WO2015128944A1 - Prefabricated pile construction method, program, memory medium, pile foundation, and prefabricated pile construction system - Google Patents

Prefabricated pile construction method, program, memory medium, pile foundation, and prefabricated pile construction system Download PDF

Info

Publication number
WO2015128944A1
WO2015128944A1 PCT/JP2014/054542 JP2014054542W WO2015128944A1 WO 2015128944 A1 WO2015128944 A1 WO 2015128944A1 JP 2014054542 W JP2014054542 W JP 2014054542W WO 2015128944 A1 WO2015128944 A1 WO 2015128944A1
Authority
WO
WIPO (PCT)
Prior art keywords
ready
pile
design
support force
design support
Prior art date
Application number
PCT/JP2014/054542
Other languages
French (fr)
Japanese (ja)
Inventor
満丸 後庵
鈴木 良和
Original Assignee
ジャパンパイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャパンパイル株式会社 filed Critical ジャパンパイル株式会社
Priority to PCT/JP2014/054542 priority Critical patent/WO2015128944A1/en
Priority to JP2016504983A priority patent/JP6065155B2/en
Priority to PCT/JP2014/066208 priority patent/WO2015129060A1/en
Publication of WO2015128944A1 publication Critical patent/WO2015128944A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/38Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds
    • E02D5/44Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds with enlarged footing or enlargements at the bottom of the pile

Definitions

  • the present invention relates to a method for constructing a ready-made pile, a program, a storage medium, a pile foundation, and a construction system for a ready-made pile.
  • pile foundations made by burying prefabricated piles such as PHC piles, RC piles, PRC piles, steel piles, SC piles, and node piles in pile holes formed in the ground are often used.
  • An embedded pile method is known as a method for constructing a pile by building the ready-made pile. The embedded pile method has less noise and vibration than the driven pile method, and is often used particularly in urban areas.
  • the embedded pile method includes a pre-boring method in which a ready-made pile is built in a hole excavated in advance by a drilling device such as an earth auger, and a ground auger is inserted into a hollow ready-made pile, and the ground below the tip of the ready-made pile is There is a medium digging method that builds a ready-made pile in the hole.
  • Patent Document 1 includes a pre-boring method
  • Patent Document 2 includes a medium-digging method. Each is disclosed.
  • the pre-made pile construction method adapts the ground strength and the bearing capacity of the pre-made pile in the environment where the ground strength is difficult to predict or the ground strength varies widely. There was a problem that it was difficult. In other words, if the ground strength is higher than expected when a load test of a ready-made pile is performed, an excessive tip support force can be obtained with respect to the design support force of the ready-made pile. It becomes a design. On the other hand, when the ground strength is lower than expected, only a tip support force that is too small relative to the design support force can be obtained. Therefore, it is necessary to redesign the pile hole including the enlarged excavation part.
  • patent document 1 and patent document 2 although it refers to the construction method which forms an enlarged excavation part using excavation apparatuses, such as an earth auger, and then builds a ready-made pile and forms a solidification part, expansion No reference is made to obtaining the optimum value of the expansion ratio of the excavated part.
  • the present invention has been made in view of the above-mentioned problems, and when a pre-made pile is built in a pile hole having an enlarged excavation part on the bottom side, an economical design and construction of the pre-made pile according to the ground strength is possible. It aims at providing the construction method, program, storage medium, pile foundation, and construction system of a ready-made pile which set the expansion ratio efficiently.
  • One aspect of the present invention is a method for constructing a ready-made pile in which a ready-made pile is built in a pile hole in which an enlarged excavation part with an enlarged inner diameter is formed on the bottom side, and the outer diameter of the tip of the ready-made pile is desired.
  • An optimum enlargement ratio determining step for determining an optimum enlargement ratio for forming the enlargement excavation portion and an enlargement excavation portion forming step for forming the enlargement excavation portion based on the optimum enlargement ratio are included.
  • the design bearing capacity can be determined without changing the specifications of the ready-made pile specifications (pile type, pile diameter D, pile length L, material strength, etc.) that were initially set.
  • the ready-made pile is constructed by an embedding method such as a pre-boring method or a medium digging method, it does not stop at a high level and can be reliably constructed at a design depth position.
  • a design value enlargement ratio set based on at least the predetermined data, an enlargement ratio that is smaller than the design value enlargement ratio, and the design value enlargement ratio An enlargement ratio having a larger value may be set.
  • the validity of the design value magnification ratio set in the setting process including the magnification ratio smaller than the design value magnification ratio and the large magnification ratio can be further examined.
  • construction is carried out at an enlargement ratio smaller than the design value enlargement ratio, not only will the construction efficiency be improved, but the amount of excavation and the use of curable materials can be reduced, and the specifications of construction equipment can be reduced. be able to.
  • construction is performed at an enlargement ratio that is larger than the design value enlargement ratio, the amount of excavation and the amount of curable material used for hardening the tip are increased, but safer design and construction are possible.
  • an enlarged excavation section length that is an axial length of the enlarged excavation section may be set for each of the plurality of enlargement ratio cases.
  • the optimal enlargement ratio and the length of the expanded excavation section are determined after examining the appropriateness of the expansion ratio and the axial length of the expanded excavation section, so that a more suitable size of the expanded excavation section is secured. be able to.
  • a product of the design support force measured based on the design value enlargement ratio from the design value enlargement ratio and the number of the ready-made piles It is determined whether or not the desired design load acting on the pile foundation formed by the ready-made piles is greater than or equal to the desired design load in the design support force determination step. Further, a predictive design for determining whether or not a predicted design support force estimated based on at least the design support force measured in the design support force measurement step is greater than or equal to the design support force set in the setting step.
  • a supporting force determination step may be included.
  • the product of the design support force measured based on the enlargement ratio and the number of the ready-made piles in order from the smallest of the plurality of enlargement ratios.
  • the ready-made pile may be a nodal pile provided with a convex portion on the outer peripheral surface of the tip portion.
  • the other aspect of this invention is a program for making a computer perform the construction method of the ready-made pile in any one mentioned above.
  • the optimal expansion ratio of the expanded excavation portion formed on the bottom side of the pile hole can be set in accordance with such a program in as few loading tests as possible.
  • the other aspect of this invention is the storage medium which memorize
  • the optimum expansion ratio of the expanded excavation part formed on the bottom side of the pile hole can be set in the loading test as few times as possible according to the program stored in the storage medium. .
  • the other aspect of this invention is the pile foundation formed with the ready-made pile built in the ground by the construction method of the ready-made pile described in any one of the above-mentioned.
  • another aspect of the present invention is a ready-made pile construction system in which a ready-made pile is built in a pile hole in which an enlarged excavation part having an enlarged inner diameter is formed on the bottom side, and at least a predetermined related to the construction of the ready-made pile.
  • the storage unit for storing the data, and calculation processing by a computer based on at least the predetermined data, the outer diameter design value obtained by adding a desired clearance value to the outer diameter of the tip of the ready-made pile
  • a calculation unit for obtaining an enlargement ratio indicating a ratio of an inner diameter of the enlarged excavation part, and a setting that is included in the calculation part and sets a plurality of enlargement ratios with different values based on at least predetermined data relating to the construction of the ready-made pile And the product of the design support force and the number of the ready-made piles to be used for each of the design support forces measured at least by the design support force measuring device.
  • a determination unit that determines whether or not the design load is greater than or equal to a desired design load acting on the pile foundation that is formed, and is included in the calculation unit, and at least satisfies the condition that the product is greater than or equal to the design load in the determination unit
  • a determination unit that determines a minimum expansion ratio among the expansion ratios as an optimal expansion ratio for forming the expansion excavation unit, and one or a plurality selected from the plurality of expansion ratios set in the setting unit
  • a design bearing force measuring device for carrying out a loading test for each of the cases with an enlargement ratio and measuring the design support force of the ready-made pile at the one or more enlargement ratios, and capable of expanding in the outer diameter direction on the tip side A movable excavation section, and a drilling device that forms the expansion excavation section based on the optimum expansion ratio when excavating the pile hole.
  • the optimum enlargement ratio of the enlarged excavation part formed on the bottom side of the pile hole can be set in as few loading tests as possible. Specs and high stops can be reduced efficiently.
  • the storage unit includes, as the predetermined data, at least soil soil data in which the ready-made pile is built, measurement data of the load test described above, and past construction of the ready-made pile.
  • the result data may be stored as a database.
  • a ready-made pile is built in a pile hole in which an enlarged excavation part with an enlarged inner diameter is formed on the bottom side
  • an economical design and construction of a ready-made pile according to the ground strength is performed. It is possible to provide a method for constructing ready-made piles and the like that efficiently set an enlargement ratio that enables the construction.
  • a ready-made pile is constructed
  • the optimal expansion ratio of the expansion excavation part formed in the bottom part side of a pile hole can be set by the load test as few times as possible.
  • Drawing 1 is a schematic structure figure showing a part of pile foundation formed with a ready-made pile built with a construction method of a ready-made pile concerning one embodiment of the present invention.
  • FIG. 1 is a figure which shows the structure of the tip solidification part of the ready-made pile especially constructed by the pre-boring method among the construction methods of the ready-made pile concerning this embodiment.
  • the pile foundation 1 is formed by a ready-made pile 10 built in a pile hole 3 excavated at a predetermined position of the ground GN. That is, a plurality of pile holes 3 are excavated at a predetermined position of the ground GN, and ready-made piles 10 are respectively built in the respective pile holes 3, and the pile foundation 1 is formed by these ready-made piles 10.
  • the ready-made pile 10 a node pile in which a plurality of convex portions 12 are provided on the outer peripheral surface 10b of the distal end portion 10a is built.
  • the ready-made pile 10 used as construction object is not limited to a node pile, It is applicable also to other ready-made piles 10 such as a straight pile.
  • a root-setting part 14 is provided on the tip side of the ready-made pile 10.
  • the root consolidation part 14 injects cement milk as a hardening material into the bottom side of the pile hole 3 and then agitates and mixes with the excavated soil to form a soil cement.
  • the tip 10a of the ready-made pile 10 is placed in the soil cement layer. It is formed by sinking and solidifying and integrating the soil cement.
  • the root consolidation portion 14 has an enlarged bulb shape in which the outer diameter is larger than the inner diameter of the upper portion of the pile hole 3 in order to ensure a larger tip support force.
  • an enlarged excavation part 5 having an enlarged inner diameter is formed on the bottom side of the pile hole 3.
  • the outer diameter De of the tip rooting portion 14 is substantially the same as the inner diameter De of the enlarged excavation portion 5.
  • the axial length Ld of the tip rooting portion 14 is shorter than the extended excavation portion length L ⁇ which is the axial length of the enlarged excavation portion 5.
  • the axial length of the expanded excavation section length L ⁇ is 2 m or more and 50% or less of the pile length of the ready-made pile 10 to be built in the pile hole 3, and the axial length of the tip consolidation part 14 Ld is a larger value of either 2 m or the outer diameter De of the tip root fixing portion 14.
  • the length Ld of the root hardening part 14 may be substantially the same as the expanded excavation part length L ⁇ .
  • the expansion ratio ⁇ is set to a design value based on predetermined data relating to the construction of the ready-made pile 10 such as a preliminary geological survey result, statistical data, and past construction data performed before the construction of the ready-made pile 10.
  • the geological structure and soil quality of the ground GN may differ from the previous survey results, and when the ready-made pile 10 is constructed with the set value of the expansion ratio ⁇ as it is , May cause over-spec or high-stop.
  • the enlargement ratio ⁇ of the enlarged excavation portion 5 is a value that determines the outer diameter De of the root consolidation portion 14, and when the error between the design value and the actual measurement value is large, so-called over-spec is obtained, and the material, etc. This is not preferable in terms of cost and construction work efficiency. That is, in order to secure the desired tip support force of the ready-made pile 10, the length Ld of the root-solidifying portion 14 can be adjusted as appropriate by adjusting the amount of cement milk that becomes a hardening agent.
  • the outer diameter De of the root consolidation part 14 is directly determined by the inner diameter De of the excavation part 5, it is difficult to adjust the enlarged excavation part 5 after excavation.
  • the construction method of the ready-made pile 10 by the construction system 100 (refer FIG. 2) demonstrated below is implemented, the optimal value of expansion ratio (omega) is calculated
  • the expansion ratio ⁇ of the root consolidation portion 14, that is, the expansion ratio ⁇ of the expansion excavation portion 5 is set to a desired value for the inner diameter De of the expansion excavation portion 5 and the outer diameter Don of the convex portion 12 of the ready-made pile 10.
  • the enlargement ratio ⁇ is set in the range of 1.0 to 2.0, for example, but the upper limit value of the enlargement ratio ⁇ is not limited to 2.0. Further, in the present embodiment, in order to obtain a more suitable enlargement ratio ⁇ of the enlarged excavation part 5 in consideration of design errors of the ready-made pile 10, the pile hole 3, and the enlarged excavation part 5, the above formula (1) For the denominator, not the value of the outer diameter Don of the tip 10a of the ready-made pile 10, but the outer diameter design value Ds obtained by adding the desired clearance value x as an adjustment value to the outer diameter Don is used.
  • the clearance value x is appropriately determined on the basis of N data indicating the strength of the ground on which the ready-made pile 10 is constructed, past construction data, soil data, and other predetermined data relating to construction.
  • N data indicating the strength of the ground on which the ready-made pile 10 is constructed
  • the clearance value x is 0.05 m to 0.1 m.
  • the clearance value x may be 0 depending on the N value or the like.
  • the clearance value is 0.2 m at the maximum.
  • the outer diameter of the convex portion 12 is used as the outer diameter Don of the ready-made pile 10.
  • the pile 10 is a straight pile, the outer diameter of the shaft portion of the straight pile is used.
  • FIG. 2 is a block diagram showing the overall configuration of a ready-made pile construction system according to an embodiment of the present invention.
  • the construction system 100 of the ready-made pile 10 accesses a database server having a database in which the computer 101 owned by the user stores predetermined data related to the construction of the ready-made pile 10. While performing the search process, the optimum value of the enlargement ratio ⁇ of the enlarged excavation section 5 is obtained.
  • “user” refers to a person who designs or constructs the ready-made pile 10.
  • the “computer” refers to an information terminal device including an arithmetic device capable of various arithmetic processes such as a super computer, a general-purpose computer, an office computer, a control computer, a personal computer, and a portable information terminal.
  • the construction system 100 is used when the ready-made pile 10 is built in the pile hole 3 in which the enlarged excavation portion 5 having an enlarged inner diameter is formed on the bottom side, and the computer 101, the design support force measuring device 128, And a drilling device 130.
  • the construction system 100 calculates the optimum enlargement ratio ⁇ with the computer 101 based on the measurement data of the design support force measuring device 128 and the like, and has the enlarged excavation unit 5 with the excavator 130 based on the enlargement ratio ⁇ .
  • the pile hole 3 is excavated.
  • the structure of the construction system 100 is not limited to FIG. 2, A various deformation
  • the computer 101 includes a storage unit 102, a CPU (Central Processing Unit) 110, an input unit 120, an output unit 122, a communication unit 124, a ROM (Read Only Memory) 108, and a RAM (Random access Memory) 106. , And a storage medium 104, and these components are electrically connected to each other via a system bus 125. Therefore, the CPU 110 accesses the storage unit 102, ROM 108, RAM 106, and storage medium 104, grasps the operation state of the input unit 120, outputs data to the output unit 122, and transmits / receives various information to / from the Internet 126 via the communication unit 124. Etc.
  • the storage unit 102 is a data server having a function of storing at least predetermined data related to the construction of the ready-made pile 10.
  • the storage unit 102 includes, as the predetermined data, at least soil data of the ground GN in which the ready-made pile 10 is built, pile materials, construction specifications, and measurement data obtained by performing a load test using the design support force measuring device 128. And the past construction results data of the ready-made pile 10 are stored as a database.
  • the optimum expansion ratio ⁇ of the expanded excavation part 5 Based on the predetermined data relating to the construction of such ready-made piles, by setting the optimum expansion ratio ⁇ of the expanded excavation part 5, it becomes more geological data including the geological structure information, soil information, etc. in the actual ground GN
  • the enlarged excavation section 5 can be formed with a suitable optimum enlargement ratio ⁇ based on the above.
  • the expansion ratio of the expanded excavation unit 5 is utilized using the accumulated data stored in the storage unit 102.
  • the optimum values of ⁇ and the expanded excavation length L ⁇ can be obtained with higher accuracy.
  • the CPU 110 has a function of controlling the operation of each component included in the construction system 100 in accordance with data received via the communication unit 124 and various programs stored in the ROM 108 and the storage medium 104. In addition, the CPU 110 has a function of appropriately storing necessary data and the like in the RAM 106 that temporarily stores these various processes.
  • the CPU 110 performs arithmetic processing by a computer based on predetermined data relating to the construction of the ready-made pile 10 and performs various arithmetic processes necessary for obtaining the expansion ratio ⁇ of the expanded excavation section 5.
  • the CPU 110 includes a setting unit 112, a determination unit 114, and a determination unit 116.
  • predetermined data related to the construction of the ready-made pile 10 is at least soil data of the ground GN in which the ready-made pile 10 is built, measurement data of a loading test by the design bearing capacity measuring device 128, And various data such as past construction performance data of the ready-made pile 10.
  • the “predetermined data” means that in the process of constructing the ready-made pile 10, when excavating the pile hole 3 having the enlarged excavation part 5, the optimum expansion ratio ⁇ and the enlarged excavation part length L ⁇ of the enlarged excavation part 5 It refers to various data necessary to determine the values ⁇ opt and L ⁇ opt, and is also used to determine the pile type.
  • the setting unit 112 is based on predetermined data relating to the construction of the ready-made pile 10, and the design load (column load) P of the ready-made pile 10 and the design support force of the pile.
  • R the expansion ratio ⁇ of the expanded excavation section 5
  • the setting unit 112 has a function of setting a plurality of expansion ratios ⁇ of the expanded excavation unit 5 with different values based on at least predetermined data relating to the construction of the ready-made pile 10.
  • it has a function which sets multiple expansion excavation part length Lomega corresponding to expansion ratio (omega).
  • the determination unit 114 has a function of determining the validity of various data set based on predetermined data related to the construction of the ready-made pile 10 in the process of constructing the ready-made pile 10 with the construction system 100. In the present embodiment, the determination unit 114 determines that the product of at least the design support force R measured by the design support force measuring device 128 and the design support force R and the number of ready-made piles 10 to be used is the ready-made pile. 10 has a function of determining whether or not a desired design load (column load) P that is applied to the pile foundation 1 formed by 10 or more.
  • the determination unit 116 has a function of determining optimum values of various data set based on predetermined data relating to the construction of the ready-made pile 10 based on the determination result in the determination unit 114.
  • the determination unit 116 is the smallest among the enlargement ratios ⁇ that satisfy the condition that the product of the design support force R and the number J of the ready-made piles 10 is at least the design load (column load) P in the determination unit 114.
  • it has the function to determine also the optimal expansion excavation part length L ⁇ opt corresponding to the optimal expansion ratio ⁇ opt.
  • the input unit 120 has a function of inputting various data such as predetermined data related to the construction of the ready-made pile 10, and for example, a mouse, a keyboard, a touch panel, or the like is used.
  • the input unit 120 performs, for example, character input when operating the setting unit 112, the determination unit 114, and the determination unit 116 and input of measurement data of the design support force measuring device 128.
  • the input unit 120 is necessary when obtaining the optimum values ⁇ opt and L ⁇ opt of the enlarged excavation part 5 and the enlarged excavation part length L ⁇ based on at least predetermined data relating to the construction of the ready-made pile 10. It is also used when inputting various data. That is, the input unit 120 is used when inputting various data stored in the storage unit 102 or when inputting various data for obtaining the optimum values ⁇ opt and L ⁇ opt of the enlargement ratio ⁇ and the enlarged excavation part length L ⁇ . .
  • the output unit 122 has a function of outputting a calculation result by the CPU 110, information of the storage unit 102 serving as a database, and the like.
  • a display monitor or the like is used as the output unit 122.
  • the output unit 122 performs screen display when the setting unit 112, the determination unit 114, and the determination unit 116 are operated, for example.
  • the storage medium 104 is a medium readable by the computer 101 and has a function of storing programs, data, and the like.
  • the function of the storage medium 104 can be realized by various memories such as an optical disk (CD, DVD), HDD, or USB.
  • a program for realizing the function of each component of the construction system 100 according to the present embodiment is stored so as to be readable by the computer 101. For this reason, according to the said program, each process in the construction method of the ready-made pile 10 which concerns on this embodiment comes to be performed by implement
  • the detail of the construction method of the ready-made pile 10 which concerns on this embodiment performed by the said program is mentioned later.
  • the design bearing capacity measuring device 128 performs a loading test after constructing a test pile 10 '(hereinafter referred to as a test pile 10') in a test pile hole 3 'formed in the ground GN in which the ready-made pile 10 is built. And has the function of measuring the ultimate bearing capacity of the test pile 10 '.
  • the design support force measuring device 128 performs a loading test for each case of one or a plurality of magnification ratios ⁇ selected from the plurality of magnification ratios ⁇ set by the setting unit 112, and The ultimate bearing capacity of the ready-made pile 10 at one or a plurality of enlargement ratios ⁇ is measured.
  • the design support force measuring device 128 performs a loading test of the test pile 10 ′ corresponding to the case of one or a plurality of enlargement ratios ⁇ selected from the plurality of enlargement ratios ⁇ set by the setting unit 112. Implement and measure the ultimate bearing capacity of the test pile 10 '. Further, the design bearing capacity measuring device 128 is a ground for constructing the ready-made pile 10 when the test pile hole 3 'is drilled before the ready-made pile 10 is constructed in the process of measuring the ultimate bearing capacity of the test pile 10'. It is also used to check GN geological data and N value. The design support force measuring device 128 may be referred to as a loading test device.
  • the excavator 130 has a function of excavating a pile hole 3 having a desired diameter and depth in the ground GN.
  • an earth auger or the like provided with a excavating rod 131 provided with a screw-like excavating blade 132 around it and a movable excavating portion 134 that can be expanded in the outer diameter direction on the distal end side of the excavating rod 131 is used.
  • the in this embodiment when excavating the pile hole 3 with the excavator 130, the optimum enlargement ratio ⁇ opt of the enlarged excavation unit 5 determined by the determination unit 116 of the CPU 110 and the optimum enlarged excavation part length L ⁇ opt of the enlarged excavation unit 5 are used. Thus, the enlarged excavation part 5 is formed.
  • the optimum enlargement ratio ⁇ opt of the enlarged excavation part 5 formed on the bottom side of the pile hole 3 can be set by the loading test as few times as possible. For this reason, in the process of constructing the ready-made pile 10, the overspec and high stop at the time of forming the expansion excavation part 5 can be reduced efficiently and economically. Also, after setting a plurality of enlargement ratios ⁇ , do not unnecessarily increase the number of loading tests performed when determining the optimum value ⁇ opt from among these enlargement ratios ⁇ , that is, with fewer loading tests. The optimum value ⁇ opt can be determined. For this reason, the labor, time, and cost cost in constructing the ready-made pile 10 can be reduced by reducing the number of loading tests that require a large burden both in terms of time and cost. Economical ready-made pile 10 can be designed and constructed.
  • FIG. 3 is a flowchart showing an outline of a method for constructing a ready-made pile according to an embodiment of the present invention.
  • the construction method of the ready-made pile 10 which concerns on this embodiment is the construction method of the ready-made pile 10 which builds the ready-made pile 10 in the pile hole 3 in which the expanded excavation part 5 which expanded the internal diameter was formed in the bottom part side.
  • the main focus is on obtaining a more suitable optimum enlargement ratio ⁇ opt of the enlarged excavation section 5 based on the measurement result of the loading test in particular.
  • a design load (column load) P is set (step S10).
  • the design load (column load) P is set based on the weight of the building built on the pile foundation 1, the upper load, and the like.
  • the design support force R and the pile number J of the ready-made pile 10 are set (step S11).
  • the design support force R and the number J of piles of the ready-made pile 10 are set so as to satisfy the following conditional expression (2). Number of piles J x Design capacity of pile R ⁇ Margin M x Design load (column load) P ... (2)
  • the design support force R of the pile is calculated from the following equation (3), for example.
  • Design bearing capacity R 1 / ⁇ ⁇ ⁇ NaAp + ( ⁇ ⁇ Ns ⁇ Ls + ⁇ ⁇ q u ⁇ Lc) ⁇ ⁇ (3)
  • is the safety factor
  • is the pile tip bearing capacity coefficient
  • Na is the average value of the N value at the tip of the pile
  • Ap is the pile tip area
  • is the pile circumference in sandy and gravelly ground.
  • Ns is the average value of N of sandy ground around the pile
  • Ls is the total length of the ground around the pile that touches the sandy and gravelly ground
  • is in the clayey ground
  • q u is the average uniaxial compressive strength of the clay ground out of the ground around the pile
  • Lc is the total length of the ground around the pile that touches the clay ground
  • is the pile Indicates the circumference.
  • the design support force R of the pile calculated from the above formula (3) is hereinafter referred to as a calculated value of the design support force R.
  • the calculated value of pile design bearing capacity R and the number of piles J are approximately the same as the design load (column load) P, and the optimum combination of the calculated value of design bearing capacity R per pile and the number of piles J Set as follows. Basically, the calculated value of design bearing capacity R of piles and the number of piles J are set so as to reduce the number of piles J, but the most effective (economic) number of piles J for each column in comparison with the cost etc. And set the calculated value of design bearing capacity R of pile.
  • Equation (3) an example of each value constituting the right side of Equation (3) is shown.
  • the value shown below is an example and is not limited to this value.
  • the safety factor ⁇ is a value determined as appropriate based on design conditions and the like, and is 2, 2.5, or 3, for example.
  • is an enlargement ratio.
  • the average value Na of the N values at the pile tip is calculated from the following formula (6) when the pile tip ground is sandy ground or gravelly ground.
  • Na (Nu + 3N L ) / 4 (6)
  • Na is 3 or more, and Na> 60 when Na> 60.
  • Nu is an average value of the N value from the tip of the pile to the position of 2 m upward
  • NL is an average value of the N value from the tip of the pile to the position of (De + Don) downward.
  • the average value Na of the pile tip is calculated from the following formula (7) when the pile tip ground is clayey ground.
  • Na (Nu + 2N L ) / 3 (7)
  • Na is set to 58.3.
  • the average value Ns of sandy ground is 1 or more, and Ns> 30 when Ns> 30.
  • the total length Ls in contact with the sandy / gravel ground is calculated excluding the distance from the tip of the pile to a position of 2 m.
  • the average value q u of the uniaxial compressive strength of the clay-based ground is 10 kN / m 2 or more, and when q u > 200 kN / m 2 , q u is 200 kN / m 2 .
  • the total length Lc in contact with the clay-based ground is calculated by excluding the distance from the tip of the pile to a position of 2 m.
  • D is a pile diameter (m).
  • the diameter is the node diameter.
  • the safety factor ⁇ , the pile tip bearing force coefficient ⁇ , the pile peripheral surface friction force coefficient ⁇ , ⁇ , etc. in the equation (3) are appropriately set according to the field conditions such as geology.
  • step S12 various data relating to the ready-made pile 10 are examined and adjusted (step S12).
  • the pile length L, the pile diameter D (node diameter Don in this embodiment), the PHC pile, and the RC pile are specifically constructed. , PRC piles, steel piles, SC piles, node piles, and other types of piles, enlargement ratio ⁇ of the enlarged excavation part 5 for forming the tip consolidation part 14, and an enlarged excavation part length L ⁇ .
  • the expansion ratio ⁇ is relative to the outer diameter design value Ds obtained by adding the desired clearance value x to the outer diameter Don of the tip portion 10a of the ready-made pile 10.
  • the ratio of the internal diameter De of the expansion excavation part 5 is shown.
  • the pile length L is increased, the pile diameter D is increased, the enlargement ratio ⁇ is increased, and the expanded excavation section length L ⁇ is increased, the supporting force of the ready-made pile 10 is increased.
  • the supporting force of the ready-made pile 10 is increased, it is necessary to increase the material strength by increasing the concrete strength of the ready-made pile 10 or increasing the plate thickness of the steel pipe.
  • construction equipment such as a hydraulic expansion device is required during construction. For this reason, the specifications of construction equipment increase and the cost increases.
  • the pile length L, the pile diameter D, the pile type, the enlargement ratio ⁇ , and the enlarged excavation length L ⁇ may be set at the same time as the number of piles J and the calculated design support force R of the piles are set.
  • the design value expansion ratio ⁇ d and the expanded excavation section length L ⁇ d are set based on various data relating to the ready-made pile 10 adjusted in step S12 (setting step S13). After that, enlargement ratio ⁇ c ( ⁇ c ⁇ d) that prioritizes cost by reducing the enlargement ratio relative to the design value enlargement ratio ⁇ d, and enlargement that emphasizes safety by increasing the enlargement ratio relative to the design value enlargement ratio ⁇ d
  • the ratio ⁇ s ( ⁇ s> ⁇ d) is set (setting step S14).
  • step S14 the expanded excavation section length L ⁇ c (L ⁇ c ⁇ L ⁇ d) in which the expanded excavation section length is shortened and the cost is prioritized with respect to the expanded excavation section length L ⁇ d and the expanded excavation section length L ⁇ d is expanded.
  • the extended excavation section length L ⁇ s (L ⁇ s> L ⁇ d) that places importance on safety is set.
  • the design value expansion ratio ⁇ d and the expanded excavation section length L ⁇ d of the expanded excavation section 5 are set based on data based on the ground columnar diagram created by the ground survey, construction results, past accumulated data, and the like.
  • the enlargement ratio ⁇ c giving priority to cost and the enlargement ratio ⁇ s giving priority to safety are calculated and set from the following expressions (8) and (9), respectively.
  • ⁇ c ⁇ d ⁇ (8)
  • ⁇ s ⁇ d + ⁇ (9)
  • is a deviation, for example, 0.1 to 0.3. The said deviation is set based on the data by the ground columnar figure created by the ground survey, construction results, past accumulated data, and the like.
  • a plurality of enlargement ratios ⁇ of the enlarged excavation part 5 are set with different values based on predetermined data relating to the construction of the ready-made pile 10.
  • the design value expansion ratio ⁇ d set based on at least predetermined data
  • the cost priority expansion ratio ⁇ c that is smaller than the design value expansion ratio ⁇ d
  • the safety priority that is greater than the design value expansion ratio ⁇ d
  • the magnification ratio ⁇ s Set the magnification ratio ⁇ s.
  • the expanded excavation section lengths L ⁇ d, L ⁇ c, and L ⁇ s are set, respectively.
  • the enlargement ratio ⁇ and the enlarged excavation part L ⁇ are each set in three ways. However, in order to examine the validity of the design values of the enlargement ratio ⁇ and the enlarged excavation part length L ⁇ , at least two kinds are set. It is sufficient if the above is set, and when the validity of the design value is further examined, four or more patterns may be provided. In this embodiment, the expansion ratio ⁇ and the expanded excavation length L ⁇ are each set in three ways. However, since it is necessary to examine at least the validity of the expansion ratio ⁇ , only a plurality of expansion ratios ⁇ are provided. It may be.
  • the design value magnification ratio ⁇ d, the magnification ratio ⁇ c smaller than the design value magnification ratio ⁇ d, and the magnification ratio ⁇ s larger than the design value magnification ratio ⁇ d are set. ing. For this reason, even if there is a difference between the design value enlargement ratio ⁇ d obtained by calculation in advance and the enlargement ratio ⁇ obtained based on the actual measurement value measured in the loading test, the validity of the design value enlargement ratio ⁇ d is confirmed. The final optimum enlargement ratio ⁇ opt can be determined after further examination.
  • test pile construction step S15 When the setting steps S13 and S14 are completed, the test pile 10 'is then constructed (test pile construction step S15).
  • the construction of the test pile 10 ′ is performed in the vicinity of the ground GN where the ready-made pile 10 is actually built.
  • the test pile construction process S15 there are cases where the test piles 10 'corresponding to the respective enlargement ratios ⁇ d, ⁇ c, and ⁇ s are all enforced and separately as necessary. Details of the test pile construction step S15 will be described later.
  • a loading test is performed for each of the cases having one or more enlargement ratios selected from the plurality of enlargement ratios ⁇ d, ⁇ c, and ⁇ s, and the design support of the ready-made pile 10 at the one or more enlargement ratios ⁇ is performed.
  • Each of the forces R is measured (design support force measurement step S16).
  • the enlargement ratio ⁇ and the enlarged excavation part L ⁇ are set in three ways, respectively. The cost is also heavy. For this reason, in the construction method of the ready-made pile 10 which concerns on this embodiment, in order to suppress a loading test by the minimum number of times required, the procedure which performs a loading test is elaborated. The details of the design support force measurement step S16 will be described later.
  • the design support force R is measured for each R ⁇ i (R ⁇ i is at least one of R ⁇ d, R ⁇ c, and R ⁇ s) measured in the design support force measurement step S16.
  • the product of the supporting force R ⁇ i and the number of ready-made piles 10 to be used is obtained.
  • a desired design load columnumn load
  • an expansion ratio that satisfies the condition that the product of the design support force R ⁇ i and the number of ready-made piles 10 to be used is equal to or greater than the product of the margin M and the design load (column load) P Among ⁇ d, ⁇ c, and ⁇ s, the minimum expansion ratio ⁇ i is determined as the optimal expansion ratio ⁇ opt for forming the expanded excavation portion 5 (optimal expansion ratio determination step S18).
  • optimum values ⁇ opt and L ⁇ opt of the enlarged excavation section length L ⁇ corresponding to the enlargement ratio ⁇ and the enlargement ratio ⁇ are determined.
  • the enlarged excavation part 5 is formed based on the optimum enlargement ratio ⁇ opt and the optimum enlarged excavation part length L ⁇ opt (enlarged excavation part forming step S19). After that, various processes for building and constructing the ready-made pile 10 in the excavated pile hole 3 are performed.
  • the optimum enlargement ratio ⁇ opt of the enlarged excavation part 5 formed on the bottom side of the pile hole 3 can be set with as few loading tests as possible. And the overspec at the time of forming the expanded excavation part 5 can be reduced, reducing cost.
  • the pile support capacity can be set according to the type of pile, pile diameter, pile length, expansion ratio of the tip consolidation part, enlarged excavation part length of the tip consolidation part, etc. according to the ground strength. The optimal and economical design and construction can be performed.
  • setting process S14 it can also set by the method (A) thru
  • the design value expansion ratio ⁇ d 1.3 in Table 1
  • safety factor ⁇ d 2.5
  • design support force R ⁇ d calculated value
  • the safety factor ⁇ is set based on the magnification with respect to the design support force to be confirmed in the loading test, past performance data, and the like. In the case of Table 1, it is assumed that 2.5 times the design support force is confirmed in the loading test.
  • the design support force R (measured value) of the pile is greater than the design support force R (calculated value).
  • a correlation is confirmed between the design support force R (measured value) and the design support force R (calculated value).
  • an average value (a dotted line in FIG. 4) of a ratio (measured value / calculated value) of each design support force R (measured value) to a plurality of design support forces R (calculated values) is, for example, about 1. It has doubled.
  • the enlargement ratio ⁇ s is set from the same value or the lowest value depending on the actual performance that is below the design support R (measured value). For example, the ratio (measured value / calculated value) of the data of the design support force R (measured value) below the design support force R (calculated value) to the design support force R (calculated value) is 0.95. If the calculated value of the ultimate bearing force Rud based on the design value magnification ratio ⁇ d is 6000 kN, for example, by dividing the calculated value 6000 kN of the ultimate bearing force Rud by 0.95, An enlargement ratio ⁇ s is set to 6320 kN.
  • FIG. 5 is a flowchart showing details of a method for constructing a ready-made pile according to an embodiment of the present invention.
  • FIG. 5 in particular, after passing through the setting steps S13 and S14 of the enlargement ratio ⁇ , setting up the test pile, measuring the design support force, determining the appropriateness of the design support force, and determining the optimum enlargement ratio A simple flow will be described.
  • test pile construction step S15 the test pile 10 'is constructed in the vicinity of the ground GN where the ready-made pile 10 is actually built.
  • all the test piles 10 'corresponding to the respective enlargement ratios ⁇ d, ⁇ c, and ⁇ s are executed.
  • a loading test is performed on the test pile 10 ′ corresponding to the design value expansion ratio ⁇ d (step S16-1). That is, in this embodiment, in order to give the highest priority to the validity of the design value enlargement ratio ⁇ d, a loading test is performed from the case of the design value enlargement ratio ⁇ d, and the design support force corresponding to the design value enlargement ratio ⁇ d R ⁇ d is measured.
  • the process proceeds to the design support force determination step S17-1, and the product of the design support force R ⁇ d measured based on the design value expansion ratio ⁇ d and the number J of ready-made piles 10 is It is determined whether or not the desired design load (column load) P acting on the pile foundation 1 formed by the ready-made pile 10 and the margin M are greater than or equal to each other. That is, it is examined whether or not the conditional expression (10) described above is satisfied.
  • the design support force R ⁇ c ′ is estimated based on the design support force R ⁇ d measured in the measurement step S16-1 (predicted design support force estimation step S17-1a).
  • the predicted design bearing force R ⁇ c ′ was measured by the ultimate bearing force Ru d (calculated value) and Ru c (calculated value) calculated for each case of the set design value magnification ratio ⁇ d and magnification ratio ⁇ c, respectively, and a load test. It is estimated from the ratio with the ultimate support force Ru d (measured value) calculated based on the design support force R ⁇ d (measured value).
  • the respective enlargement ratios ⁇ d and ⁇ c and the safety factors ⁇ d and ⁇ c are substituted into the above-described equations (11) and (12), respectively, and the ultimate bearing forces Ru d (calculated values) and Ru c (calculated values) are obtained. calculate.
  • the ultimate bearing force Ru d (calculated value) 9000 kN
  • the ultimate bearing force Ru c (calculated value) 7200 kN)
  • the ultimate support force Ru d (measured value) 11500 kN is calculated based on the design support force R (measured value) measured by the loading test.
  • the predicted design support force R ⁇ c ′ is calculated by substituting the calculated ultimate support force Ru d (calculated value), Ru c (calculated value) and the ultimate support force Ru d (measured value) into the above-described equation (14). To do. In this way, the predicted design support force R ⁇ c ′ is estimated and obtained based on the design support force R ⁇ d measured in the design support force measurement step S16-1.
  • the design support force R ⁇ d (calculated value) is compared with the actual design support force R ⁇ d (measured value), and the correction value of the design support force R ⁇ d (calculated value) is calculated.
  • the difference which shows the shift
  • the predicted design support force R ⁇ c ′ is estimated by correcting the design support force R ⁇ c (calculated value) by the difference.
  • the design support force R ⁇ c ′ is larger than the design support force R ⁇ d (calculated value) in the predicted design support force determination step 17-1b, then a loading test is performed for the case of the cost priority expansion ratio ⁇ c (step S16). -2). In this loading test, the design support force R ⁇ c (measured value) corresponding to the cost priority enlargement ratio ⁇ c is measured.
  • step S17-2 when the product of the number of piles J and the design support force R ⁇ c (measured value) satisfies a condition equal to or greater than the product of the margin M and the design load (column load) P, the cost priority enlargement ratio ⁇ c Is determined as the optimum enlargement ratio ⁇ opt (step S18-1).
  • step S18-1 the optimum enlargement ratio ⁇ opt is determined, and at the same time, the enlarged excavation length L ⁇ c determined in step S14 corresponding to the enlargement ratio ⁇ c is decided as the optimum enlargement portion length L ⁇ opt.
  • step S19 the pile construction is performed based on the case of the optimum enlargement ratio ⁇ opt and the optimum enlarged excavation section length L ⁇ opt determined in step S18-1. Thereby, construction cost can be reduced rather than implementing this pile construction based on the case of design value expansion ratio omegad.
  • the design value The expansion ratio ⁇ d is determined to be the optimal expansion ratio ⁇ opt, and the expanded excavation section length L ⁇ d corresponding to the design value expansion ratio ⁇ d is determined to be the optimal expansion section length L ⁇ opt (step 18-2). And it transfers to process S19 and implements this pile construction based on the case of optimal expansion ratio omegaopt and optimal expansion excavation part length Lomegaopt.
  • the design value enlargement ratio ⁇ d is determined as the optimum enlargement ratio ⁇ opt.
  • the extended excavation section length L ⁇ d corresponding to the design value expansion ratio ⁇ d is determined as the optimum expansion section length L ⁇ opt (step 18-2). And it transfers to process S19 and implements this pile construction based on the case of optimal expansion ratio omegaopt and optimal expansion excavation part length Lomegaopt.
  • step S16-2 the product of the number of piles J and the design support force R ⁇ c (measured value) is the product of the margin M and the design load (column load) P in step S17-2 despite the execution of step S16-2.
  • the product of the number of piles J and the design support force R ⁇ c becomes the margin M and the design load (column The probability that it is equal to or higher than the product of the load (P) can be remarkably improved. As a result, it is possible to omit a loading test for a case with a wasteful enlargement ratio ⁇ c, so that it is possible to shorten the construction period and further reduce the cost.
  • the enlargement ratio ⁇ are set as the set value expansion ratio ⁇ d, the cost priority expansion ratio ⁇ c, and the safety priority expansion ratio ⁇ s. Then, based on the actual loading test result, a more suitable optimum enlargement ratio ⁇ opt is set. In such a case, a suitable optimum enlargement ratio ⁇ opt is determined after further examination of the appropriateness of the design value enlargement ratio ⁇ d, which is the median value of the enlargement ratio ⁇ . It is possible to set an optimal enlargement ratio ⁇ opt suitable for.
  • step S17-1 If it is determined in step S17-1 that the product of the design support force R ⁇ d (measured value) and the number of ready-made piles 10 is smaller than the product of the margin M and the design load (column load) P, A loading test is performed on the case with the priority enlargement ratio ⁇ s, and the design bearing force R ⁇ s of the ready-made pile 10 is measured (step S16-3). Thereafter, it is examined whether or not the product of the number of piles J and the design support force R ⁇ s (measured value) is greater than or equal to the product of the margin M and the design load (column load) P. That is, in the case of the design support force R ⁇ s (measured value), it is examined whether or not the conditional expression (2) is satisfied (step S17-3).
  • step S17-3 when the product of the number of piles J and the design support force R ⁇ s (measured value) is equal to or greater than the product of the margin M and the design load (column load) P, the safety priority priority enlargement ratio ⁇ s is optimized.
  • the enlargement ratio ⁇ opt is determined (step S18-3).
  • step S18-3 the optimum enlargement ratio ⁇ opt is determined, and at the same time, the enlarged excavation part length L ⁇ s determined in step S14 corresponding to the enlargement ratio ⁇ s is decided as the optimum enlargement part length L ⁇ opt.
  • the process proceeds to step S19, and the main pile construction is performed based on the case of the optimum enlargement ratio ⁇ opt and the optimum enlarged excavation section length L ⁇ opt determined in step S18-3.
  • the cost is compared among the design value enlargement ratio ⁇ d and the enlargement ratio ⁇ s to determine the cheaper one as the optimum enlargement ratio ⁇ opt, and at the same time, the enlarged excavation section length L ⁇ d determined in step S14 corresponding to the enlargement ratio ⁇ opt, Any one of L ⁇ s is determined as the optimum enlarged portion length L ⁇ opt (step 18-4). Thereafter, the process proceeds to step S19, and the main pile construction is performed based on the case of the optimum enlargement ratio ⁇ opt and the optimum enlarged excavation section length L ⁇ opt determined in step S18-4.
  • the validity of the design value magnification ratio ⁇ d which is the median value of the magnification ratios ⁇ set in a plurality of ways, is further examined according to the flow described above, and then the actual loading test result is obtained.
  • a suitable optimal enlargement ratio ⁇ opt is determined. For this reason, it is possible to set a suitable optimum enlargement ratio ⁇ opt more reliably while completing the optimum loading test as many times as necessary, thereby reducing over-spec when forming the enlarged excavation part 5 in a shorter time and at a lower cost. can do.
  • the high stop of the ready-made pile 10 can be prevented reliably, it can construct reliably in a design depth position.
  • the number of times of performing the loading test can be surely kept within two times, it is easy to assemble a work process in the process of constructing the ready-made pile 10.
  • FIG. 6 is a flowchart showing details of a modification of the method for constructing a ready-made pile according to an embodiment of the present invention.
  • test pile 10 ′ corresponding to the ready-made pile 10 in the case of the design value expansion ratio ⁇ d.
  • Test pile construction process S15-1 a loading test of the test pile 10 ′ corresponding to the design value expansion ratio ⁇ d is performed (step S16-1), and the design support force R ⁇ d is measured.
  • step S16-1 when the design support force R ⁇ d is measured, the design support force determination step S17-1 to the predicted design support force determination step S17-1b are performed as described above.
  • step S15-2 When the predicted design support force R ⁇ c ′ is larger than the design support force R ⁇ d (calculated value) in the predicted design support force determination step 17-1b, next, the test pile 10 ′ is tested in the case of the cost priority expansion ratio ⁇ c. Construction is performed (step S15-2).
  • steps S16-2 to S18-1 are performed. Thereafter, the process proceeds to step S19, and the main pile construction is performed based on the case of the optimum enlargement ratio ⁇ opt and the optimum enlarged excavation section length L ⁇ opt determined in step S18-1.
  • step 18-2 is performed as described above. Then, it transfers to process S19 and implements this pile construction.
  • step S17-1 If it is determined in step S17-1 that the product of the design support force R ⁇ d and the number J of ready-made piles 10 is smaller than the product of the margin M and the design load (column load) P, then the design support force continues.
  • the predicted design support force R ⁇ s ′ is estimated based on the design support force R ⁇ d measured in the measurement step S16-1 (predicted design support force estimation step S17-1c). Note that the method for estimating the predicted design support force R ⁇ s ′ in the predicted design support force estimation step S17-1c is the same as that described above, and a description thereof will be omitted.
  • step S15-3 test construction is performed for the case of the expansion ratio ⁇ s giving priority to safety (step S15-3). Then, as described above, Step S16-3 to Step S18-3 or Step 18-4 are performed. Thereafter, the process proceeds to step S19, and the main pile construction is performed based on the case of the optimum enlargement ratio ⁇ opt and the optimum enlarged excavation section length L ⁇ opt determined in step S18-3 or step 18-4.
  • the construction of the test pile 10 ′ corresponding to each of the expansion ratios ⁇ d, ⁇ c, and ⁇ s is not performed from the beginning, and the necessary minimum value including the design value expansion ratio ⁇ d is included. Only the test construction is performed, and the loading test of the test pile 10 ′ corresponding to the enlargement ratio ⁇ subjected to the test construction is performed. For this reason, it is not necessary to excavate the test hole 3 'more than necessary, and wasteful excavation work can be reduced.
  • the validity of the design value magnification ratio ⁇ d which is the median value of the magnification ratios ⁇ set in a plurality of ways, is further examined according to the flow described above, and then based on the actual loading test results.
  • a suitable optimum enlargement ratio ⁇ opt is determined. For this reason, it is possible to set a suitable optimum enlargement ratio ⁇ opt more reliably while performing the optimum loading test with the minimum necessary number of times.
  • FIG. 7 is a flowchart showing details of a method for constructing a ready-made pile according to another embodiment of the present invention.
  • steps S13 and S14 for the enlargement ratio ⁇ setting of the test pile, measurement of the design support force R, determination of the validity of the design support force R, and determination of the optimum enlargement ratio ⁇ opt are performed.
  • a detailed flow up to this point will be described.
  • the design support force in order from the smallest of the plurality of enlargement ratios ⁇ d, ⁇ c, and ⁇ s. R is determined. That is, the loading test is performed from the test pile 10 'corresponding to the cost-prioritized expansion ratio ⁇ c among the expansion ratios ⁇ d, ⁇ c, and ⁇ s set in the setting steps S13 and S14 (see FIG. 3).
  • test pile construction step S25 construction of the test pile 10 ′ corresponding to the ready-made pile 10 is performed in the vicinity of the ground GN where the ready-made pile 10 is actually built.
  • all the test piles 10 'corresponding to the respective enlargement ratios ⁇ d, ⁇ c, and ⁇ s are executed.
  • a loading test is performed on the test pile 10 ′ corresponding to the cost priority expansion ratio ⁇ c (step S26-1).
  • a loading test is performed from the case of the expansion ratio ⁇ c, and the design support corresponding to the expansion ratio ⁇ c is supported. Measure force R ⁇ c.
  • the process proceeds to the design support force determination step S27-1, and the design support force R ⁇ c (hereinafter referred to as the design support force R ⁇ c (measured value)) measured based on the design value enlargement ratio ⁇ c. ) And the number J of ready-made piles 10 is determined as to whether or not the product of the margin M and the design load (column load) P is equal to or greater.
  • the expansion ratio ⁇ c giving priority to cost is determined as the optimal expansion ratio ⁇ opt, and at the same time, the expanded excavation section length L ⁇ c determined in step S14 corresponding to the expansion ratio ⁇ c is determined as the optimal expansion section length L ⁇ opt (step S28-1).
  • step S19 the pile construction is performed based on the case of the optimum enlargement ratio ⁇ opt and the optimum enlarged excavation section length L ⁇ opt determined in step S28-1. Thereby, construction cost can be reduced rather than implementing this pile construction based on the case of expansion ratio ⁇ d.
  • step S27-1 if it is determined in step S27-1 that the product of the design support force R ⁇ c (measured value) and the number of ready-made piles 10 is smaller than the product of the margin M and the design load (column load) P, A loading test is performed on the case with the design value expansion ratio ⁇ d, and the design support force R ⁇ d of the ready-made pile 10 is measured (step S26-2).
  • step S27-2 it is examined whether or not the product of the number of piles J and the design support force R ⁇ d (measured value) is greater than or equal to the product of the margin M and the design load (column load) P (step S27-2). That is, in the case of the design support force R ⁇ d, it is examined whether or not the conditional expression (2) described above is satisfied.
  • step S27-2 when the product of the number of piles J and the design support force R ⁇ d (measured value) is greater than or equal to the product of the margin M and the design load (column load) P, the design value enlargement ratio ⁇ d is optimized.
  • the expansion ratio ⁇ opt is determined, and at the same time, the expanded excavation section length L ⁇ d determined in step S14 corresponding to the expansion ratio ⁇ d is determined as the optimal expansion section length L ⁇ opt (step S28-2).
  • step S28-2 when the enlargement ratio ⁇ d is determined to be the optimum enlargement value ⁇ opt, the process proceeds to step S19. Based on the case of the optimum enlargement ratio ⁇ opt and the optimum enlarged excavation section length L ⁇ opt determined in step S28-2. Implement this pile construction.
  • step S27-2 if it is determined in step S27-2 that the product of the design support force R ⁇ d (measured value) and the number J of ready-made piles 10 is smaller than the product of the margin M and the design load (column load) P, A loading test is performed on the case with the safety expansion ratio ⁇ s, and the design bearing force R ⁇ s of the ready-made pile 10 is measured (step S26-3).
  • step S27-3 it is examined whether or not the product of the number of piles J and the design support force R ⁇ s (measured value) is greater than or equal to the product of the margin M and the design load (column load) P (step S27-3). That is, in the case of the design support force R ⁇ s (measured value), it is examined whether or not the conditional expression (2) is satisfied.
  • step S27-3 when the product of the number of piles J and the design support force R ⁇ s (measured value) is equal to or greater than the product of the margin M and the design load (column load) P, the enlargement ratio ⁇ s is set to the optimum enlargement ratio.
  • the enlarged excavation section length L ⁇ s determined in step S14 corresponding to the enlargement ratio ⁇ s is determined as the optimum enlargement section length L ⁇ opt (step S28-3).
  • step S28-3 when the enlargement ratio ⁇ s is determined to be the optimum enlargement value ⁇ opt, the process proceeds to step S19. Based on the case of the optimum enlargement ratio ⁇ opt and the optimum enlarged excavation section length L ⁇ opt determined in step S28-3. Implement this pile construction.
  • step S27-3a when the product of the number of piles J and the design support force R ⁇ s (measured value) is smaller than the product of the margin M and the design load (column load) P in step S27-3, a new design support force R And a new pile number J is calculated (step S27-3a). For example, with the setting of the new design support force R, the new pile number J is set to (J + 1), and the pile number is increased by one.
  • step S28-4 the cost is compared among the enlargement ratios ⁇ d and ⁇ s, and the cheaper one is determined as the optimum enlargement ratio ⁇ opt, and at the same time, one of the enlarged excavation section lengths L ⁇ d and L ⁇ s determined in step S14 corresponding to the enlargement ratio ⁇ opt. Is determined as the optimum enlarged portion length L ⁇ opt (step S28-4). Thereafter, the process proceeds to step S19, and the main pile construction is performed based on the case of the optimum enlargement ratio ⁇ opt and the optimum enlarged excavation section length L ⁇ opt determined in step S28-4.
  • the loading test is performed from the test pile 10 'corresponding to the cost-priority expansion ratio ⁇ c, it is possible to set the optimum value ⁇ opt of the expansion ratio ⁇ that does not become over-specification more efficiently. it can. Further, since the loading test is performed from the test pile 10 ′ corresponding to the cost-prioritized enlargement ratio ⁇ c, when the optimum enlargement ratio ⁇ opt is set to a smaller value of the enlargement ratio ⁇ , it corresponds to the enlargement ratio ⁇ . It is possible to minimize the number of times the loading test of the design support force R is performed.
  • the load test can be performed only once, so the optimum value ⁇ opt of the enlargement ratio ⁇ that does not become over-specification is set more efficiently. can do.
  • FIG. 8 is a flowchart showing details of a modification of the method for constructing a ready-made pile according to another embodiment of the present invention.
  • test pile construction step S25-1 in order to more efficiently and surely set the optimum expansion ratio ⁇ opt that does not become overspec, first, in the vicinity of the ground GN that actually builds the ready-made pile 10, For the case of the enlargement ratio ⁇ c, the test pile 10 ′ corresponding to the ready-made pile 10 is constructed (test pile construction step S25-1).
  • step S26-1 is performed, and then step S28-1 is performed after step S27-1.
  • step S19 the pile construction is performed based on the case of the optimum enlargement ratio ⁇ opt and the optimum enlarged excavation section length L ⁇ opt determined in step S28-1. Thereby, construction cost can be reduced rather than implementing this pile construction based on the case of expansion ratio ⁇ d.
  • step S27-1 if it is determined in step S27-1 that the product of the design support force R ⁇ c (measured value) and the number J of ready-made piles 10 is smaller than the product of the margin M and the design load (column load) P,
  • the predicted design support force R ⁇ d ′ is estimated based on the design support force R ⁇ c (measured value) measured in S27-1 (predicted design support force estimation step S27-1a). Note that the method for estimating the predicted design support force R ⁇ d ′ in the predicted design support force estimation step S27-1a is the same as described above, and thus the description thereof is omitted.
  • test pile construction step S25-2 the test pile 10 ′ corresponding to the ready-made pile 10 is constructed (test pile construction step S25-2).
  • step S26-2 is performed, and then step S28-2 is performed through step S27-2. And it transfers to process S19 and implements this pile construction based on the case of the optimal expansion ratio omegaopt determined by process S28-2, and the optimal expansion excavation part length Lomegaopt.
  • step S27-2 when it is determined in step S27-2 that the product of the design support force R ⁇ d (measured value) and the number J of ready-made piles 10 is smaller than the product of the margin M and the design load (column load) P,
  • the predicted design support force R ⁇ s ′ is estimated based on the design support force R ⁇ d (measured value) measured in step S26-2 (predicted design support force estimation step S27-2a). Note that the method for estimating the predicted design support force R ⁇ s ′ in the predicted design support force estimation step S27-2a is the same as described above, and thus the description thereof is omitted.
  • test pile 10 ′ corresponding to the ready-made pile 10 is installed in the case of the expansion ratio ⁇ s (test pile construction step S25-3).
  • step S26-3 is performed, and then step S28-3 is performed via step S27-3. And it transfers to process S19 and implements this pile construction based on the case of the optimal expansion ratio omegaopt determined by process S28-3 and the optimal expansion excavation part length Lomegaopt.
  • step S27-3 when it is determined in step S27-3 that the product of the design support force R ⁇ s (measured value) and the number J of ready-made piles 10 is smaller than the product of the margin M and the design load (column load) P, As described above, step S27-3a and step S28-4 are performed.
  • step S19 the pile construction is performed based on the case of the optimum enlargement ratio ⁇ opt and the optimum enlarged excavation section length L ⁇ opt determined in step S28-4.
  • the optimum value ⁇ opt of the expansion ratio ⁇ that does not become over-specification more efficiently. Can be set. Further, since the loading test is performed from the test pile 10 ′ corresponding to the cost-prioritized enlargement ratio ⁇ c, when the optimum enlargement ratio ⁇ opt is set to a smaller value of the enlargement ratio ⁇ , it corresponds to the enlargement ratio ⁇ . It is possible to minimize the number of times the loading test of the design support force R is performed.

Abstract

 This invention includes: setting steps (S13, S14) for setting a plurality of expansion ratios representing the proportion of the inside diameter of an expansion excavation unit (5) relative to the outside diameter design value obtained by adding a desired clearance value to the outer diameter of the tip part (10a) of a prefabricated pile (10); a design-support-force-measuring step (S16) for performing a load test with regards to one or more expansion ratios selected from the expansion ratios, and measuring the design support force for the prefabricated pile for the respective expansion ratio; a design-support-force-determining step (S17) for determining whether or not the product of the design support force and the number of prefabricated piles to be used is equal to or greater than the desired design load acting on a pile foundation formed by the prefabricated piles; an optimum-expansion-ratio-determining step (S18) for determining the smallest of the expansion ratios satisfying the criterion of the product being equal to or greater than the design load to be the optimum expansion ratio for the expansion excavation unit; and an expansion-excavation-unit-formation step (S19) for forming the expansion excavation unit on the basis of the optimum expansion ratio.

Description

既製杭の施工方法、プログラム、記憶媒体、杭基礎、及び既製杭の施工システムReady-made pile construction method, program, storage medium, pile foundation, and ready-made pile construction system
 本発明は、既製杭の施工方法、プログラム、記憶媒体、杭基礎、及び既製杭の施工システムに関する。 The present invention relates to a method for constructing a ready-made pile, a program, a storage medium, a pile foundation, and a construction system for a ready-made pile.
 建造物等の基礎構造として、PHC杭、RC杭、PRC杭、鋼杭、SC杭、節杭等の既製杭を地盤に形成された杭孔内に埋設してなる杭基礎が多用されている。当該既製杭を建て込んで杭を施工する方法として、埋込み杭工法が知られている。埋込み杭工法は、打ち込み杭工法のような騒音、振動が少なく、特に市街地などで多用されている。埋込み杭工法には、予めアースオーガ等の掘削装置により掘削した孔内に既製杭を建て込むプレボーリング工法と、中空の既製杭の内部にアースオーガを挿入して、既製杭の先端下部の地盤を掘削し、掘削に伴って既製杭を孔内に建て込む中掘り工法等がある。 As foundation structures for buildings, etc., pile foundations made by burying prefabricated piles such as PHC piles, RC piles, PRC piles, steel piles, SC piles, and node piles in pile holes formed in the ground are often used. . An embedded pile method is known as a method for constructing a pile by building the ready-made pile. The embedded pile method has less noise and vibration than the driven pile method, and is often used particularly in urban areas. The embedded pile method includes a pre-boring method in which a ready-made pile is built in a hole excavated in advance by a drilling device such as an earth auger, and a ground auger is inserted into a hollow ready-made pile, and the ground below the tip of the ready-made pile is There is a medium digging method that builds a ready-made pile in the hole.
 埋込み杭工法では、まず、杭孔を掘削するとともに当該杭孔の底部に拡大掘削部を形成し、次に拡大掘削部内にセメントミルク等の根固め液を注入し、その内部に既製杭の先端部を挿入していわゆる根固め部を形成して先端支持力を増大させている。杭孔の底部に拡大掘削部を形成してから根固め部を形成する既製杭の施工方法として、特許文献1には、プレボーリング工法によるもの、特許文献2には、中掘り工法によるものがそれぞれ開示されている。 In the embedded pile method, first, a pile hole is excavated and an enlarged excavation part is formed at the bottom of the pile hole, and then a root-setting liquid such as cement milk is injected into the enlarged excavation part, and the tip of the ready-made pile is inserted into the inside. The tip support force is increased by inserting a portion to form a so-called rooted portion. As a construction method of a ready-made pile that forms an enlarged excavation part at the bottom of a pile hole and then forms a root-clamping part, Patent Document 1 includes a pre-boring method, and Patent Document 2 includes a medium-digging method. Each is disclosed.
特開2008-106426号公報JP 2008-106426 A 特開2006-342560号公報JP 2006-342560 A
 しかしながら、プレボーリング工法や中掘り工法等の埋込み杭工法による既製杭の施工方法では、地盤強度が予測しにくい環境や地盤強度にバラツキが大きい環境において、地盤強度と既製杭の支持力を適合させることが難しい等の問題があった。すなわち、既製杭の載荷試験をした際に地盤強度が予想より高い場合には、当該既製杭の設計支持力に対して過大な先端支持力が得られるため、いわゆるオーバースペックとなり、不経済的な設計となってしまう。一方、地盤強度が予想より低い場合には、当該設計支持力に対して過小な先端支持力しか得られないため、改めて拡大掘削部を含む杭孔を設計し直す必要がある。 However, in the pre-boring method such as the pre-boring method and the digging method, the pre-made pile construction method adapts the ground strength and the bearing capacity of the pre-made pile in the environment where the ground strength is difficult to predict or the ground strength varies widely. There was a problem that it was difficult. In other words, if the ground strength is higher than expected when a load test of a ready-made pile is performed, an excessive tip support force can be obtained with respect to the design support force of the ready-made pile. It becomes a design. On the other hand, when the ground strength is lower than expected, only a tip support force that is too small relative to the design support force can be obtained. Therefore, it is necessary to redesign the pile hole including the enlarged excavation part.
 特に、根固め部を形成する際に、必要以上に余分に大きな拡大掘削部を掘削すると、いわゆるオーバースペックとなり、根固め部を形成するための根固め液の注入量や拡大掘削部を掘削する際に排出される排土量が余分に多くなり、材料等のコスト面や施工作業の効率面等において好ましくない。すなわち、既製杭を施工する過程において、根固め部を形成する際にオーバースペックとならないように、既製杭の先端部の外径に対する拡大掘削部の内径の割合を示す拡大比の最適な設計が極めて重要となる。特許文献1及び特許文献2では、アースオーガ等の掘削装置を用いて拡大掘削部を形成してから既製杭を建て込んで根固め部を形成する施工方法に関しては、言及しているが、拡大掘削部の拡大比の最適値を求めることに関しては、言及していない。 In particular, when forming an enlarged excavation part that is larger than necessary when forming the root consolidation part, so-called over-specification occurs, and the injection amount of the root compaction liquid and the expansion excavation part for forming the root consolidation part are excavated. The amount of discharged soil is excessively increased, which is not preferable in terms of the cost of materials and the efficiency of construction work. In other words, in the process of constructing ready-made piles, the optimal design of the expansion ratio that shows the ratio of the inner diameter of the enlarged excavation part to the outer diameter of the tip part of the ready-made piles is not to be over-spec when forming the consolidation part. It becomes extremely important. In patent document 1 and patent document 2, although it refers to the construction method which forms an enlarged excavation part using excavation apparatuses, such as an earth auger, and then builds a ready-made pile and forms a solidification part, expansion No reference is made to obtaining the optimum value of the expansion ratio of the excavated part.
 本発明は、上記課題に鑑みてなされたものであり、底部側に拡大掘削部を有する杭孔に既製杭を建て込む際に、地盤強度に合わせた既製杭の経済的な設計及び施工を可能とする拡大比を効率的に設定する既製杭の施工方法、プログラム、記憶媒体、杭基礎、及び既製杭の施工システムを提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and when a pre-made pile is built in a pile hole having an enlarged excavation part on the bottom side, an economical design and construction of the pre-made pile according to the ground strength is possible. It aims at providing the construction method, program, storage medium, pile foundation, and construction system of a ready-made pile which set the expansion ratio efficiently.
 本発明の一態様は、底部側に内径を拡大した拡大掘削部が形成された杭孔に既製杭を建て込む既製杭の施工方法であって、前記既製杭の先端部の外径に所望のクリアランス値を加算して求めた外径設計値に対する前記拡大掘削部の内径の割合を示す拡大比を前記既製杭の施工に係る所定のデータに基づいて異なる値で複数設定する設定工程と、これら複数の拡大比の中から選択した一又は複数の拡大比のケースについてそれぞれ載荷試験を実施して、前記一又は複数の拡大比における前記既製杭の設計支持力をそれぞれ測定する設計支持力測定工程と、前記設計支持力測定工程で測定された前記設計支持力のそれぞれについて、該設計支持力と使用する前記既製杭の本数との積が、前記既製杭により形成される杭基礎に作用する所望の設計荷重以上であるか否かについて判定する設計支持力判定工程と、前記設計支持力判定工程で前記積が前記設計荷重以上である条件を満たす前記拡大比のうち最小の拡大比を前記拡大掘削部を形成するための最適拡大比に決定する最適拡大比決定工程と、前記最適拡大比に基づいて前記拡大掘削部を形成する拡大掘削部形成工程と、を含むことを特徴とする。 One aspect of the present invention is a method for constructing a ready-made pile in which a ready-made pile is built in a pile hole in which an enlarged excavation part with an enlarged inner diameter is formed on the bottom side, and the outer diameter of the tip of the ready-made pile is desired. A setting step for setting a plurality of expansion ratios with different values based on predetermined data relating to the construction of the ready-made piles, and these, indicating the ratio of the inner diameter of the expanded excavation part to the outer diameter design value obtained by adding the clearance value Design bearing capacity measurement step of measuring a design bearing capacity of the ready-made pile at each of the one or more magnification ratios by carrying out a loading test for each of the cases of one or a plurality of magnification ratios selected from a plurality of magnification ratios And for each of the design support forces measured in the design support force measurement step, the product of the design support force and the number of the ready-made piles to be used acts on the pile foundation formed by the ready-made piles. Design of A design support force determination step for determining whether or not the load is greater than or equal to a load, and the expansion excavation unit that sets a minimum expansion ratio among the expansion ratios that satisfy the condition that the product is greater than or equal to the design load in the design support force determination step An optimum enlargement ratio determining step for determining an optimum enlargement ratio for forming the enlargement excavation portion and an enlargement excavation portion forming step for forming the enlargement excavation portion based on the optimum enlargement ratio are included.
 本発明の一態様によれば、地盤強度に合わせた既製杭の経済的な設計を可能にする最適拡大比を効率的に設定することができる。これにより、拡大掘削部を形成する際におけるオーバースペックを低減できる。具体的に、設計支持力測定工程にて載荷試験を実施して設計支持力を求め、当該設計支持力に基づいて設計支持力判定工程及び最適拡大比決定工程を実施し、最小の拡大比を最適拡大比とすることで、当初設定した既製杭の仕様(杭種、杭径D、杭長L、材料強度等)の仕様を変更することなく、設計支持力を決定することができる。また、なるべく少ない回数の載荷試験で最適拡大比を設定可能とするため、載荷試験の手間及び試験期間を低減することができる。これにより、経済性を更に向上させることができる。さらに、既製杭は、プレボーリング工法や中掘り工法等の埋込み工法によって施工するため高止まりすることはなく、設計深度位置に確実に施工することができる。 According to one aspect of the present invention, it is possible to efficiently set an optimum expansion ratio that enables an economical design of a ready-made pile matched to the ground strength. Thereby, the overspec at the time of forming an expanded excavation part can be reduced. Specifically, a loading test is performed in the design bearing capacity measurement process to obtain the design bearing capacity, and the design bearing capacity determination process and the optimum magnification ratio determination process are performed based on the design bearing capacity, and the minimum magnification ratio is determined. By setting it as the optimal expansion ratio, the design bearing capacity can be determined without changing the specifications of the ready-made pile specifications (pile type, pile diameter D, pile length L, material strength, etc.) that were initially set. In addition, since the optimum enlargement ratio can be set with as few loading tests as possible, it is possible to reduce the labor and test period of the loading test. Thereby, economic efficiency can further be improved. Furthermore, since the ready-made pile is constructed by an embedding method such as a pre-boring method or a medium digging method, it does not stop at a high level and can be reliably constructed at a design depth position.
 このとき、本発明の一態様では、前記設定工程において、少なくとも前記所定のデータに基づいて設定された設計値拡大比と、該設計値拡大比より値が小さい拡大比と、該設計値拡大比より値が大きい拡大比とを設定することとしてもよい。 At this time, according to one aspect of the present invention, in the setting step, a design value enlargement ratio set based on at least the predetermined data, an enlargement ratio that is smaller than the design value enlargement ratio, and the design value enlargement ratio An enlargement ratio having a larger value may be set.
 このように、設計値拡大比より小さい拡大比と大きい拡大比を含めて設定工程で設定された設計値拡大比の妥当性をより精査することができる。また、設計値拡大比より小さい拡大比で施工すれば、その分、施工能率がアップするだけでなく、掘削量や硬化性材料の使用量を低減することができ、施工機材のスペックを抑制することができる。さらに、設計値拡大比より大きい拡大比で施工すれば、その分、掘削量や先端根固め部の硬化性材料の使用量は増すが、より安全な設計・施工が可能となる。 Thus, the validity of the design value magnification ratio set in the setting process including the magnification ratio smaller than the design value magnification ratio and the large magnification ratio can be further examined. In addition, if construction is carried out at an enlargement ratio smaller than the design value enlargement ratio, not only will the construction efficiency be improved, but the amount of excavation and the use of curable materials can be reduced, and the specifications of construction equipment can be reduced. be able to. Furthermore, if construction is performed at an enlargement ratio that is larger than the design value enlargement ratio, the amount of excavation and the amount of curable material used for hardening the tip are increased, but safer design and construction are possible.
 また、本発明の一態様では、前記設定工程において、更に前記複数の拡大比のケースについて、前記拡大掘削部の軸方向の長さである拡大掘削部長をそれぞれ設定することとしてもよい。 Further, in one aspect of the present invention, in the setting step, an enlarged excavation section length that is an axial length of the enlarged excavation section may be set for each of the plurality of enlargement ratio cases.
 このようにすれば、拡大掘削部の拡大比と軸方向長さの妥当性を検討した上で最適な拡大比と拡大掘削部長を決定するので、より好適な拡大掘削部の大きさを確保することができる。 In this way, the optimal enlargement ratio and the length of the expanded excavation section are determined after examining the appropriateness of the expansion ratio and the axial length of the expanded excavation section, so that a more suitable size of the expanded excavation section is secured. be able to.
 また、本発明の一態様では、前記設計支持力判定工程において、前記設計値拡大比から該設計値拡大比に基づいて測定された前記設計支持力と前記既製杭の前記本数との積が、前記既製杭により形成される前記杭基礎に作用する前記所望の設計荷重以上であるか否かについて判定し、前記設計支持力判定工程で前記積が前記所望の設計荷重以上である場合には、更に少なくとも前記設計支持力測定工程で測定された前記設計支持力に基づいて推定される予測設計支持力が、前記設定工程にて設定された設計支持力以上であるか否かについて判定する予測設計支持力判定工程を含むこととしてもよい。 Moreover, in one aspect of the present invention, in the design support force determination step, a product of the design support force measured based on the design value enlargement ratio from the design value enlargement ratio and the number of the ready-made piles, It is determined whether or not the desired design load acting on the pile foundation formed by the ready-made piles is greater than or equal to the desired design load in the design support force determination step. Further, a predictive design for determining whether or not a predicted design support force estimated based on at least the design support force measured in the design support force measurement step is greater than or equal to the design support force set in the setting step. A supporting force determination step may be included.
 このようにすれば、設定工程で設定した設計値拡大比の妥当性をより精査した上でより好適な最適拡大比を確実に設定することができる。 In this way, it is possible to reliably set a more suitable optimum enlargement ratio after further examining the validity of the design value enlargement ratio set in the setting step.
 また、本発明の一態様では、前記設計支持力判定工程において、前記複数の拡大比の小さいものから順に該拡大比に基づいて測定された前記設計支持力と前記既製杭の前記本数との積が、前記既製杭により形成される前記杭基礎に作用する前記所望の設計荷重以上であるか否かについて判定することとしてもよい。 In one aspect of the present invention, in the design support force determination step, the product of the design support force measured based on the enlargement ratio and the number of the ready-made piles in order from the smallest of the plurality of enlargement ratios. However, it is good also as determining whether it is more than the said desired design load which acts on the said pile foundation formed with the said ready-made pile.
 このようにすれば、オーバースペックとならない最適拡大比をより効率よく確実に設定することができる。 In this way, it is possible to more efficiently and reliably set the optimum enlargement ratio that does not result in over-spec.
 また、本発明の一態様では、前記既製杭は、先端部の外周面に凸部が設けられる節杭であることとしてもよい。 Moreover, in one aspect of the present invention, the ready-made pile may be a nodal pile provided with a convex portion on the outer peripheral surface of the tip portion.
 このようにすれば、根固め部との一体性を向上させることができる。また、特に節杭を施工する際におけるオーバースペックや高止まりを低減できる。 In this way, it is possible to improve the integrity with the root hardening part. In addition, it is possible to reduce over specs and high stops especially when constructing joint piles.
 また、本発明の他の態様は、上述した何れかに記載の既製杭の施工方法をコンピュータに実行させるためのプログラムである。 Moreover, the other aspect of this invention is a program for making a computer perform the construction method of the ready-made pile in any one mentioned above.
 本発明の他の態様によれば、かかるプログラムに沿って、なるべく少ない回数の載荷試験で杭孔の底部側に形成される拡大掘削部の最適拡大比を設定することができる。 According to another aspect of the present invention, the optimal expansion ratio of the expanded excavation portion formed on the bottom side of the pile hole can be set in accordance with such a program in as few loading tests as possible.
 また、本発明の他の態様は、上述した何れかに記載の既製杭の施工方法をコンピュータに実行させるためのプログラムを前記コンピュータで読み取り可能に記憶した記憶媒体である。 Moreover, the other aspect of this invention is the storage medium which memorize | stored the program for making a computer perform the construction method of the ready-made pile described in any of the above-mentioned so that a computer could read.
 本発明の他の態様によれば、記憶媒体に記憶されたプログラムに沿って、なるべく少ない回数の載荷試験で杭孔の底部側に形成される拡大掘削部の最適拡大比を設定することができる。 According to the other aspect of the present invention, the optimum expansion ratio of the expanded excavation part formed on the bottom side of the pile hole can be set in the loading test as few times as possible according to the program stored in the storage medium. .
 また、本発明の他の態様は、上述した何れかに記載の既製杭の施工方法により地盤に建て込まれた既製杭により形成される杭基礎である。 Moreover, the other aspect of this invention is the pile foundation formed with the ready-made pile built in the ground by the construction method of the ready-made pile described in any one of the above-mentioned.
 本発明の他の態様によれば、既製杭を地盤に建て込む際におけるオーバースペックや高止まりを低減できるので、かかる既製杭からなる杭基礎を施工する際のコストを低減し、かつ施工作業効率を向上させられる。 According to another aspect of the present invention, since it is possible to reduce over-spec and high stop when building ready-made piles on the ground, the cost when constructing a pile foundation made of such ready-made piles is reduced, and construction work efficiency is reduced. Can be improved.
 また、本発明の他の態様は、底部側に内径を拡大した拡大掘削部が形成された杭孔に既製杭を建て込む既製杭の施工システムであって、少なくとも前記既製杭の施工に係る所定のデータを記憶する記憶部と、少なくとも前記所定のデータに基づいてコンピュータで演算処理して、前記既製杭の先端部の外径に所望のクリアランス値を加算して求めた外径設計値に対する前記拡大掘削部の内径の割合を示す拡大比を求める演算部と、前記演算部に含まれ、少なくとも前記既製杭の施工に係る所定のデータに基づいて、前記拡大比を異なる値で複数設定する設定部と、前記演算部に含まれ、少なくとも前記設計支持力測定装置で測定された前記設計支持力のそれぞれについて、該設計支持力と使用する前記既製杭の本数との積が、前記既製杭により形成される杭基礎に作用する所望の設計荷重以上であるか否かについて判定する判定部と、前記演算部に含まれ、少なくとも前記判定部で前記積が前記設計荷重以上である条件を満たす前記拡大比のうち最小の拡大比を、前記拡大掘削部を形成するための最適拡大比に決定する決定部と、前記設定部で設定された複数の前記拡大比の中から選択した一又は複数の拡大比のケースについてそれぞれ載荷試験を実施して、前記一又は複数の拡大比における前記既製杭の設計支持力をそれぞれ測定する設計支持力測定装置と、先端側に外径方向に拡大可能な可動掘削部が設けられ、前記杭孔を掘削する際に前記最適拡大比に基づいて前記拡大掘削部を形成する掘削装置と、を備えることを特徴とする Further, another aspect of the present invention is a ready-made pile construction system in which a ready-made pile is built in a pile hole in which an enlarged excavation part having an enlarged inner diameter is formed on the bottom side, and at least a predetermined related to the construction of the ready-made pile. The storage unit for storing the data, and calculation processing by a computer based on at least the predetermined data, the outer diameter design value obtained by adding a desired clearance value to the outer diameter of the tip of the ready-made pile A calculation unit for obtaining an enlargement ratio indicating a ratio of an inner diameter of the enlarged excavation part, and a setting that is included in the calculation part and sets a plurality of enlargement ratios with different values based on at least predetermined data relating to the construction of the ready-made pile And the product of the design support force and the number of the ready-made piles to be used for each of the design support forces measured at least by the design support force measuring device. A determination unit that determines whether or not the design load is greater than or equal to a desired design load acting on the pile foundation that is formed, and is included in the calculation unit, and at least satisfies the condition that the product is greater than or equal to the design load in the determination unit A determination unit that determines a minimum expansion ratio among the expansion ratios as an optimal expansion ratio for forming the expansion excavation unit, and one or a plurality selected from the plurality of expansion ratios set in the setting unit A design bearing force measuring device for carrying out a loading test for each of the cases with an enlargement ratio and measuring the design support force of the ready-made pile at the one or more enlargement ratios, and capable of expanding in the outer diameter direction on the tip side A movable excavation section, and a drilling device that forms the expansion excavation section based on the optimum expansion ratio when excavating the pile hole.
 本発明の他の態様によれば、なるべく少ない回数の載荷試験で杭孔の底部側に形成される拡大掘削部の最適拡大比を設定することができるので、拡大掘削部を形成する際におけるオーバースペックや高止まりを効率的に低減できる。 According to another aspect of the present invention, the optimum enlargement ratio of the enlarged excavation part formed on the bottom side of the pile hole can be set in as few loading tests as possible. Specs and high stops can be reduced efficiently.
 このとき、本発明の他の態様では、前記記憶部は、前記所定のデータとして、少なくとも前記既製杭が建て込まれる地盤の土質データ、前記載荷試験の測定データ、及び前記既製杭の過去の施工実績データをデータベース化して記憶することとしてもよい。 At this time, in another aspect of the present invention, the storage unit includes, as the predetermined data, at least soil soil data in which the ready-made pile is built, measurement data of the load test described above, and past construction of the ready-made pile. The result data may be stored as a database.
 このような既製杭の施工に係る所定のデータに基づいて最適拡大比を設定することによって、より実際の地盤に好適な最適拡大比に基づいた拡大掘削部を形成することができる。 By setting the optimal expansion ratio based on the predetermined data relating to the construction of such ready-made piles, it is possible to form an expanded excavation section based on the optimal expansion ratio more suitable for actual ground.
 以上説明したように本発明によれば、底部側に内径を拡大した拡大掘削部が形成された杭孔に既製杭を建て込む際に、地盤強度に合わせた既製杭の経済的な設計及び施工を可能とする拡大比を効率的に設定する既製杭の施工方法等を提供できる。また、本発明によれば、既製杭は、プレボーリング工法や中掘り工法等の埋込み工法によって施工するため、高止まりすることなく、設計深度位置に確実に施工することができる。さらに、本発明によれば、杭孔に既製杭を建て込む際に、なるべく少ない回数の載荷試験で杭孔の底部側に形成される拡大掘削部の最適拡大比を設定できる。 As described above, according to the present invention, when a ready-made pile is built in a pile hole in which an enlarged excavation part with an enlarged inner diameter is formed on the bottom side, an economical design and construction of a ready-made pile according to the ground strength is performed. It is possible to provide a method for constructing ready-made piles and the like that efficiently set an enlargement ratio that enables the construction. Moreover, according to this invention, since a ready-made pile is constructed | assembled by embedding methods, such as a pre-boring method and a medium digging method, it can construct reliably in a design depth position, without stopping at high. Furthermore, according to this invention, when building a ready-made pile in a pile hole, the optimal expansion ratio of the expansion excavation part formed in the bottom part side of a pile hole can be set by the load test as few times as possible.
本発明の一実施形態に係る既製杭の施工方法で建て込まれる既製杭により形成される杭基礎の一部を示す概略構成図である。It is a schematic block diagram which shows a part of pile foundation formed with the ready-made pile built with the construction method of the ready-made pile which concerns on one Embodiment of this invention. 本発明の一実施形態に係る既製杭の施工システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the construction system of the ready-made pile which concerns on one Embodiment of this invention. 本発明の一実施形態に係る既製杭の施工方法の概略を示すフロー図である。It is a flowchart which shows the outline of the construction method of the ready-made pile which concerns on one Embodiment of this invention. 本発明の一実施形態に係る既製杭の施工方法における既製杭の設計支持力の計算値と設計支持力の測定値との関係を示すグラフである。It is a graph which shows the relationship between the calculated value of the design support force of the ready-made pile in the construction method of the ready-made pile which concerns on one Embodiment of this invention, and the measured value of a design support force. 本発明の一実施形態に係る既製杭の施工方法の詳細を示すフロー図である。It is a flowchart which shows the detail of the construction method of the ready-made pile which concerns on one Embodiment of this invention. 本発明の一実施形態に係る既製杭の施工方法の変形例の詳細を示すフロー図である。It is a flowchart which shows the detail of the modification of the construction method of the ready-made pile which concerns on one Embodiment of this invention. 本発明の他の一実施形態に係る既製杭の施工方法の詳細を示すフロー図である。It is a flowchart which shows the detail of the construction method of the ready-made pile which concerns on other one Embodiment of this invention. 本発明の他の一実施形態に係る既製杭の施工方法の変形例の詳細を示すフロー図である。It is a flowchart which shows the detail of the modification of the construction method of the ready-made pile which concerns on other one Embodiment of this invention.
 以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail. The present embodiment described below does not unduly limit the contents of the present invention described in the claims, and all the configurations described in the present embodiment are essential as means for solving the present invention. Not necessarily.
(第1の実施形態)
 まず、本発明の一実施形態に係る既製杭の施工方法で建て込まれる既製杭と、当該既製杭により形成される杭基礎の構成の概略について図面を使用しながら説明する。図1は、本発明の一実施形態に係る既製杭の施工方法で建て込まれる既製杭により形成される杭基礎の一部を示す概略構成図である。なお、図1は、本実施形態に係る既製杭の施工方法のうち、特に、プレボーリング工法によって施工された既製杭の先端根固め部の構造を示す図となっている。
(First embodiment)
First, the outline of the structure of the ready-made pile built by the construction method of the ready-made pile which concerns on one Embodiment of this invention, and the pile foundation formed with the said ready-made pile is demonstrated, using drawing. Drawing 1 is a schematic structure figure showing a part of pile foundation formed with a ready-made pile built with a construction method of a ready-made pile concerning one embodiment of the present invention. In addition, FIG. 1 is a figure which shows the structure of the tip solidification part of the ready-made pile especially constructed by the pre-boring method among the construction methods of the ready-made pile concerning this embodiment.
 図1に示すように、杭基礎1は、地盤GNの所定の位置に掘削された杭孔3に建て込まれた既製杭10により形成されている。すなわち、地盤GNの所定の位置に複数の杭孔3が掘削され、各杭孔3に既製杭10がそれぞれ建て込まれ、これらの既製杭10により杭基礎1が形成されている。本実施形態では、既製杭10として、先端部10aの外周面10bに複数の凸部12が設けられる節杭が建て込まれている。なお、本実施形態に係る施工方法において、施工対象となる既製杭10は、節杭に限定されず、ストレート杭等の他の既製杭10にも適用可能である。 As shown in FIG. 1, the pile foundation 1 is formed by a ready-made pile 10 built in a pile hole 3 excavated at a predetermined position of the ground GN. That is, a plurality of pile holes 3 are excavated at a predetermined position of the ground GN, and ready-made piles 10 are respectively built in the respective pile holes 3, and the pile foundation 1 is formed by these ready-made piles 10. In this embodiment, as the ready-made pile 10, a node pile in which a plurality of convex portions 12 are provided on the outer peripheral surface 10b of the distal end portion 10a is built. In addition, in the construction method which concerns on this embodiment, the ready-made pile 10 used as construction object is not limited to a node pile, It is applicable also to other ready-made piles 10 such as a straight pile.
 また、既製杭10の先端側には、先端支持力を確保するために、根固め部14が設けられている。根固め部14は、杭孔3の底部側に硬化材となるセメントミルクを注入してから掘削土と撹拌混合してソイルセメントとし、このソイルセメント層内に、既製杭10の先端部10aを沈設し、ソイルセメントを固化させて一体化することにより形成される。本実施形態では、根固め部14は、より大きな先端支持力を確保するために、その外径が杭孔3の上部の内径より大きい拡大球根状となっている。このような拡大球根状の根固め部14を形成するために、杭孔3の底部側に内径を拡大した拡大掘削部5が形成される。 Moreover, in order to ensure the tip support force, a root-setting part 14 is provided on the tip side of the ready-made pile 10. The root consolidation part 14 injects cement milk as a hardening material into the bottom side of the pile hole 3 and then agitates and mixes with the excavated soil to form a soil cement. The tip 10a of the ready-made pile 10 is placed in the soil cement layer. It is formed by sinking and solidifying and integrating the soil cement. In the present embodiment, the root consolidation portion 14 has an enlarged bulb shape in which the outer diameter is larger than the inner diameter of the upper portion of the pile hole 3 in order to ensure a larger tip support force. In order to form such an enlarged bulb-shaped root consolidation part 14, an enlarged excavation part 5 having an enlarged inner diameter is formed on the bottom side of the pile hole 3.
 本実施形態では、図1に示すように、先端根固め部14の外径Deは、拡大掘削部5の内径Deと略同一となっている。そして、先端根固め部14の軸方向の長さLdは、拡大掘削部5の軸方向の長さである拡大掘削部長Lωより短い構成となっている。具体的には、拡大掘削部長Lωの軸方向の長さは、2m以上かつ杭孔3に建て込む既製杭10の杭長の50%以下であり、先端根固め部14の軸方向の長さLdは、2m又は先端根固め部14の外径Deの何れか大きい方の値とする。なお、根固め部14の長さLdは、拡大掘削部長Lωと略同一としてもよい。 In the present embodiment, as shown in FIG. 1, the outer diameter De of the tip rooting portion 14 is substantially the same as the inner diameter De of the enlarged excavation portion 5. Then, the axial length Ld of the tip rooting portion 14 is shorter than the extended excavation portion length Lω which is the axial length of the enlarged excavation portion 5. Specifically, the axial length of the expanded excavation section length Lω is 2 m or more and 50% or less of the pile length of the ready-made pile 10 to be built in the pile hole 3, and the axial length of the tip consolidation part 14 Ld is a larger value of either 2 m or the outer diameter De of the tip root fixing portion 14. The length Ld of the root hardening part 14 may be substantially the same as the expanded excavation part length Lω.
 また、既製杭10の所望の先端支持力を確保するためには、既製杭10の先端部10aの外径Donに対する根固め部14の外径De、すなわち、根固め部14を形成するために掘削される拡大掘削部5の内径Deの割合を示す拡大比ωの調整が必要となる。かかる拡大比ωは、既製杭10の施工前に行う事前の地質調査結果や統計データ、過去の施工データ等の既製杭10の施工に係る所定のデータに基づいて設計値が設定される。しかしながら、実際の施工現場で杭孔3を掘削した際に、地盤GNの地層構成や土質が事前の調査結果と異なることがあり、当該拡大比ωの設定値のままで既製杭10を施工すると、オーバースペックや高止まりを発生させる可能性がある。 Moreover, in order to ensure the desired tip supporting force of the ready-made pile 10, in order to form the outer diameter De of the root-solidified portion 14 with respect to the outer diameter Don of the tip portion 10a of the ready-made pile 10, that is, to form the root-solidified portion 14. It is necessary to adjust the enlargement ratio ω indicating the ratio of the inner diameter De of the enlarged excavation part 5 to be excavated. The expansion ratio ω is set to a design value based on predetermined data relating to the construction of the ready-made pile 10 such as a preliminary geological survey result, statistical data, and past construction data performed before the construction of the ready-made pile 10. However, when excavating the pile hole 3 at the actual construction site, the geological structure and soil quality of the ground GN may differ from the previous survey results, and when the ready-made pile 10 is constructed with the set value of the expansion ratio ω as it is , May cause over-spec or high-stop.
 このように、地盤GNの地層構成や土質が事前の調査結果と異なったり、地盤強度が予測しにくい環境や地盤強度にバラツキが大きい環境において、地盤強度と既製杭の支持力を適合させることが難しい。すなわち、既製杭10を施工する際には、地盤GNの地質状況を見極めて、適切な杭孔3の深さL、拡大掘削部5の拡大比ω、及び拡大掘削部長Lωを最適値にする必要がある。 In this way, it is possible to adapt the ground strength and the bearing capacity of ready-made piles in an environment where the geological structure and soil quality of the ground GN are different from the previous survey results, or in an environment where the ground strength is difficult to predict or where the ground strength varies widely. difficult. That is, when the ready-made pile 10 is constructed, the geological condition of the ground GN is determined, and the appropriate depth L of the pile hole 3, the enlargement ratio ω of the enlarged excavation part 5, and the enlarged excavation part length Lω are optimized. There is a need.
 特に、拡大掘削部5の拡大比ωは、根固め部14の外径Deを決定する値となり、また、設計値と実測値との誤差が大きい場合に、いわゆるオーバースペックとなって、材料等のコスト面や施工作業の効率面等において好ましくない。すなわち、所望の既製杭10の先端支持力を確保するために、根固め部14の長さLdは、硬化剤となるセメントミルクの投入量を調整することによって適宜調整できる。 In particular, the enlargement ratio ω of the enlarged excavation portion 5 is a value that determines the outer diameter De of the root consolidation portion 14, and when the error between the design value and the actual measurement value is large, so-called over-spec is obtained, and the material, etc. This is not preferable in terms of cost and construction work efficiency. That is, in order to secure the desired tip support force of the ready-made pile 10, the length Ld of the root-solidifying portion 14 can be adjusted as appropriate by adjusting the amount of cement milk that becomes a hardening agent.
 しかしながら、根固め部14の外径Deは、掘削部5の内径Deによって直接決まるので、拡大掘削部5を掘削後に調整することが難しい。換言すると、オーバースペックとならないようにした上で、所望の既製杭10の先端支持力を確保するためには、拡大掘削部5の拡大比ωの最適値を求めることが極めて重要となる。また、当該拡大比ωの最適値を求めるには、実際の現場となる地盤GNでの載荷試験の結果に基づいて、当該最適値を効率的に求めることが重要となる。 However, since the outer diameter De of the root consolidation part 14 is directly determined by the inner diameter De of the excavation part 5, it is difficult to adjust the enlarged excavation part 5 after excavation. In other words, it is extremely important to obtain the optimum value of the enlargement ratio ω of the enlarged excavation part 5 in order to ensure the desired tip support force of the ready-made pile 10 without over-spec. Further, in order to obtain the optimum value of the enlargement ratio ω, it is important to efficiently obtain the optimum value based on the result of the loading test on the ground GN that is the actual site.
 このため、本実施形態では、以下で説明する施工システム100(図2参照)による既製杭10の施工方法を実施して、より効率良く確実に拡大比ωの最適値を求めて、オーバースペックを低減させている。また、既製杭10を地盤GNに建て込む際におけるオーバースペックや高止まりを抑制して、当該既製杭10からなる杭基礎1を施工する際のコストを低減し、かつ施工作業効率を向上させるようにしている。 For this reason, in this embodiment, the construction method of the ready-made pile 10 by the construction system 100 (refer FIG. 2) demonstrated below is implemented, the optimal value of expansion ratio (omega) is calculated | required more efficiently and reliably, and an overspec is carried out. It is reduced. In addition, it is possible to suppress over-spec and high stop when building the ready-made pile 10 on the ground GN, to reduce the cost when constructing the pile foundation 1 made of the ready-made pile 10 and to improve the construction work efficiency. I have to.
 また、本実施形態では、根固め部14の拡大比ω、すなわち拡大掘削部5の拡大比ωは、拡大掘削部5の内径をDe、既製杭10の凸部12の外径Donに所望のクリアランス値xを加算して求めた外径設計値Ds(Ds=Don+x)を用いて、下記の式(1)により定義される。
    ω=De/Ds ・・・・・(1)
Further, in the present embodiment, the expansion ratio ω of the root consolidation portion 14, that is, the expansion ratio ω of the expansion excavation portion 5, is set to a desired value for the inner diameter De of the expansion excavation portion 5 and the outer diameter Don of the convex portion 12 of the ready-made pile 10. The outer diameter design value Ds (Ds = Don + x) obtained by adding the clearance value x is defined by the following equation (1).
ω = De / Ds (1)
 本実施形態において、拡大比ωは、例えば1.0~2.0の範囲で設定されているが、拡大比ωの上限値は、2.0に限定されるものではない。また、本実施形態では、既製杭10や杭孔3、拡大掘削部5の設計誤差等を考慮した上でより好適な拡大掘削部5の拡大比ωを求めるために、上記式(1)の分母には、既製杭10の先端部10aの外径Donの値でなく、当該外径Donに調整値となる所望のクリアランス値xを加算して求めた外径設計値Dsを用いている。 In the present embodiment, the enlargement ratio ω is set in the range of 1.0 to 2.0, for example, but the upper limit value of the enlargement ratio ω is not limited to 2.0. Further, in the present embodiment, in order to obtain a more suitable enlargement ratio ω of the enlarged excavation part 5 in consideration of design errors of the ready-made pile 10, the pile hole 3, and the enlarged excavation part 5, the above formula (1) For the denominator, not the value of the outer diameter Don of the tip 10a of the ready-made pile 10, but the outer diameter design value Ds obtained by adding the desired clearance value x as an adjustment value to the outer diameter Don is used.
 クリアランス値xは、既製杭10が施工される地盤強度を示すN値や過去の施工データ、土質データ等の施工に係る所定のデータに基づいて適宜決定される。例えば、既製杭10の先端部10aの外径Donが1.0mの場合に、クリアランス値xは、0.05m~0.1mのものが使用される。なお、クリアランス値xは、N値等によっては、0となることもある。また、クリアランス値は、最大で0.2mである。さらに、本実施形態では、図1に示すように、既製杭10として節杭が使用されているので、既製杭10の外径Donとして、凸部12の外径が使用されているが、既製杭10がストレート杭の場合には、当該ストレート杭の軸部の外径が使用される。 The clearance value x is appropriately determined on the basis of N data indicating the strength of the ground on which the ready-made pile 10 is constructed, past construction data, soil data, and other predetermined data relating to construction. For example, when the outer diameter Don of the tip portion 10a of the ready-made pile 10 is 1.0 m, the clearance value x is 0.05 m to 0.1 m. The clearance value x may be 0 depending on the N value or the like. The clearance value is 0.2 m at the maximum. Furthermore, in this embodiment, as shown in FIG. 1, since the joint pile is used as the ready-made pile 10, the outer diameter of the convex portion 12 is used as the outer diameter Don of the ready-made pile 10. When the pile 10 is a straight pile, the outer diameter of the shaft portion of the straight pile is used.
 次に、本発明の第1の実施形態に係る既製杭の施工システムの構成について、図面を使用しながら説明する。図2は、本発明の一実施形態に係る既製杭の施工システムの全体構成を示すブロック図である。 Next, the configuration of the ready-made pile construction system according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a block diagram showing the overall configuration of a ready-made pile construction system according to an embodiment of the present invention.
 図2に示すように、本実施形態に係る既製杭10の施工システム100は、ユーザが保有するコンピュータ101が既製杭10の施工に係る所定のデータを記憶するデータベースを有するデータベースサーバにアクセスして検索処理を行いながら、拡大掘削部5の拡大比ωの最適値を求める。なお、本明細書中において、「ユーザ」とは、既製杭10の設計又は施工業務を行う者をいう。また、「コンピュータ」とは、例えば、スーパーコンピュータ、汎用コンピュータ、オフィスコンピュータ、制御用コンピュータ、パソコン、携帯情報端末等の各種演算処理が可能な演算装置を備えた情報端末装置をいう。 As shown in FIG. 2, the construction system 100 of the ready-made pile 10 according to the present embodiment accesses a database server having a database in which the computer 101 owned by the user stores predetermined data related to the construction of the ready-made pile 10. While performing the search process, the optimum value of the enlargement ratio ω of the enlarged excavation section 5 is obtained. In the present specification, “user” refers to a person who designs or constructs the ready-made pile 10. The “computer” refers to an information terminal device including an arithmetic device capable of various arithmetic processes such as a super computer, a general-purpose computer, an office computer, a control computer, a personal computer, and a portable information terminal.
 本実施形態の施工システム100は、底部側に内径を拡大した拡大掘削部5が形成された杭孔3に既製杭10を建て込む際に使用され、コンピュータ101と、設計支持力測定装置128と、掘削装置130とを備える。当該施工システム100は、設計支持力測定装置128の測定データ等に基づいて、コンピュータ101で最適な拡大比ωを算出して、当該拡大比ωに基づいて掘削装置130で拡大掘削部5を有する杭孔3を掘削する。なお、施工システム100の構成は、図2に限定されず、その構成要素の一部を省略したり、他の構成要素を追加する等の種々の変形実施が可能である。 The construction system 100 according to the present embodiment is used when the ready-made pile 10 is built in the pile hole 3 in which the enlarged excavation portion 5 having an enlarged inner diameter is formed on the bottom side, and the computer 101, the design support force measuring device 128, And a drilling device 130. The construction system 100 calculates the optimum enlargement ratio ω with the computer 101 based on the measurement data of the design support force measuring device 128 and the like, and has the enlarged excavation unit 5 with the excavator 130 based on the enlargement ratio ω. The pile hole 3 is excavated. In addition, the structure of the construction system 100 is not limited to FIG. 2, A various deformation | transformation implementation, such as abbreviate | omitting a part of the component or adding another component, is possible.
 コンピュータ101は、図2に示すように、記憶部102、CPU( Central Processing Unit )110、入力部120、出力部122、通信部124、ROM(Read Only Memory)108、RAM(Random access Memory)106、及び記憶媒体104を備え、これらの構成要素がシステムバス125を介して相互に電気的に接続されている。従って、CPU110は、記憶部102、ROM108、RAM106、記憶媒体104へのアクセス、入力部120に対する操作状態の把握、出力部122に対するデータの出力、通信部124を介したインターネット126に対する各種情報の送受信等を行える。 As shown in FIG. 2, the computer 101 includes a storage unit 102, a CPU (Central Processing Unit) 110, an input unit 120, an output unit 122, a communication unit 124, a ROM (Read Only Memory) 108, and a RAM (Random access Memory) 106. , And a storage medium 104, and these components are electrically connected to each other via a system bus 125. Therefore, the CPU 110 accesses the storage unit 102, ROM 108, RAM 106, and storage medium 104, grasps the operation state of the input unit 120, outputs data to the output unit 122, and transmits / receives various information to / from the Internet 126 via the communication unit 124. Etc.
 記憶部102は、少なくとも既製杭10の施工に係る所定のデータを記憶する機能を有するデータサーバである。本実施形態では、記憶部102は、当該所定のデータとして、少なくとも既製杭10が建て込まれる地盤GNの土質データ、杭材及び施工仕様とそれを設計支持力測定装置128により載荷試験した測定データ、及び既製杭10の過去の施工実績データをデータベース化して記憶している。 The storage unit 102 is a data server having a function of storing at least predetermined data related to the construction of the ready-made pile 10. In the present embodiment, the storage unit 102 includes, as the predetermined data, at least soil data of the ground GN in which the ready-made pile 10 is built, pile materials, construction specifications, and measurement data obtained by performing a load test using the design support force measuring device 128. And the past construction results data of the ready-made pile 10 are stored as a database.
 このような既製杭の施工に係る所定のデータに基づいて、拡大掘削部5の最適拡大比ωを設定することによって、より実際の地盤GNにおける地層構成情報、土質情報等を含む地質データ等に基づいた好適な最適拡大比ωで拡大掘削部5を形成できるようになる。また、これらのデータを記憶部102に蓄積することにより、既製杭10を別の施工場所に建て込む際に、記憶部102に記憶された蓄積データを利用して、拡大掘削部5の拡大比ωと拡大掘削部長Lωの最適値をより高精度に求められるようになる。 Based on the predetermined data relating to the construction of such ready-made piles, by setting the optimum expansion ratio ω of the expanded excavation part 5, it becomes more geological data including the geological structure information, soil information, etc. in the actual ground GN The enlarged excavation section 5 can be formed with a suitable optimum enlargement ratio ω based on the above. In addition, by accumulating these data in the storage unit 102, when the ready-made pile 10 is built in another construction site, the expansion ratio of the expanded excavation unit 5 is utilized using the accumulated data stored in the storage unit 102. The optimum values of ω and the expanded excavation length Lω can be obtained with higher accuracy.
CPU110は、通信部124を介して受信したデータや、ROM108や記憶媒体104に記憶されている各種プログラムに従って、施工システム100に備わる各構成要素の動作を制御する機能を有する。また、CPU110は、これら各種処理を実行する際に、必要なデータ等を一時的に記憶するRAM106に適宜記憶させる機能を有する。 The CPU 110 has a function of controlling the operation of each component included in the construction system 100 in accordance with data received via the communication unit 124 and various programs stored in the ROM 108 and the storage medium 104. In addition, the CPU 110 has a function of appropriately storing necessary data and the like in the RAM 106 that temporarily stores these various processes.
本実施形態では、CPU110は、既製杭10の施工に係る所定のデータに基づいてコンピュータで演算処理して、拡大掘削部5の拡大比ωを求めるために必要となる各種演算処理を行う演算部として機能する。すなわち、CPU110は、少なくとも当該所定のデータに基づいてコンピュータ101で演算処理して、既製杭10の先端部10aの外径Donに所望のクリアランス値xを加算して求めた外径設計値Dsに対する拡大掘削部5の内径Deの割合を示す拡大比ωを求める機能を有する。 In the present embodiment, the CPU 110 performs arithmetic processing by a computer based on predetermined data relating to the construction of the ready-made pile 10 and performs various arithmetic processes necessary for obtaining the expansion ratio ω of the expanded excavation section 5. Function as. That is, the CPU 110 performs calculation processing by the computer 101 based on at least the predetermined data, and adds the desired clearance value x to the outer diameter Don of the tip portion 10a of the ready-made pile 10 with respect to the outer diameter design value Ds. It has a function of obtaining an enlargement ratio ω indicating the ratio of the inner diameter De of the enlarged excavation part 5.
 また、本実施形態では、CPU110は、設定部112と、判定部114と、決定部116とを備える。なお、本明細書中において、既製杭10の施工に係る「所定のデータ」とは、少なくとも既製杭10が建て込まれる地盤GNの土質データ、設計支持力測定装置128による載荷試験の測定データ、及び既製杭10の過去の施工実績データ等の各種データをいう。すなわち、「所定のデータ」とは、既製杭10を施工する過程で、拡大掘削部5を有する杭孔3を掘削する際に、当該拡大掘削部5の拡大比ωや拡大掘削部長Lωの最適値ωopt、Lωoptを決めるのに必要となる各種データをいい、杭種を決定する上でも利用される。 In the present embodiment, the CPU 110 includes a setting unit 112, a determination unit 114, and a determination unit 116. In the present specification, “predetermined data” related to the construction of the ready-made pile 10 is at least soil data of the ground GN in which the ready-made pile 10 is built, measurement data of a loading test by the design bearing capacity measuring device 128, And various data such as past construction performance data of the ready-made pile 10. That is, the “predetermined data” means that in the process of constructing the ready-made pile 10, when excavating the pile hole 3 having the enlarged excavation part 5, the optimum expansion ratio ω and the enlarged excavation part length Lω of the enlarged excavation part 5 It refers to various data necessary to determine the values ωopt and Lωopt, and is also used to determine the pile type.
 設定部112は、施工システム100で既製杭10を施工する過程において、既製杭10の施工に係る所定のデータに基づいて、既製杭10の設計荷重(柱荷重)Pや当該杭の設計支持力R、拡大掘削部5の拡大比ω、拡大掘削部長Lω等の設定を要する各種データを算出する機能を有する。本実施形態では、設定部112は、少なくとも既製杭10の施工に係る所定のデータに基づいて、拡大掘削部5の拡大比ωを異なる値で複数設定する機能を有する。また、本実施形態では、拡大比ωに対応する拡大掘削部長Lωも複数設定する機能を有する。 In the process of constructing the ready-made pile 10 in the construction system 100, the setting unit 112 is based on predetermined data relating to the construction of the ready-made pile 10, and the design load (column load) P of the ready-made pile 10 and the design support force of the pile. R, the expansion ratio ω of the expanded excavation section 5, the function of calculating various data that requires setting such as the expanded excavation section length Lω. In the present embodiment, the setting unit 112 has a function of setting a plurality of expansion ratios ω of the expanded excavation unit 5 with different values based on at least predetermined data relating to the construction of the ready-made pile 10. Moreover, in this embodiment, it has a function which sets multiple expansion excavation part length Lomega corresponding to expansion ratio (omega).
 判定部114は、施工システム100で既製杭10を施工する過程において、既製杭10の施工に係る所定のデータに基づいて設定された各種データの妥当性を判定する機能を有する。本実施形態では、判定部114は、少なくとも設計支持力測定装置128で測定された設計支持力Rのそれぞれについて、当該設計支持力Rと使用する既製杭10の本数Jとの積が、既製杭10により形成される杭基礎1に作用する所望の設計荷重(柱荷重)P以上であるか否かについて判定する機能を有する。 The determination unit 114 has a function of determining the validity of various data set based on predetermined data related to the construction of the ready-made pile 10 in the process of constructing the ready-made pile 10 with the construction system 100. In the present embodiment, the determination unit 114 determines that the product of at least the design support force R measured by the design support force measuring device 128 and the design support force R and the number of ready-made piles 10 to be used is the ready-made pile. 10 has a function of determining whether or not a desired design load (column load) P that is applied to the pile foundation 1 formed by 10 or more.
 決定部116は、判定部114での判定結果に基づいて、既製杭10の施工に係る所定のデータに基づいて設定された各種データの最適値を決定する機能を有する。本実施形態では、決定部116は、少なくとも判定部114で設計支持力Rと既製杭10の本数Jとの積が設計荷重(柱荷重)P以上である条件を満たす拡大比ωのうち、最小の拡大比ωを拡大掘削部5を形成するための最適拡大比ωoptに決定する機能を有する。また、本実施形態では、最適拡大比ωoptに対応する最適拡大掘削部長Lωoptも決定する機能を有する。 The determination unit 116 has a function of determining optimum values of various data set based on predetermined data relating to the construction of the ready-made pile 10 based on the determination result in the determination unit 114. In the present embodiment, the determination unit 116 is the smallest among the enlargement ratios ω that satisfy the condition that the product of the design support force R and the number J of the ready-made piles 10 is at least the design load (column load) P in the determination unit 114. Has the function of determining the optimum enlargement ratio ωopt for forming the enlarged excavation part 5. Moreover, in this embodiment, it has the function to determine also the optimal expansion excavation part length Lωopt corresponding to the optimal expansion ratio ωopt.
 入力部120は、既製杭10の施工に係る所定のデータ等の各種データを入力する機能を有し、例えばマウスやキーボード、タッチパネル等が用いられる。本実施形態では、入力部120により、例えば、設定部112、判定部114、決定部116を作動させる際の文字入力や、設計支持力測定装置128の測定データの入力が行われる。また、本実施形態では、入力部120は、少なくとも既製杭10の施工に係る所定のデータに基づいた拡大掘削部5の拡大比ωや拡大掘削部長Lωの最適値ωopt、Lωoptを求める際に必要なデータ等を入力するときにも使用される。すなわち、入力部120は、記憶部102に記憶される各種データを入力する際や、拡大比ωや拡大掘削部長Lωの最適値ωopt、Lωoptを求めるための各種データを入力する際に使用される。 The input unit 120 has a function of inputting various data such as predetermined data related to the construction of the ready-made pile 10, and for example, a mouse, a keyboard, a touch panel, or the like is used. In the present embodiment, the input unit 120 performs, for example, character input when operating the setting unit 112, the determination unit 114, and the determination unit 116 and input of measurement data of the design support force measuring device 128. Further, in the present embodiment, the input unit 120 is necessary when obtaining the optimum values ωopt and Lωopt of the enlarged excavation part 5 and the enlarged excavation part length Lω based on at least predetermined data relating to the construction of the ready-made pile 10. It is also used when inputting various data. That is, the input unit 120 is used when inputting various data stored in the storage unit 102 or when inputting various data for obtaining the optimum values ωopt and Lωopt of the enlargement ratio ω and the enlarged excavation part length Lω. .
 出力部122は、CPU110による演算結果やデータベースとなる記憶部102の情報等を出力する機能を有する。出力部122としては、例えば、表示モニタ等が用いられる。本実施形態では、出力部122により、例えば、設定部112、判定部114、決定部116を作動させる際の画面表示が行われる。 The output unit 122 has a function of outputting a calculation result by the CPU 110, information of the storage unit 102 serving as a database, and the like. For example, a display monitor or the like is used as the output unit 122. In the present embodiment, the output unit 122 performs screen display when the setting unit 112, the determination unit 114, and the determination unit 116 are operated, for example.
 記憶媒体104は、コンピュータ101により読み取り可能な媒体であり、プログラムやデータ等を格納する機能を有する。また、当該記憶媒体104の機能は、光ディスク(CD、DVD)、HDD、或いはUSB等の各種メモリ等により実現できる。記憶媒体104には、本実施形態に係る施工システム100の各構成要素の機能を実現させるためのプログラムが、コンピュータ101で読み取り可能に記憶されている。このため、当該プログラムによって、本実施形態に係る既製杭10の施工方法における各工程を、当該施工システム100の各構成要素の機能を実現させることによって実行させるようになる。なお、当該プログラムにより実行される本実施形態に係る既製杭10の施工方法の詳細については、後述する。 The storage medium 104 is a medium readable by the computer 101 and has a function of storing programs, data, and the like. The function of the storage medium 104 can be realized by various memories such as an optical disk (CD, DVD), HDD, or USB. In the storage medium 104, a program for realizing the function of each component of the construction system 100 according to the present embodiment is stored so as to be readable by the computer 101. For this reason, according to the said program, each process in the construction method of the ready-made pile 10 which concerns on this embodiment comes to be performed by implement | achieving the function of each component of the said construction system 100. FIG. In addition, the detail of the construction method of the ready-made pile 10 which concerns on this embodiment performed by the said program is mentioned later.
 設計支持力測定装置128は、既製杭10を建て込む地盤GNに形成された試験用杭孔3´に試験用の既製杭10´(以下、試験杭10´という)を施工してから載荷試験を実施して、当該試験杭10´の極限支持力を測定する機能を有する。本実施形態では、設計支持力測定装置128は、設定部112で設定された複数の拡大比ωの中から選択した一又は複数の拡大比ωのケースについて、それぞれ載荷試験を実施して、当該一又は複数の拡大比ωにおける既製杭10の極限支持力をそれぞれ測定する。 The design bearing capacity measuring device 128 performs a loading test after constructing a test pile 10 '(hereinafter referred to as a test pile 10') in a test pile hole 3 'formed in the ground GN in which the ready-made pile 10 is built. And has the function of measuring the ultimate bearing capacity of the test pile 10 '. In the present embodiment, the design support force measuring device 128 performs a loading test for each case of one or a plurality of magnification ratios ω selected from the plurality of magnification ratios ω set by the setting unit 112, and The ultimate bearing capacity of the ready-made pile 10 at one or a plurality of enlargement ratios ω is measured.
 具体的には、設計支持力測定装置128は、設定部112で設定された複数の拡大比ωの中から選択した一又は複数の拡大比ωのケースに対応する試験杭10´の載荷試験を実施して、試験杭10´の極限支持力を測定する。また、設計支持力測定装置128は、試験杭10´の極限支持力を測定する過程において、既製杭10の施工前に試験用杭孔3´をボーリングした際に、既製杭10を施工する地盤GNの地質データやN値を確認する際にも利用される。なお、設計支持力測定装置128は、載荷試験装置と称する場合もある。 Specifically, the design support force measuring device 128 performs a loading test of the test pile 10 ′ corresponding to the case of one or a plurality of enlargement ratios ω selected from the plurality of enlargement ratios ω set by the setting unit 112. Implement and measure the ultimate bearing capacity of the test pile 10 '. Further, the design bearing capacity measuring device 128 is a ground for constructing the ready-made pile 10 when the test pile hole 3 'is drilled before the ready-made pile 10 is constructed in the process of measuring the ultimate bearing capacity of the test pile 10'. It is also used to check GN geological data and N value. The design support force measuring device 128 may be referred to as a loading test device.
 掘削装置130は、地盤GNに所望の径と深さを有する杭孔3を掘削する機能を有する。掘削装置130として、周囲にスクリュー状の掘削刃132が設けられた掘削ロッド131と当該掘削ロッド131の先端側に外径方向に拡大可能な可動掘削部134が設けられたアースオーガ等が使用される。本実施形態では、掘削装置130で杭孔3を掘削する際には、CPU110の決定部116で決定された拡大掘削部5の最適拡大比ωoptと拡大掘削部5の最適拡大掘削部長Lωoptに基づいて拡大掘削部5を形成する。 The excavator 130 has a function of excavating a pile hole 3 having a desired diameter and depth in the ground GN. As the excavator 130, an earth auger or the like provided with a excavating rod 131 provided with a screw-like excavating blade 132 around it and a movable excavating portion 134 that can be expanded in the outer diameter direction on the distal end side of the excavating rod 131 is used. The In this embodiment, when excavating the pile hole 3 with the excavator 130, the optimum enlargement ratio ωopt of the enlarged excavation unit 5 determined by the determination unit 116 of the CPU 110 and the optimum enlarged excavation part length Lωopt of the enlarged excavation unit 5 are used. Thus, the enlarged excavation part 5 is formed.
 このように、本実施形態の施工システム100によれば、なるべく少ない回数の載荷試験で杭孔3の底部側に形成される拡大掘削部5の最適拡大比ωoptを設定することができる。このため、既製杭10を施工する過程において、拡大掘削部5を形成する際におけるオーバースペックや高止まりを効率的かつ経済的に低減できる。また、複数の拡大比ωを設定してから、これらの拡大比ωの中から最適値ωoptを決める際に行われる載荷試験の回数を必要以上に多くしないで、すなわち、より少ない載荷試験回数で当該最適値ωoptを決定できる。このため、時間的にも、費用的にも多くの負担を要する載荷試験の回数を減らすことによって、既製杭10を施工する際における労力、時間、及び費用コストを低減できるので、より効率的かつ経済的な既製杭10の設計と施工を行えるようになる。 As described above, according to the construction system 100 of the present embodiment, the optimum enlargement ratio ωopt of the enlarged excavation part 5 formed on the bottom side of the pile hole 3 can be set by the loading test as few times as possible. For this reason, in the process of constructing the ready-made pile 10, the overspec and high stop at the time of forming the expansion excavation part 5 can be reduced efficiently and economically. Also, after setting a plurality of enlargement ratios ω, do not unnecessarily increase the number of loading tests performed when determining the optimum value ωopt from among these enlargement ratios ω, that is, with fewer loading tests. The optimum value ωopt can be determined. For this reason, the labor, time, and cost cost in constructing the ready-made pile 10 can be reduced by reducing the number of loading tests that require a large burden both in terms of time and cost. Economical ready-made pile 10 can be designed and constructed.
 次に、本発明の一実施形態に係る既製杭の施工方法の概略について、図面を使用しながら説明する。図3は、本発明の一実施形態に係る既製杭の施工方法の概略を示すフロー図である。 Next, the outline of the construction method of the ready-made pile which concerns on one Embodiment of this invention is demonstrated, using drawing. FIG. 3 is a flowchart showing an outline of a method for constructing a ready-made pile according to an embodiment of the present invention.
 図3に示すように、本実施形態に係る既製杭10の施工方法は、底部側に内径を拡大した拡大掘削部5が形成された杭孔3に既製杭10を建て込む既製杭10の施工過程において、特に載荷試験の測定結果に基づいて、より好適な拡大掘削部5の最適拡大比ωoptを求めることに主眼を置いている。 As shown in FIG. 3, the construction method of the ready-made pile 10 which concerns on this embodiment is the construction method of the ready-made pile 10 which builds the ready-made pile 10 in the pile hole 3 in which the expanded excavation part 5 which expanded the internal diameter was formed in the bottom part side. In the process, the main focus is on obtaining a more suitable optimum enlargement ratio ωopt of the enlarged excavation section 5 based on the measurement result of the loading test in particular.
 まず、設計荷重(柱荷重)Pを設定する(工程S10)。設計荷重(柱荷重)Pは、杭基礎1の上に建てられる建物の自重、上載荷重等に基づいて設定される。次に、既製杭10の設計支持力Rと杭本数Jを設定する(工程S11)。既製杭10の設計支持力Rと杭本数Jは、下記の条件式(2)を満たすように設定される。
杭本数J×杭の設計支持力R≧マージンM×設計荷重(柱荷重)P・・・・(2)
First, a design load (column load) P is set (step S10). The design load (column load) P is set based on the weight of the building built on the pile foundation 1, the upper load, and the like. Next, the design support force R and the pile number J of the ready-made pile 10 are set (step S11). The design support force R and the number J of piles of the ready-made pile 10 are set so as to satisfy the following conditional expression (2).
Number of piles J x Design capacity of pile R ≥ Margin M x Design load (column load) P ... (2)
 杭の設計支持力Rは、例えば、下記の式(3)から算出される。
 設計支持力R=1/μ×{αNaAp+(β・Ns・Ls+γ・q・Lc)・Φ} (3)
上記式(3)において、μは安全率、αは杭先端支持力係数、Naは杭先端部のN値の平均値、Apは杭先端面積、βは砂質・礫質地盤中の杭周面摩擦力係数、Nsは杭周囲の地盤のうち砂質地盤のN値の平均値、Lsは杭周囲の地盤のうち砂質・礫質地盤に接する長さの合計、γは粘土質地盤中の杭周面摩擦力係数、quは杭周囲の地盤のうち粘土質地盤の一軸圧縮強さの平均値、Lcは杭周囲の地盤のうち粘土質地盤に接する長の合計、Φは杭の周長を示す。なお、上記式(3)より算出される杭の設計支持力Rを、以下では設計支持力Rの計算値という。
The design support force R of the pile is calculated from the following equation (3), for example.
Design bearing capacity R = 1 / μ × {αNaAp + (β · Ns · Ls + γ · q u · Lc) · Φ} (3)
In the above formula (3), μ is the safety factor, α is the pile tip bearing capacity coefficient, Na is the average value of the N value at the tip of the pile, Ap is the pile tip area, β is the pile circumference in sandy and gravelly ground. Coefficient of surface friction, Ns is the average value of N of sandy ground around the pile, Ls is the total length of the ground around the pile that touches the sandy and gravelly ground, and γ is in the clayey ground The coefficient of frictional force around the pile surface, q u is the average uniaxial compressive strength of the clay ground out of the ground around the pile, Lc is the total length of the ground around the pile that touches the clay ground, and Φ is the pile Indicates the circumference. In addition, the design support force R of the pile calculated from the above formula (3) is hereinafter referred to as a calculated value of the design support force R.
 また、杭の設計支持力Rの計算値と杭本数Jは、設計荷重(柱荷重)Pと略同一となる杭1本当たりの設計支持力Rの計算値と杭本数Jの最適な組み合わせとなるように設定する。基本的には、杭本数Jを減らすように杭の設計支持力Rの計算値と杭本数Jを設定するが、コスト等を比較して柱ごとに最も効果的(経済的)な杭本数Jと杭の設計支持力Rの計算値を設定する。なお、余裕度を示すマージンMは、設計条件等により決定されるが、通常では、1以上の値であり、一般的に1.1程度の値が用いられるが、M=1.1に限定されるものではない。 In addition, the calculated value of pile design bearing capacity R and the number of piles J are approximately the same as the design load (column load) P, and the optimum combination of the calculated value of design bearing capacity R per pile and the number of piles J Set as follows. Basically, the calculated value of design bearing capacity R of piles and the number of piles J are set so as to reduce the number of piles J, but the most effective (economic) number of piles J for each column in comparison with the cost etc. And set the calculated value of design bearing capacity R of pile. The margin M indicating the margin is determined by design conditions and the like, but is usually a value of 1 or more, and generally a value of about 1.1 is used, but is limited to M = 1.1. Is not to be done.
 以下で、式(3)の右辺を構成する各値の一例を示す。なお、以下で示す値は一例であり、この値に限定されるものではない。 Below, an example of each value constituting the right side of Equation (3) is shown. In addition, the value shown below is an example and is not limited to this value.
 安全率μは、設計条件等に基づいて適宜決定される値であって、例えば2や2.5、3である。 The safety factor μ is a value determined as appropriate based on design conditions and the like, and is 2, 2.5, or 3, for example.
 杭先端支持力係数αは、砂質地盤、礫質地盤の場合において、例えば、下記で示す式(4)から算出される。
   α=240ω1.5+90ω……(4)
 ここで、ωは拡大比である。
The pile tip bearing capacity coefficient α is calculated from, for example, the following formula (4) in the case of sandy ground and gravelly ground.
α = 240ω 1.5 + 90ω …… (4)
Here, ω is an enlargement ratio.
 また、粘土質地盤の場合において、例えば、下記で示す式(5)から算出される。
   α=210ω1.25+90ω……(5)
Moreover, in the case of a clayey ground, it calculates from the formula (5) shown below, for example.
α = 210ω 1.25 + 90ω …… (5)
 杭先端部のN値の平均値Naは、杭先端地盤が砂地盤、礫質地盤の場合において下記の式(6)より算出する。
 Na=(Nu+3N)/4・・・・(6)
但し、Naは3以上とし、Na >60ではNa を60とする。ここで、Nuは杭先端から上方へ2mの位置までの間のN値の平均値、Nは杭先端から下方へ(De+Don)の位置までの間のN値の平均値である。
The average value Na of the N values at the pile tip is calculated from the following formula (6) when the pile tip ground is sandy ground or gravelly ground.
Na = (Nu + 3N L ) / 4 (6)
However, Na is 3 or more, and Na> 60 when Na> 60. Here, Nu is an average value of the N value from the tip of the pile to the position of 2 m upward, and NL is an average value of the N value from the tip of the pile to the position of (De + Don) downward.
 一方、杭先端部の平均値Na は、杭先端地盤が粘土質地盤の場合において、下記の式(7)より算出する。
Na =(Nu+2N)/3・・・・(7)
但し、Na >58.3ではNa を58.3とする。
On the other hand, the average value Na of the pile tip is calculated from the following formula (7) when the pile tip ground is clayey ground.
Na = (Nu + 2N L ) / 3 (7)
However, when Na> 58.3, Na is set to 58.3.
 杭先端面積Apは、Ap=π・(Don/2)から算出する。 The pile tip area Ap is calculated from Ap = π · (Don / 2) 2 .
 砂質・礫質地盤中の杭周面摩擦力係数βは、杭のストレート部分においてβ=5~8である。また、杭の節部分においてβ=9.5ωやβ・Ns=(30+5.5Ns)・ωを満たす値である。 The pile peripheral friction coefficient β in sandy / gravel ground is β = 5-8 in the straight part of the pile. Moreover, it is a value which satisfy | fills (beta) = 9.5 (omega) and (beta) * Ns = (30 + 5.5Ns) * (omega) in the node part of a pile.
 杭周囲の地盤のうち、砂質地盤の平均値Nsは、1以上とし、Ns>30ではNsを30とする。一方、杭周囲の地盤のうち、砂質・礫質地盤に接する長さの合計Lsは、杭先端から上方へ2mの位置までの間は、除いて算出する。 Of the ground around the pile, the average value Ns of sandy ground is 1 or more, and Ns> 30 when Ns> 30. On the other hand, of the ground around the pile, the total length Ls in contact with the sandy / gravel ground is calculated excluding the distance from the tip of the pile to a position of 2 m.
 粘土質地盤中の杭周面摩擦力係数γは、杭のストレート部分において、β=0.7~9.0である。また、杭の節部分においてγ=1.0ωやγ・qu=(20+0.5qu)・ωを満たす値である。 The pile peripheral surface frictional force coefficient γ in the clayey ground is β = 0.7 to 9.0 in the straight portion of the pile. Further, a value satisfying γ = 1.0ω and γ · q u = (20 + 0.5q u) · ω in the section portion of the pile.
 杭周囲の地盤のうち、粘土質地盤の一軸圧縮強さの平均値quは、10kN/m以上とし、q>200kN/mでは、qを200kN/mとする。杭周囲の地盤のうち、粘土質地盤に接する長さの合計Lcは、杭先端から上方へ2mの位置までの間は、除いて算出する。 Of the ground around the pile, the average value q u of the uniaxial compressive strength of the clay-based ground is 10 kN / m 2 or more, and when q u > 200 kN / m 2 , q u is 200 kN / m 2 . Of the ground around the pile, the total length Lc in contact with the clay-based ground is calculated by excluding the distance from the tip of the pile to a position of 2 m.
 杭の周長Φは、Φ=π・Dにて算出する。ここで、Dは杭径(m)である。節杭の場合は節径とし、拡頭杭を含むストレート杭の場合は、軸部径とする。 周 Pile circumference Φ is calculated as Φ = π · D. Here, D is a pile diameter (m). In the case of joint piles, the diameter is the node diameter.
 なお、式(3)中における安全率μ、杭先端支持力係数α、杭周面摩擦力係数β,γ等は、地質等の現場状況に応じて適宜、設定される。 In addition, the safety factor μ, the pile tip bearing force coefficient α, the pile peripheral surface friction force coefficient β, γ, etc. in the equation (3) are appropriately set according to the field conditions such as geology.
 工程S11が終わったら、次に、拡大掘削部5の拡大比ωの計算値を決めるために、既製杭10に係る各種データを検討して、それぞれを調整する(工程S12)。本工程S12では、検討する既製杭10に係る各種データとして、具体的に、施工される既製杭10の杭長L、杭径D(本実施形態では、節径Don)、PHC杭、RC杭、PRC杭、鋼杭、SC杭、節杭等の杭種、先端根固め部14を形成するための拡大掘削部5の拡大比ω、及び拡大掘削部長Lω等が挙げられる。前述した式(1)に示すように、本実施形態では、拡大比ωは、既製杭10の先端部10aの外径Donに所望のクリアランス値xを加算して求めた外径設計値Dsに対する拡大掘削部5の内径Deの割合を示す。 After step S11 is finished, next, in order to determine the calculated value of the expansion ratio ω of the expanded excavation part 5, various data relating to the ready-made pile 10 are examined and adjusted (step S12). In this process S12, as various data concerning the ready-made pile 10 to be examined, the pile length L, the pile diameter D (node diameter Don in this embodiment), the PHC pile, and the RC pile are specifically constructed. , PRC piles, steel piles, SC piles, node piles, and other types of piles, enlargement ratio ω of the enlarged excavation part 5 for forming the tip consolidation part 14, and an enlarged excavation part length Lω. As shown in Equation (1) described above, in this embodiment, the expansion ratio ω is relative to the outer diameter design value Ds obtained by adding the desired clearance value x to the outer diameter Don of the tip portion 10a of the ready-made pile 10. The ratio of the internal diameter De of the expansion excavation part 5 is shown.
 一般に、杭長Lを長く、杭径Dを大きくし、かつ拡大比ωを大きく、拡大掘削部長Lωを長くすると既製杭10の支持力が増大する。既製杭10の支持力を増大させると、当該既製杭10のコンクリート強度をアップさせたり、鋼管の板厚をアップさせる等して材料強度をアップさせる必要がある。また、施工時に油圧拡大装置等の施工機材を必要とする。このため、施工機材のスペックが上がりコストが嵩む。 Generally, when the pile length L is increased, the pile diameter D is increased, the enlargement ratio ω is increased, and the expanded excavation section length Lω is increased, the supporting force of the ready-made pile 10 is increased. When the supporting force of the ready-made pile 10 is increased, it is necessary to increase the material strength by increasing the concrete strength of the ready-made pile 10 or increasing the plate thickness of the steel pipe. Also, construction equipment such as a hydraulic expansion device is required during construction. For this reason, the specifications of construction equipment increase and the cost increases.
 なお、本実施形態では、工程S11の後に工程S12を実施する場合について説明したが、工程S11と工程S12とを同時に実施してもよい。すなわち、杭本数J及び杭の設計支持力Rの計算値を設定すると同時に、杭長L、杭径D、杭種、拡大比ω及び拡大掘削部長Lωを設定してもよい。 In addition, although this embodiment demonstrated the case where process S12 was implemented after process S11, you may implement process S11 and process S12 simultaneously. That is, the pile length L, the pile diameter D, the pile type, the enlargement ratio ω, and the enlarged excavation length Lω may be set at the same time as the number of piles J and the calculated design support force R of the piles are set.
 工程S12で調整した既製杭10に係る各種データに基づいて設計値拡大比ωdと拡大掘削部長Lωdを設定する(設定工程S13)。その後、設計値拡大比ωdに対して拡大比を小さくしてコストを優先させた拡大比ωc(ωc<ωd)、設計値拡大比ωdに対して拡大比を大きくして安全性を重視した拡大比ωs(ωs>ωd)をそれぞれ設定する(設定工程S14)。また、本実施形態では、工程S14において、拡大掘削部長Lωdに対して拡大掘削部長を短くしてコストを優先した拡大掘削部長Lωc(Lωc<Lωd)と、拡大掘削部長Lωdに対して拡大掘削部長を長くして安全性を重視した拡大掘削部長Lωs(Lωs>Lωd)をそれぞれ設定する。 The design value expansion ratio ωd and the expanded excavation section length Lωd are set based on various data relating to the ready-made pile 10 adjusted in step S12 (setting step S13). After that, enlargement ratio ωc (ωc <ωd) that prioritizes cost by reducing the enlargement ratio relative to the design value enlargement ratio ωd, and enlargement that emphasizes safety by increasing the enlargement ratio relative to the design value enlargement ratio ωd The ratio ωs (ωs> ωd) is set (setting step S14). In the present embodiment, in step S14, the expanded excavation section length Lωc (Lωc <Lωd) in which the expanded excavation section length is shortened and the cost is prioritized with respect to the expanded excavation section length Lωd and the expanded excavation section length Lωd is expanded. The extended excavation section length Lωs (Lωs> Lωd) that places importance on safety is set.
 なお、拡大掘削部5の設計値拡大比ωdと拡大掘削部長Lωdは、地盤調査で作成される地盤柱状図によるデータ、施工実績、過去の蓄積データ等に基づいて設定される。また、コストを優先した拡大比ωcと安全性を重視した拡大比ωsは、それぞれ下記に示す式(8)、式(9)から算出して設定する。
   ωc=ωd-σ ……(8)
   ωs=ωd+σ ……(9)
 ここで、σは偏差であり、例えば0.1~0.3である。当該偏差は、地盤調査で作成される地盤柱状図によるデータ、施工実績、過去の蓄積データ等に基づいて設定される。
In addition, the design value expansion ratio ωd and the expanded excavation section length Lωd of the expanded excavation section 5 are set based on data based on the ground columnar diagram created by the ground survey, construction results, past accumulated data, and the like. Further, the enlargement ratio ωc giving priority to cost and the enlargement ratio ωs giving priority to safety are calculated and set from the following expressions (8) and (9), respectively.
ωc = ωd−σ (8)
ωs = ωd + σ (9)
Here, σ is a deviation, for example, 0.1 to 0.3. The said deviation is set based on the data by the ground columnar figure created by the ground survey, construction results, past accumulated data, and the like.
 本実施形態では、設定工程S13、S14において、拡大掘削部5の拡大比ωを既製杭10の施工に係る所定のデータに基づいて異なる値で複数設定される。具体的には、少なくとも所定のデータに基づいて設定された設計値拡大比ωdと、設計値拡大比ωdより値が小さいコスト優先拡大比ωcと、設計値拡大比ωdより値が大きい安全性優先拡大比ωsとを設定する。また、各拡大比ωd、ωc、ωsのケースについて、それぞれ拡大掘削部長Lωd、Lωc、Lωsをそれぞれ設定する。 In the present embodiment, in the setting steps S13 and S14, a plurality of enlargement ratios ω of the enlarged excavation part 5 are set with different values based on predetermined data relating to the construction of the ready-made pile 10. Specifically, the design value expansion ratio ωd set based on at least predetermined data, the cost priority expansion ratio ωc that is smaller than the design value expansion ratio ωd, and the safety priority that is greater than the design value expansion ratio ωd Set the magnification ratio ωs. Further, for each case of the expansion ratios ωd, ωc, and ωs, the expanded excavation section lengths Lωd, Lωc, and Lωs are set, respectively.
 なお、本実施形態では、拡大比ω及び拡大掘削部Lωをそれぞれ3通りずつ設定しているが、拡大比ωや拡大掘削部長Lωの設計値の妥当性を精査するためには、少なくとも2通り以上を設定していればよく、より当該設計値の妥当性を精査する場合には、4通り以上設けてもよい。また、本実施形態では、拡大比ω及び拡大掘削部長Lωをそれぞれ3通りずつ設定しているが、少なくとも拡大比ωの妥当性を検討する必要があるので、拡大比ωのみを複数通り設けるようにしてもよい。 In the present embodiment, the enlargement ratio ω and the enlarged excavation part Lω are each set in three ways. However, in order to examine the validity of the design values of the enlargement ratio ω and the enlarged excavation part length Lω, at least two kinds are set. It is sufficient if the above is set, and when the validity of the design value is further examined, four or more patterns may be provided. In this embodiment, the expansion ratio ω and the expanded excavation length Lω are each set in three ways. However, since it is necessary to examine at least the validity of the expansion ratio ω, only a plurality of expansion ratios ω are provided. It may be.
 このように、本実施形態では、設定工程S13、S14において、設計値拡大比ωdと、当該設計値拡大比ωdより小さい拡大比ωcと、設計値拡大比ωdより大きい拡大比ωsとを設定している。このため、事前に計算で求めた設計値拡大比ωdと、載荷試験で測定した実測値に基づいて求められる拡大比ωとの違いが生じた場合においても、設計値拡大比ωdの妥当性をより精査した上で最終的な最適拡大比ωoptを決められるようになる。また、各拡大比ωd、ωc、ωsのそれぞれのケースに対応した拡大掘削部長Lωd、Lωc、Lωsを求めることによって、拡大掘削部長Lωも含めた設計値の妥当性も精査した上で最終的な拡大掘削部5の大きさを確保することができる。 As described above, in the present embodiment, in the setting steps S13 and S14, the design value magnification ratio ωd, the magnification ratio ωc smaller than the design value magnification ratio ωd, and the magnification ratio ωs larger than the design value magnification ratio ωd are set. ing. For this reason, even if there is a difference between the design value enlargement ratio ωd obtained by calculation in advance and the enlargement ratio ω obtained based on the actual measurement value measured in the loading test, the validity of the design value enlargement ratio ωd is confirmed. The final optimum enlargement ratio ωopt can be determined after further examination. In addition, by obtaining the expanded excavation lengths Lωd, Lωc, and Lωs corresponding to the respective cases of the respective expansion ratios ωd, ωc, and ωs, the validity of the design values including the expanded excavation length Lω is scrutinized and finally The size of the enlarged excavation part 5 can be ensured.
 設定工程S13、S14を終えると、次に試験杭10´の施工を実施する(試験杭施工工程S15)。試験杭10´の施工は、実際に既製杭10を建て込む地盤GNの近傍で行う。試験杭施工工程S15においては、各拡大比ωd、ωc、ωsに対応した試験杭10´の施行を全て行う場合と、必要に応じて別々に行う場合がある。試験杭施工工程S15の詳細については、後述する。 When the setting steps S13 and S14 are completed, the test pile 10 'is then constructed (test pile construction step S15). The construction of the test pile 10 ′ is performed in the vicinity of the ground GN where the ready-made pile 10 is actually built. In the test pile construction process S15, there are cases where the test piles 10 'corresponding to the respective enlargement ratios ωd, ωc, and ωs are all enforced and separately as necessary. Details of the test pile construction step S15 will be described later.
 次に、これら複数の拡大比ωd、ωc、ωsの中から選択した一又は複数の拡大比のケースについてそれぞれ載荷試験を実施して、当該一又は複数の拡大比ωにおける既製杭10の設計支持力Rをそれぞれ測定する(設計支持力測定工程S16)。本実施形態では、設計値の妥当性を精査するために、拡大比ω及び拡大掘削部Lωをそれぞれ3通りずつ設定しているが、これらのケースについて全て載荷試験を実施すると、時間的にも、費用的にも負担が大きい。このため、本実施形態に係る既製杭10の施工方法では、載荷試験を必要最小限の回数で抑えるために、載荷試験を実施する手順に工夫を凝らしている。なお、設計支持力測定工程S16の詳細については、後述する。 Next, a loading test is performed for each of the cases having one or more enlargement ratios selected from the plurality of enlargement ratios ωd, ωc, and ωs, and the design support of the ready-made pile 10 at the one or more enlargement ratios ω is performed. Each of the forces R is measured (design support force measurement step S16). In this embodiment, in order to closely examine the validity of the design value, the enlargement ratio ω and the enlarged excavation part Lω are set in three ways, respectively. The cost is also heavy. For this reason, in the construction method of the ready-made pile 10 which concerns on this embodiment, in order to suppress a loading test by the minimum number of times required, the procedure which performs a loading test is elaborated. The details of the design support force measurement step S16 will be described later.
 設計支持力測定工程S16を終えると、次に当該設計支持力測定工程S16で測定された設計支持力RのそれぞれRωi(Rωiは、Rωd、Rωc、Rωsのうちの少なくとも1つ)について、当該設計支持力Rωiと使用する既製杭10の本数Jとの積が求められる。そして、当該積が既製杭10により形成される杭基礎1に作用する所望の設計荷重(柱荷重)P以上であるか否かについての判定が行われる(設計支持力判定工程S17)。本実施形態では、載荷試験を実施した拡大比ωのケースについて、それぞれ設計支持力Rωiが下記の式(10)の条件式を満たすか否かの判定が行われる。
杭本数J×設計支持力Rωi≧マージンM×設計荷重(柱荷重)P・・・・(10)
When the design support force measurement step S16 is completed, the design support force R is measured for each Rωi (Rωi is at least one of Rωd, Rωc, and Rωs) measured in the design support force measurement step S16. The product of the supporting force Rωi and the number of ready-made piles 10 to be used is obtained. Then, it is determined whether or not the product is greater than or equal to a desired design load (column load) P acting on the pile foundation 1 formed by the ready-made pile 10 (design support force determination step S17). In the present embodiment, it is determined whether or not the design support force Rωi satisfies the following conditional expression (10) for the case of the enlargement ratio ω for which the loading test has been performed.
Number of piles J x design bearing force Rωi ≥ margin M x design load (column load) P ... (10)
 次に、設計支持力判定工程S17において、設計支持力Rωiと使用する既製杭10の本数Jとの積が、マージンMと設計荷重(柱荷重)Pとの積以上である条件を満たす拡大比ωd、ωc、ωsのうち、最小の拡大比ωiを拡大掘削部5を形成するための最適拡大比ωoptに決定する(最適拡大比決定工程S18)。本実施形態では、最適拡大比決定工程S18において拡大比ωと当該拡大比ωに対応する拡大掘削部長Lωの最適値ωopt、Lωoptが決められる。そして、杭孔3を掘削する過程で最適拡大比ωopt及び最適拡大掘削部長Lωoptに基づいて、拡大掘削部5を形成する(拡大掘削部形成工程S19)。その後は、掘削された杭孔3に既製杭10を建て込んで施工するための各種工程が行われる。 Next, in the design support force determination step S17, an expansion ratio that satisfies the condition that the product of the design support force Rωi and the number of ready-made piles 10 to be used is equal to or greater than the product of the margin M and the design load (column load) P Among ωd, ωc, and ωs, the minimum expansion ratio ωi is determined as the optimal expansion ratio ωopt for forming the expanded excavation portion 5 (optimal expansion ratio determination step S18). In the present embodiment, in the optimum enlargement ratio determination step S18, optimum values ωopt and Lωopt of the enlarged excavation section length Lω corresponding to the enlargement ratio ω and the enlargement ratio ω are determined. Then, in the process of excavating the pile hole 3, the enlarged excavation part 5 is formed based on the optimum enlargement ratio ωopt and the optimum enlarged excavation part length Lωopt (enlarged excavation part forming step S19). After that, various processes for building and constructing the ready-made pile 10 in the excavated pile hole 3 are performed.
 このように、本実施形態の施工方法では、なるべく少ない回数の載荷試験で杭孔3の底部側に形成される拡大掘削部5の最適拡大比ωoptを設定することができるので、載荷試験の手間及びコストを低減しつつ、拡大掘削部5を形成する際におけるオーバースペックを低減することができる。また、本実施形態の施工方法では、既製杭10の高止まりを確実に防止できるので、設計深度位置に確実に施工することができる。さらに、地盤強度に合わせて、杭の種類や杭径、杭長、先端根固め部の拡大比、先端根固め部の拡大掘削部長等に応じて杭の支持力を設定できるので、既製杭10の最適かつ経済的な設計と施工を行うことができる。 Thus, in the construction method of the present embodiment, the optimum enlargement ratio ωopt of the enlarged excavation part 5 formed on the bottom side of the pile hole 3 can be set with as few loading tests as possible. And the overspec at the time of forming the expanded excavation part 5 can be reduced, reducing cost. Moreover, in the construction method of this embodiment, since the high stop of the ready-made pile 10 can be prevented reliably, it can construct reliably in a design depth position. Furthermore, the pile support capacity can be set according to the type of pile, pile diameter, pile length, expansion ratio of the tip consolidation part, enlarged excavation part length of the tip consolidation part, etc. according to the ground strength. The optimal and economical design and construction can be performed.
 なお、設定工程S14において、既製杭の施工に係る所定のデータ等に基づいて拡大比ωc、ωsを設定する方法として、以下に記載する方法(A)乃至(C)によっても設定することができる。 In addition, in setting process S14, it can also set by the method (A) thru | or (C) described below as a method of setting expansion ratio (omega) c and (omega) s based on the predetermined data etc. which concern on construction of a ready-made pile. .
(方法(A)による設定)
 杭の極限支持力に基づき、以下の手順により設定する。この手順について下記の表1を用いて説明する。
(Setting by method (A))
Based on the ultimate bearing capacity of the pile, the following procedure is used. This procedure will be described with reference to Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 まず、地質条件、荷重条件等に基づいて、前述したような杭設定のコスト比較により、表1に示すように、設計値拡大比ωd(表1ではωd=1.3)、拡大掘削部長Lωd(Lωd=10m)、安全率μd(μd=2.5)及び設計支持力Rωd(計算値)(Rωd=3600kN)を設定する。このとき、安全率μは、載荷試験で確認すべき設計支持力に対する倍率や過去の実績データ等に基づいて設定する。表1の場合、載荷試験において設計支持力の2.5倍を確認することを想定している。 First, as shown in Table 1, the design value expansion ratio ωd (ωd = 1.3 in Table 1), the expanded excavation section length Lωd, as shown in Table 1, by the cost comparison of the pile setting as described above based on the geological conditions, load conditions, etc. (Lωd = 10 m), safety factor μ dd = 2.5) and design support force Rωd (calculated value) (Rωd = 3600 kN) are set. At this time, the safety factor μ is set based on the magnification with respect to the design support force to be confirmed in the loading test, past performance data, and the like. In the case of Table 1, it is assumed that 2.5 times the design support force is confirmed in the loading test.
 次に、設定した設計支持力Rωd(計算値)及び安全率μ(=2.5)を下記で示す式(11)に代入して、極限支持力Ru(Ru=9000kN)を算出する。
   Ru=Rωd(計算値)×μ ……(11)
Next, the set design support force Rωd (calculated value) and the safety factor μ d (= 2.5) are substituted into the following equation (11) to calculate the ultimate support force Ru d (Ru d = 9000 kN). To do.
Ru d = Rωd (calculated value) × μ d (11)
 次に、拡大比ωc、ωsのケースにそれぞれ対応する安全率μ、μ(μ=2、μ=3)を設定する。なお、安全率μc=2、μs=3は、拡大比ωc、ωsを設定する際にのみ適用されるものであり、杭の他の仕様、例えば設計支持力R(計算値)等を設定する際には、適用されない。即ち、杭の他の仕様は、安全率μ=2.5にて算出される。 Next, safety factors μ c and μ sc = 2 and μ s = 3) corresponding to the cases of the enlargement ratios ωc and ωs are set. Note that the safety factors μ c = 2 and μ s = 3 are applied only when setting the enlargement ratios ωc and ωs, and other specifications of the pile, such as the design bearing force R (calculated value), etc. It does not apply when setting. That is, other specifications of the pile are calculated with a safety factor μ = 2.5.
 続いて、前述で算出した設計支持力Rωd(計算値)及び各安全率μc、μsを下記で示す式(12)及び式(13)にそれぞれ代入して、極限支持力Ruc、Rus(Ruc=7200kN、Rus=10800kN)を算出する。
   Ruc=Rωd(計算値)×μc ……(12)
   Rus=Rωd(計算値)×μs ……(13)
Subsequently, the design support force Rωd (calculated value) and the safety factors μ c and μ s calculated above are substituted into the following expressions (12) and (13), respectively, and the ultimate support forces Ru c and Ru are obtained. s (Ru c = 7200kN, Ru s = 10800kN) is calculated.
Ru c = Rωd (calculated value) × μ c (12)
Ru s = Rωd (calculated value) × μ s (13)
 そして、杭の仕様(杭径、杭長等)を変更することなく、極限支持力Ruc(Ruc=7200kN)を満たす拡大比ωc(ωc=1.1)及び拡大部長Lωc(Lωc=8m)を算出する。 The pile of specifications (pile diameter, pile length, etc.) without changing the expansion ratio .omega.c satisfying ultimate bearing capacity Ru c (Ru c = 7200kN) (ωc = 1.1) and enlargement Division Lωc (Lωc = 8m ) Is calculated.
 また、極限支持力Rucと同様に、極限支持力Rus(Rus=10800kN)を満たす拡大比ωs(ωs=1.5)及び拡大掘削部長Lωs(Lωs=9m)を算出する。 Further, similarly to the ultimate support force Ru c , the enlargement ratio ωs (ωs = 1.5) and the enlarged excavation section length Lωs (Lωs = 9 m) satisfying the ultimate support force Ru s (R s = 10800 kN) are calculated.
(方法(B)による設定)
 前述した式(3)より算出される杭の設計支持力R(計算値)と、載荷試験によって測定される杭の設計支持力Rとの関係に基づいて設定する。なお、載荷試験によって測定される杭の設計支持力Rを以下、設計支持力R(測定値)という。
(Setting by method (B))
It is set based on the relationship between the design support force R (calculated value) of the pile calculated from the above-described equation (3) and the design support force R of the pile measured by the loading test. In addition, the design support force R of the pile measured by the loading test is hereinafter referred to as the design support force R (measured value).
 図4は、杭の設計支持力R(計算値)と設計支持力R(測定値)との関係を示す図である。図4中の一点鎖線は、設計支持力R(計算値)と設計支持力R(測定値)とが1対1の関係を示す場合の直線(図中の凡例では、Rac=Ratと示す)である。 FIG. 4 is a diagram showing the relationship between the design support force R (calculated value) and the design support force R (measured value) of the pile. 4 is a straight line when the design support force R (calculated value) and the design support force R (measured value) have a one-to-one relationship (in the legend in the figure, Rac = Rat). It is.
 図4に示すように、杭の設計支持力R(測定値)は、設計支持力R(計算値)よりも大きくなる。設計支持力R(測定値)と設計支持力R(計算値)との間には、相関関係が確認される。本実施形態において、複数の設計支持力R(計算値)に対する各設計支持力R(測定値)の比率(測定値/計算値)の平均値(図4中の点線)は、例えば約1.2倍となっている。 As shown in FIG. 4, the design support force R (measured value) of the pile is greater than the design support force R (calculated value). A correlation is confirmed between the design support force R (measured value) and the design support force R (calculated value). In the present embodiment, an average value (a dotted line in FIG. 4) of a ratio (measured value / calculated value) of each design support force R (measured value) to a plurality of design support forces R (calculated values) is, for example, about 1. It has doubled.
 その平均値や平均値-1.06σよりコスト優先の拡大比ωcを検討して設定する。例えば、平均値の値1.2を採用すると、設計値拡大比ωdによる極限支持力の計算値が6000kNの場合に、極限支持力が6000kNを値1.2で除することにより5000kNとなる拡大比ωcを設定する。 Investigate and set the expansion ratio ωc that gives priority to cost over the average value and average value -1.06σ. For example, when the average value of 1.2 is adopted, when the calculated value of the ultimate support force based on the design value enlargement ratio ωd is 6000 kN, the ultimate support force becomes 5000 kN by dividing 6000 kN by the value 1.2. Set the ratio ωc.
 また、拡大比ωsは、実績の中から設計支持力R(測定値)を下回ったものにより、同一又は最低値より設定する。例えば、設計支持力R(計算値)を下回った設計支持力R(測定値)のデータの設計支持力R(計算値)との比率(測定値/計算値)が0.95であり、それを用いて拡大比ωsを設定しようとすると、設計値拡大比ωdによる極限支持力Rudの計算値が例えば6000kNの場合に、極限支持力Rudの計算値6000kNを0.95で除することにより、6320kNとなる拡大比ωsを設定する。 Also, the enlargement ratio ωs is set from the same value or the lowest value depending on the actual performance that is below the design support R (measured value). For example, the ratio (measured value / calculated value) of the data of the design support force R (measured value) below the design support force R (calculated value) to the design support force R (calculated value) is 0.95. If the calculated value of the ultimate bearing force Rud based on the design value magnification ratio ωd is 6000 kN, for example, by dividing the calculated value 6000 kN of the ultimate bearing force Rud by 0.95, An enlargement ratio ωs is set to 6320 kN.
(方法(c)による設定)
 地盤柱状図等を用いて、過去の先端支持力のデータに基づいて設定する。すなわち、過去の載荷試験のデータに基づいて杭の先端支持力を評価できる場合は、そのデータに基づいて設定する。
(Setting by method (c))
Set based on past tip support force data using a ground column diagram or the like. That is, when the tip bearing capacity of a pile can be evaluated based on the data of the past loading test, it sets based on the data.
 次に、本実施形態の既製杭の施工システムによる既製杭の施工方法の詳細ついて、図面を使用しながら説明する。図5は、本発明の一実施形態に係る既製杭の施工方法の詳細を示すフロー図である。図5では、特に拡大比ωの設定工程S13、S14を経てから、試験杭の設定、設計支持力の測定、当該設計支持力の妥当性の判定、及び最適拡大比の決定をするまでの詳細なフローについて説明する。 Next, the details of the method for constructing a pre-made pile by the pre-made pile construction system of this embodiment will be described with reference to the drawings. FIG. 5 is a flowchart showing details of a method for constructing a ready-made pile according to an embodiment of the present invention. In FIG. 5, in particular, after passing through the setting steps S13 and S14 of the enlargement ratio ω, setting up the test pile, measuring the design support force, determining the appropriateness of the design support force, and determining the optimum enlargement ratio A simple flow will be described.
 図5に示すように、まず、実際に既製杭10を建て込む地盤GNの近傍において、試験杭10´の施工を実施する(試験杭施工工程S15)。本実施形態では、各拡大比ωd、ωc、ωsに対応した試験杭10´の施行を全て行う。 As shown in FIG. 5, first, the test pile 10 'is constructed in the vicinity of the ground GN where the ready-made pile 10 is actually built (test pile construction step S15). In the present embodiment, all the test piles 10 'corresponding to the respective enlargement ratios ωd, ωc, and ωs are executed.
 次に、各拡大比ωd、ωc、ωsにそれぞれ対応する試験杭10´のうち、設計値拡大比ωdに対応する試験杭10´の載荷試験を実施する(工程S16-1)。すなわち、本実施形態では、設計値拡大比ωdの妥当性の検討を最優先するために、設計値拡大比ωdのケースから載荷試験を実施して、設計値拡大比ωdに対応する設計支持力Rωdを測定する。 Next, among the test piles 10 ′ corresponding to the respective expansion ratios ωd, ωc, and ωs, a loading test is performed on the test pile 10 ′ corresponding to the design value expansion ratio ωd (step S16-1). That is, in this embodiment, in order to give the highest priority to the validity of the design value enlargement ratio ωd, a loading test is performed from the case of the design value enlargement ratio ωd, and the design support force corresponding to the design value enlargement ratio ωd Rωd is measured.
 設計支持力Rωdを測定したら、次に設計支持力判定工程S17-1に移行して、設計値拡大比ωdに基づいて測定された設計支持力Rωdと既製杭10の本数Jとの積が、既製杭10により形成される杭基礎1に作用する所望の設計荷重(柱荷重)PとマージンMとの積以上であるか否かについて判定する。すなわち、前述した条件式(10)を満たすか否かについて検討する。 After measuring the design support force Rωd, the process proceeds to the design support force determination step S17-1, and the product of the design support force Rωd measured based on the design value expansion ratio ωd and the number J of ready-made piles 10 is It is determined whether or not the desired design load (column load) P acting on the pile foundation 1 formed by the ready-made pile 10 and the margin M are greater than or equal to each other. That is, it is examined whether or not the conditional expression (10) described above is satisfied.
 設計支持力判定工程S17-1で設計支持力Rωdと既製杭10の本数Jとの積が、マージンMと設計荷重(柱荷重)Pとの積以上である場合には、続いて設計支持力測定工程S16-1で測定された設計支持力Rωdに基づいて予測設計支持力Rωc´を推定する(予測設計支持力推定工程S17-1a)。予測設計支持力Rωc´は、設定した設計値拡大比ωd、拡大比ωcの各ケースについてそれぞれ算出した極限支持力Rud(計算値)、Ruc(計算値)と、載荷試験により測定された設計支持力Rωd(測定値)に基づいて算出した極限支持力Rud(測定値)との比から推定する。 If the product of the design support force Rωd and the number of ready-made piles 10 is equal to or greater than the product of the margin M and the design load (column load) P in the design support force determination step S17-1, then the design support force The predicted design support force Rωc ′ is estimated based on the design support force Rωd measured in the measurement step S16-1 (predicted design support force estimation step S17-1a). The predicted design bearing force Rωc ′ was measured by the ultimate bearing force Ru d (calculated value) and Ru c (calculated value) calculated for each case of the set design value magnification ratio ωd and magnification ratio ωc, respectively, and a load test. It is estimated from the ratio with the ultimate support force Ru d (measured value) calculated based on the design support force Rωd (measured value).
 具体的には、下記で示す式(14)を用いて推定する。
 Rωc´=Rud(測定値)/(Rud(計算値)/Ruc(計算値))・・・・・(14)
Specifically, it estimates using the formula (14) shown below.
Rωc ′ = Ru d (measured value) / (Ru d (calculated value) / Ru c (calculated value)) (14)
 なお、拡大比ωによる影響を極限支持力の2/3とした場合は、下記で示す式(15)を用いて推定する。
 Rωc´={Rud(測定値)-Rud(計算値)}×2/3+Ruc(計算値)・・・(15)
When the influence of the enlargement ratio ω is 2/3 of the ultimate support force, it is estimated using the following formula (15).
Rωc ′ = {Ru d (measured value) −Ru d (calculated value)} × 2/3 + R c (calculated value) (15)
 このようにすれば、設定工程S13で設定した設計値拡大比ωdの妥当性をより精査した上でより好適な最適拡大比ωoptを確実に設定することができる。 In this way, it is possible to reliably set a more suitable optimum enlargement ratio ωopt after further examining the validity of the design value enlargement ratio ωd set in the setting step S13.
 前述した式(14)又は式(15)より予測設計支持力Rωc´を推定する方法について、前述した表1及び下記の表2を用いて具体的に説明する。 The method for estimating the predicted design support force Rωc ′ from the above-described equation (14) or equation (15) will be specifically described with reference to Table 1 and Table 2 described above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 前述した表1に示すように、拡大比ωd=1.3のケースにおける安全率μdを2.5に、拡大比ωc=1.1のケースにおける安全率μcを2に設定する。続いて、各拡大比ωd、ωc及び安全率μd、μcをそれぞれ前述した式(11)及び式(12)に代入して、極限支持力Rud(計算値)、Ruc(計算値)を算出する。(具体的には、極限支持力Rud(計算値)=9000kN、極限支持力Ruc(計算値)=7200kN) As shown in Table 1, the safety factor μd in the case of the enlargement ratio ωd = 1.3 is set to 2.5, and the safety factor μc in the case of the enlargement ratio ωc = 1.1 is set to 2. Subsequently, the respective enlargement ratios ωd and ωc and the safety factors μd and μc are substituted into the above-described equations (11) and (12), respectively, and the ultimate bearing forces Ru d (calculated values) and Ru c (calculated values) are obtained. calculate. (Specifically, the ultimate bearing force Ru d (calculated value) = 9000 kN, the ultimate bearing force Ru c (calculated value) = 7200 kN)
 次に、表2に示すように、載荷試験により測定した設計支持力R(測定値)に基づいて極限支持力Rud(測定値)=11500kNを算出する。そして、算出した極限支持力Rud(計算値)、Ruc(計算値)及び極限支持力Rud(測定値)を前述した式(14)に代入して、予測設計支持力Rωc´を算出する。このようにして、設計支持力測定工程S16-1で測定された設計支持力Rωdに基づいて予測設計支持力Rωc´を推定して求める。 Next, as shown in Table 2, the ultimate support force Ru d (measured value) = 11500 kN is calculated based on the design support force R (measured value) measured by the loading test. Then, the predicted design support force Rωc ′ is calculated by substituting the calculated ultimate support force Ru d (calculated value), Ru c (calculated value) and the ultimate support force Ru d (measured value) into the above-described equation (14). To do. In this way, the predicted design support force Rωc ′ is estimated and obtained based on the design support force Rωd measured in the design support force measurement step S16-1.
 すなわち、予測設計支持力推定工程S17-1aでは、設計支持力Rωd(計算値)と、実際の設計支持力Rωd(測定値)とを比較して、設計支持力Rωd(計算値)の補正値の候補となる当該計算値とのずれ具合を示す差分を把握する。そして、設計支持力Rωc(計算値)を当該差分だけ補正して予測設計支持力Rωc´を推定する。 That is, in the predicted design support force estimation step S17-1a, the design support force Rωd (calculated value) is compared with the actual design support force Rωd (measured value), and the correction value of the design support force Rωd (calculated value) is calculated. The difference which shows the shift | offset | difference degree with the said calculated value used as a candidate is grasped. Then, the predicted design support force Rωc ′ is estimated by correcting the design support force Rωc (calculated value) by the difference.
 図5に示すように、予測設計支持力Rωc´を推定後には、予測設計支持力Rωc´が設計支持力Rωd(計算値)より大きいかの条件を満たすか否かについて検討する(予測設計支持力判定工程S17-1b)。 As shown in FIG. 5, after estimating the predicted design support force Rωc ′, it is examined whether or not the condition that the predicted design support force Rωc ′ is greater than the design support force Rωd (calculated value) is satisfied (predicted design support). Force determination step S17-1b).
 予測設計支持力判定工程17-1bで予測設計支持力Rωc´が設計支持力Rωd(計算値)より大きい場合には、次に、コスト優先拡大比ωcのケースについて載荷試験を実施する(工程S16-2)。そして、この載荷試験でコスト優先拡大比ωcに対応する設計支持力Rωc(測定値)を測定する。 If the predicted design support force Rωc ′ is larger than the design support force Rωd (calculated value) in the predicted design support force determination step 17-1b, then a loading test is performed for the case of the cost priority expansion ratio ωc (step S16). -2). In this loading test, the design support force Rωc (measured value) corresponding to the cost priority enlargement ratio ωc is measured.
 次に、杭本数Jと設計支持力Rωc(測定値)の積が、マージンMと設計荷重(柱荷重)Pとの積以上であるか否かについて判定する(工程S17-2)。そして、工程S17-2で杭本数Jと設計支持力Rωc(測定値)の積が、マージンMと設計荷重(柱荷重)Pとの積以上の条件を満たす場合に、コスト優先の拡大比ωcを最適拡大比ωoptと決定する(工程S18-1)。当該工程S18-1では、最適拡大比ωoptを決定すると同時に拡大比ωcに対応する工程S14で定めた拡大掘削部長Lωcを最適拡大部長Lωoptと決定する。 Next, it is determined whether or not the product of the number of piles J and the design support force Rωc (measured value) is equal to or greater than the product of the margin M and the design load (column load) P (step S17-2). In step S17-2, when the product of the number of piles J and the design support force Rωc (measured value) satisfies a condition equal to or greater than the product of the margin M and the design load (column load) P, the cost priority enlargement ratio ωc Is determined as the optimum enlargement ratio ωopt (step S18-1). In step S18-1, the optimum enlargement ratio ωopt is determined, and at the same time, the enlarged excavation length Lωc determined in step S14 corresponding to the enlargement ratio ωc is decided as the optimum enlargement portion length Lωopt.
 その後、工程S19に移行して、工程S18-1で決定した最適拡大比ωopt、最適拡大掘削部長Lωoptのケースに基づいて本杭施工を実施する。これにより、設計値拡大比ωdのケースに基づいて本杭施工を実施するよりも施工コストを低減することができる。 Then, the process proceeds to step S19, and the pile construction is performed based on the case of the optimum enlargement ratio ωopt and the optimum enlarged excavation section length Lωopt determined in step S18-1. Thereby, construction cost can be reduced rather than implementing this pile construction based on the case of design value expansion ratio omegad.
 一方、工程S17-2での検討の結果、杭本数Jと設計支持力Rωc(測定値)の積が、マージンMと設計荷重(柱荷重)Pとの積よりも小さい場合には、設計値拡大比ωdを最適拡大比ωoptに決定し、設計値拡大比ωdに対応する拡大掘削部長Lωdを最適拡大部長Lωoptと決定する(工程18-2)。そして、工程S19に移行して、最適拡大比ωopt、最適拡大掘削部長Lωoptのケースに基づいて、本杭施工を実施する。 On the other hand, if the product of the number of piles J and the design support force Rωc (measured value) is smaller than the product of the margin M and the design load (column load) P as a result of the examination in step S17-2, the design value The expansion ratio ωd is determined to be the optimal expansion ratio ωopt, and the expanded excavation section length Lωd corresponding to the design value expansion ratio ωd is determined to be the optimal expansion section length Lωopt (step 18-2). And it transfers to process S19 and implements this pile construction based on the case of optimal expansion ratio omegaopt and optimal expansion excavation part length Lomegaopt.
 また、予測設計支持力判定工程S17-1bでの検討の結果、予測設計支持力Rωc´が設計支持力Rωd(計算値)より小さい場合には、設計値拡大比ωdを最適拡大比ωoptに決定し、設計値拡大比ωdに対応する拡大掘削部長Lωdを最適拡大部長Lωoptと決定する(工程18-2)。そして、工程S19に移行して、最適拡大比ωopt、最適拡大掘削部長Lωoptのケースに基づいて、本杭施工を実施する。 Further, as a result of the examination in the predicted design support force determination step S17-1b, when the predicted design support force Rωc ′ is smaller than the design support force Rωd (calculated value), the design value enlargement ratio ωd is determined as the optimum enlargement ratio ωopt. Then, the extended excavation section length Lωd corresponding to the design value expansion ratio ωd is determined as the optimum expansion section length Lωopt (step 18-2). And it transfers to process S19 and implements this pile construction based on the case of optimal expansion ratio omegaopt and optimal expansion excavation part length Lomegaopt.
 従って、この場合には、コスト優先の拡大比ωcのケースについての載荷試験を行わずに済ませられる。載荷試験は、時間及びコストを多く要するので、なるべく少ない回数で済ませることが好ましい。このため、予測設計支持力判定工程S17-1bから工程S18-2へ移行する際には、工程S16-2の載荷試験を実施することは避けることが望ましい。具体的には、工程S16-2を実施したにも関わらず、工程S17-2において、杭本数Jと設計支持力Rωc(測定値)の積がマージンMと設計荷重(柱荷重)Pの積よりも小さくなり、結局、工程S18-2及び工程S19にて設計値拡大比ωdによる拡大掘削部を形成すること、即ち拡大比ωcにおける載荷試験が無駄になることは避けることが望ましい。 Therefore, in this case, it is not necessary to carry out the loading test for the case of the enlargement ratio ωc giving priority to cost. Since the loading test requires a lot of time and cost, it is preferable to perform the loading test as few times as possible. For this reason, it is desirable to avoid performing the loading test in step S16-2 when the predicted design supporting force determination step S17-1b shifts to step S18-2. Specifically, the product of the number of piles J and the design support force Rωc (measured value) is the product of the margin M and the design load (column load) P in step S17-2 despite the execution of step S16-2. In the end, it is desirable to avoid the formation of an enlarged excavation part with the design value enlargement ratio ωd in Steps S18-2 and S19, that is, the waste of the loading test at the enlargement ratio ωc.
 上述したように、本実施形態では、予測設計支持力Rωc´を推定することで、工程S17-2において、杭本数Jと設計支持力Rωc(測定値)の積がマージンMと設計荷重(柱荷重)Pの積以上となる確率を著しく向上させることができる。これにより、無駄となる拡大比ωcのケースについての載荷試験を省略できるので、工期短縮や更なるコスト削減等を図ることができる。 As described above, in the present embodiment, by estimating the predicted design support force Rωc ′, in step S17-2, the product of the number of piles J and the design support force Rωc (measured value) becomes the margin M and the design load (column The probability that it is equal to or higher than the product of the load (P) can be remarkably improved. As a result, it is possible to omit a loading test for a case with a wasteful enlargement ratio ωc, so that it is possible to shorten the construction period and further reduce the cost.
 これに加えて、本実施形態では、拡大比ωに基づく設計支持力Rの計算値と実測値の測定結果に基づいて、よりオーバースペックとならない拡大掘削部5を形成するために、拡大比ωを設定値拡大比ωd、コスト優先の拡大比ωc、及び安全性優先の拡大比ωsの3つを設定する。そして、実際の載荷試験結果に基づいて、より好適な最適拡大比ωoptを設定する。かかる場合に、拡大比ωの中央値となる設計値拡大比ωdの妥当性をより精査した上で好適な最適拡大比ωoptを決めるので、最適載荷試験を必要最小限の回数で済ませながら、確実に好適な最適拡大比ωoptを設定できる。 In addition to this, in the present embodiment, in order to form the enlarged excavation portion 5 that does not become over-spec based on the calculated value of the design support force R based on the enlargement ratio ω and the measurement result of the actual measurement value, the enlargement ratio ω Are set as the set value expansion ratio ωd, the cost priority expansion ratio ωc, and the safety priority expansion ratio ωs. Then, based on the actual loading test result, a more suitable optimum enlargement ratio ωopt is set. In such a case, a suitable optimum enlargement ratio ωopt is determined after further examination of the appropriateness of the design value enlargement ratio ωd, which is the median value of the enlargement ratio ω. It is possible to set an optimal enlargement ratio ωopt suitable for.
 一方、工程S17-1において、設計支持力Rωd(測定値)と既製杭10の本数Jとの積が、マージンMと設計荷重(柱荷重)Pの積より小さいと判定された場合は、安全優先の拡大比ωsのケースについて載荷試験を実施して、既製杭10の設計支持力Rωsを測定する(工程S16-3)。その後、杭本数Jと設計支持力Rωs(測定値)の積が、マージンMと設計荷重(柱荷重)Pの積以上か否かについて検討する。すなわち、設計支持力Rωs(測定値)の場合において、前述した条件式(2)を満たすか否かについて検討する(工程S17-3)。 On the other hand, if it is determined in step S17-1 that the product of the design support force Rωd (measured value) and the number of ready-made piles 10 is smaller than the product of the margin M and the design load (column load) P, A loading test is performed on the case with the priority enlargement ratio ωs, and the design bearing force Rωs of the ready-made pile 10 is measured (step S16-3). Thereafter, it is examined whether or not the product of the number of piles J and the design support force Rωs (measured value) is greater than or equal to the product of the margin M and the design load (column load) P. That is, in the case of the design support force Rωs (measured value), it is examined whether or not the conditional expression (2) is satisfied (step S17-3).
 そして、工程S17-3において、杭本数Jと設計支持力Rωs(測定値)の積が、マージンMと設計荷重(柱荷重)Pの積以上の場合に、安全性優先の拡大比ωsを最適拡大比ωoptと決定する(工程S18-3)。当該工程S18-3では、最適拡大比ωoptを決定すると同時に、拡大比ωsに対応する工程S14で定めた拡大掘削部長Lωsを最適拡大部長Lωoptと決定する。その後、工程S19に移行して、工程S18-3で決定した最適拡大比ωopt、最適拡大掘削部長Lωoptのケースに基づいて本杭施工を実施する。 In step S17-3, when the product of the number of piles J and the design support force Rωs (measured value) is equal to or greater than the product of the margin M and the design load (column load) P, the safety priority priority enlargement ratio ωs is optimized. The enlargement ratio ωopt is determined (step S18-3). In step S18-3, the optimum enlargement ratio ωopt is determined, and at the same time, the enlarged excavation part length Lωs determined in step S14 corresponding to the enlargement ratio ωs is decided as the optimum enlargement part length Lωopt. Thereafter, the process proceeds to step S19, and the main pile construction is performed based on the case of the optimum enlargement ratio ωopt and the optimum enlarged excavation section length Lωopt determined in step S18-3.
 一方、工程S17-3において、杭本数Jと設計支持力Rωs(測定値)の積が、マージンMと設計荷重(柱荷重)Pの積よりも小さいと判定された場合には、新たな設計支持力Rを設定し、新たに杭本数Jを計算する(工程S17-3a)。例えば、新たな設計支持力Rの設定に伴い、新たな杭本数J(=J+1)として杭本数を1本増やすようにする。そして、設計値拡大比ωd、拡大比ωsの中からコストを比較して安価な方を最適拡大比ωoptに決定して、同時に当該拡大比ωoptに対応する工程S14で定めた拡大掘削部長Lωd、Lωsの何れかを最適拡大部長Lωoptに決定する(工程18-4)。その後、工程S19に移行して、工程S18-4で決定した最適拡大比ωopt、最適拡大掘削部長Lωoptのケースに基づいて本杭施工を実施する。 On the other hand, if it is determined in step S17-3 that the product of the number of piles J and the design support force Rωs (measured value) is smaller than the product of the margin M and the design load (column load) P, a new design The support force R is set, and a new pile number J is calculated (step S17-3a). For example, with the setting of a new design support force R, the number of piles is increased by one as a new pile number J (= J + 1). The cost is compared among the design value enlargement ratio ωd and the enlargement ratio ωs to determine the cheaper one as the optimum enlargement ratio ωopt, and at the same time, the enlarged excavation section length Lωd determined in step S14 corresponding to the enlargement ratio ωopt, Any one of Lωs is determined as the optimum enlarged portion length Lωopt (step 18-4). Thereafter, the process proceeds to step S19, and the main pile construction is performed based on the case of the optimum enlargement ratio ωopt and the optimum enlarged excavation section length Lωopt determined in step S18-4.
 以上説明したように、本実施形態では、前述したフローに従って、複数通りに設定した拡大比ωの中央値となる設計値拡大比ωdの妥当性をより精査してから、実際の載荷試験結果に基づいた好適な最適拡大比ωoptを決める。このため、最適載荷試験を必要最小限の回数で済ませつつ、より確実に好適な最適拡大比ωoptを設定できるので、より短時間かつ少ないコストで拡大掘削部5を形成する際におけるオーバースペックを低減することができる。また、既製杭10の高止まりを確実に防止できるので、設計深度位置に確実に施工することができる。さらに、本実施形態では、載荷試験を行う回数を必ず2回以内に抑えられるので、既製杭10を施工する過程において作業工程が組み易くなる。 As described above, in the present embodiment, the validity of the design value magnification ratio ωd, which is the median value of the magnification ratios ω set in a plurality of ways, is further examined according to the flow described above, and then the actual loading test result is obtained. A suitable optimal enlargement ratio ωopt is determined. For this reason, it is possible to set a suitable optimum enlargement ratio ωopt more reliably while completing the optimum loading test as many times as necessary, thereby reducing over-spec when forming the enlarged excavation part 5 in a shorter time and at a lower cost. can do. Moreover, since the high stop of the ready-made pile 10 can be prevented reliably, it can construct reliably in a design depth position. Furthermore, in this embodiment, since the number of times of performing the loading test can be surely kept within two times, it is easy to assemble a work process in the process of constructing the ready-made pile 10.
 なお、本実施形態では、試験杭施工工程S15において、各拡大比ωd、ωc、ωsに対応した試験杭10´の施行を全て行っているが、必要に応じて別々に行ってもよい。このようにすれば、試験杭10´の施工も必要最小限で済ませることができる。図6は、本発明の一実施形態に係る既製杭の施工方法の変形例の詳細を示すフロー図である。 In this embodiment, in the test pile construction step S15, all the test piles 10 'corresponding to the respective enlargement ratios ωd, ωc, and ωs are performed, but may be performed separately as necessary. If it does in this way, construction of test pile 10 'can also be completed by minimum necessary. FIG. 6 is a flowchart showing details of a modification of the method for constructing a ready-made pile according to an embodiment of the present invention.
 図6に示すように、本実施形態の変形例では、まず、実際に既製杭10を建て込む地盤GNの近傍において、設計値拡大比ωdのケースについて、既製杭10に対応する試験杭10´の施工を実施する(試験杭施工工程S15-1)。次に、設計値拡大比ωdに対応する試験杭10´の載荷試験を実施して(工程S16-1)設計支持力Rωdを測定する。 As shown in FIG. 6, in the modification of the present embodiment, first, in the vicinity of the ground GN in which the ready-made pile 10 is actually built, the test pile 10 ′ corresponding to the ready-made pile 10 in the case of the design value expansion ratio ωd. (Test pile construction process S15-1). Next, a loading test of the test pile 10 ′ corresponding to the design value expansion ratio ωd is performed (step S16-1), and the design support force Rωd is measured.
 工程S16-1の載荷試験において、設計支持力Rωdを測定したら、前述したように設計支持力判定工程S17-1から予測設計支持力判定工程S17-1bまでを実施する。 In the loading test in step S16-1, when the design support force Rωd is measured, the design support force determination step S17-1 to the predicted design support force determination step S17-1b are performed as described above.
 予測設計支持力判定工程17-1bにおいて、予測設計支持力Rωc´が設計支持力Rωd(計算値)よりも大きい場合には、次に、コスト優先の拡大比ωcのケースについて試験杭10´の施工をする(工程S15-2)。 When the predicted design support force Rωc ′ is larger than the design support force Rωd (calculated value) in the predicted design support force determination step 17-1b, next, the test pile 10 ′ is tested in the case of the cost priority expansion ratio ωc. Construction is performed (step S15-2).
 そして、前述したように工程S16-2から工程S18-1までを実施する。その後、工程S19に移行して、工程S18-1で決定した最適拡大比ωopt、最適拡大掘削部長Lωoptのケースに基づいて本杭施工を実施する。 Then, as described above, steps S16-2 to S18-1 are performed. Thereafter, the process proceeds to step S19, and the main pile construction is performed based on the case of the optimum enlargement ratio ωopt and the optimum enlarged excavation section length Lωopt determined in step S18-1.
 一方、予測設計支持力判定工程S17-1bにおいて、予測設計支持力Rωc´が設計支持力Rωd(計算値)以下の場合には、前述したように工程18-2を実施する。その後、工程S19に移行して、本杭施工を実施する。 On the other hand, if the predicted design support force Rωc ′ is equal to or less than the design support force Rωd (calculated value) in the predicted design support force determination step S17-1b, step 18-2 is performed as described above. Then, it transfers to process S19 and implements this pile construction.
 また、工程S17-1において、設計支持力Rωdと既製杭10の本数Jとの積が、マージンMと設計荷重(柱荷重)Pの積より小さいと判定された場合は、続いて設計支持力測定工程S16-1で測定された設計支持力Rωdに基づいて予測設計支持力Rωs´を推定する(予測設計支持力推定工程S17-1c)。なお、予測設計支持力推定工程S17-1cにおける予測設計支持力Rωs´の推定方法については、前述と同様であるので、その説明は、省略する。 If it is determined in step S17-1 that the product of the design support force Rωd and the number J of ready-made piles 10 is smaller than the product of the margin M and the design load (column load) P, then the design support force continues. The predicted design support force Rωs ′ is estimated based on the design support force Rωd measured in the measurement step S16-1 (predicted design support force estimation step S17-1c). Note that the method for estimating the predicted design support force Rωs ′ in the predicted design support force estimation step S17-1c is the same as that described above, and a description thereof will be omitted.
 その後、安全優先の拡大比ωsのケースについて試験施工を実施してする(工程S15-3)。そして、前述したように、工程S16-3から工程S18-3又は工程18-4までを実施する。その後、工程S19に移行して、工程S18-3又は工程18-4で決定した最適拡大比ωopt、最適拡大掘削部長Lωoptのケースに基づいて本杭施工を実施する。 After that, test construction is performed for the case of the expansion ratio ωs giving priority to safety (step S15-3). Then, as described above, Step S16-3 to Step S18-3 or Step 18-4 are performed. Thereafter, the process proceeds to step S19, and the main pile construction is performed based on the case of the optimum enlargement ratio ωopt and the optimum enlarged excavation section length Lωopt determined in step S18-3 or step 18-4.
 このように、本実施形態の変形例では、各拡大比ωd、ωc、ωsに対応する試験杭10´の施工を最初から全て実施せずに、設計値拡大比ωdを含めて必要最小限の試験施工のみを行って、当該試験施工を行った拡大比ωに対応する試験杭10´の載荷試験を実施するようにしている。このため、必要以上に試験孔3´を掘削する必要がなくなり、より無駄な掘削作業を減らすことができる。 As described above, in the modification of the present embodiment, the construction of the test pile 10 ′ corresponding to each of the expansion ratios ωd, ωc, and ωs is not performed from the beginning, and the necessary minimum value including the design value expansion ratio ωd is included. Only the test construction is performed, and the loading test of the test pile 10 ′ corresponding to the enlargement ratio ω subjected to the test construction is performed. For this reason, it is not necessary to excavate the test hole 3 'more than necessary, and wasteful excavation work can be reduced.
 また、本実施形態の変形例では、前述したフローに従って、複数通りに設定した拡大比ωの中央値となる設計値拡大比ωdの妥当性をより精査してから、実際の載荷試験結果に基づいた好適な最適拡大比ωoptを決める。このため、最適載荷試験を必要最小限の回数で済ませつつ、より確実に好適な最適拡大比ωoptを設定できるようになる。 In the modification of the present embodiment, the validity of the design value magnification ratio ωd, which is the median value of the magnification ratios ω set in a plurality of ways, is further examined according to the flow described above, and then based on the actual loading test results. A suitable optimum enlargement ratio ωopt is determined. For this reason, it is possible to set a suitable optimum enlargement ratio ωopt more reliably while performing the optimum loading test with the minimum necessary number of times.
(第2の実施形態)
 次に、本発明の第2の実施形態に係る既製杭の施工方法の詳細ついて、図面を使用しながら説明する。図7は、本発明の他の一実施形態に係る既製杭の施工方法の詳細を示すフロー図である。図7では、特に、拡大比ωの設定工程S13、S14を経てから、試験杭の設定、設計支持力Rの測定、当該設計支持力Rの妥当性の判定、及び最適拡大比ωoptの決定をするまでの詳細なフローについて説明する。
(Second Embodiment)
Next, the details of the construction method of the ready-made pile according to the second embodiment of the present invention will be described using the drawings. FIG. 7 is a flowchart showing details of a method for constructing a ready-made pile according to another embodiment of the present invention. In FIG. 7, in particular, after setting steps S13 and S14 for the enlargement ratio ω, setting of the test pile, measurement of the design support force R, determination of the validity of the design support force R, and determination of the optimum enlargement ratio ωopt are performed. A detailed flow up to this point will be described.
 図7に示すように、本実施形態では、オーバースペックとならない最適拡大比ωoptをより効率よく確実に設定するために、複数の拡大比ωd、ωc、ωsのうち、小さいものから順に設計支持力Rの判定を行うことを特徴とする。すなわち、設定工程S13、S14(図3参照)で設定した拡大比ωd、ωc、ωsのうち、コスト優先の拡大比ωcに対応する試験杭10´から載荷試験を行う。 As shown in FIG. 7, in this embodiment, in order to set the optimum enlargement ratio ωopt that does not become over-specification more efficiently and reliably, the design support force in order from the smallest of the plurality of enlargement ratios ωd, ωc, and ωs. R is determined. That is, the loading test is performed from the test pile 10 'corresponding to the cost-prioritized expansion ratio ωc among the expansion ratios ωd, ωc, and ωs set in the setting steps S13 and S14 (see FIG. 3).
 まず、実際に既製杭10を建て込む地盤GNの近傍において、既製杭10に対応する試験杭10´の施工を実施する(試験杭施工工程S25)。本実施形態では、各拡大比ωd、ωc、ωsに対応した試験杭10´の施行を全て行う。 First, construction of the test pile 10 ′ corresponding to the ready-made pile 10 is performed in the vicinity of the ground GN where the ready-made pile 10 is actually built (test pile construction step S25). In the present embodiment, all the test piles 10 'corresponding to the respective enlargement ratios ωd, ωc, and ωs are executed.
 次に、各拡大比ωd、ωc、ωsにそれぞれ対応する試験杭10´のうち、コスト優先拡大比ωcに対応する試験杭10´の載荷試験を実施する(工程S26-1)。すなわち、本実施形態では、値の小さいコスト優先の拡大比ωcの妥当性の検討を最優先するために、拡大比ωcのケースから載荷試験を実施して、当該拡大比ωcに対応する設計支持力Rωcを測定する。 Next, among the test piles 10 ′ corresponding to the respective expansion ratios ωd, ωc, and ωs, a loading test is performed on the test pile 10 ′ corresponding to the cost priority expansion ratio ωc (step S26-1). In other words, in the present embodiment, in order to give the highest priority to the validity of the cost-priority expansion ratio ωc having a small value, a loading test is performed from the case of the expansion ratio ωc, and the design support corresponding to the expansion ratio ωc is supported. Measure force Rωc.
 設計支持力Rωcを測定したら、次に設計支持力判定工程S27-1に移行して、設計値拡大比ωcに基づいて測定された設計支持力Rωc(以下、設計支持力Rωc(測定値)という)と既製杭10の本数Jとの積が、マージンMと設計荷重(柱荷重)Pとの積以上であるか否かについて判定する。 After the design support force Rωc is measured, the process proceeds to the design support force determination step S27-1, and the design support force Rωc (hereinafter referred to as the design support force Rωc (measured value)) measured based on the design value enlargement ratio ωc. ) And the number J of ready-made piles 10 is determined as to whether or not the product of the margin M and the design load (column load) P is equal to or greater.
 設計支持力判定工程S27-1において、設計支持力Rωc(測定値)と既製杭10の本数Jとの積が、マージンMと設計荷重(柱荷重)Pとの積以上である場合には、コスト優先の拡大比ωcを最適拡大比ωoptと決定して、同時に当該拡大比ωcに対応する工程S14で定めた拡大掘削部長Lωcを最適拡大部長Lωoptと決定する(工程S28-1)。 In the design support force determination step S27-1, if the product of the design support force Rωc (measured value) and the number J of ready-made piles 10 is equal to or greater than the product of the margin M and the design load (column load) P, The expansion ratio ωc giving priority to cost is determined as the optimal expansion ratio ωopt, and at the same time, the expanded excavation section length Lωc determined in step S14 corresponding to the expansion ratio ωc is determined as the optimal expansion section length Lωopt (step S28-1).
 そして、工程S19に移行して、工程S28-1で決定した最適拡大比ωopt、最適拡大掘削部長Lωoptのケースに基づいて本杭施工を実施する。これにより、拡大比ωdのケースに基づいて本杭施工を実施するよりも施工コストを低減することができる。 Then, the process proceeds to step S19, and the pile construction is performed based on the case of the optimum enlargement ratio ωopt and the optimum enlarged excavation section length Lωopt determined in step S28-1. Thereby, construction cost can be reduced rather than implementing this pile construction based on the case of expansion ratio ωd.
 一方、工程S27-1において、設計支持力Rωc(測定値)と既製杭10の本数Jとの積が、マージンMと設計荷重(柱荷重)Pとの積より小さいと判定された場合は、設計値拡大比ωdのケースについて載荷試験を実施して、既製杭10の設計支持力Rωdを測定する(工程S26-2)。 On the other hand, if it is determined in step S27-1 that the product of the design support force Rωc (measured value) and the number of ready-made piles 10 is smaller than the product of the margin M and the design load (column load) P, A loading test is performed on the case with the design value expansion ratio ωd, and the design support force Rωd of the ready-made pile 10 is measured (step S26-2).
 その後、杭本数Jと設計支持力Rωd(測定値)の積が、マージンMと設計荷重(柱荷重)Pとの積以上か否かについて検討する(工程S27-2)。すなわち、設計支持力Rωdの場合において、前述した条件式(2)を満たすか否かについて検討する。 Thereafter, it is examined whether or not the product of the number of piles J and the design support force Rωd (measured value) is greater than or equal to the product of the margin M and the design load (column load) P (step S27-2). That is, in the case of the design support force Rωd, it is examined whether or not the conditional expression (2) described above is satisfied.
 そして、工程S27-2において、杭本数Jと設計支持力Rωd(測定値)の積が、マージンMと設計荷重(柱荷重)Pとの積以上の場合には、設計値拡大比ωdを最適拡大比ωoptと決定し、同時に当該拡大比ωdに対応する工程S14で定めた拡大掘削部長Lωdを最適拡大部長Lωoptと決定する(工程S28-2)。当該工程S28-2では、拡大比ωdを最適拡大値ωoptに決定すると、その後、工程S19に移行して、工程S28-2で決定した最適拡大比ωopt、最適拡大掘削部長Lωoptのケースに基づいて本杭施工を実施する。 In step S27-2, when the product of the number of piles J and the design support force Rωd (measured value) is greater than or equal to the product of the margin M and the design load (column load) P, the design value enlargement ratio ωd is optimized. The expansion ratio ωopt is determined, and at the same time, the expanded excavation section length Lωd determined in step S14 corresponding to the expansion ratio ωd is determined as the optimal expansion section length Lωopt (step S28-2). In step S28-2, when the enlargement ratio ωd is determined to be the optimum enlargement value ωopt, the process proceeds to step S19. Based on the case of the optimum enlargement ratio ωopt and the optimum enlarged excavation section length Lωopt determined in step S28-2. Implement this pile construction.
 一方、工程S27-2において、設計支持力Rωd(測定値)と既製杭10の本数Jとの積が、マージンMと設計荷重(柱荷重)Pとの積より小さいと判定された場合は、安全性の拡大比ωsのケースについて載荷試験を実施して、既製杭10の設計支持力Rωsを測定する(工程S26-3)。 On the other hand, if it is determined in step S27-2 that the product of the design support force Rωd (measured value) and the number J of ready-made piles 10 is smaller than the product of the margin M and the design load (column load) P, A loading test is performed on the case with the safety expansion ratio ωs, and the design bearing force Rωs of the ready-made pile 10 is measured (step S26-3).
 その後、杭本数Jと設計支持力Rωs(測定値)の積が、マージンMと設計荷重(柱荷重)Pとの積以上か否かについて検討する(工程S27-3)。すなわち、設計支持力Rωs(測定値)の場合において、前述した条件式(2)を満たすか否かについて検討する。 Thereafter, it is examined whether or not the product of the number of piles J and the design support force Rωs (measured value) is greater than or equal to the product of the margin M and the design load (column load) P (step S27-3). That is, in the case of the design support force Rωs (measured value), it is examined whether or not the conditional expression (2) is satisfied.
 そして、工程S27-3において、杭本数Jと設計支持力Rωs(測定値)の積が、マージンMと設計荷重(柱荷重)Pとの積以上の場合には、拡大比ωsを最適拡大比ωoptと決定し、同時に当該拡大比ωsに対応する工程S14で定めた拡大掘削部長Lωsを最適拡大部長Lωoptと決定する(工程S28-3)。当該工程S28-3では、拡大比ωsを最適拡大値ωoptに決定すると、その後、工程S19に移行して、工程S28-3で決定した最適拡大比ωopt、最適拡大掘削部長Lωoptのケースに基づいて本杭施工を実施する。 In step S27-3, when the product of the number of piles J and the design support force Rωs (measured value) is equal to or greater than the product of the margin M and the design load (column load) P, the enlargement ratio ωs is set to the optimum enlargement ratio. At the same time, the enlarged excavation section length Lωs determined in step S14 corresponding to the enlargement ratio ωs is determined as the optimum enlargement section length Lωopt (step S28-3). In step S28-3, when the enlargement ratio ωs is determined to be the optimum enlargement value ωopt, the process proceeds to step S19. Based on the case of the optimum enlargement ratio ωopt and the optimum enlarged excavation section length Lωopt determined in step S28-3. Implement this pile construction.
 一方、工程S27-3において、杭本数Jと設計支持力Rωs(測定値)の積が、マージンMと設計荷重(柱荷重)Pとの積よりも小さい場合には、新たな設計支持力Rを設定し、新たに杭本数Jを計算する(工程S27-3a)。例えば、新たな設計支持力Rの設定に伴い、新たな杭本数Jを(J+1)として杭本数を1本増やすようにする。そして、拡大比ωd、ωsの中からコストを比較して安価な方を最適拡大比ωoptに決定して、同時に当該拡大比ωoptに対応する工程S14で定めた拡大掘削部長Lωd、Lωsの何れかを最適拡大部長Lωoptに決定する(工程S28-4)。その後、工程S19に移行して、工程S28-4で決定した最適拡大比ωopt、最適拡大掘削部長Lωoptのケースに基づいて本杭施工を実施する。 On the other hand, when the product of the number of piles J and the design support force Rωs (measured value) is smaller than the product of the margin M and the design load (column load) P in step S27-3, a new design support force R And a new pile number J is calculated (step S27-3a). For example, with the setting of the new design support force R, the new pile number J is set to (J + 1), and the pile number is increased by one. Then, the cost is compared among the enlargement ratios ωd and ωs, and the cheaper one is determined as the optimum enlargement ratio ωopt, and at the same time, one of the enlarged excavation section lengths Lωd and Lωs determined in step S14 corresponding to the enlargement ratio ωopt. Is determined as the optimum enlarged portion length Lωopt (step S28-4). Thereafter, the process proceeds to step S19, and the main pile construction is performed based on the case of the optimum enlargement ratio ωopt and the optimum enlarged excavation section length Lωopt determined in step S28-4.
 このように、本実施形態では、コスト優先の拡大比ωcに対応する試験杭10´から載荷試験を実施するので、より効率的にオーバースペックとならない拡大比ωの最適値ωoptを設定することができる。また、コスト優先の拡大比ωcに対応する試験杭10´から載荷試験を実施するので、最適拡大比ωoptがより小さい値の拡大比ωに設定される場合には、当該拡大比ωに対応する設計支持力Rの載荷試験の実施回数を必要最小限に抑えることができる。すなわち、コスト優先拡大比ωcを最適拡大比ωoptに決定する場合には、載荷試験の実施回数を1回のみで済ませられるので、より効率的にオーバースペックとならない拡大比ωの最適値ωoptを設定することができる。 Thus, in this embodiment, since the loading test is performed from the test pile 10 'corresponding to the cost-priority expansion ratio ωc, it is possible to set the optimum value ωopt of the expansion ratio ω that does not become over-specification more efficiently. it can. Further, since the loading test is performed from the test pile 10 ′ corresponding to the cost-prioritized enlargement ratio ωc, when the optimum enlargement ratio ωopt is set to a smaller value of the enlargement ratio ω, it corresponds to the enlargement ratio ω. It is possible to minimize the number of times the loading test of the design support force R is performed. In other words, when the cost priority enlargement ratio ωc is determined to be the optimum enlargement ratio ωopt, the load test can be performed only once, so the optimum value ωopt of the enlargement ratio ω that does not become over-specification is set more efficiently. can do.
 なお、本実施形態では、試験杭施工工程S25において、各拡大比ωd、ωc、ωsに対応した試験杭10´の施行を全て行っているが、必要に応じて別々に行ってもよい。このようにすれば、試験杭10´の施工も必要最小限で済ませることができる。図8は、本発明の他の実施形態に係る既製杭の施工方法の変形例の詳細を示すフロー図である。 In this embodiment, in the test pile construction step S25, all the test piles 10 'corresponding to the respective enlargement ratios ωd, ωc, and ωs are performed, but may be performed separately as necessary. If it does in this way, construction of test pile 10 'can also be completed by minimum necessary. FIG. 8 is a flowchart showing details of a modification of the method for constructing a ready-made pile according to another embodiment of the present invention.
 図8に示すように、本実施形態の変形例では、オーバースペックとならない最適拡大比ωoptをより効率よく確実に設定するために、まず、実際に既製杭10を建て込む地盤GNの近傍において、拡大比ωcのケースについて、既製杭10に対応する試験杭10´の施工を実施する(試験杭施工工程S25-1)。 As shown in FIG. 8, in the modification of the present embodiment, in order to more efficiently and surely set the optimum expansion ratio ωopt that does not become overspec, first, in the vicinity of the ground GN that actually builds the ready-made pile 10, For the case of the enlargement ratio ωc, the test pile 10 ′ corresponding to the ready-made pile 10 is constructed (test pile construction step S25-1).
 次に、前述したように、工程S26-1を実施し、その後、工程S27-1を経て工程S28-1を実施する。 Next, as described above, step S26-1 is performed, and then step S28-1 is performed after step S27-1.
 そして、工程S19に移行して、工程S28-1で決定した最適拡大比ωopt、最適拡大掘削部長Lωoptのケースに基づいて、本杭施工を実施する。これにより、拡大比ωdのケースに基づいて本杭施工を実施するよりも施工コストを低減することができる。 Then, the process proceeds to step S19, and the pile construction is performed based on the case of the optimum enlargement ratio ωopt and the optimum enlarged excavation section length Lωopt determined in step S28-1. Thereby, construction cost can be reduced rather than implementing this pile construction based on the case of expansion ratio ωd.
 一方、工程S27-1において、設計支持力Rωc(測定値)と既製杭10の本数との積が、マージンMと設計荷重(柱荷重)Pの積より小さいと判定された場合は、工程S27-1で測定された設計支持力Rωc(測定値)に基づいて予測設計支持力Rωd´を推定する(予測設計支持力推定工程S27-1a)。なお、予測設計支持力推定工程S27-1aにおける予測設計支持力Rωd´の推定方法については、前述と同様であるので、その説明は、省略する。 On the other hand, if it is determined in step S27-1 that the product of the design support force Rωc (measured value) and the number J of ready-made piles 10 is smaller than the product of the margin M and the design load (column load) P, The predicted design support force Rωd ′ is estimated based on the design support force Rωc (measured value) measured in S27-1 (predicted design support force estimation step S27-1a). Note that the method for estimating the predicted design support force Rωd ′ in the predicted design support force estimation step S27-1a is the same as described above, and thus the description thereof is omitted.
 その後、設計値拡大比ωdのケースについて、既製杭10に対応する試験杭10´の施工を実施する(試験杭施工工程S25-2)。 Thereafter, for the case of the design value expansion ratio ωd, the test pile 10 ′ corresponding to the ready-made pile 10 is constructed (test pile construction step S25-2).
 次に、前述したように、工程S26-2を実施し、その後、工程S27-2を経て工程S28-2を実施する。そして、工程S19に移行して、工程S28-2で決定した最適拡大比ωopt、最適拡大掘削部長Lωoptのケースに基づいて本杭施工を実施する。 Next, as described above, step S26-2 is performed, and then step S28-2 is performed through step S27-2. And it transfers to process S19 and implements this pile construction based on the case of the optimal expansion ratio omegaopt determined by process S28-2, and the optimal expansion excavation part length Lomegaopt.
 一方、工程S27-2において、設計支持力Rωd(測定値)と既製杭10の本数との積が、マージンMと設計荷重(柱荷重)Pの積より小さいと判定された場合には、工程S26-2で測定された設計支持力Rωd(測定値)に基づいて予測設計支持力Rωs´を推定する(予測設計支持力推定工程S27-2a)。なお、予測設計支持力推定工程S27-2aにおける予測設計支持力Rωs´の推定方法については、前述と同様であるので、その説明は、省略する。 On the other hand, when it is determined in step S27-2 that the product of the design support force Rωd (measured value) and the number J of ready-made piles 10 is smaller than the product of the margin M and the design load (column load) P, The predicted design support force Rωs ′ is estimated based on the design support force Rωd (measured value) measured in step S26-2 (predicted design support force estimation step S27-2a). Note that the method for estimating the predicted design support force Rωs ′ in the predicted design support force estimation step S27-2a is the same as described above, and thus the description thereof is omitted.
 その後、拡大比ωsのケースについて、既製杭10に対応する試験杭10´の施工を実施する(試験杭施工工程S25-3)。 Thereafter, the test pile 10 ′ corresponding to the ready-made pile 10 is installed in the case of the expansion ratio ωs (test pile construction step S25-3).
 次に、前述したように、工程S26-3を実施し、その後、工程S27-3を経て工程S28-3を実施する。そして、工程S19に移行して、工程S28-3で決定した最適拡大比ωopt、最適拡大掘削部長Lωoptのケースに基づいて本杭施工を実施する。 Next, as described above, step S26-3 is performed, and then step S28-3 is performed via step S27-3. And it transfers to process S19 and implements this pile construction based on the case of the optimal expansion ratio omegaopt determined by process S28-3 and the optimal expansion excavation part length Lomegaopt.
 一方、工程S27-3において、設計支持力Rωs(測定値)と既製杭10の本数Jとの積が、マージンMと設計荷重(柱荷重)Pの積より小さいと判定された場合には、前述したように、工程S27-3a及び工程S28-4を実施する。 On the other hand, when it is determined in step S27-3 that the product of the design support force Rωs (measured value) and the number J of ready-made piles 10 is smaller than the product of the margin M and the design load (column load) P, As described above, step S27-3a and step S28-4 are performed.
 その後、工程S19に移行して、工程S28-4で決定した最適拡大比ωopt、最適拡大掘削部長Lωoptのケースに基づいて本杭施工を実施する。 Then, the process proceeds to step S19, and the pile construction is performed based on the case of the optimum enlargement ratio ωopt and the optimum enlarged excavation section length Lωopt determined in step S28-4.
 このように、本実施形態では、拡大比ωの小さいコスト優先の拡大比ωcに対応する試験杭10´から載荷試験を実施するので、より効率的にオーバースペックとならない拡大比ωの最適値ωoptを設定することができる。また、コスト優先の拡大比ωcに対応する試験杭10´から載荷試験を実施するので、最適拡大比ωoptがより小さい値の拡大比ωに設定される場合には、当該拡大比ωに対応する設計支持力Rの載荷試験の実施回数を必要最小限に抑えることができる。 As described above, in this embodiment, since the loading test is performed from the test pile 10 'corresponding to the cost-priority expansion ratio ωc with a small expansion ratio ω, the optimum value ωopt of the expansion ratio ω that does not become over-specification more efficiently. Can be set. Further, since the loading test is performed from the test pile 10 ′ corresponding to the cost-prioritized enlargement ratio ωc, when the optimum enlargement ratio ωopt is set to a smaller value of the enlargement ratio ω, it corresponds to the enlargement ratio ω. It is possible to minimize the number of times the loading test of the design support force R is performed.
 なお、上記のように本発明の各実施形態について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。 Although each embodiment of the present invention has been described in detail as described above, it is easily understood by those skilled in the art that many modifications can be made without departing from the novel matters and effects of the present invention. It will be possible. Therefore, all such modifications are included in the scope of the present invention.
 例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、既製杭の施工システムの構成や、既製杭の施工方法の動作も本発明の各実施形態で説明したものに限定されず、種々の変形実施が可能である。 For example, a term described together with a different term having a broader meaning or the same meaning at least once in the specification or the drawings can be replaced with the different term in any part of the specification or the drawings. Moreover, the structure of the construction system of a ready-made pile and the operation | movement of the construction method of a ready-made pile are not limited to what was demonstrated in each embodiment of this invention, A various deformation | transformation implementation is possible.
1 杭基礎、3 杭孔、5 拡大掘削部、10 既製杭、10´ 試験杭、10a 先端部、10b 外周面、12 凸部、14 根固め部、100 (既製杭の)施工システム、101 コンピュータ、102 記憶部、104 記憶媒体、106 RAM、108 ROM、110 CPU(演算部)、112 設定部、114 判定部、116 決定部、120 入力部、122 出力部、124 通信部、125 システムバス、126 インターネット、128 設計支持力測定装置、130 掘削装置、131 掘削ロッド、132 掘削刃、134 可動掘削部、S13、S14 設定工程、S16 設計支持力測定工程、S17 設計支持力判定工程、S17-1b 予備設計支持力判定工程、S18 最適拡大比決定工程、S19 拡大掘削部形成工程 1 pile foundation, 3 pile hole, 5 enlarged excavation part, 10 ready-made pile, 10 'test pile, 10a tip part, 10b outer peripheral surface, 12 convex part, 14 consolidation part, 100 (prepared pile) construction system, 101 computer , 102 storage unit, 104 storage medium, 106 RAM, 108 ROM, 110 CPU (calculation unit), 112 setting unit, 114 determination unit, 116 determination unit, 120 input unit, 122 output unit, 124 communication unit, 125 system bus, 126 Internet, 128 Design support force measurement device, 130 Excavation device, 131 Excavation rod, 132 Excavation blade, 134 Movable excavation part, S13, S14 Setting process, S16 Design support force measurement process, S17 Design support force determination process, S17-1b Preliminary design support capacity judgment process, S18 optimum enlargement ratio determination process S19 expansion drilling portion forming step

Claims (11)

  1.  底部側に内径を拡大した拡大掘削部が形成された杭孔に既製杭を建て込む既製杭の施工方法であって、
     前記既製杭の先端部の外径に所望のクリアランス値を加算して求めた外径設計値に対する前記拡大掘削部の内径の割合を示す拡大比を前記既製杭の施工に係る所定のデータに基づいて異なる値で複数設定する設定工程と、
     これら複数の拡大比の中から選択した一又は複数の拡大比のケースについてそれぞれ載荷試験を実施して、前記一又は複数の拡大比における前記既製杭の設計支持力をそれぞれ測定する設計支持力測定工程と、
     前記設計支持力測定工程で測定された前記設計支持力のそれぞれについて、該設計支持力と使用する前記既製杭の本数との積が、前記既製杭により形成される杭基礎に作用する所望の設計荷重以上であるか否かについて判定する設計支持力判定工程と、
     前記設計支持力判定工程で前記積が前記設計荷重以上である条件を満たす前記拡大比のうち最小の拡大比を前記拡大掘削部を形成するための最適拡大比に決定する最適拡大比決定工程と、
     前記最適拡大比に基づいて前記拡大掘削部を形成する拡大掘削部形成工程と、を含むことを特徴とする既製杭の施工方法。
    It is a construction method of a ready-made pile in which a ready-made pile is built in a pile hole in which an expanded excavation part with an enlarged inner diameter is formed on the bottom side,
    Based on the predetermined data relating to the construction of the ready-made pile, an expansion ratio indicating the ratio of the inner diameter of the enlarged excavation part to the outer diameter design value obtained by adding a desired clearance value to the outer diameter of the tip of the ready-made pile Setting process to set multiple values with different values,
    Design bearing force measurement for carrying out a loading test for each of the cases of one or more magnification ratios selected from the plurality of magnification ratios and measuring the design bearing force of the ready-made piles at the one or more magnification ratios, respectively. Process,
    For each of the design support forces measured in the design support force measurement step, a desired design in which the product of the design support force and the number of the ready-made piles used acts on the pile foundation formed by the ready-made piles. A design support force determination step for determining whether or not the load is greater than or equal to,
    An optimum enlargement ratio determining step of determining a minimum enlargement ratio among the enlargement ratios satisfying a condition that the product is equal to or greater than the design load in the design support force determination step as an optimum enlargement ratio for forming the enlarged excavation portion; ,
    An expanded excavation portion forming step for forming the expanded excavation portion based on the optimum expansion ratio.
  2.  前記設定工程において、少なくとも前記所定のデータに基づいて設定された設計値拡大比と、該設計値拡大比より値が小さい拡大比と、該設計値拡大比より値が大きい拡大比とを設定することを特徴とする請求項1に記載の既製杭の施工方法。 In the setting step, a design value enlargement ratio set based on at least the predetermined data, an enlargement ratio having a value smaller than the design value enlargement ratio, and an enlargement ratio having a value larger than the design value enlargement ratio are set. The construction method of the ready-made pile of Claim 1 characterized by the above-mentioned.
  3.  前記設定工程において、更に前記複数の拡大比のケースについて、前記拡大掘削部の軸方向の長さである拡大掘削部長をそれぞれ設定することを特徴とする請求項2に記載の既製杭の施工方法。 3. The ready-made pile construction method according to claim 2, wherein in the setting step, an enlarged excavation section length that is an axial length of the enlarged excavation section is set for each of the plurality of enlargement ratio cases. .
  4.  前記設計支持力判定工程において、前記設計値拡大比から該設計値拡大比に基づいて測定された前記設計支持力と前記既製杭の前記本数との積が、前記既製杭により形成される前記杭基礎に作用する前記所望の設計荷重以上であるか否かについて判定し、
     前記設計支持力判定工程で前記積が前記所望の設計荷重以上である場合には、更に少なくとも前記設計支持力測定工程で測定された前記設計支持力に基づいて推定される予測設計支持力と前記既製杭の前記本数との積が、前記所望の設計荷重以上であるか否かについて判定する予測設計支持力判定工程を含むことを特徴とする請求項2に記載の既製杭の施工方法。
    In the design support force determination step, a product of the design support force and the number of the ready-made piles measured based on the design value enlargement ratio from the design value enlargement ratio is formed by the ready-made piles. Determining whether or not it is greater than or equal to the desired design load acting on the foundation;
    When the product is greater than or equal to the desired design load in the design support force determination step, the predicted design support force estimated based on at least the design support force measured in the design support force measurement step, and the The construction method of the ready-made pile of Claim 2 including the prediction design support force determination process which determines whether the product with the said number of ready-made piles is more than the said desired design load.
  5.  前記設計支持力判定工程において、前記複数の拡大比の小さいものから順に該拡大比に基づいて測定された前記設計支持力と前記既製杭の前記本数との積が、前記既製杭により形成される前記杭基礎に作用する前記所望の設計荷重以上であるか否かについて判定することを特徴とする請求項2に記載の既製杭の施工方法。 In the design support force determination step, a product of the design support force and the number of the ready-made piles measured based on the enlargement ratio in order from the plurality of the enlargement ratios is formed by the ready-made piles. It determines about whether it is more than the said desired design load which acts on the said pile foundation, The construction method of the ready-made pile of Claim 2 characterized by the above-mentioned.
  6. 前記既製杭は、先端部の外周面に凸部が設けられる節杭であることを特徴とする請求項1乃至請求項5の何れか1項に記載の既製杭の施工方法。 The said ready-made pile is a node pile in which a convex part is provided in the outer peripheral surface of a front-end | tip part, The construction method of the ready-made pile of any one of Claim 1 thru | or 5 characterized by the above-mentioned.
  7.  請求項1乃至請求項6の何れか1項に記載の既製杭の施工方法をコンピュータに実行させるためのプログラム。 The program for making a computer perform the construction method of the ready-made pile of any one of Claims 1 thru | or 6.
  8.  請求項1乃至請求項6の何れか1項に記載の既製杭の施工方法をコンピュータに実行させるためのプログラムを前記コンピュータで読み取り可能に記憶した記憶媒体。 A storage medium storing a computer-readable program for causing a computer to execute the ready-made pile construction method according to any one of claims 1 to 6.
  9.  請求項1乃至請求項6の何れか1項に記載の既製杭の施工方法により地盤に建て込まれた既製杭により形成される杭基礎。 A pile foundation formed by a ready-made pile built in the ground by the ready-made pile construction method according to any one of claims 1 to 6.
  10.  底部側に内径を拡大した拡大掘削部が形成された杭孔に既製杭を建て込む既製杭の施工システムであって、
     少なくとも前記既製杭の施工に係る所定のデータを記憶する記憶部と、
     少なくとも前記所定のデータに基づいてコンピュータで演算処理して、前記既製杭の先端部の外径に所望のクリアランス値を加算して求めた外径設計値に対する前記拡大掘削部の内径の割合を示す拡大比を求める演算部と、
     前記演算部に含まれ、少なくとも前記既製杭の施工に係る前記所定のデータに基づいて、前記拡大比を異なる値で複数設定する設定部と、
     前記演算部に含まれ、前記設定部で設定された複数の前記拡大比の中から選択した一又は複数の拡大比のケースの載荷試験によって測定された設計支持力と使用する前記既製杭の本数との積が、前記既製杭により形成される杭基礎に作用する所望の設計荷重以上であるか否かについて判定する判定部と、
     前記演算部に含まれ、少なくとも前記判定部で前記積が前記設計荷重以上である条件を満たす前記拡大比のうち最小の拡大比を、前記拡大掘削部を形成するための最適拡大比に決定する決定部と、
    を備えることを特徴とする既製杭の施工システム。
    A construction system for a ready-made pile that builds a ready-made pile into a pile hole in which an enlarged excavation part with an enlarged inner diameter is formed on the bottom side,
    A storage unit for storing at least predetermined data relating to the construction of the ready-made pile;
    The ratio of the inner diameter of the expanded excavation portion to the outer diameter design value obtained by calculating with a computer based on at least the predetermined data and adding a desired clearance value to the outer diameter of the tip portion of the ready-made pile. An arithmetic unit for obtaining an enlargement ratio;
    A setting unit that is included in the calculation unit and sets a plurality of the enlargement ratios with different values based on at least the predetermined data relating to the construction of the ready-made pile,
    The number of the ready-made piles to be used with the design support force that is included in the calculation unit and is measured by a loading test of a case having one or more enlargement ratios selected from the plurality of enlargement ratios set by the setting unit And a determination unit that determines whether or not the product is greater than or equal to a desired design load acting on a pile foundation formed by the ready-made pile,
    The minimum enlargement ratio among the enlargement ratios that are included in the arithmetic unit and satisfy the condition that the product is equal to or greater than the design load at least by the determination unit is determined as an optimum enlargement ratio for forming the enlarged excavation part. A decision unit;
    An installation system for a ready-made pile characterized by comprising:
  11.  前記記憶部は、前記所定のデータとして、少なくとも前記既製杭が建て込まれる地盤の土質データ、前記載荷試験の測定データ、及び前記既製杭の過去の施工実績データをデータベース化して記憶することを特徴とする請求項10に記載の既製杭の施工システム。 The storage unit stores, as the predetermined data, at least the soil data of the ground where the ready-made pile is built, the measurement data of the load test described above, and the past construction performance data of the ready-made pile in a database. The construction system of the ready-made pile of Claim 10.
PCT/JP2014/054542 2014-02-25 2014-02-25 Prefabricated pile construction method, program, memory medium, pile foundation, and prefabricated pile construction system WO2015128944A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/054542 WO2015128944A1 (en) 2014-02-25 2014-02-25 Prefabricated pile construction method, program, memory medium, pile foundation, and prefabricated pile construction system
JP2016504983A JP6065155B2 (en) 2014-02-25 2014-06-18 Foundation pile construction method, program, storage medium, and foundation pile construction system
PCT/JP2014/066208 WO2015129060A1 (en) 2014-02-25 2014-06-18 Foundation pile construction method, program, memory medium, pile foundation, and foundation pile construction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/054542 WO2015128944A1 (en) 2014-02-25 2014-02-25 Prefabricated pile construction method, program, memory medium, pile foundation, and prefabricated pile construction system

Publications (1)

Publication Number Publication Date
WO2015128944A1 true WO2015128944A1 (en) 2015-09-03

Family

ID=54008316

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/054542 WO2015128944A1 (en) 2014-02-25 2014-02-25 Prefabricated pile construction method, program, memory medium, pile foundation, and prefabricated pile construction system
PCT/JP2014/066208 WO2015129060A1 (en) 2014-02-25 2014-06-18 Foundation pile construction method, program, memory medium, pile foundation, and foundation pile construction system

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066208 WO2015129060A1 (en) 2014-02-25 2014-06-18 Foundation pile construction method, program, memory medium, pile foundation, and foundation pile construction system

Country Status (2)

Country Link
JP (1) JP6065155B2 (en)
WO (2) WO2015128944A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108364456A (en) * 2018-01-12 2018-08-03 山东高速信息工程有限公司 Method, storage medium, device and system for determining highway pile number
CN108956766A (en) * 2018-06-09 2018-12-07 宁波亿诺维信息技术有限公司 A kind of pile foundation quality detection method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112927A (en) * 2017-12-24 2019-07-11 佐伯 英一郎 Ground anchor and construction evaluation method of the same, and tension method of the same
JP7107723B2 (en) * 2018-04-09 2022-07-27 清水建設株式会社 Construction method of cast-in-place concrete pile and cast-in-place concrete pile
CN108978636A (en) * 2018-08-28 2018-12-11 中冶沈勘工程技术有限公司 A kind of compacted type shaped pile of CHARACTERISTICS OF TAILINGS SAND and its composite foundation treatment process
JP7256367B2 (en) * 2019-01-31 2023-04-12 ジャパンパイル株式会社 Evaluation method of tip bearing capacity of pile foundation
CN112252312B (en) * 2020-11-03 2022-07-08 中建四局第一建设有限公司 Construction method for enhancing integral stress performance of PHC pipe pile
JP7389161B2 (en) 2022-03-29 2023-11-29 旭化成建材株式会社 Pile workability evaluation system, program and pile workability evaluation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280261A (en) * 1993-03-29 1994-10-04 Sumitomo Metal Ind Ltd Front end consolidating pile
JP2007032044A (en) * 2005-07-26 2007-02-08 Sumitomo Metal Ind Ltd Supporting structure of foundation pile and steel pipe pile
JP2011122428A (en) * 1999-08-31 2011-06-23 Mitani Sekisan Co Ltd Prefabricated pile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280261A (en) * 1993-03-29 1994-10-04 Sumitomo Metal Ind Ltd Front end consolidating pile
JP2011122428A (en) * 1999-08-31 2011-06-23 Mitani Sekisan Co Ltd Prefabricated pile
JP2007032044A (en) * 2005-07-26 2007-02-08 Sumitomo Metal Ind Ltd Supporting structure of foundation pile and steel pipe pile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108364456A (en) * 2018-01-12 2018-08-03 山东高速信息工程有限公司 Method, storage medium, device and system for determining highway pile number
CN108956766A (en) * 2018-06-09 2018-12-07 宁波亿诺维信息技术有限公司 A kind of pile foundation quality detection method

Also Published As

Publication number Publication date
JP6065155B2 (en) 2017-01-25
JPWO2015129060A1 (en) 2017-03-30
WO2015129060A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
WO2015128944A1 (en) Prefabricated pile construction method, program, memory medium, pile foundation, and prefabricated pile construction system
Han et al. Comparison of the load response of closed-ended and open-ended pipe piles driven in gravelly sand
Lavasan et al. Behavior of shallow strip footing on twin voids
Burlon et al. Model factor for the bearing capacity of piles from pressuremeter test results–Eurocode 7 approach
Haberfield et al. Analysis and design of axially loaded piles in rock
Avgerinos et al. The use of kinematic hardening models for predicting tunnelling-induced ground movements in London Clay
Russo Experimental investigations and analysis on different pile load testing procedures
Basu et al. Modeling of installation and quantification of shaft resistance of drilled-displacement piles in sand
JP6512014B2 (en) Evaluation method of stability of excavated wall
KR101477215B1 (en) Design and construction method of foundation using a Foundation Assessment Program
Potts et al. Finite-element study of arching behaviour in reinforced fills
Yoo Serviceability state deformation behaviour of two-tiered geosynthetic reinforced soil walls
Scotland et al. Modelling deformation during the construction of wrapped geogrid-reinforced structures
Lees The bearing capacity of a granular layer on clay
Razavi et al. Study of soil nailed wall under service loading condition
Nguyen et al. Bidirectional cell tests on non-grouted and grouted large-diameter bored piles
Lai et al. A generalised analytical framework for active earth pressure on retaining walls with narrow soil
Ouahab et al. Effect of load eccentricity on the bearing capacity of strip footings on non-homogenous clay overlying bedrock
Paik et al. Calculation of the axial bearing capacity of tapered bored piles
Alielahi et al. Comparison between empirical and experimental ultimate bearing capacity of bored piles—a case study
Vu et al. Structural design model for tunnels in soft soils: From construction stages to the long-term
Ou et al. Using buttress walls to reduce excavation-induced movements
Ren et al. Analysis of vertically loaded jet-grout-pile-strengthened piles of expanded cross-section
Li et al. Axial load transfer of drilled shaft foundations with and without steel casing
Abuel-Naga et al. Simple method for correcting dynamic cone penetration test results for rod friction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP