become smaller, hindering the embedding of the steel pipe, and there is a concern that sufficient adhesion will not be obtained due to the attached soil mass Is done. Further, considering the case of medium digging (simultaneous embedment with the excavation rod and excavation head inserted into the steel pipe), it is not preferable that the protrusion height is large in terms of workability.

鋼管外周面の場合と突起の条件(高さ・幅、ピッチ)を同様にしておくことが可能で、溶接ビード突起を適用することにより、合理的・経済的に突起を形成でき、所定の付着耐力(鋼管内の先端閉塞を確保するための付着力)が得られ、施工性・周面摩擦性能にも優れた根固め部の支持構造を構成可能である。   Protrusion conditions (height, width, pitch) can be the same as in the case of the outer peripheral surface of a steel pipe. By applying weld bead protrusions, protrusions can be formed reasonably and economically, with a predetermined adhesion. Yield strength (adhesive force for securing the end clogging in the steel pipe) is obtained, and a support structure for the solidified portion that is excellent in workability and peripheral surface friction performance can be configured.

ウ.突起の延長方向の形状
突起は螺旋状で連続、1巻きの螺旋で間隔を空けて断続的に複数段、あるいは環状突起(1巻きが閉合したリング状突起)を間隔をあけて複数段などが考えられるが、鋼管を回転貫入する場合には鋼管内に取り込まれた土を上方へスムーズに上昇させ、掘削土による鋼管先端の閉塞を防止する効果が得られるように連続の螺旋状突起とすれば施工性を改善する効果も期待できる。
C. The shape of the projection in the direction of extension The projection is continuous in a spiral shape, with multiple turns intermittently spaced by a single spiral, or multiple steps with annular projections (ring-like projections with one turn closed) spaced apart Although it is conceivable, when the steel pipe is rotated and penetrated, the soil taken into the steel pipe is smoothly raised upward, and the continuous spiral protrusion is passed so that the effect of preventing the clogging of the steel pipe tip by the excavated soil can be obtained. The effect of improving workability can be expected.

このとき、内・外周の突起を同じ方向の連続の螺旋突起としておけば、鋼管の回転により外周突起は鋼管を地中へ貫入させるための推進力を発揮し、内周突起は鋼管内へ取り込んだ土を上方へスムーズに上昇させる働きをする機能を発揮するため、施工性の優れた構成とすることができる。このとき、内・外周面ともにp/h=8〜15、突起高さ5〜15mmの突起条件を選択すれば、内外周面とも同条件の突起を同様の延長方向形状で形成することになる。   At this time, if the inner and outer protrusions are continuous spiral protrusions in the same direction, the outer protrusions exert a driving force to penetrate the steel pipe into the ground by the rotation of the steel pipe, and the inner peripheral protrusions are taken into the steel pipe. Since it exhibits the function of smoothly raising the soil upward, it can be constructed with excellent workability. At this time, if the projection conditions of p / h = 8 to 15 and the projection height of 5 to 15 mm are selected for both the inner and outer peripheral surfaces, the projections of the same condition are formed in the same extension direction shape on the inner and outer peripheral surfaces. .

以上の構成の基礎杭の支持構造とすることにより、荷重作用時の根固め部の破壊を防止して、杭体から根固め部、さらに根固め部から支持地盤への効果的な荷重伝達を確保して、広範囲な地盤へ荷重を伝達することにより大きな支持力を発揮することができる。   By using the support structure of the foundation pile with the above configuration, it is possible to prevent destruction of the root-solidified part during load action, and to transmit effective load from the pile body to the root-solidified part and further from the root-solidified part to the supporting ground. By securing and transmitting the load to a wide range of ground, a large supporting force can be exhibited.

さらに、前述のとおり、鋼管先端断面からの先端支圧耐力、鋼管先端外周面に付設した突起による外周付着力は、いずれも根固め部を構成する固化体の強度quに比例して大きくなることを勘案すると、根固め部固化体の強度quを大きくすることにより、必要な定着長S1や鋼管先端から根固め底面までの長さS2をより小さくすることも可能となる。また、S1、S2が同じであれば耐力を高め、より安定的で余裕度の大きな支持構造体を構築することが可能となる。   Furthermore, as described above, the tip bearing strength from the tip section of the steel pipe and the outer adhesion force due to the protrusions attached to the outer peripheral surface of the steel pipe both increase in proportion to the strength qu of the solidified body constituting the root consolidation part. In consideration of the above, it is possible to further reduce the necessary fixing length S1 and the length S2 from the tip of the steel pipe to the bottom of the root consolidation by increasing the strength q u of the solidified root solidified body. Further, if S1 and S2 are the same, it is possible to increase the yield strength and to construct a support structure that is more stable and has a large margin.

根固め部固化体の強度quは、注入する固化液がセメントミルクの場合、そのW/C(W,Cはそれぞれ混合する水の重量、セメントの重量)に依存し、その値が小さいほど硬化後に大きな強度を発現するが、粘性が大きくなるためセメントミルクを地中深くまで圧送する際に生じる抵抗が大きくなって注入可能量が少なくなったり、大型のポンプを準備する必要が生じたり、という問題があり、セメントミルクのW/Cとしては60%程度以上とするのが一般的であった。   When the solidified liquid to be injected is cement milk, the strength qu of the root solidified part depends on its W / C (W and C are the weight of water to be mixed and the weight of cement, respectively). Later, it develops a large strength, but because the viscosity increases, the resistance that occurs when pumping cement milk deep into the ground increases, and the amount that can be injected decreases, or it is necessary to prepare a large pump There is a problem, and it is general that the W / C of cement milk is about 60% or more.

そのような問題を解決する方策として、コンクリートに用いられる流動化剤、減水剤、AE減水剤、あるいはその他の界面活性作用を有する混和剤をセメントミルクに混合しておくことにより、セメントミルクのW/Cを従来の60%よりも小さな値として硬化後の固化体強度を向上しつつ、粘性の増大を軽減することが可能となる。   In order to solve such a problem, the cement milk may be mixed with a cement milk by mixing a fluidizing agent, a water reducing agent, an AE water reducing agent or other admixture having a surface active action used in concrete. It is possible to reduce the increase in viscosity while improving the solidified body strength after curing by setting / C to a value smaller than 60% of the conventional value.

同様の効果を有する別の方法として、セメントミルクの中に鋼繊維(スチールファイバー)、炭素繊維、ガラス繊維、アラミド繊維などの繊維状の引張補強材料を混合分散しておくことによっても根固め部固化体の強度の向上を図ることができる。   As another method having the same effect, a solidified portion is also obtained by mixing and dispersing fibrous tensile reinforcing materials such as steel fibers (steel fibers), carbon fibers, glass fibers, and aramid fibers in cement milk. The strength of the solidified body can be improved.

特に、鋼管先端部外周面の突起による付着は、図13に示すような放射状の割裂ひび割れsptが生じ、これによって付着耐力が決定される場合があることから、繊維材を混合して固化体の引張強度を向上させ、割裂ひび割れを防止することは必要な定着長S1の値を低減したり、あるいはより耐力の高い支持構造体を形成するのに効果的である。   In particular, the adhesion due to the protrusion on the outer peripheral surface of the steel pipe tip portion causes a radial split crack spt as shown in FIG. 13, and this may determine the adhesion strength. Increasing the tensile strength and preventing splitting cracks are effective in reducing the required fixing length S1 or forming a support structure with higher yield strength.

(5) 支持構造体の構築方法の例1
前述の内・外周面に突起2,3を設けた鋼管杭1を、その先端位置が地盤中の支持層21上面付近、または支持層21内の所定の深さに到達するまで貫入させ、根固め部11を構築して、鋼管杭1先端をその内部に挿入する根固め鋼管杭の施工法である。
(5) Example 1 of construction method of support structure
The steel pipe pile 1 provided with the protrusions 2 and 3 on the inner and outer peripheral surfaces is penetrated until the tip position reaches the vicinity of the upper surface of the support layer 21 in the ground or a predetermined depth in the support layer 21, It is a construction method of a rooted steel pipe pile in which the solidified portion 11 is constructed and the tip of the steel pipe pile 1 is inserted therein.

オーガーヘッド26を先端に取り付けたロッド25を鋼管杭1内に挿入し、オーガーヘッド26による掘削径を鋼管径未満とした状態でこれを回転させ、必要に応じてオーガーヘッド26先端部から掘削水を吐出して地盤を掘削するとともに、鋼管杭1を回転させて(鋼管外周の螺旋状突起2の推進力を利用しながら)地盤中に貫入せしめる(図14(a)参照)。   The rod 25 with the auger head 26 attached to the tip is inserted into the steel pipe pile 1 and rotated while the diameter of the auger head 26 is less than the diameter of the steel pipe. The steel pipe pile 1 is rotated (using the propulsive force of the spiral protrusion 2 on the outer periphery of the steel pipe) and penetrates into the ground (see FIG. 14 (a)).

オーガーヘッド26の少なくとも先端部が支持層21内に含まれる位置まで達した状態で、オーガーヘッド26の掘削径を構築する根固め径に拡大する(図14(b)参照)。   In a state where at least the tip of the auger head 26 has reached a position included in the support layer 21, the auger head 26 is expanded to a root diameter for constructing the excavating diameter (see FIG. 14B).

少なくとも根固め底面が支持層21内に位置するように所定の長さ(H≧S1+S2)だけ地盤を拡大掘削しつつ、オーガーヘッド26の先端から固化液28を吐出して拡大した掘削翼により攪拌混合した後(図14(c)参照)、拡大した掘削翼を再度縮小する。   While excavating the ground for a predetermined length (H ≧ S1 + S2) so that at least the root of the root is located in the support layer 21, the solidified liquid 28 is discharged from the tip of the auger head 26 and stirred by the enlarged excavating blade. After mixing (see FIG. 14 (c)), the enlarged excavator blade is reduced again.

構築した根固め部11内に先端部を少なくとも定着長さS1以上挿入した状態で前記の鋼管杭1を残置して、鋼管内のロッド25とその先端部に連結されたオーガーヘッド26を回収する(図14(d)参照)。   The steel pipe pile 1 is left in a state where the tip end portion is inserted at least the fixing length S1 into the constructed root hardening portion 11, and the rod 25 in the steel pipe and the auger head 26 connected to the tip end portion are collected. (See FIG. 14 (d)).

しかる時間が経過した後、固化液28が硬化すれば所定の支持構造体が構築される。   After a certain time has elapsed, if the solidified liquid 28 is cured, a predetermined support structure is constructed.

支持層21より上方の一般部を掘削する際には、掘削径を鋼管径未満とした状態で先端部に10mm程度の高さの小さな外周突起2を有する鋼管を回転貫入することにより、周面地盤の撹乱をさけて周面摩擦力の低下を防止し、根固め部11の必要領域のみ拡大掘削して所定の支持構造体を構築することで、掘削土量を少なくして排土量を軽減する。   When excavating the general part above the support layer 21, a steel pipe having a small outer peripheral projection 2 with a height of about 10 mm at the tip is rotated and penetrated in a state where the excavation diameter is less than the diameter of the steel pipe. By avoiding the disturbance of the ground to prevent the peripheral frictional force from decreasing and expanding only the necessary area of the root consolidation part 11 to construct a predetermined support structure, the amount of excavated soil can be reduced and the amount of soil removed can be reduced. Reduce.

また、オーガーヘッド26を先端に取り付けたロッド25を鋼管内に挿入した状態で掘進する構成とすることにより、孔壁の崩壊を防止し、根固め内に崩壊した土砂が混入することを防止でき、より品質の確実な支持構造体を構築できる。   Moreover, by adopting a construction in which the rod 25 with the auger head 26 attached at the tip is inserted in the steel pipe, the hole wall can be prevented from collapsing, and the collapsed earth and sand can be prevented from being mixed in the root consolidation. Therefore, a more reliable support structure can be constructed.

また、上記の支持構造体の構築において、支持層21より上方の一般部を掘削する際に、オーガーヘッドを先端に取り付けたロッドを前記鋼管内に挿入し、オーガーヘッドによる掘削径を鋼管径より大きくした状態でこれを回転させ、オーガーヘッド先端部からセメントミルクなどの固化液を吐出して地盤を掘削・攪拌するとともに、前記鋼管杭を回転させて(鋼管外周の螺旋状突起の推進力を利用しながら)地盤中に貫入させることも可能であり、支持層付近の根固め部のみでなく、それより上方の一般部についても杭周辺地盤を改良することができ周面摩擦力を高めることもできる。   In the construction of the above support structure, when excavating the general portion above the support layer 21, a rod with an auger head attached to the tip is inserted into the steel pipe, and the excavation diameter by the auger head is greater than the diameter of the steel pipe. This is rotated in an enlarged state, and a solidified liquid such as cement milk is discharged from the tip of the auger head to excavate and agitate the ground, and the steel pipe pile is rotated (the propulsive force of the spiral protrusion on the outer periphery of the steel pipe is increased). It is possible to penetrate into the ground) and improve the peripheral friction force by improving the ground around the pile not only in the solidified part near the support layer but also in the general part above it. You can also.

上記の施工法において、鋼管杭の先端位置が地盤中の支持層上面あるいはその付近に到達した段階で鋼管の深度を固定して、オーガーヘッドのみを掘進させ、掘削径の拡大、根固め球根の構築終了後に、鋼管を所定の構築した根固め球根内に所定の長さだけ挿入するようにすれば、支持層への貫入時の鋼管の貫入抵抗力、回転抵抗力を小さくでき、施工機材の負荷や施工時間を軽減できる。   In the above construction method, when the tip of the steel pipe pile reaches the upper surface of the support layer in the ground or in the vicinity thereof, the depth of the steel pipe is fixed and only the auger head is excavated to increase the excavated diameter and After the construction is completed, if the steel pipe is inserted into the prescribed built-up root bulb for a predetermined length, the penetration resistance and rotation resistance of the steel pipe when penetrating into the support layer can be reduced. The load and construction time can be reduced.


(6) 支持構造体の構築方法の例2
前述の内・外周面に突起2,3を設けた鋼管杭1を、その先端位置が地盤中の支持層21上面付近、または支持層21内の所定の深さに到達するまで貫入させ、根固め部11を構築して、鋼管杭1先端をその内部に挿入する根固め鋼管杭の施工法である。

(6) Example 2 of construction method of support structure
The steel pipe pile 1 provided with the protrusions 2 and 3 on the inner and outer peripheral surfaces is penetrated until the tip position reaches the vicinity of the upper surface of the support layer 21 in the ground or a predetermined depth in the support layer 21, It is a construction method of a rooted steel pipe pile in which the solidified portion 11 is constructed and the tip of the steel pipe pile 1 is inserted therein.

鋼管杭1の外径より大きな掘削径(鋼管径+100〜400mm)を有するオーガーヘッド26を先端に取り付けたロッド25を回転させ、必要に応じてオーガーヘッド26先端部から真水あるいはベントナイト泥水など掘削液、あるいはセメントミルクなどの固化液27を吐出しながら地盤中を掘進する(図15(a)参照)。   A rod 25 having an auger head 26 having a digging diameter larger than the outer diameter of the steel pipe pile 1 (steel pipe diameter +100 to 400 mm) is rotated, and drilling fluid such as fresh water or bentonite mud from the tip of the auger head 26 as necessary. Alternatively, the ground is excavated while discharging the solidified liquid 27 such as cement milk (see FIG. 15A).

オーガーヘッド26の少なくとも先端部が支持層21内に含まれる位置まで達した状態で、オーガーヘッド26の掘削径を構築する根固め径に拡大して(図15(b)参照)、少なくとも根固め底面が支持層21内に位置するように所定の長さ(H≧S1+S2)だけ地盤を拡大掘削しつつ、オーガーヘッド26の先端からセメントミルクなどの固化液28を吐出して拡大した掘削翼により攪拌混合した後(図15(c)参照)、拡大した掘削翼を再度縮小して回収する(図15(d)参照)。   In a state where at least the tip of the auger head 26 reaches a position included in the support layer 21, the auger head 26 is expanded to a root consolidation diameter for constructing the excavation diameter (see FIG. 15 (b)), and at least the root consolidation is performed. With the excavating blade expanded by discharging the solidified liquid 28 such as cement milk from the tip of the auger head 26 while expanding and excavating the ground by a predetermined length (H ≧ S1 + S2) so that the bottom surface is located in the support layer 21 After stirring and mixing (see FIG. 15 (c)), the expanded excavation blade is reduced again and collected (see FIG. 15 (d)).

次いで、固化液28が硬化する前に前述の内・外周面に突起2,3を設けた鋼管杭1を前記の掘削孔に沈設し(図15(e)参照)、構築した根固め部11内に先端部を少なくとも定着長さS1以上挿入した状態で前記の鋼管杭1を残置する(図15(f)参照)。   Next, before the solidified liquid 28 is hardened, the steel pipe pile 1 provided with the projections 2 and 3 on the inner and outer peripheral surfaces is sunk in the excavation hole (see FIG. 15 (e)), and the constructed root consolidation portion 11 is constructed. The steel pipe pile 1 is left in a state where the tip end portion is inserted at least the fixing length S1 (see FIG. 15 (f)).

固化液28が硬化すれば所定の支持構造体が構築される。   When the solidified liquid 28 is cured, a predetermined support structure is constructed.

プレボーリングタイプの施工法では、鋼管を回転させずに沈設していくことも可能であるため、鋼管杭1先端部の外周突起2、あるいは内・外周突起2,3を螺旋状とせず、より製造の容易な環状リング構造とすることもできる。   In the pre-boring type construction method, it is possible to set the steel pipe without rotating it, so that the outer peripheral projection 2 at the tip of the steel pipe pile 1 or the inner / outer peripheral projections 2 and 3 are not spiraled. An annular ring structure that is easy to manufacture can also be used.

また、オーガーヘッド26が連結されたロッド25と鋼管杭1を同時に回転させながら、地盤中に貫入していく必要がないため施工機材を単純化、小型化することが可能である。   Moreover, since it is not necessary to penetrate into the ground while simultaneously rotating the rod 25 connected to the auger head 26 and the steel pipe pile 1, it is possible to simplify and downsize the construction equipment.

孔壁が崩れることなく品質を確保できる地盤条件で、かつ固化液28が硬化するまでの時間で鋼管杭1の沈設が可能な比較的杭長の小さな条件に適している。   It is suitable for ground conditions that can ensure the quality without breaking the hole wall and for relatively small pile length that allows the steel pipe pile 1 to be laid down in the time until the solidified liquid 28 is hardened.

根固め部の概略構造と耐力機構の概念図である。It is a conceptual diagram of the schematic structure of a root-hardening part and a proof stress mechanism. 解析モデル図である。It is an analysis model figure. 根固め部の耐力機構に関する解析結果を示したものであり、(a)は荷重分担図、(b)は軸力図である。The analysis result regarding the load-bearing mechanism of the root hardening part is shown, (a) is a load sharing diagram, (b) is an axial force diagram. 定着長の違いによる耐力の変化に関する解析結果の例を示したものであり、(a)は全体耐力についてのグラフ、(b)は先端支圧についてのグラフ、(c)は外周付着についてのグラフである。Examples of analysis results regarding changes in yield strength due to differences in fixing length are shown. (A) is a graph for overall yield strength, (b) is a graph for tip bearing, and (c) is a graph for adhesion to the outer periphery. It is. 従来型の根固め部固化体の押抜きせん断破壊の概念図である。It is a conceptual diagram of the punching shear fracture | rupture of the conventional root hardening part solidification body. 本発明における根固め部の形状のモデル図である。It is a model figure of the shape of the root hardening part in this invention. 鋼管先端から根固め底面までの距離による支持力の違いに関する解析結果の例を示したものであり、(a)は載荷重―載荷点変位関係のグラフ、(b)は根固め底面の変位分布のグラフである。An example of the analysis results regarding the difference in bearing capacity depending on the distance from the steel pipe tip to the rooting bottom is shown. (A) is a graph of the loading load-loading point displacement relationship, (b) is the displacement distribution of the rooting bottom. It is a graph of. 鋼管先端から根固め底面までの距離による支持力の変化を示めすグラフである。It is a graph which shows the change of the bearing force by the distance from a steel pipe tip to a rooting bottom. Dg/Dpと必要な定着長さS1の関係を示すグラフである。It is a graph which shows the relationship between Dg / Dp and required fixing length S1. 突起付着部の破壊パターンを示す概念図である。It is a conceptual diagram which shows the destruction pattern of a protrusion adhesion part. 溶接ビードによる突起の断面形状の例を示す説明図である。It is explanatory drawing which shows the example of the cross-sectional shape of the processus | protrusion by a welding bead. 突起の巻き方の例の説明図である。It is explanatory drawing of the example of how to wind protrusion. 根固め部固化体の放射状の割裂破壊の説明図である。It is explanatory drawing of the radial split fracture | rupture of a root solidified part solidification body. 中掘りタイプの施工法における施工手順を示す概要図である。It is a schematic diagram which shows the construction procedure in the medium digging type construction method. プレボーリングタイプの施工法における施工手順を示す概要図である。It is a schematic diagram which shows the construction procedure in the pre-boring type construction method.

符号の説明Explanation of symbols

1…鋼管杭、2…突起(外周)、3…突起(内周)、11…根固め部、21…支持層、25…ロッド、26…オーガーヘッド、27…固化液(低濃度)28…固化液   DESCRIPTION OF SYMBOLS 1 ... Steel pipe pile, 2 ... Protrusion (outer periphery), 3 ... Protrusion (inner periphery), 11 ... Root hardening part, 21 ... Support layer, 25 ... Rod, 26 ... Auger head, 27 ... Solidification liquid (low concentration) 28 ... Solidified liquid

Claims (9)

先端部外周に環状またはらせん状突起を設けた鋼管杭と、地盤中の支持層あるいは支持層を含む領域に形成されているとともに、前記鋼管杭の先端部が挿入され、一体化されてなる根固め部からなり、前記根固め部が以下の形状で規定されることを特徴とする基礎杭の支持構造。
p/h=8〜15
H≧S1+S2
Dp×2≧Dg≧Dp+2×h
ここで、
pは先端部外周面の突起ピッチ、
hは先端部外周面の突起高さ、
Hは根固め部の全高さ、
Dpは鋼管杭の外径、
Dgは根固め部の外径
を表し、また、
S1は外周突起の定着長さ、
S2は鋼管杭先端から根固め部底面までの距離
を表し、以下の条件を満たす。
1.75・Dg−2.45・Dp ≦S1≦1.75・Dg−1.75・Dp
Dp×2≧S2≧(Dg−Dp)/(2・tanβ)
ここで、
βは根固め部内の支持荷重の拡がり角度
を表す。
A steel pipe pile provided with an annular or spiral projection on the outer periphery of the tip and a support layer in the ground or a region including the support layer, and a root formed by inserting and integrating the tip of the steel pipe pile A support structure for a foundation pile, comprising a solidified portion, wherein the root solidified portion is defined by the following shape.
p / h = 8-15
H ≧ S1 + S2
Dp × 2 ≧ Dg ≧ Dp + 2 × h
here,
p is the protrusion pitch of the outer peripheral surface of the tip,
h is the height of the protrusion on the outer peripheral surface of the tip,
H is the total height of the root hardening part,
Dp is the outer diameter of the steel pipe pile,
Dg represents the outer diameter of the root hardening part,
S1 is the fixing length of the outer peripheral projection,
S2 represents the distance from the steel pipe pile tip to the bottom of the root portion and satisfies the following conditions.
1.75 · Dg−2.45 · Dp ≦ S1 ≦ 1.75 · Dg−1.75 · Dp
Dp × 2 ≧ S2 ≧ (Dg−Dp) / (2 · tan β)
here,
β represents the spread angle of the support load in the root-solidified portion.
前記鋼管杭の先端部内周にも環状またはらせん状突起が設けられていることを特徴とする請求項1記載の基礎杭の支持構造。   The support structure for a foundation pile according to claim 1, wherein an annular or spiral projection is provided on the inner periphery of the tip of the steel pipe pile. 前記鋼管杭の先端部内周に設けられた突起の定着長さS3が以下のように規定されることを特徴とする請求項2記載の基礎杭の支持構造。
0.3・Dp≦S3≦1.5・Dp
The support structure for a foundation pile according to claim 2, wherein the fixing length S3 of the protrusion provided on the inner periphery of the tip end portion of the steel pipe pile is defined as follows.
0.3 ・ Dp ≦ S3 ≦ 1.5 ・ Dp
根固め部の固化体を構成するために注入される固化液が、繊維状の引張抵抗材料を混合したセメントミルクであることを特徴とする請求項1、2または3記載の基礎杭の支持構造。   The support structure for a foundation pile according to claim 1, 2 or 3, wherein the solidification liquid injected to constitute the solidified body of the root consolidation part is cement milk mixed with a fibrous tensile resistance material. . 根固め部の固化体を構成するために注入される固化液が、濃度W/C<60%のセメントミルクであり、粘性を低減するための混和材が混合されていることを特徴とする請求項1、2、3または4記載の基礎杭の支持構造。   The solidified liquid injected to constitute the solidified body of the root-solidified portion is cement milk having a concentration of W / C <60%, and is mixed with an admixture for reducing viscosity. Item 5. A support structure for a foundation pile according to claim 1, 2, 3 or 4. 先端部外周に環状またはらせん状突起を設けた鋼管杭であって、先端部外周面の突起は、突起高さhと突起ピッチpおよび突起を設置する範囲S1が以下の関係を満足するように形成されていることを特徴とする請求項1記載の基礎杭の支持構造に用いるための鋼管杭。
p/h=8〜15
1.75・Dg−2.45・Dp ≦S1≦1.75・Dg−1.75・Dp
It is a steel pipe pile provided with an annular or spiral protrusion on the outer periphery of the tip part, and the protrusion on the outer peripheral surface of the tip part is such that the protrusion height h, the protrusion pitch p, and the range S1 where the protrusion is installed satisfy the following relationship: The steel pipe pile for using for the support structure of the foundation pile of Claim 1 currently formed.
p / h = 8-15
1.75 · Dg−2.45 · Dp ≦ S1 ≦ 1.75 · Dg−1.75 · Dp
先端部内周にも環状またはらせん状突起が設けられ、先端部内周の突起が、突起高さhと突起ピッチpおよび突起を設置する範囲S3が以下の関係を満足するように形成されていることを特徴とする請求項6記載の鋼管杭。
p/h=8〜15
0.3・Dp ≦S3≦1.5・Dp
An annular or spiral protrusion is also provided on the inner periphery of the tip, and the protrusion on the inner periphery of the tip is formed so that the protrusion height h, the protrusion pitch p, and the area S3 where the protrusion is installed satisfy the following relationship: The steel pipe pile according to claim 6 characterized by things.
p / h = 8-15
0.3 · Dp ≤ S3 ≤ 1.5 · Dp
先端部外周の突起および/または内周の突起が鋼管表面に溶接ビードを盛ることにより形成されていることを特徴とする請求項6または7記載の鋼管杭。   The steel pipe pile according to claim 6 or 7, wherein the protrusion on the outer periphery of the tip and / or the protrusion on the inner periphery is formed by depositing a weld bead on the surface of the steel pipe. 先端部外周および内周の突起が、同材料、同高さ、同ピッチで、かつ、同じ方向に連続する螺旋状に形成されていることを特徴とする請求項7または8記載の鋼管杭。   The steel pipe pile according to claim 7 or 8, wherein the protrusions on the outer periphery and the inner periphery of the tip end portion are formed in a spiral shape having the same material, the same height, the same pitch, and continuing in the same direction.
JP2005215289A 2005-07-26 2005-07-26 Supporting structure of foundation pile and steel pipe pile Pending JP2007032044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005215289A JP2007032044A (en) 2005-07-26 2005-07-26 Supporting structure of foundation pile and steel pipe pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005215289A JP2007032044A (en) 2005-07-26 2005-07-26 Supporting structure of foundation pile and steel pipe pile

Publications (1)

Publication Number Publication Date
JP2007032044A true JP2007032044A (en) 2007-02-08

Family

ID=37791622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005215289A Pending JP2007032044A (en) 2005-07-26 2005-07-26 Supporting structure of foundation pile and steel pipe pile

Country Status (1)

Country Link
JP (1) JP2007032044A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068326A (en) * 2007-08-17 2009-04-02 Jfe Steel Kk Friction pile
JP2009097261A (en) * 2007-10-18 2009-05-07 Sumitomo Metal Ind Ltd Foundation pile structure, prefabricated concrete pile, and joint hardware for prefabricated concrete pile and steel pipe pile
JP2009114845A (en) * 2007-10-16 2009-05-28 Jfe Steel Corp Friction pile
JP2009191452A (en) * 2008-02-12 2009-08-27 Jfe Steel Corp Composite friction pile
JP2012241500A (en) * 2011-05-24 2012-12-10 Japan Pile Corp Structural specification determining method for bored pile
JP2012241501A (en) * 2011-05-24 2012-12-10 Japan Pile Corp Structural specification determining method for bored pile
JP2015507109A (en) * 2013-01-07 2015-03-05 広東保威新能源有限公司 Separate spiral pile and its welding method
WO2015128944A1 (en) * 2014-02-25 2015-09-03 ジャパンパイル株式会社 Prefabricated pile construction method, program, memory medium, pile foundation, and prefabricated pile construction system
JP2017020277A (en) * 2015-07-13 2017-01-26 ジャパンパイル株式会社 Knotted pile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476715A (en) * 1987-09-17 1989-03-22 Nec Corp Manufacture of polycrystalline semiconductor thin film
JPH0194112A (en) * 1987-10-05 1989-04-12 Kawasaki Steel Corp Construction of steel-pipe pile
JPH0125848B2 (en) * 1980-09-01 1989-05-19 Takechi Komusho Kk
JP2001355233A (en) * 2000-06-14 2001-12-26 East Japan Railway Co Forming method for cast-in-place pile by mixing and stirring
JP2002356847A (en) * 2001-03-29 2002-12-13 Kawasaki Steel Corp Bearing structure for foundation pile, and method for constructing foundation pile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0125848B2 (en) * 1980-09-01 1989-05-19 Takechi Komusho Kk
JPS6476715A (en) * 1987-09-17 1989-03-22 Nec Corp Manufacture of polycrystalline semiconductor thin film
JPH0194112A (en) * 1987-10-05 1989-04-12 Kawasaki Steel Corp Construction of steel-pipe pile
JP2001355233A (en) * 2000-06-14 2001-12-26 East Japan Railway Co Forming method for cast-in-place pile by mixing and stirring
JP2002356847A (en) * 2001-03-29 2002-12-13 Kawasaki Steel Corp Bearing structure for foundation pile, and method for constructing foundation pile

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068326A (en) * 2007-08-17 2009-04-02 Jfe Steel Kk Friction pile
JP2009114845A (en) * 2007-10-16 2009-05-28 Jfe Steel Corp Friction pile
JP2009097261A (en) * 2007-10-18 2009-05-07 Sumitomo Metal Ind Ltd Foundation pile structure, prefabricated concrete pile, and joint hardware for prefabricated concrete pile and steel pipe pile
JP2009191452A (en) * 2008-02-12 2009-08-27 Jfe Steel Corp Composite friction pile
JP2012241500A (en) * 2011-05-24 2012-12-10 Japan Pile Corp Structural specification determining method for bored pile
JP2012241501A (en) * 2011-05-24 2012-12-10 Japan Pile Corp Structural specification determining method for bored pile
JP2015507109A (en) * 2013-01-07 2015-03-05 広東保威新能源有限公司 Separate spiral pile and its welding method
WO2015128944A1 (en) * 2014-02-25 2015-09-03 ジャパンパイル株式会社 Prefabricated pile construction method, program, memory medium, pile foundation, and prefabricated pile construction system
WO2015129060A1 (en) * 2014-02-25 2015-09-03 ジャパンパイル株式会社 Foundation pile construction method, program, memory medium, pile foundation, and foundation pile construction system
JP6065155B2 (en) * 2014-02-25 2017-01-25 ジャパンパイル株式会社 Foundation pile construction method, program, storage medium, and foundation pile construction system
JP2017020277A (en) * 2015-07-13 2017-01-26 ジャパンパイル株式会社 Knotted pile

Similar Documents

Publication Publication Date Title
JP2007032044A (en) Supporting structure of foundation pile and steel pipe pile
US6652195B2 (en) Method and apparatus for forming piles in place
JP5265500B2 (en) Pile digging method, foundation pile structure
JP4099199B2 (en) Open-ended type ready-made pile and excavation head used therefor
JP5777166B2 (en) Ground reinforcement method using small-diameter concrete cast-in-place pile.
JP4984308B2 (en) Ready-made pile
JP2003184078A (en) Cast-in-place concrete pile and its construction method
JP5040699B2 (en) Synthetic friction pile
JP2003119775A (en) Construction of foundation pile
JP4724879B2 (en) Foundation pile structure
AU2015349623A1 (en) Construction screw pile
JP5499335B2 (en) Steel pipe pile and support structure and construction method using the steel pipe pile
JP4724878B2 (en) Foundation pile structure
JP4189550B2 (en) Construction method of ready-made pile with spiral blade, casing for propulsion
JP4853132B2 (en) Construction method of foundation pile
JP4114875B2 (en) Root pile and ready-made pile
JP5777167B2 (en) Ground reinforcement method using small-diameter concrete cast-in-place pile.
EP1046753A1 (en) Method and apparatus for forming piles in place
JP4617604B2 (en) Threaded pile and method of construction
KR20140014739A (en) Pile with non-closed channel shape of plural non-flat in the end of pile and method of construction of pile by using the same
KR20140008974A (en) Pile with non-closed channel shape of plural non-flat in the end of pile and method of construction of pile by using the same
JP2002356847A (en) Bearing structure for foundation pile, and method for constructing foundation pile
JP5777424B2 (en) Ground excavation method
JP4054903B2 (en) Method of burying ready-made piles, foundation pile structure and ready-made piles
JP2004225414A (en) Construction method for foundation pile, and prefabricated pile with spiral blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719