JP2007085157A - Steel pipe pile with recess, its manufacturing method, and composite steel pipe pile using the steel pipe pile - Google Patents

Steel pipe pile with recess, its manufacturing method, and composite steel pipe pile using the steel pipe pile Download PDF

Info

Publication number
JP2007085157A
JP2007085157A JP2006194697A JP2006194697A JP2007085157A JP 2007085157 A JP2007085157 A JP 2007085157A JP 2006194697 A JP2006194697 A JP 2006194697A JP 2006194697 A JP2006194697 A JP 2006194697A JP 2007085157 A JP2007085157 A JP 2007085157A
Authority
JP
Japan
Prior art keywords
steel pipe
pipe pile
recess
pile
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006194697A
Other languages
Japanese (ja)
Other versions
JP4109698B2 (en
Inventor
Kazuto Yamamoto
和人 山本
Satoru Sato
哲 佐藤
Takumi Yasunaga
巧 安永
Masataka Takagi
優任 高木
Satoru Tsuruta
悟 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006194697A priority Critical patent/JP4109698B2/en
Publication of JP2007085157A publication Critical patent/JP2007085157A/en
Application granted granted Critical
Publication of JP4109698B2 publication Critical patent/JP4109698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel pipe pile capable of developing a large bearing force by increasing a frictional force between the peripheral surface of the steel pipe pile buried in the ground, concrete, or cement and the ground, concrete, or cement and manufacturable at the same production rate as in normal steel pipe production and a method of manufacturing the steel pipe pile. <P>SOLUTION: This steel pipe pile comprises a recess in the circumferential direction of a steel pipe. Where the wall thickness of the steel pipe is 2 mm or longer, the outer diameter (D) of the steel pipe is 50 mm or longer, the depth of the recess is 0.005D to 0.2D, the width of the recess is 0.015D to 2D, and the width of the recess is B, and the depth of the recess is H, (1) when the cross sectional shape of the recess is triangular, B/H is 3 to 20, (2) when the cross sectional shape of the recess is quadrangular, B/H is 4 to 20, and (3) when the cross sectional shape of the recess is semi-circular or trapezoidal, B/H is 3 to 20. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、土木建築構造物を構築する場合に用いられる窪み付き鋼管杭及びその製造方法、並びに前記鋼管杭を使用した複合鋼管杭に関するものである。   The present invention relates to a hollow steel pipe pile used when a civil engineering building structure is constructed, a manufacturing method thereof, and a composite steel pipe pile using the steel pipe pile.

土木建築構造物の基礎としての杭の支持力は、先端支持力と周面摩擦力とにより発揮される。先端支持力は、強固な地盤に根入れした先端部での支圧抵抗であり、周面摩擦力は、杭と地盤との摩擦力により発現される。一般に、鋼管杭と地盤との周面摩擦力は小さいので、高い支持力を発揮させるためには、強固な支持層まで到達する支持杭とする方法、もしくは長尺または大径の杭として周面の摩擦面積を増大させる方法が用いられる。したがって、軟弱な地盤もしくは支持層が深い場合には不経済な杭の設計になることが課題であった。   The support force of the pile as the foundation of the civil engineering structure is exhibited by the tip support force and the peripheral friction force. The tip support force is a bearing resistance at the tip portion rooted in the solid ground, and the peripheral friction force is expressed by the friction force between the pile and the ground. Generally, since the peripheral frictional force between the steel pipe pile and the ground is small, in order to exert a high supporting force, a method of using a supporting pile that reaches a strong support layer, or a long or large-diameter peripheral surface A method of increasing the friction area is used. Therefore, when the soft ground or the support layer is deep, it is a problem to design an uneconomic pile.

従来において、鋼管杭の周面摩擦力を増大させる方法として、以下の鋼管杭が提案されている。
(1)特許文献1に記載されているような網状の突起を有した鋼板を螺旋状に成形し、溶接し、スパイラル鋼管とする鋼管杭
(2)特許文献2に開示されているような、鋼管を内部から局部拡径し、外周に複数の節上突起部を形成した節つき鋼管杭
などがある。
Conventionally, the following steel pipe piles have been proposed as a method for increasing the peripheral frictional force of the steel pipe piles.
(1) Steel pipe pile (2) as disclosed in Patent Document 2, in which a steel plate having a net-like protrusion as described in Patent Document 1 is spirally formed and welded to form a spiral steel pipe. There is a steel pipe pile with a node in which a steel pipe is locally expanded from the inside and a plurality of nodal protrusions are formed on the outer periphery.

前記(1)の鋼管杭については、鋼管に設けられた突起が鋼管を補強するので、従来の同じ重量の鋼管に比べて強度がより高い鋼管杭を提供できるととの効果はあるが、しかし、鋼管の素材となる鋼板を製造する段階から網状突起を形成する専用のロールに組み替えるなど他工程の生産能率や作業性を低下させる要因となる。   As for the steel pipe pile of (1), since the projection provided on the steel pipe reinforces the steel pipe, there is an effect that it can provide a steel pipe pile having higher strength than the conventional steel pipe of the same weight, Further, the production efficiency and workability of other processes are reduced, such as recombination with a dedicated roll for forming net-like protrusions from the stage of producing a steel plate as a material for the steel pipe.

また、(2)の鋼管外側に節を複数有した鋼管杭は、節状の突起部により鋼管杭を地中に埋設し、突起部の支圧力の伝達により、周面摩擦力を増大し、高い支持力を発揮することが可能であるが、製造工程として鋼管の複数箇所について局部的な拡径を行うにはオフラインで長時間を要し、生産性を著しく低下させる。
特開平2−8582号公報 特開2000−129671号公報
In addition, the steel pipe pile having a plurality of nodes on the outer side of the steel pipe (2) embeds the steel pipe pile in the ground by the nodular protrusions, and increases the peripheral frictional force by transmitting the support pressure of the protrusions. Although it is possible to exert a high supporting force, it takes a long time offline to perform local diameter expansion at a plurality of locations in the steel pipe as a manufacturing process, and the productivity is significantly reduced.
Japanese Patent Laid-Open No. 2-8582 JP 2000-129671 A

本発明は、上記の問題点を有利に解消でき、地盤もしくはコンクリート、セメント、あるいはソイルセメント(以降、地盤あるいはコンクリート等と称す)に埋設された鋼管杭がその周面と地盤あるいはコンクリート等との摩擦力を増大させ、大きな支持力を発揮させることができ、しかもその鋼管杭を製造する際には、通常の鋼管製造時と同じ生産速度で製造できる窪み付き鋼管杭とその製造方法、並びに前記鋼管杭を使用した複合鋼管杭を提供するものである。   The present invention can advantageously solve the above-mentioned problems, and the steel pipe pile embedded in the ground or concrete, cement, or soil cement (hereinafter referred to as ground or concrete) is formed between the peripheral surface and the ground or concrete. When manufacturing the steel pipe pile, the friction force can be increased and a large supporting force can be exhibited. A composite steel pipe pile using a steel pipe pile is provided.

上記課題を解決するための本発明は、下記(1)〜(16)の発明により構成されるものである。
(1)鋼管の周方向に凹部を有する窪み付き鋼管杭であって、鋼管肉厚2mm以上、鋼管外径(D)50mm以上、凹部の深さが0.005D〜0.2D、凹部の幅が0.015D〜2Dで、凹部の幅を(B)、凹部の深さを(H)としたときに
(1)凹断面形状が三角形状の時、B/H=3〜20
(2)凹断面形状が四角形状の時、B/H=4〜20
(3)凹断面形状が半円状、台形状の時、B/H=3〜20
であることを特徴とする窪み付き鋼管杭。
(2)前記凹部が、鋼管の同一円周上に複数設けたことを特徴とする前記(1)記載の稿付き鋼管杭。
(3)前記凹部が、円周方向に複数設けられ、少なくとも向かい合う凹部が同一円周上に存在しないことを特徴とする前記(1)記載の窪み付き鋼管杭。
(4)前記凹部が、鋼管軸に対し、斜め方向に複数設けたことを特徴とする(1)記載の窪み付き鋼管杭。
(5)前記凹部が、鋼管軸に対し、平行に複数設けたことを特徴とする(1)記載の窪み付き鋼管杭。
(6)前記凹部が、スポット状に複数設けたことを特徴とする(1)記載の窪み付き鋼管杭。
(7)前記鋼管杭の表面にめっき、あるいは、樹脂被覆を施したことを特徴とする前記(1)〜(6)のいずれか1項記載の窪み付き鋼管杭。
(8)コンクリート、セメント、あるいはソイルセメントの中に前記(1)〜(7)のいずれか1項記載の窪み付き鋼管杭を埋め込んだことを特徴とする複合鋼管杭。
(9)前記(1)〜(8)のいずれか1項記載の窪み付き鋼管杭の製造方法であって、鋼管製造ラインにおいて、造管後、熱間あるいは温間で、前記造管した鋼管を押圧手段により押圧することにより、当該鋼管表面に周方向の凹部を付与することを特徴とする窪み付き鋼管杭の製造方法。
(10)前記製造ライン及び押圧する方法が下記のいずれかの方法であることを特徴とする前記(9)記載の窪み付き鋼管杭の製造方法。
a)電縫鋼管製造ラインにおいて、電縫溶接後、当該鋼管を加熱し、押圧手段によりその表面を押圧する
b)熱間あるいは温間溶接鋼管製造ラインにおいて、溶接後、押圧手段によりその表面を押圧する
c)鍛接鋼管製造ラインにおいて、衝合後、押圧手段によりその表面を押圧する
d)シームレス鋼管製造ラインにおいて、造管後、押圧手段によりその表面を押圧する
(11)前記押圧手段が、鋼管の周方向に配置された複数のロールからなり、そのうち少なくとも一つのロールが、その表面に一つあるいは複数の凸部を設けたロールである前記(9)又は(10)記載の窪み付き鋼管杭の製造方法。
(12)前記ロールに設けた凸部の高さが、ロールの中心部が最も高く、ロール端部に向かうほど低くしたことを特徴とする前記(11)記載の稿付き鋼管杭の製造方法。
(13)前記凸部を設けたロールが複数であり、それぞれの凸部が鋼管の長さ方向の同じ位置で押圧するように同期させることを特徴とする前記(11)又は(12)記載の窪み付き鋼管杭の製造方法。
(14)予め鋼管の切断位置を認識しておき、当該切断位置では、押圧しないように制御することを特徴とする前記(13)記載の窪み付き鋼管杭の製造方法。
(15)前記凸部を設けたロールが複数であり、それぞれの凸部が鋼管の長さ方向の同じ位置で押圧しないように同期させることを特徴とする前記(11)又は(12)記載の窪み付き鋼管杭の製造方法。
(16)前記鋼官に押圧する手段が、鋼管に対し近接、退避可能であり、鋼管の長さ方向任意の位置で押圧可能であることを特徴とする前記(9)記載の窪み付き鋼管杭の製造方法。
The present invention for solving the above problems is constituted by the following inventions (1) to (16).
(1) A steel pipe pile with a recess having a recess in the circumferential direction of the steel pipe, with a steel pipe wall thickness of 2 mm or more, a steel pipe outer diameter (D) of 50 mm or more, a recess depth of 0.005D to 0.2D, and a recess width Is 0.015D to 2D, the width of the recess is (B), and the depth of the recess is (H). (1) When the concave cross-sectional shape is triangular, B / H = 3 to 20
(2) When the concave cross-sectional shape is a square shape, B / H = 4 to 20
(3) When the concave cross-sectional shape is semicircular or trapezoidal, B / H = 3-20
The hollow steel pipe pile characterized by being.
(2) The steel pipe pile with paper according to (1), wherein a plurality of the recesses are provided on the same circumference of the steel pipe.
(3) The hollow steel pipe pile according to (1), wherein a plurality of the recesses are provided in a circumferential direction, and at least the facing recesses do not exist on the same circumference.
(4) The hollow steel pipe pile according to (1), wherein a plurality of the concave portions are provided obliquely with respect to the steel pipe shaft.
(5) The hollow steel pipe pile according to (1), wherein a plurality of the recesses are provided in parallel to the steel pipe axis.
(6) The hollow steel pipe pile according to (1), wherein a plurality of the concave portions are provided in a spot shape.
(7) The hollow steel pipe pile according to any one of (1) to (6), wherein the surface of the steel pipe pile is plated or resin-coated.
(8) A composite steel pipe pile in which the hollow steel pipe pile according to any one of (1) to (7) is embedded in concrete, cement, or soil cement.
(9) A method of manufacturing a hollow steel pipe pile according to any one of (1) to (8), wherein the pipe is piped hot or warm after pipe making in a steel pipe production line. The manufacturing method of the steel pipe pile with a dent characterized by providing the recessed part of the circumferential direction on the said steel pipe surface by pressing this with a press means.
(10) The method for manufacturing a hollow steel pipe pile according to (9), wherein the manufacturing line and the pressing method are any of the following methods.
a) In the ERW steel pipe production line, after the ERW welding, the steel pipe is heated and the surface is pressed by the pressing means. b) In the hot or warm welded steel pipe production line, the surface is pressed by the pressing means after welding. C) In the welded steel pipe production line, after the abutment, the surface is pressed by the pressing means. D) In the seamless steel pipe production line, after the pipe is formed, the surface is pressed by the pressing means. (11) The pressing means is The hollow steel pipe according to (9) or (10), comprising a plurality of rolls arranged in a circumferential direction of the steel pipe, wherein at least one of the rolls is a roll provided with one or a plurality of convex portions on the surface thereof. Pile manufacturing method.
(12) The method for producing a steel pipe pile with a paper according to (11), wherein the height of the convex portion provided on the roll is the highest at the center of the roll and decreases toward the end of the roll.
(13) There are a plurality of rolls provided with the convex portions, and the respective convex portions are synchronized so as to press at the same position in the length direction of the steel pipe. Manufacturing method of steel pipe pile with a dent.
(14) The method for producing a steel pipe pile with a recess according to (13), wherein the cutting position of the steel pipe is recognized in advance and is controlled so as not to be pressed at the cutting position.
(15) The roll according to (11) or (12), wherein there are a plurality of rolls provided with the convex portions, and the respective convex portions are synchronized so as not to be pressed at the same position in the length direction of the steel pipe. Manufacturing method of steel pipe pile with a dent.
(16) The hollow steel pipe pile with a recess according to (9), wherein the means for pressing the steel officer is close to and retractable from the steel pipe and can be pressed at an arbitrary position in the length direction of the steel pipe. Manufacturing method.

本発明により得られた窪み付き鋼管杭は、複数の周状の凹部を有しており、地盤やコンクリートと高い摩擦力を得ることができる。しかも厚肉で大径であり、回転しながら地盤に打ち込むことができ、基礎杭に適していて、しかもその製造過程においても、通常の鋼管の製造ラインの一部を変更するだけで、その生産性を落とすことなく生産でき、安価に優れた窪み付き鋼管杭を得ることができる。   The hollow steel pipe pile obtained by the present invention has a plurality of circumferential recesses, and can obtain a high frictional force with the ground or concrete. Moreover, it is thick and large in diameter, can be driven into the ground while rotating, is suitable for foundation piles, and even in its manufacturing process, it can be produced by changing only part of the normal steel pipe manufacturing line. It is possible to produce a steel pipe pile with a dent that can be produced without degrading the properties and is inexpensive.

本発明は、埋め込み杭工法により、鋼管杭を地盤中あるいはコンクリート等中に埋設施工する場合に適用される鋼管杭とその製造方法であり、鋼管杭は、複数の箇所にその周状に凹部を有し、その凹部が鋼管杭とコンクリート等あるいは地盤との摩擦力を高める。またその製造方法は、鋼管製造ラインにおいて造管後、熱間あるいは温間で、押圧手段により鋼管表面に凹部を付与するのみでオンラインでも製造可能であり、生産性は通常の造管工程とかわらないまま摩擦力の優れた鋼管杭を製造できるという優れた効果を奏する。   The present invention is a steel pipe pile that is applied when a steel pipe pile is embedded in the ground or concrete, etc. by the embedded pile method, and the manufacturing method thereof. The concave portion enhances the frictional force between the steel pipe pile and concrete or the ground. In addition, the manufacturing method can be manufactured on-line by simply forming a concave portion on the surface of the steel pipe by pressing means after the pipe making in the steel pipe production line, and the productivity is different from the normal pipe making process. There is an excellent effect that a steel pipe pile having excellent frictional force can be produced without being present.

図1(a)〜(k)に本発明に係る窪み付き鋼管杭の具体例を示す。
(a)(b)(c)は、いずれの鋼管杭も円周方向に凹部2を有し、該凹部2が軸方向に一定間隔で複数形成されている。図1(a)の鋼管杭1Aでは、凹部2は鋼管の同一円周上に複数(図では対向して2個)設けた例であり、(b)は、凹部を圧延ロールではなく、鋼管に対し、近接、退避可能な往復式の押圧装置により形成したもので、凹部が円周上でほぼ同一の深さとなっている。(c)の鋼管杭1Bでは、凹部2は鋼管の円周方向に複数設けられ、これらのうち少なくとも向かい合う凹部2が同一円周上には存在しない例である。
図1(c)の鋼管杭1Bのように、向かい合う凹部2が同一円周上に存在しないように千鳥配置としたのは、(a)の鋼管杭に比べて凹部位置の強度を向上させるためであり、特にこの部分の強度がより高く要求される場合に適応するに適している。なお、凹部の千鳥配置の例では、対向する凹部部分の全幅ががラップしないように形成することが望ましい。
(d)〜(g)は、鋼管軸に対し斜め方向に長辺を有する凹部を形成した鋼管を示した図、(h)(i)は、鋼管軸に平行な方向に長辺を有する凹部を形成した鋼管を示した図、(j)(k)は、丸いスポット状の凹部を形成した鋼管を示した図である。スポット状の凹部形状は、形成し易さなどから楕円や多角形などから自由に選択できる。また、凹部を同一円周上に配置するかあるいは交互に千鳥状に配置するかなども自由に選択できる。
The specific example of the steel pipe pile with a dent concerning this invention is shown to Fig.1 (a)-(k).
In (a), (b), and (c), each steel pipe pile has a concave portion 2 in the circumferential direction, and a plurality of the concave portions 2 are formed at regular intervals in the axial direction. In the steel pipe pile 1A of FIG. 1 (a), a plurality of recesses 2 are provided on the same circumference of the steel pipe (two facing each other in the figure), and (b) is a steel pipe instead of a rolling roll. On the other hand, it is formed by a reciprocating pressing device that can approach and retract, and the concave portion has substantially the same depth on the circumference. In the steel pipe pile 1B of (c), a plurality of the recesses 2 are provided in the circumferential direction of the steel pipe, and at least the facing recesses 2 among these are not present on the same circumference.
The reason why the staggered arrangement is made so that the concavities 2 facing each other do not exist on the same circumference as in the steel pipe pile 1B of FIG. It is particularly suitable for adapting to the case where the strength of this part is required to be higher. In addition, in the example of the staggered arrangement of the recesses, it is desirable that the entire width of the opposing recess portions is not overlapped.
(D)-(g) is the figure which showed the steel pipe which formed the recessed part which has a long side in the diagonal direction with respect to a steel pipe axis, (h) (i) is a recessed part which has a long side in the direction parallel to a steel pipe axis. The figure which showed the steel pipe which formed No., (j) (k) is the figure which showed the steel pipe which formed the round spot-shaped recessed part. The spot-like recess shape can be freely selected from an ellipse, a polygon, and the like for ease of formation. It is also possible to freely select whether the concave portions are arranged on the same circumference or alternately arranged in a staggered manner.

本発明の鋼管杭は、後述するように熱間あるいは温間で凹部を形成するので鋼管の肉厚が2mm以上でも容易に製造可能であり、厚肉なので鋼管杭として例えば地盤に回転させながら打ち込む際に、鋼管にねじれ力が作用し、屈曲したり、先端が潰れたりすることがない。また、鋼管杭として実用可能な外径50mm以上のものも容易に製造できる。
従って、本発明の鋼管杭においては、肉厚2mm以上、外径50mm以上の厚肉・大径の鋼管が素材となるが、その使用に際しては地盤中あるいはコンクリート等中に埋設施工されることから、十分な強度を保持する必要がある。特に、本発明の鋼管杭では、円周上に凹部を設けているため、その位置での強度低下を最小限に抑えることが要求される。
As will be described later, the steel pipe pile of the present invention forms a recess hot or warm so that it can be easily manufactured even if the thickness of the steel pipe is 2 mm or more. At that time, the torsional force acts on the steel pipe, and it is not bent or the tip is crushed. Moreover, the thing of 50 mm or more of outer diameters practical as a steel pipe pile can be manufactured easily.
Therefore, in the steel pipe pile of the present invention, a thick and large diameter steel pipe having a wall thickness of 2 mm or more and an outer diameter of 50 mm or more is used as a raw material, but it is buried in the ground or concrete in use. It is necessary to maintain sufficient strength. In particular, in the steel pipe pile of the present invention, since the concave portion is provided on the circumference, it is required to minimize the strength reduction at that position.

鋼管杭の凹部については、図2(a)、(b)、(c)、(d)に示す如く、基本的には断面三角形状の場合と、断面四角形状の場合が考えられる。半円状、及び台形状の場合はほぼ三角形と等しいと考えてもよい。いずれの場合も、凹部の深さ(最も深い部分の深さを指す)(H)は、鋼管周面と地盤あるいはコンクリート等との摩擦力を得るために0.005D(但し、D:鋼管外径)以上は必要である。しかし、0.2D超で摩擦力向上の効果も飽和してしまうので、凹部深さは0.005D〜0.2Dとする。さらに凹部の幅(B)は、上記摩擦力を得るためには0.015D以上必要であるが、2D超では、摩擦力向上効果が小さいため2D以下とする必要がある。
更に、上記の前提のもとで、更に、凹部形状の最適化を図る上で、下記の事項を規定することが重要である。すなわち、
(1)凹断面形状が三角形状の時、B/H=3〜20
(2)凹断面形状が四角形状の時、B/H=4〜20
(3)凹断面形状が半円状、台形状の時、B/H=3〜20
である。
About the recessed part of a steel pipe pile, as shown to Fig.2 (a), (b), (c), (d), the case where a cross-sectional triangle shape is fundamental, and the case where a cross-sectional square shape is considered. In the case of a semicircular shape and a trapezoidal shape, it may be considered to be substantially equal to a triangle. In any case, the depth of the recess (refers to the depth of the deepest part) (H) is 0.005D (provided that D: outside of the steel pipe) in order to obtain a frictional force between the steel pipe peripheral surface and the ground or concrete. (Diameter) or more is necessary. However, since the effect of improving the frictional force is saturated at more than 0.2D, the recess depth is set to 0.005D to 0.2D. Further, the width (B) of the concave portion needs to be 0.015D or more in order to obtain the above frictional force.
Furthermore, based on the above assumptions, it is important to define the following items in order to further optimize the recess shape. That is,
(1) When the concave cross-sectional shape is triangular, B / H = 3-20
(2) When the concave cross-sectional shape is a square shape, B / H = 4 to 20
(3) When the concave cross-sectional shape is semicircular or trapezoidal, B / H = 3-20
It is.

以下、上記のB/Hの関係が導き出された経緯を図3を用いて説明する。なお、前提として、凹部での破壊モードは、凹部の外側、図中の三角形の底辺でのソイルセメントのせん断強度と、凹部の内部でのソイルセメントの支圧強度のいずれかで決定されるものとする。このとき、いずれかの破壊モードが他方に対して、明らかに先行すると、その破壊モードで強度が決定するため、強度は低下すると考えられる。ゆえに、凹部の最適形状を考える上では、上記の二つの破壊モードが同時に発生するような形状を見出することが必要となる。
その結果、最適形状においては、支圧強度を与える支圧力Pとせん断強度を与えるせん断力Sは、以下の式(1)のつりあい条件式を満たすことが求められる。
S=Pcosθ (1)
ただし、θ:鋼管表面と凹部入側面のなす角度
Hereinafter, the process of deriving the above B / H relationship will be described with reference to FIG. As a premise, the fracture mode at the recess is determined by either the shear strength of the soil cement at the outside of the recess, the bottom of the triangle in the figure, or the bearing strength of the soil cement inside the recess. And At this time, if any one of the destruction modes clearly precedes the other, the strength is determined by the destruction mode, and thus the strength is considered to decrease. Therefore, in considering the optimum shape of the recess, it is necessary to find a shape in which the above two destruction modes occur simultaneously.
As a result, in the optimum shape, the support pressure P that gives the support strength and the shear force S that gives the shear strength are required to satisfy the balance condition formula of the following formula (1).
S = P cos θ (1)
Where θ is the angle between the surface of the steel pipe and the recess entry side

ここで、せん断力Sは、せん断力が作用する面積×せん断力で定義されるため、以下の式(2)で定式化される。尚、ここでは、凹部は鋼管周囲全周に配置されるものと仮定し、せん断面積は、鋼管の周長πDと、凹部の幅B(三角形の底辺部分)の積で表される。
S=τ・B・π・D (2)
一方、支圧力は、支圧応力に作用する面積を乗じたものとして以下のように定式化される。
P=H・σb・cosθ・π・D (3)
τ:せん断応力、D:鋼管外径、σb:支圧力(支圧応力、力/面積の次元)
式(1)に式(2)、(3)を代入して整理すると、以下の式が導かれる。
τ・B=(H・σb・cosθ)cosθ (4)
∴B/H=σb・cosθ/τ (4′)
Here, since the shear force S is defined by the area where the shear force acts × shear force, it is formulated by the following equation (2). Here, it is assumed that the concave portion is disposed around the entire circumference of the steel pipe, and the shear area is represented by the product of the circumferential length πD of the steel pipe and the width B (the bottom portion of the triangle) of the concave portion.
S = τ ・ B ・ π ・ D (2)
On the other hand, the support pressure is formulated as follows assuming that the area acting on the support stress is multiplied.
P = H · σb · cosθ · π · D (3)
τ: shear stress, D: steel pipe outer diameter, σb: bearing pressure (bearing stress, force / area dimension)
Substituting the formulas (2) and (3) into the formula (1) and rearranging leads to the following formula.
τ · B = (H · σb · cosθ) cosθ (4)
∴B / H = σb · cos 2 θ / τ (4 ′)

式(4′)は、最適形状を与える際の力のつりあい条件式(1)を変形したものである。ここでは、凹部形状の側面、即ち図3の三角形の斜面が鋼管表面とのなす角度(θ)を45度の場合(これを以下、三角形状とする)と、90度の場合(これを以下、四角形状とする)に関して、解くこととする。
θ=90°(凹部が四角)とすると、
B/H=σb/τ (5)
例えば、ソイルセメントの支圧強度σb=1N/mm、せん断強度τ=0.1N/mmを(5)式に代入すると、B/H=10(凹部の幅が高さの10倍)となり、凹部形状は長辺10H、高さHの長方形となる。
一方、最終的な凹部形状が三角形状で、更にその三角形が二等辺三角形とすると、B、H、θには下記の関係式が成立する。
tanθ=2・H/B (6)
これを式(4′)に代入すると、
2/(sinθ・cosθ)=σb/τ (7)
これに、ソイルセメントの支圧強度σb=1N/mm、せん断強度τ=0.1N/mmを代入すると、
sinθ・cosθ=1/5 (8)
sin2θ=2/5=0.4 (8′)
∴θ=11.8
Expression (4 ′) is a modification of the force balance conditional expression (1) for giving the optimum shape. Here, the side surface of the concave shape, that is, the angle (θ) formed by the slope of the triangle in FIG. 3 with the steel pipe surface is 45 degrees (hereinafter referred to as a triangle shape), and 90 degrees (this is referred to as the following) , A square shape).
If θ = 90 ° (the concave portion is a square),
B / H = σb / τ (5)
For example, if the bearing strength σb = 1 N / mm 2 and the shear strength τ = 0.1 N / mm 2 of soil cement are substituted into the equation (5), B / H = 10 (the width of the recess is 10 times the height) Thus, the concave shape is a rectangle having a long side 10H and a height H.
On the other hand, if the final concave shape is a triangle and the triangle is an isosceles triangle, the following relational expression is established for B, H, and θ.
tan θ = 2 · H / B (6)
Substituting this into equation (4 ')
2 / (sin θ · cos θ) = σb / τ (7)
Substituting the bearing strength σb = 1 N / mm 2 and the shear strength τ = 0.1 N / mm 2 of the soil cement into this,
sinθ · cosθ = 1/5 (8)
sin2θ = 2/5 = 0.4 (8 ′)
∴θ = 11.8

ソイルセメント(コンクリート)の支圧強度σbとせん断強度τの関係を
1/20≦τ/σb≦2/9
とすると(通常はτ/σb=1/10程度)、
(a)凹部形状が四角形の場合、凹部の幅Bと深さHの関係は式(5)により
4.5≦B/H≦20.0
(b)凹部形状が三角形の場合、適正なθの範囲は式(7)により
5.8≦θ≦31.4
このとき、凹部の幅Bと深さHの関係は式(6)により
3.3≦B/H≦19.8
となる。
ここで、図1(d)〜(k)に示したような鋼管軸方向に斜め、平行、あるいはスポット状の凹部形状の場合についても、(d)のA−A断面、(h)のB−B断面、(j)のC−C断面について前記式を適用すればよい。
以上のことから、本発明においては、B/Hを下記の如く規定した。
(1)凹断面形状が三角形状の時、B/H=3〜20
(2)凹断面形状が四角形状の時、B/H=4〜20
(3)凹断面形状が半円状、台形状の時、B/H=3〜20
The relation between bearing strength σb and shear strength τ of soil cement (concrete) is 1/20 ≦ τ / σb ≦ 2/9
(Usually τ / σb = 1/10)
(A) When the concave shape is a quadrangle, the relationship between the width B and the depth H of the concave portion is 4.5 ≦ B / H ≦ 20.0 according to the equation (5).
(B) When the concave shape is a triangle, an appropriate range of θ is 5.8 ≦ θ ≦ 31.4 according to Equation (7).
At this time, the relationship between the width B and the depth H of the concave portion is 3.3 ≦ B / H ≦ 19.8 according to the equation (6).
It becomes.
Here, also in the case of a concave, concave, or oblique shape in the steel pipe axial direction as shown in FIGS. 1 (d) to (k), the AA cross section of (d), B of (h) What is necessary is just to apply the said formula about CC cross section of -B cross section and (j).
From the above, in the present invention, B / H is defined as follows.
(1) When the concave cross-sectional shape is triangular, B / H = 3-20
(2) When the concave cross-sectional shape is a square shape, B / H = 4 to 20
(3) When the concave cross-sectional shape is semicircular or trapezoidal, B / H = 3-20

次に、本発明に係る鋼管杭の製造方法について説明する。
本発明においては、以下のa),b),c),d)のいずれかの工程でも適用可能であるが、鍛接鋼管の製造ラインを代表例として本発明を説明する。
a)電縫鋼管製造ラインにおいて、電縫溶接後、当該鋼管を加熱し、押圧手段によりその表面を押圧すること。
b)熱間あるいは温間溶接鋼管製造ラインにおいて、溶接後、押圧手段によりその表面を押圧すること。
c)鍛接鋼管製造ラインにおいて、衝合後、押圧手段によりその表面を押圧すること。
d)シームレス鋼管製造ラインにおいて、造管後、押圧手段によりその表面を押圧する
Next, the manufacturing method of the steel pipe pile which concerns on this invention is demonstrated.
Although the present invention can be applied to any of the following steps a), b), c) and d), the present invention will be described using a forged steel pipe production line as a representative example.
a) In an ERW steel pipe production line, after ERW welding, the steel pipe is heated and its surface is pressed by pressing means.
b) In a hot or warm welded steel pipe production line, the surface is pressed by pressing means after welding.
c) In the forged steel pipe production line, after the collision, the surface is pressed by pressing means.
d) In the seamless steel pipe production line, after pipe making, the surface is pressed by pressing means.

図4は通常の鍛接管の製造ラインを示す図である。
所望の幅にスリットされた鋼帯を#1ロールで断面円形状に成形し、#2ロールでその両端部を高熱に加熱し、圧接し、衝合する。衝合された管をそれ以降のロールにより所定の寸法に縮径するために絞り込み、そして切断機により所定の長さに切断し、以降のロールで形状を整えて鍛接管が製造される。
FIG. 4 is a view showing a production line of a normal forged pipe.
A steel strip slit to a desired width is formed into a circular cross section with a # 1 roll, and both ends thereof are heated to high heat with a # 2 roll, pressed, and abutted. A forged welded tube is manufactured by reducing the diameter of the abutted pipe to a predetermined size by a subsequent roll, cutting it to a predetermined length with a cutting machine, and adjusting the shape with the subsequent roll.

図5は、本発明による鍛接管製造ラインの一実施例である。
従来の製造ラインに対して、切断機前の絞りロールの最終ロールのみを変更している。当該ロールは、図6のようにロール周面にロール軸方向に1箇所あるいは複数箇所に凸部を設け、これを押圧手段としている。この凸部を設けたロールを上下両方あるいは片側に使用する。なお、図では、上下2基のロールで示しているが、1組が3基以上のロールでも構わない。
FIG. 5 is an example of a forged pipe manufacturing line according to the present invention.
Only the final roll of the squeeze roll before the cutting machine is changed with respect to the conventional production line. As shown in FIG. 6, the roll is provided with convex portions at one or a plurality of locations in the roll axial direction on the roll peripheral surface, and this is used as a pressing means. The roll provided with this convex part is used both up and down or one side. In the figure, the upper and lower two rolls are shown, but one set may be three or more rolls.

このような凸部を有したロールで高温の(およそ1200〜1300℃程度)鍛接管に圧力を加えるので、その凸部の当たる鋼管の部分は容易に凹部が形成される。しかも冷間での加工に比較して凹部形状はロールの凸部形状に則した形状で形成されるのでより鋭角の凹部を得ることが可能である。その後、所定の長さに切断され、定形され、窪み付き鍛接鋼管が完成される。
ここで、鋼管上の凹部の高さ、幅、ピッチを変更したい場合は、ロールの凸部の形状やピッチを変更すれば良い。また、上下ロール両方に凸部を設け、鋼管上の凹部位置を同じ位置で形成したい場合は、上下ロールの凸部位置を初期に合せておき、例えば上下ロールを一つの駆動源およびユニバーサルジョイントなどを介して連結し、同期させて上下ロールを駆動すれば良い。
Since pressure is applied to a high-temperature (about 1200 to 1300 ° C.) forged pipe with a roll having such a convex portion, a concave portion is easily formed in the portion of the steel pipe that the convex portion hits. Moreover, since the recess shape is formed in a shape conforming to the convex shape of the roll as compared with the cold processing, it is possible to obtain a more acute recess. Thereafter, it is cut to a predetermined length, shaped, and a forged steel pipe with a recess is completed.
Here, when it is desired to change the height, width, and pitch of the concave portion on the steel pipe, the shape and pitch of the convex portion of the roll may be changed. Also, if both the upper and lower rolls are provided with convex portions and the concave portions on the steel pipe are to be formed at the same position, the convex portions of the upper and lower rolls are aligned at the initial stage. And the upper and lower rolls may be driven in synchronization with each other.

次に、ロールに形成する凸部の形状は、図6の下図に示すように、ロール中心部を高くし、ロール端部に向かうにつれ低くすることが望ましい。その理由は、ロールの中心部と端部とでは、周速が異なり、端部の方が径が大きいため周速が大きい。従って、通過する管よりも早く進行するために、鋼管に対し無用な力が加わり、必要以上の変形や歪を鋼管に与えてしまう。   Next, as shown in the lower diagram of FIG. 6, the shape of the convex portion formed on the roll is desirably increased at the center of the roll and decreased toward the end of the roll. The reason is that the peripheral speed is different between the center and the end of the roll, and the peripheral speed is large because the end has a larger diameter. Therefore, in order to advance faster than the passing pipe, an unnecessary force is applied to the steel pipe, and an unnecessary deformation or distortion is given to the steel pipe.

図7は、本発明による別の鍛接管製造ラインの例である。
本例では、絞りロールと切断機との間に、専用の鋼管への加圧装置(押圧手段)を設けた例である。加圧装置としては、前述の凸部を有したロールでも良く、また、上下から挟み込む形で鋼管に加圧するタイプのものでも良い。そしてこの加圧装置は、鋼管に対して進退、あるいは鋼管の進行方向に進退可能な機構を有することが望ましい。
鋼管に対して近接、退避可能なことにより、鋼管の任意の位置に凹部を形成することができ、また凹部のピッチを変更したいときでもロールの交換などしなくても良い。更に、この機能により、予め鋼管の切断位置を制御部が認識しておき、この切断位置に凹部が位置しないように制御することも可能となる。鋼管端部に凹部がくると鋼管毎に端面の径や形状が異なり、例えば鋼管同士の接続が困難となるからである。
また、鋼管の進行方向に移動可能とすることにより鋼管の進行と同調して縮径部形成装置を移動することができ、そのことにより、前述したようなロールの中心部と端部の周速の差による鋼管への無用な歪などが発生せずに凹部の形状も自由に形成できる。
FIG. 7 is an example of another forged pipe manufacturing line according to the present invention.
In this example, a pressurizing device (pressing means) for a dedicated steel pipe is provided between the drawing roll and the cutting machine. The pressurizing device may be a roll having the above-mentioned convex portions, or may be a type that pressurizes the steel pipe by sandwiching from above and below. And it is desirable for this pressurizing device to have a mechanism capable of moving back and forth with respect to the steel pipe or moving back and forth in the moving direction of the steel pipe.
By being close to and retractable from the steel pipe, a concave portion can be formed at an arbitrary position of the steel pipe, and even when it is desired to change the pitch of the concave portion, it is not necessary to replace the roll. Furthermore, with this function, it is also possible for the control unit to recognize the cutting position of the steel pipe in advance, and to control so that the concave portion is not positioned at this cutting position. This is because if the concave portion comes to the end of the steel pipe, the diameter and shape of the end face are different for each steel pipe, for example, it becomes difficult to connect the steel pipes.
Further, by enabling movement in the traveling direction of the steel pipe, it is possible to move the reduced diameter portion forming apparatus in synchronization with the progress of the steel pipe, and as a result, the peripheral speeds of the center portion and the end portion of the roll as described above. The shape of the concave portion can be freely formed without causing unnecessary distortion to the steel pipe due to the difference between the two.

以上、専用装置において説明したが、もちろんこれら機能を既存の最終絞りロールに凸部を設けたロールにもたせても良い。
このように、造管方法は、電縫による造管方法、熱間あるいは温間で溶接する造管方法、鍛接による造管方法、シームレス造管方法のいずれでも良。造管まま、あるいは造管後加熱などし、温間あるいは熱間の状態で押圧手段でその造管された表面を押圧すれば良く、オンラインでの窪み付き鋼管杭の製造が可能である。
そして、これらの製造方法で製造された鍛接鋼管は、熱間で凹部を形成するので鋼管の肉厚が2mm以上でも容易に製造可能であり、厚肉なので鋼管杭として例えば地盤に回転させながら打ち込む際に、鋼管にねじれ力が作用し、屈曲したり、先端が潰れたりすることがない。また、鋼管杭として実用可能な外径50mm以上のものも容易に製造できる。しかも生産能率は、通常の鍛接鋼管を製造する際と同じである。
As described above, the dedicated device has been described. Of course, these functions may be applied to a roll in which a convex portion is provided on the existing final drawing roll.
As described above, the pipe making method may be any of a pipe making method by electric sewing, a pipe making method for hot or warm welding, a pipe making method by forging, and a seamless pipe making method. What is necessary is just to press the surface by which the pipe was formed with the press means in the state of warm or hot, such as heating after pipe making or after pipe making, and it is possible to manufacture an indented steel pipe pile online.
And the forged steel pipe manufactured by these manufacturing methods forms a concave part hot, so it can be easily manufactured even if the thickness of the steel pipe is 2 mm or more. At that time, the torsional force acts on the steel pipe, and it is not bent or the tip is crushed. Moreover, the thing of 50 mm or more of outer diameters practical as a steel pipe pile can be manufactured easily. Moreover, the production efficiency is the same as when producing a normal forged steel pipe.

なお、上記においては単一の窪み付き鋼管杭を例にして説明したが、本発明ではこれに限ることなく、上述したいずれかの鋼管杭を使用し、これをコンクリートまたはセメント中に埋め込んで複合型の鋼管杭を形成することも可能である。このような複合鋼管杭は、上記の本発明の鋼管杭の特性を十分生かしたもので、例えば、軟弱な地盤における基礎等に使用するに適したものである。   In the above description, the steel pipe pile with a single depression has been described as an example. However, the present invention is not limited to this, and any of the steel pipe piles described above is used, and the steel pipe pile is embedded in concrete or cement. It is also possible to form a steel pipe pile of the mold. Such a composite steel pipe pile makes full use of the characteristics of the above-described steel pipe pile of the present invention, and is suitable for use, for example, on a foundation in soft ground.

既設の鍛接鋼管製造ラインにおいて、絞りロールの最終ロールの表面にロール中心部に高さ6mm、ロール端部に向けて徐々に低くした凸部を4箇所に設け、外径114.3mm、肉厚4.5mmの管を製造した。その結果、凹部の深さが最大6mm、幅が30mm、ピッチが130mmの凹部を同一円周上に対向して有する窪み付き鋼管を問題なく製造できた。
また、前記最終ロールについて、上下各ロールの凸部の回転タイミングを調整し、それぞれのロールの凸部が鋼管に交互に当たるように調整し、鋼管に形成される凹部が交互に付与された窪み付き鋼管も問題なく製造できた。
In the existing forged steel pipe production line, the surface of the final roll of the squeezing roll is provided with four convex portions that are 6 mm in height at the center of the roll and gradually lowered toward the end of the roll, with an outer diameter of 114.3 mm and a wall thickness. A 4.5 mm tube was produced. As a result, a hollow steel pipe having recesses having a recess depth of 6 mm at maximum, a width of 30 mm, and a pitch of 130 mm facing each other on the same circumference could be produced without any problem.
Moreover, about the said last roll, it adjusts the rotation timing of the convex part of each up-and-down each roll, it adjusts so that the convex part of each roll may touch a steel pipe alternately, and it is with the hollow by which the recessed part formed in a steel pipe was provided alternately. Steel pipes could be manufactured without any problems.

本発明による鋼管杭は、生産性も良く、従来の鋼管の製造ラインを一部変更するのみで製造でき、低コストで高機能の鋼管杭を提供できるので建築分野の発展に大きく寄与できる。   The steel pipe pile according to the present invention has good productivity, can be manufactured only by changing a part of a conventional steel pipe production line, and can provide a high-performance steel pipe pile at a low cost, which can greatly contribute to the development of the building field.

(a)〜(c)は本発明に係る窪み付き鋼管杭の実施形態例を示す説明図。(A)-(c) is explanatory drawing which shows the example of embodiment of the steel pipe pile with a hollow which concerns on this invention. (d)〜(g)は本発明に係る窪み付き鋼管杭の実施形態例を示す説明図。(D)-(g) is explanatory drawing which shows the example of embodiment of the steel pipe pile with a hollow which concerns on this invention. (h)〜(k)は本発明に係る窪み付き鋼管杭の実施形態例を示す説明図。(H)-(k) is explanatory drawing which shows the example of embodiment of the steel pipe pile with a hollow which concerns on this invention. (a)、(b)、(c)、(d)は本発明に係る窪み付き鋼管杭に形成する凹部の具体例を示す図。(A), (b), (c), (d) is a figure which shows the specific example of the recessed part formed in the steel pipe pile with a dent concerning this invention. 本発明に係る窪み付き鋼管杭の凹部の幅と深さの関係を説明するための図。The figure for demonstrating the relationship between the width | variety and the depth of a recessed part of the steel pipe pile with a dent concerning this invention. 通常の鍛接鋼管の製造ラインを示す図。The figure which shows the manufacturing line of a normal forge-welded steel pipe. 本発明方法による鍛接鋼管の製造ラインの一実施例を示す図。The figure which shows one Example of the manufacturing line of the forged steel pipe by this invention method. 本発明方法に使用するロールの概念図。The conceptual diagram of the roll used for this invention method. 本発明方法による鍛接鋼管の製造ラインの他の実施例を示す図。The figure which shows the other Example of the manufacturing line of the forged steel pipe by the method of this invention.

Claims (16)

鋼管の周方向に凹部を有する窪み付き鋼管杭であって、鋼管肉厚2mm以上、鋼管外径(D)50mm以上、凹部の深さが0.005D〜0.2D、凹部の幅が0.015D〜2Dで、凹部の幅を(B)、凹部の深さを(H)としたときに
(1)凹断面形状が三角形状の時、B/H=3〜20
(2)凹断面形状が四角形状の時、B/H=4〜20
(3)凹断面形状が半円状、台形状の時、B/H=3〜20
であることを特徴とする窪み付き鋼管杭。
It is a steel pipe pile with a dent which has a recessed part in the circumferential direction of a steel pipe, Comprising: Steel pipe thickness 2mm or more, Steel pipe outer diameter (D) 50mm or more, The depth of a recessed part is 0.005D-0.2D, The width of a recessed part is 0. 015D to 2D, when the width of the recess is (B) and the depth of the recess is (H) (1) When the concave cross-sectional shape is a triangle, B / H = 3-20
(2) When the concave cross-sectional shape is a square shape, B / H = 4 to 20
(3) When the concave cross-sectional shape is semicircular or trapezoidal, B / H = 3-20
The hollow steel pipe pile characterized by being.
前記凹部を、鋼管の同一円周上に複数設けたことを特徴とする請求項1記載の稿付き鋼管杭。   The steel pipe pile with a manuscript according to claim 1, wherein a plurality of the concave portions are provided on the same circumference of the steel pipe. 前記凹部が、円周方向に複数設けられ、少なくとも向かい合う凹部が同一円周上に存在しないことを特徴とする請求項1記載の窪み付き鋼管杭。   2. The hollow steel pipe pile according to claim 1, wherein a plurality of the recesses are provided in a circumferential direction, and at least the facing recesses do not exist on the same circumference. 前記凹部が、鋼管軸に対し、斜め方向に複数設けたことを特徴とする請求項1記載の窪み付き鋼管杭。   The steel pipe pile with a dent according to claim 1, wherein a plurality of the concave parts are provided in an oblique direction with respect to the steel pipe axis. 前記凹部が、鋼管軸に対し、平行に複数設けたことを特徴とする請求項1記載の窪み付き鋼管杭。   The steel pipe pile with a dent according to claim 1, wherein a plurality of the concave parts are provided in parallel to the steel pipe axis. 前記凹部が、スポット状に複数設けたことを特徴とする請求項1記載の窪み付き鋼管杭。   The steel pipe pile with a dent according to claim 1, wherein a plurality of the concave portions are provided in a spot shape. 前記鋼管杭の表面にめっき、あるいは、樹脂被覆を施したことを特徴とする請求項1〜6のいずれか1項記載の窪み付き鋼管杭。   The steel pipe pile with a dent according to any one of claims 1 to 6, wherein the surface of the steel pipe pile is plated or resin-coated. コンクリート、セメント、あるいはソイルセメントの中に請求項1〜7のいずれか1項記載の窪み付き鋼管杭を埋め込んだことを特徴とする複合鋼管杭。   A composite steel pipe pile, wherein the hollow steel pipe pile according to any one of claims 1 to 7 is embedded in concrete, cement, or soil cement. 請求項1〜8のいずれか1項記載の窪み付き鋼管杭の製造方法であって、鋼管製造ラインにおいて、造管後、熱間あるいは温間で、前記造管した鋼管を押圧手段により押圧することにより、当該鋼管表面に周方向の凹部を付与することを特徴とする窪み付き鋼管杭の製造方法。   It is a manufacturing method of the steel pipe pile with a dent of any one of Claims 1-8, Comprising: In a steel pipe manufacturing line, after pipe forming, the said steel pipe pipe | tube is pressed with a press means by hot or warm. The manufacturing method of the steel pipe pile with a dent characterized by giving the recessed part of the circumferential direction to the said steel pipe surface by this. 前記製造ライン及び押圧する方法が下記のいずれかの方法であることを特徴とする請求項9記載の窪み付き鋼管杭の製造方法。
a)電縫鋼管製造ラインにおいて、電縫溶接後、当該鋼管を加熱し、押圧手段によりその表面を押圧する
b)熱間あるいは温間溶接鋼管製造ラインにおいて、溶接後、押圧手段によりその表面を押圧する
c)鍛接鋼管製造ラインにおいて、衝合後、押圧手段によりその表面を押圧する
d)シームレス鋼管製造ラインにおいて、造管後、押圧手段によりその表面を押圧する
The method of manufacturing a steel pipe pile with a recess according to claim 9, wherein the manufacturing line and the pressing method are any of the following methods.
a) In the ERW steel pipe production line, after the ERW welding, the steel pipe is heated and the surface is pressed by the pressing means. b) In the hot or warm welded steel pipe production line, the surface is pressed by the pressing means after welding. C) In the welded steel pipe production line, after the abutment, the surface is pressed by the pressing means. D) In the seamless steel pipe production line, after the pipe is formed, the surface is pressed by the pressing means.
前記押圧手段が、鋼管の周方向に配置された複数のロールからなり、そのうち少なくとも一つのロールが、その表面に一つあるいは複数の凸部を設けたロールである請求項9又は10記載の窪み付き鋼管杭の製造方法。   The depression according to claim 9 or 10, wherein the pressing means comprises a plurality of rolls arranged in the circumferential direction of the steel pipe, and at least one of the rolls is a roll provided with one or a plurality of convex portions on the surface thereof. A manufacturing method for steel pipe piles. 前記ロールに設けた凸部の高さが、ロールの中心部が最も高く、ロール端部に向かうほど低くしたことを特徴とする請求項11記載の稿付き鋼管杭の製造方法。   The manufacturing method of the steel pipe pile with a paperwork of Claim 11 characterized by the height of the convex part provided in the said roll being the highest in the center part of a roll, and becoming so low that it went to the roll edge part. 前記凸部を設けたロールが複数であり、それぞれの凸部が鋼管の長さ方向の同じ位置で押圧するように同期させることを特徴とする請求項11又は12記載の窪み付き鋼管杭の製造方法。   The roll with the convex portions is plural, and the respective convex portions are synchronized so as to be pressed at the same position in the length direction of the steel pipe, and the steel pipe pile with a recess according to claim 11 or 12, Method. 予め鋼管の切断位置を認識しておき、当該切断位置では、押圧しないように制御することを特徴とする請求項13記載の窪み付き鋼管杭の製造方法。   The method of manufacturing a steel pipe pile with a dent according to claim 13, wherein the cutting position of the steel pipe is recognized in advance, and control is performed so as not to press at the cutting position. 前記凸部を設けたロールが複数であり、それぞれの凸部が鋼管の長さ方向の同じ位置で押圧しないように同期させることを特徴とする請求項11又は12記載の窪み付き鋼管杭の製造方法。   The roll having the convex portions is plural, and the respective convex portions are synchronized so as not to be pressed at the same position in the length direction of the steel pipe. Method. 前記鋼官に押圧する手段が、鋼管に対し近接、退避可能であり、鋼管の長さ方向任意の位置で押圧可能であることを特徴とする請求項9記載の窪み付き鋼管杭の製造方法。   The method of manufacturing a steel pipe pile with a recess according to claim 9, wherein the means for pressing the steel officer can be moved close to and retract from the steel pipe and can be pressed at an arbitrary position in the length direction of the steel pipe.
JP2006194697A 2005-08-24 2006-07-14 Manufacturing method of steel pipe pile with dent Active JP4109698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006194697A JP4109698B2 (en) 2005-08-24 2006-07-14 Manufacturing method of steel pipe pile with dent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005241948 2005-08-24
JP2006194697A JP4109698B2 (en) 2005-08-24 2006-07-14 Manufacturing method of steel pipe pile with dent

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008030096A Division JP4864912B2 (en) 2005-08-24 2008-02-12 Steel pipe pile with dent and composite steel pipe pile using the steel pipe pile

Publications (2)

Publication Number Publication Date
JP2007085157A true JP2007085157A (en) 2007-04-05
JP4109698B2 JP4109698B2 (en) 2008-07-02

Family

ID=37972406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006194697A Active JP4109698B2 (en) 2005-08-24 2006-07-14 Manufacturing method of steel pipe pile with dent

Country Status (1)

Country Link
JP (1) JP4109698B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091041A1 (en) * 2008-01-18 2009-07-23 Nippon Steel Corporation Steel pipe for reinforcing foundation, method of reinforcing foundation using the same, and method of reinforcing structure
JP2012200766A (en) * 2011-03-25 2012-10-22 Nippon Steel Corp Caliber roll for stepped steel pipe and method of manufacturing caliber roll for stepped steel pipe
JP5641550B1 (en) * 2014-06-18 2014-12-17 エイチ・ジー・サービス株式会社 Manufacturing method of steel pipe core material for friction pile and steel pipe core material for friction pile
JP2015221965A (en) * 2014-05-22 2015-12-10 新日鐵住金株式会社 Steel pipe
JP2017186744A (en) * 2016-04-01 2017-10-12 東尾メック株式会社 Pile connection structure
JP7455314B1 (en) 2023-06-02 2024-03-26 清豪 薦田 Steel pipe piles and their manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009091041A1 (en) * 2008-01-18 2009-07-23 Nippon Steel Corporation Steel pipe for reinforcing foundation, method of reinforcing foundation using the same, and method of reinforcing structure
JP2009167752A (en) * 2008-01-18 2009-07-30 Nippon Steel Corp Steel pipe for ground reinforcement and method of ground reinforcement using it
CN101910560A (en) * 2008-01-18 2010-12-08 新日本制铁株式会社 Steel pipe for reinforcing foundation, method of reinforcing foundation using the same, and method of reinforcing structure
JP2012200766A (en) * 2011-03-25 2012-10-22 Nippon Steel Corp Caliber roll for stepped steel pipe and method of manufacturing caliber roll for stepped steel pipe
JP2015221965A (en) * 2014-05-22 2015-12-10 新日鐵住金株式会社 Steel pipe
JP5641550B1 (en) * 2014-06-18 2014-12-17 エイチ・ジー・サービス株式会社 Manufacturing method of steel pipe core material for friction pile and steel pipe core material for friction pile
JP2017186744A (en) * 2016-04-01 2017-10-12 東尾メック株式会社 Pile connection structure
JP7455314B1 (en) 2023-06-02 2024-03-26 清豪 薦田 Steel pipe piles and their manufacturing method

Also Published As

Publication number Publication date
JP4109698B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JP4864912B2 (en) Steel pipe pile with dent and composite steel pipe pile using the steel pipe pile
JP4109698B2 (en) Manufacturing method of steel pipe pile with dent
JP5447461B2 (en) Welded steel pipe manufacturing method and welded steel pipe
CN106583609A (en) Control method and system for wrapping force in rolling process of weak rigidity ring part
JP2009167752A (en) Steel pipe for ground reinforcement and method of ground reinforcement using it
JP2006305606A (en) Manufacturing method for member with asymmetrical hat-shaped cross section, and rolling mill therefor
EP2533919A1 (en) Method of forming anchor bolts
CN101977703A (en) Method of producing seamless metal tube and punch for use therein
RU2591927C2 (en) Roll for formation of heat transfer elements of heat exchangers
TWI521126B (en) Shaped steel bar welded joints, as well as with the thread of shaped steel
JP5564141B2 (en) Deformed bar threaded rebar joint and its threaded deformed bar
JP2018183787A (en) Method of manufacturing steel pipe
JP2012196691A (en) Method and device for manufacturing dimpled steel pipe
RU2473410C2 (en) Device for making polyhedral tubes
JP2000263105A (en) Manufacture of iron base dispersion strengthening alloy tube
JP5954395B2 (en) Dimple steel pipe manufacturing method and dimple steel pipe manufacturing apparatus
RU2182055C2 (en) Method for securing tubes to tube plates
US361954A (en) mannesmann
RU2574557C2 (en) Method of production of welded steel pipes and welded steel pipe
JP5382250B2 (en) Steel pipe and pipeline formed by the steel pipe, steel pipe pile, steel pipe sheet pile
RU2426618C1 (en) Method of producing thin-wall shells with periodic large-diameter profile
JP5925548B2 (en) Method for manufacturing screw rebar
JP2002113516A (en) Method and apparatus for manufacturing special shape tube with helical rugged pattern
JP4093030B2 (en) Internal rolling tool for cold rolling
JPH04266405A (en) Method and device for manufacturing inside grooved seamless steel tube and plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070813

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070913

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4109698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350