JP2015221965A - Steel pipe - Google Patents

Steel pipe Download PDF

Info

Publication number
JP2015221965A
JP2015221965A JP2014105849A JP2014105849A JP2015221965A JP 2015221965 A JP2015221965 A JP 2015221965A JP 2014105849 A JP2014105849 A JP 2014105849A JP 2014105849 A JP2014105849 A JP 2014105849A JP 2015221965 A JP2015221965 A JP 2015221965A
Authority
JP
Japan
Prior art keywords
steel pipe
pipe
hollow
recess
straight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014105849A
Other languages
Japanese (ja)
Other versions
JP6330478B2 (en
Inventor
妙中 真治
Shinji Myonaka
真治 妙中
寺田 好男
Yoshio Terada
好男 寺田
秀秋 木村
Hideaki Kimura
秀秋 木村
精二 石橋
Seiji Ishibashi
精二 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014105849A priority Critical patent/JP6330478B2/en
Publication of JP2015221965A publication Critical patent/JP2015221965A/en
Application granted granted Critical
Publication of JP6330478B2 publication Critical patent/JP6330478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel pipe having a recess specification of not reducing compressive performance in the pipe axis direction, by also avoiding reduction in sticking performance between sediment and concrete in the ground.SOLUTION: The present invention relates to a steel pipe 1 for forming a recess part 2 on a steel pipe outer peripheral surface 1a. The steel pipe 1 of applying the present invention comprises a straight pipe part 3 formed in a substantially straight pipe shape by extending in the pipe axis direction Y and the recess part 2 formed in a recess shape toward the inside in the pipe axis orthogonal direction X. The recess part 2 has substantially the same plate thickness as the straight pipe part 3, and the recess depth (a) formed in a more recessed shape than an outer peripheral surface 3a of the straight pipe part 3, satisfies the predetermined relationship in the relationship between a steel pipe outer diameter D and a steel pipe plate thickness (t).

Description

本発明は、鋼管外周面に窪み部が形成された鋼管に関するものであり、例えば、地盤内に埋め込まれて基礎杭や地盤補強等として設けられる。   The present invention relates to a steel pipe in which a hollow portion is formed on the outer peripheral surface of the steel pipe. For example, the steel pipe is embedded in the ground and provided as a foundation pile or ground reinforcement.

従来から、鋼管の周方向に凹部を有する窪み付き鋼管杭や、外周面に複数の窪み部が鋼管軸方向に沿って列をなすように形成された窪み付き鋼管杭として、特許文献1、2に開示される鋼管杭が提案されている。   Conventionally, as a steel pipe pile with a dent having a recess in the circumferential direction of the steel pipe, or a steel pipe pile with a dent formed so that a plurality of dent parts form a row along the steel pipe axial direction on the outer peripheral surface, Patent Documents 1 and 2 The steel pipe pile disclosed in is proposed.

特許文献1に開示された鋼管杭は、鋼管肉厚2mm以上、鋼管外径(D)50mm以上、凹部の深さを0.005D〜0.2D、凹部の幅を0.015D〜2Dとしたときに、凹部の幅(B)と、凹部の深さ(H)との関係を、B/H=3〜20として、凹部の幅及び凹部の深さの比率を規定するものである。   The steel pipe pile disclosed in Patent Document 1 has a steel pipe wall thickness of 2 mm or more, a steel pipe outer diameter (D) of 50 mm or more, a recess depth of 0.005D to 0.2D, and a recess width of 0.015D to 2D. Sometimes, the relationship between the width (B) of the recess and the depth (H) of the recess is B / H = 3 to 20, and the ratio between the width of the recess and the depth of the recess is defined.

特許文献2に開示された鋼管杭は、各々の窪み部の内部に、窪み部の底面よりもさらに深く凹ませるとともに鋼管軸方向に沿う柱状凹部が形成されるものであり、鋼管軸に沿った何れの位置においても、鋼管全周長に占める各々の窪み部の鋼管周方向の長さの合計の割合が、50%以下に設定されるものである。   The steel pipe pile disclosed in Patent Document 2 is formed such that a columnar recess along the steel pipe axis direction is formed inside each of the hollow parts and deeper than the bottom surface of the hollow part, and along the steel pipe axis. In any position, the total ratio of the lengths of the respective recessed portions in the circumferential length of the steel pipe in the circumferential direction of the steel pipe is set to 50% or less.

特開2008−175055号公報JP 2008-175055 A 特許第5085809号公報Japanese Patent No. 5085809

特許文献1、2に開示された鋼管杭は、地盤中又はコンクリート中に窪み付き鋼管杭が埋設施工されて、地盤内の土砂やコンクリート等と窪み付き鋼管杭とを一体化させるものである。このとき、特許文献1、2に開示された鋼管杭は、地盤内の土砂やコンクリート等を鋼管杭の凹部や窪み部で抵抗させて、窪み付き鋼管杭に所定の付着強度を付与することで、地盤中又はコンクリート中で十分な付着性能を保持することが必要となる。   In the steel pipe piles disclosed in Patent Documents 1 and 2, a hollow steel pipe pile is embedded in the ground or concrete, and the earth and sand, concrete, etc. in the ground and the hollow steel pipe pile are integrated. At this time, the steel pipe pile disclosed in Patent Documents 1 and 2 resists earth and sand, concrete, etc. in the ground at the concave portion and the hollow portion of the steel pipe pile, and gives a predetermined adhesion strength to the hollow steel pipe pile. It is necessary to maintain sufficient adhesion performance in the ground or in concrete.

このため、特許文献1に開示された鋼管杭は、凹部の幅及び凹部の深さの比率を所定のものとすることで、鋼管杭の凹部とコンクリート等との付着性能を高めることを目的としたものとなっている。しかし、特許文献1に開示された鋼管杭は、鋼管杭の外周面に凹部が形成されることで、鋼管杭の鋼管軸方向の剛性が低下するおそれがあるにもかかわらず、鋼管杭の鋼管軸方向に作用する圧縮荷重に抵抗するための圧縮性能が考慮されていないものとなっている。   For this reason, the steel pipe pile disclosed by patent document 1 aims at improving the adhesion performance of the recessed part of a steel pipe pile, concrete, etc. by making the ratio of the width | variety of a recessed part and the depth of a recessed part into a predetermined thing. It has become. However, although the steel pipe pile disclosed by patent document 1 has a possibility that the rigidity of the steel pipe pile axial direction may fall by forming a recessed part in the outer peripheral surface of a steel pipe pile, the steel pipe of a steel pipe pile The compression performance for resisting the compressive load acting in the axial direction is not taken into consideration.

これに対して、特許文献2に開示された鋼管杭は、鋼管全周長に占める各々の窪み部の鋼管周方向の長さの合計の割合が50%以下に設定されることで、複数の窪み部が形成されることによって鋼管杭の圧縮性能が低下することを回避することができるものとなっている。しかし、特許文献2に開示された鋼管杭は、鋼管全周長に占める各々の窪み部の鋼管周方向の長さの合計の割合に50%という上限が設定されて、鋼管全周長に対する窪み部が形成される範囲が非常に限定されるものとなり、コンクリート等との付着性能が自ずと低下するおそれがある。   On the other hand, the steel pipe pile disclosed by patent document 2 is set to 50% or less because the ratio of the sum total of the length of the steel pipe circumferential direction of each hollow part which occupies for the steel pipe whole circumference length is set to several or less. It can avoid that the compression performance of a steel pipe pile falls by forming a hollow part. However, in the steel pipe pile disclosed in Patent Document 2, an upper limit of 50% is set to the total ratio of the length of each hollow portion in the circumferential direction of the steel pipe to the total circumference of the steel pipe. The range in which the part is formed is very limited, and the adhesion performance with concrete or the like may be naturally reduced.

そこで、本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、地盤内の土砂やコンクリート等との付着性能の低下を回避すると同時に、管軸方向の圧縮性能を低下させない窪み仕様を有した鋼管を提供することにある。   Therefore, the present invention has been devised in view of the above-described problems, and the object of the present invention is to avoid a decrease in adhesion performance with earth and sand or concrete in the ground, and at the same time, in the direction of the pipe axis. An object of the present invention is to provide a steel pipe having a hollow specification that does not deteriorate the compression performance.

第1発明に係る鋼管は、鋼管外周面に窪み部が形成された鋼管であって、管軸方向に延びて略直管状に形成された直管部と、管軸直交方向の内側に向けて凹状に形成された窪み部とを備え、前記窪み部は、前記直管部と略同一の板厚を有するとともに、前記直管部の直管外周面よりも凹状に形成された窪み深さが、鋼管外径及び鋼管板厚との関係で、下記(1)式により規定される関係を満足することを特徴とする。   The steel pipe which concerns on 1st invention is a steel pipe by which the hollow part was formed in the steel pipe outer peripheral surface, Comprising: The straight pipe part extended in the pipe-axis direction and formed in the substantially straight tube shape, and toward the inner side of a pipe-axis orthogonal direction A recess formed in a concave shape, the recess having substantially the same plate thickness as the straight tube portion, and a recess depth formed in a recess shape than the straight tube outer peripheral surface of the straight tube portion. The relationship between the outer diameter of the steel pipe and the thickness of the steel pipe satisfies the relationship defined by the following formula (1).

Figure 2015221965
ここで、amax:前記窪み部の窪み深さの最大値、D:鋼管外径、t:鋼管板厚とする。
Figure 2015221965
Here, a max is the maximum value of the depth of the recess, D is the outer diameter of the steel pipe, and t is the thickness of the steel pipe.

第2発明に係る鋼管は、第1発明において、前記窪み部は、管周方向の鋼管全周長に対する一部のみで管周方向に延びて形成されることを特徴とする。   The steel pipe according to a second aspect of the present invention is characterized in that, in the first aspect, the hollow portion is formed to extend in the pipe circumferential direction with only a part of the entire circumferential length of the steel pipe in the pipe circumferential direction.

第3発明に係る鋼管は、第1発明又は第2発明において、前記窪み部は、管周方向の鋼管全周長に対して占める割合が50%以上となるように、管周方向に一又は複数形成されることを特徴とする。   A steel pipe according to a third aspect of the present invention is the first or second aspect of the present invention, wherein the indented portion is one or more in the pipe circumferential direction so that the ratio of the hollow portion to the total circumferential length of the steel pipe is 50% or more. A plurality are formed.

第4発明に係る鋼管は、第1発明〜第3発明の何れかにおいて、前記窪み部は、管軸方向に所定の間隔を空けて断続的に複数形成されることを特徴とする。   A steel pipe according to a fourth invention is characterized in that, in any one of the first to third inventions, a plurality of the recessed portions are intermittently formed at a predetermined interval in the pipe axis direction.

第5発明に係る鋼管は、第1発明〜第4発明の何れかにおいて、前記窪み部は、前記直管部の直管内周面よりも凸状に形成された窪み高さが、鋼管外径及び鋼管板厚との関係で、下記(2)式により規定される関係を満足することを特徴とする。   The steel pipe according to a fifth aspect of the present invention is the steel pipe according to any one of the first to fourth aspects, wherein the concave portion has a concave height formed more convex than the straight pipe inner peripheral surface of the straight pipe portion. And the relationship defined by the following equation (2) in relation to the steel pipe plate thickness.

Figure 2015221965
ここで、bmax:前記窪み部の窪み高さの最大値、D:鋼管外径、t:鋼管板厚とする。
Figure 2015221965
Here, b max is the maximum value of the dent height of the dent part, D is the outer diameter of the steel pipe, and t is the steel pipe plate thickness.

第1発明〜第5発明によれば、窪み部の窪み深さaが、上記(1)式により規定される関係を満足するときに、鋼管の圧縮耐力を低下させることなく、鋼管外側の固結材等との間で所定の付着性能を確保することが可能となる。また、第1発明〜第5発明によれば、窪み部の窪み高さbが、上記(2)式により規定される関係を満足するときに、鋼管の圧縮耐力を低下させることなく、鋼管内側の固結材や定着材等との間で所定の付着性能を確保することが可能となる。   According to 1st invention-5th invention, when the hollow depth a of a hollow part satisfies the relationship prescribed | regulated by the said (1) type | formula, without reducing the compression yield strength of a steel pipe, it is solid on the outer side of a steel pipe. Predetermined adhesion performance can be ensured between the binder and the like. Moreover, according to 1st invention-5th invention, when the hollow height b of a hollow part satisfies the relationship prescribed | regulated by the said (2) Formula, without reducing the compression yield strength of a steel pipe, it is a steel pipe inner side. It is possible to ensure a predetermined adhesion performance between the solidifying material and the fixing material.

特に、第3発明によれば、窪み比率λが50%以上となるように設定されることで、管周方向に延びた窪み部の窪み延長を十分に長くして、固結材や定着材等との付着性能を向上させることが可能となる。   In particular, according to the third invention, by setting the dent ratio λ to be 50% or more, the dent extension of the dent portion extending in the tube circumferential direction can be made sufficiently long, so that the consolidation material or the fixing material can be obtained. It is possible to improve the adhesion performance with the like.

これにより、第1発明〜第5発明によれば、地盤内の土砂や経時硬化性材料等との付着性能の低下を回避すると同時に、鋼管の圧縮耐力を低下させることなく、管軸方向の圧縮性能を低下させない窪み仕様を有する鋼管を提供することが可能となる。   Thereby, according to 1st invention-5th invention, at the same time avoiding the fall of adhesion performance with the earth and sand in a ground, a time-hardening material, etc., without reducing the compressive yield strength of a steel pipe, it is compression in the direction of a pipe axis. It is possible to provide a steel pipe having a hollow specification that does not deteriorate the performance.

本発明を適用した鋼管を示す斜視図である。It is a perspective view which shows the steel pipe to which this invention is applied. (a)は、本発明を適用した鋼管を示す平面図であり、(b)は、その正面図である。(A) is a top view which shows the steel pipe to which this invention is applied, (b) is the front view. (a)は、窪みなしの通常鋼管を示す一部破断拡大正面図であり、(b)は、本発明を適用した鋼管を示す一部破断拡大正面図である。(A) is a partially broken enlarged front view showing a hollow normal steel pipe, and (b) is a partially broken enlarged front view showing a steel pipe to which the present invention is applied. (a)は、本発明を適用した鋼管を示す拡大正面図であり、(b)は、そのF−F線縦断面図である。(A) is an enlarged front view which shows the steel pipe to which this invention is applied, (b) is the FF line longitudinal cross-sectional view. (a)は、図4に示す本発明を適用した鋼管のG−G線横断面図であり、(b)は、そのH−H線横断面図である。(A) is the GG line cross-sectional view of the steel pipe to which this invention shown in FIG. 4 is applied, (b) is the HH line cross-sectional view. (a)は、本発明を適用した鋼管に窪み部が3箇所に形成された状態を示す横断面図であり、(b)は、その窪み部が1箇所に形成された状態を示す横断面図である。(A) is a cross-sectional view which shows the state in which the hollow part was formed in three places in the steel pipe to which this invention is applied, (b) is the cross section which shows the state in which the hollow part was formed in one place. FIG. (a)は、本発明を適用した鋼管に縦長の窪み部が形成された状態を示す拡大正面図であり、(b)は、そのG−G線横断面図である。(A) is an enlarged front view which shows the state by which the vertically long hollow part was formed in the steel pipe to which this invention is applied, (b) is the GG line cross-sectional view. (a)は、本発明を適用した鋼管の窪み部の窪み深さを示す横断面図であり、(b)は、その窪み部の窪み高さを示す横断面図である。(A) is a cross-sectional view which shows the hollow depth of the hollow part of the steel pipe to which this invention is applied, (b) is a cross-sectional view which shows the hollow height of the hollow part. (a)は、本発明を適用した鋼管の窪み部を示す拡大縦断面図であり、(b)は、その蛇腹状に潰れる崩壊モードに基づいたモデル図である。(A) is an expanded longitudinal cross-sectional view which shows the hollow part of the steel pipe to which this invention is applied, (b) is a model figure based on the collapse mode collapsed in the bellows shape. 本発明を適用した鋼管の計算結果の圧縮耐力と実験結果の圧縮耐力との比率を示すグラフである。It is a graph which shows the ratio of the compression yield of the calculation result of the steel pipe to which this invention is applied, and the compression yield of an experimental result. (a)は、本発明を適用した鋼管の鋼管外側に固結材が設けられた状態を示す縦断面図であり、(b)は、その鋼管内側に固結材が設けられた状態を示す縦断面図である。(A) is a longitudinal cross-sectional view which shows the state by which the consolidated material was provided in the steel pipe outer side of the steel pipe to which this invention was applied, (b) shows the state by which the consolidated material was provided inside the steel pipe. It is a longitudinal cross-sectional view.

以下、本発明を適用した鋼管1を実施するための形態について、図面を参照しながら詳細に説明する。   Hereinafter, the form for implementing the steel pipe 1 to which this invention is applied is demonstrated in detail, referring drawings.

本発明を適用した鋼管1は、軟弱地盤への基礎工法、地盤改良工法、又は、斜面、トンネルを対象とした補強工法等に使用されるものである。本発明を適用した鋼管1は、例えば、鋼管外径Dが20mm〜350mm程度となる中小径鋼管に適用されるものである。   The steel pipe 1 to which the present invention is applied is used for a foundation method for soft ground, a ground improvement method, or a reinforcement method for slopes and tunnels. The steel pipe 1 to which the present invention is applied is applied to a medium and small diameter steel pipe having a steel pipe outer diameter D of about 20 mm to 350 mm, for example.

本発明を適用した鋼管1は、例えば、地盤内に埋め込まれて基礎杭等として設けられるものであり、図1に示すように、所定の範囲で地盤7を掘削して形成された掘削孔70や地盤改良範囲に埋設されて、経時硬化性材料等の固結材6や定着材等が地盤7の掘削孔70に充填作業等により設けられる。   The steel pipe 1 to which the present invention is applied is, for example, provided as a foundation pile or the like embedded in the ground, and as shown in FIG. 1, a drilling hole 70 formed by excavating the ground 7 in a predetermined range. Embedded in the ground improvement range, a consolidation material 6 such as a time-curable material, a fixing material or the like is provided in the excavation hole 70 of the ground 7 by a filling operation or the like.

固結材6は、例えば、モルタル、コンクリート等のセメント系材料等の経時硬化性材料や、ウレタン系材料等の経時硬化性材料が用いられて、鋼管1の鋼管外周面1aと地盤7の掘削孔70との間に隙間が形成される鋼管外側Oや、鋼管1の鋼管内周面1bによって囲まれて形成される鋼管内側Iに、これらの経時硬化性材料を充填して硬化させることで設けられる。   The consolidation material 6 is made of, for example, a time-curable material such as a cement-based material such as mortar or concrete, or a time-curable material such as a urethane-based material, so that the outer peripheral surface 1a of the steel pipe 1 and the ground 7 are excavated. By filling the steel pipe outer side O in which a gap is formed between the hole 70 and the steel pipe inner side I formed by being surrounded by the steel pipe inner peripheral surface 1b of the steel pipe 1 with these time-curable materials and curing them. Provided.

本発明を適用した鋼管1は、図2に示すように、鋼管外周面1aに一又は複数の窪み部2が形成される。本発明を適用した鋼管1は、鋼管外周面1aが略円形状に形成されて、管軸直交方向Xに所定の鋼管外径Dを有するものとなる。また、本発明を適用した鋼管1は、鋼管外周面1aと鋼管内周面1bとの間で、管軸直交方向Xに所定の鋼管板厚tを有するものとなる。   As shown in FIG. 2, the steel pipe 1 to which the present invention is applied has one or a plurality of hollow portions 2 formed on the outer peripheral surface 1a of the steel pipe. In the steel pipe 1 to which the present invention is applied, the outer peripheral surface 1a of the steel pipe is formed in a substantially circular shape and has a predetermined steel pipe outer diameter D in the pipe axis orthogonal direction X. Moreover, the steel pipe 1 to which the present invention is applied has a predetermined steel pipe plate thickness t in the pipe axis orthogonal direction X between the steel pipe outer peripheral surface 1a and the steel pipe inner peripheral surface 1b.

本発明を適用した鋼管1は、図3(a)に示すように、鋼管外周面1aが略同一面上に連続して形成された管軸方向Yに延びる略直管状の通常鋼管5に、所定の温度以上で熱間加工することで製造されるものである。本発明を適用した鋼管1は、略直管状の通常鋼管5をロールで押圧等することで、図3(b)に示すように、鋼管外周面1aに複数の窪み部2が形成された窪み付きの鋼管として製造される。なお、本発明を適用した鋼管1は、鋼管外周面1aに窪み部2を成形しながら、熱間圧延によって窪み付きの鋼管が製造されるものであってもよい。また、本発明を適用した鋼管1は、通常鋼管5に対して切削加工するものでなければ、例えば、窪み部2が冷間成形で形成されるものであってもよい。   As shown in FIG. 3A, the steel pipe 1 to which the present invention is applied is a substantially straight tubular normal steel pipe 5 extending in the pipe axis direction Y in which the steel pipe outer peripheral surface 1a is continuously formed on substantially the same surface. It is manufactured by hot working at a predetermined temperature or higher. The steel pipe 1 to which the present invention is applied is a depression in which a plurality of depressions 2 are formed on the outer peripheral surface 1a of the steel pipe, as shown in FIG. Manufactured as a steel pipe. In addition, the steel pipe 1 to which the present invention is applied may be one in which a hollow steel pipe is manufactured by hot rolling while forming the hollow portion 2 on the outer peripheral surface 1a of the steel pipe. Moreover, if the steel pipe 1 to which this invention is applied is not what cuts normally with respect to the steel pipe 5, the hollow part 2 may be formed by cold forming, for example.

本発明を適用した鋼管1は、図4、図5に示すように、管軸方向Yに延びて略直管状に形成された直管部3と、管軸直交方向Xの鋼管内側Iに向けて熱間加工で凹状に形成された窪み部2とを備える。   As shown in FIGS. 4 and 5, the steel pipe 1 to which the present invention is applied is directed to a straight pipe portion 3 extending in the pipe axis direction Y and formed in a substantially straight pipe shape, and a steel pipe inner side I in the pipe axis orthogonal direction X. And a recess 2 formed in a concave shape by hot working.

直管部3は、図4(a)に示すように、鋼管1の鋼管外径Dと略同一の直管外径D1で形成されて、鋼管外周面1aを管軸直交方向Xに凹凸させることなく、管軸方向Yで略同一面上に直管外周面3aが連続することで、管軸方向Yに延びる略直管状に形成される。また、直管部3は、図4(b)に示すように、鋼管1の鋼管板厚tと略同一の直管板厚t1で形成される。   As shown in FIG. 4A, the straight pipe portion 3 is formed with a straight pipe outer diameter D1 substantially the same as the steel pipe outer diameter D of the steel pipe 1, and makes the steel pipe outer peripheral surface 1a uneven in the pipe axis orthogonal direction X. Instead, the straight pipe outer peripheral surface 3a continues on substantially the same plane in the tube axis direction Y, so that a substantially straight tube extending in the tube axis direction Y is formed. Moreover, the straight pipe part 3 is formed by the straight pipe plate thickness t1 substantially the same as the steel pipe plate thickness t of the steel pipe 1, as shown in FIG.4 (b).

窪み部2は、管軸方向Yの複数箇所で鋼管外周面1aを凹状に形成することで、管軸方向Yに所定の間隔を空けて複数形成される。管軸方向Yに形成された複数の窪み部2は、管軸方向Yで直管部3と交互に形成されて、複数箇所の窪み部2を管軸方向Yに連続させることなく、複数箇所の窪み部2が管軸方向Yに所定の間隔を空けて断続的に形成される。   A plurality of hollow portions 2 are formed at a plurality of locations in the tube axis direction Y with a predetermined interval in the tube axis direction Y by forming the steel pipe outer peripheral surface 1a in a concave shape. The plurality of depressions 2 formed in the tube axis direction Y are alternately formed with the straight tube part 3 in the tube axis direction Y, and the plurality of depressions 2 are not continuously formed in the tube axis direction Y. Are formed intermittently at predetermined intervals in the tube axis direction Y.

窪み部2は、鋼管外周面1aを管軸直交方向Xの鋼管内側Iに向けて凹状に湾曲させて形成される。なお、窪み部2は、鋼管外周面1aを湾曲させることで形成されるものに限られず、鋼管外周面1aを屈曲等させることで形成されてもよい。窪み部2は、鋼管1の鋼管板厚tと略同一の窪み板厚t2で形成されることで、直管部3の直管板厚t1と略同一の窪み板厚t2を有するものとなる。   The hollow portion 2 is formed by bending the outer peripheral surface 1a of the steel pipe in a concave shape toward the steel pipe inner side I in the pipe axis orthogonal direction X. In addition, the hollow part 2 is not restricted to what is formed by curving the steel pipe outer peripheral surface 1a, You may form by bending the steel pipe outer peripheral surface 1a. The hollow portion 2 is formed with a hollow plate thickness t2 that is substantially the same as the steel pipe plate thickness t of the steel pipe 1, and thus has a hollow plate thickness t2 that is substantially the same as the straight pipe plate thickness t1 of the straight pipe portion 3. .

ここで、窪み部2は、鋼管1の鋼管外周面1aを押圧等して形成されることから、鋼管1の鋼管板厚tと比べて窪み板厚t2に多少の増減が見込まれるものの、この窪み板厚t2に多少の増減がある場合であっても、直管部3の直管板厚t1と略同一の板厚を有するように、窪み板厚t2が形成されるものとする。   Here, since the hollow part 2 is formed by pressing the outer peripheral surface 1a of the steel pipe 1 or the like, although the hollow pipe thickness t2 is expected to slightly increase or decrease compared to the steel pipe plate thickness t of the steel pipe 1, Even when the hollow plate thickness t2 is slightly increased or decreased, the hollow plate thickness t2 is formed so as to have substantially the same thickness as the straight tube plate thickness t1 of the straight pipe portion 3.

窪み部2は、鋼管外周面1aが管軸直交方向Xの鋼管内側Iに向けて凹状に形成されることで、窪み外周面2aが直管部3の直管外周面3aよりも鋼管内側Iに配置されて、直管部3の直管外周面3aよりも管軸直交方向Xで凹状に所定の窪み深さaとなるように形成される。   The hollow portion 2 is formed so that the outer peripheral surface 1a of the steel pipe is concave toward the inner side I of the pipe in the direction orthogonal to the pipe axis X, so that the outer peripheral surface 2a is lower than the straight pipe outer peripheral surface 3a of the straight pipe portion 3. And is formed in a concave shape in the tube axis orthogonal direction X with respect to the straight pipe outer peripheral surface 3a of the straight pipe portion 3 so as to have a predetermined depth a.

このとき、窪み部2は、直管部3の直管板厚t1と略同一の窪み板厚t2を有するとともに、鋼管外周面1aが管軸直交方向Xの鋼管内側Iに向けて凹状に形成されることにより、鋼管内周面1bが管軸直交方向Xの鋼管内側Iに向けて凸状に形成されるものとなる。   At this time, the hollow portion 2 has a hollow plate thickness t2 that is substantially the same as the straight pipe plate thickness t1 of the straight pipe portion 3, and the steel pipe outer peripheral surface 1a is formed in a concave shape toward the steel pipe inner side I in the pipe axis orthogonal direction X. By doing so, the steel pipe inner peripheral surface 1b is formed in a convex shape toward the steel pipe inner side I in the pipe axis orthogonal direction X.

窪み部2は、鋼管内周面1bが管軸直交方向Xの鋼管内側Iに向けて凸状に形成されることで、窪み内周面2bが直管部3の直管内周面3bよりも鋼管内側Iに配置されて、直管部3の直管内周面3bよりも管軸直交方向Xで凸状に所定の窪み高さbとなるように形成される。   The hollow portion 2 is formed so that the inner peripheral surface 1b of the steel pipe is convex toward the inner side I of the steel pipe in the tube axis orthogonal direction X, so that the hollow inner peripheral surface 2b is more than the straight pipe inner peripheral surface 3b of the straight pipe portion 3. It is arranged on the steel pipe inner side I, and is formed so as to have a predetermined recess height b in a convex shape in the tube axis orthogonal direction X with respect to the straight pipe inner peripheral surface 3 b of the straight pipe portion 3.

窪み部2は、図5に示すように、鋼管1の管周方向Wで所定の窪み延長Enとなるように、管周方向Wに略円弧状に延びて形成される。窪み部2は、鋼管1の管周方向Wの鋼管全周長Eに対する一部のみで、鋼管1の管周方向Wに連続させることなく、管周方向Wで断続的に形成される。このとき、窪み部2は、鋼管1の管周方向Wの鋼管全周長Eに対する一部のみで形成されることで、窪み部2の管周方向Wの両端部20の間に、鋼管1の鋼管外周面1aで窪み部2が形成されていないリブ部4を形成させるものとなる。   As shown in FIG. 5, the hollow portion 2 is formed to extend in a substantially arc shape in the pipe circumferential direction W so as to be a predetermined hollow extension En in the pipe circumferential direction W of the steel pipe 1. The hollow portion 2 is only part of the circumferential length E of the steel pipe 1 in the circumferential direction W of the steel pipe 1 and is formed intermittently in the circumferential direction W without being continuous in the circumferential direction W of the steel pipe 1. At this time, the hollow part 2 is formed by only a part of the entire circumferential length E of the steel pipe in the pipe circumferential direction W of the steel pipe 1, so that the steel pipe 1 is interposed between both ends 20 of the hollow part 2 in the pipe circumferential direction W. The rib part 4 in which the hollow part 2 is not formed in the steel pipe outer peripheral surface 1a is formed.

リブ部4は、鋼管1の管周方向Wで熱間加工による押圧がなされていない箇所に形成されるものとなる。このとき、リブ部4は、鋼管外周面1aを管軸直交方向Xに凹凸させることなく、鋼管1の鋼管板厚tと略同一のリブ板厚t3で形成されることで、管軸方向Yで直管部3の直管外周面3a及び直管内周面3bと略同一面上に連続して、リブ外周面4a及びリブ内周面4bが形成されるものとなる。   The rib part 4 is formed in the location where the press by the hot working is not made in the pipe circumferential direction W of the steel pipe 1. At this time, the rib portion 4 is formed with the rib plate thickness t3 substantially the same as the steel tube thickness t3 of the steel pipe 1 without causing the outer peripheral surface 1a of the steel tube to be uneven in the tube axis orthogonal direction X. Thus, the rib outer peripheral surface 4a and the rib inner peripheral surface 4b are formed continuously on substantially the same plane as the straight pipe outer peripheral surface 3a and the straight pipe inner peripheral surface 3b of the straight pipe portion 3.

窪み部2は、図5、図6に示すように、鋼管1の管周方向Wに一又は複数形成される。窪み部2は、図5(a)に示すように、管周方向Wの2箇所で第1窪み部21と第2窪み部22とが形成されることで、管周方向Wの2箇所でリブ部4が形成される。第1窪み部21は、鋼管1の管周方向Wで所定の窪み延長E1となるとともに、第2窪み部22は、鋼管1の管周方向Wで所定の窪み延長E2となる。   As shown in FIGS. 5 and 6, one or a plurality of the recessed portions 2 are formed in the pipe circumferential direction W of the steel pipe 1. As shown in FIG. 5A, the recess 2 is formed at two locations in the tube circumferential direction W by forming the first recess 21 and the second recess 22 at two locations in the tube circumferential direction W. Ribs 4 are formed. The first recess 21 becomes a predetermined recess extension E1 in the pipe circumferential direction W of the steel pipe 1, and the second recess 22 becomes a predetermined recess extension E2 in the pipe circumferential direction W of the steel pipe 1.

窪み部2は、図6(a)に示すように、管周方向Wの3箇所で第1窪み部21、第2窪み部22及び第3窪み部23が形成されることで、管周方向Wの3箇所でリブ部4が形成される。第1窪み部21は、鋼管1の管周方向Wで所定の窪み延長E1となって、第2窪み部22は、鋼管1の管周方向Wで所定の窪み延長E2となるとともに、第3窪み部23は、鋼管1の管周方向Wで所定の窪み延長E3となる。また、窪み部2は、図6(b)に示すように、管周方向Wの1箇所のみで、鋼管1の管周方向Wで所定の窪み延長E1となる第1窪み部21が形成されることで、管周方向Wの1箇所でリブ部4が形成されるものとなる。   As shown in FIG. 6A, the hollow portion 2 is formed by forming the first hollow portion 21, the second hollow portion 22, and the third hollow portion 23 at three locations in the pipe circumferential direction W. Ribs 4 are formed at three locations W. The first dent portion 21 becomes a predetermined dent extension E1 in the pipe circumferential direction W of the steel pipe 1, the second dent portion 22 becomes a predetermined dent extension E2 in the pipe circumferential direction W of the steel pipe 1, and the third The recess 23 becomes a predetermined recess extension E3 in the pipe circumferential direction W of the steel pipe 1. Further, as shown in FIG. 6B, the hollow portion 2 is formed at only one place in the pipe circumferential direction W, and a first hollow portion 21 that becomes a predetermined hollow extension E1 in the pipe circumferential direction W of the steel pipe 1 is formed. Thus, the rib portion 4 is formed at one place in the pipe circumferential direction W.

窪み部2は、管周方向Wの4箇所以上に形成されるものであってもよく、例えば、図7に示すように、各々の窪み部2が管軸方向Yに延びる略楕円形状等に形成されて、管周方向Wで3〜9程度の箇所で、鋼管1の管軸方向Yに沿って縦長に形成されるものとすることもできる。窪み部2は、図5〜図7に示すように、鋼管1の管周方向Wに所定の数量nで形成されることで、各々の窪み部2の窪み延長Enの合計ΣEnが設定されるものとなる。   The depressions 2 may be formed at four or more locations in the pipe circumferential direction W. For example, as shown in FIG. 7, each depression 2 has a substantially elliptical shape or the like extending in the pipe axis direction Y. It is also possible to form a vertically long portion along the tube axis direction Y of the steel pipe 1 at about 3 to 9 in the tube circumferential direction W. As shown in FIGS. 5 to 7, the hollow portion 2 is formed with a predetermined number n in the pipe circumferential direction W of the steel pipe 1, so that the total ΣEn of the hollow extensions En of the respective hollow portions 2 is set. It will be a thing.

窪み部2は、鋼管1の管周方向Wの鋼管全周長Eに対する一部のみで形成されて、鋼管1の管周方向Wの鋼管全周長Eに対して各々の窪み部2の窪み延長Enの合計ΣEnが占める割合を窪み比率λと定義すると、この窪み比率λが所定の範囲となるように設定されるものとなる。このとき、窪み部2は、鋼管1の管軸方向Yで窪み部2が形成される複数の部位10の全部又は一部で、管周方向Wの鋼管全周長Eに対する各々の窪み部2の窪み延長Enの合計ΣEnの占める割合として、窪み比率λが50%以上、95%以下となるように設定される。   The hollow portion 2 is formed by only part of the circumferential length E of the steel pipe 1 in the circumferential direction W of the steel pipe 1, and the hollow of each hollow portion 2 with respect to the circumferential length E of the steel pipe in the circumferential direction W of the steel pipe 1. If the ratio occupied by the total ΣEn of the extension En is defined as the depression ratio λ, the depression ratio λ is set to be within a predetermined range. At this time, the dent part 2 is the whole or a part of the plurality of portions 10 where the dent part 2 is formed in the tube axis direction Y of the steel pipe 1, and each dent part 2 with respect to the entire circumferential length E of the steel pipe in the pipe circumferential direction W. As the ratio of the total ΣEn of the recess extension En, the recess ratio λ is set to be 50% or more and 95% or less.

窪み部2は、図8(a)に示すように、直管部3の直管外周面3aよりも凹状に形成された窪み深さaが、鋼管外径D及び鋼管板厚tとの関係で、下記(1)式により規定される関係を満足する。   As shown in FIG. 8 (a), the recess 2 has a recess depth a formed in a concave shape with respect to the straight pipe outer peripheral surface 3a of the straight pipe 3, and the relationship between the steel pipe outer diameter D and the steel pipe thickness t. Therefore, the relationship defined by the following equation (1) is satisfied.

Figure 2015221965
ここで、amax:窪み部2の窪み深さaの最大値、D:鋼管外径、t:鋼管板厚とする。
Figure 2015221965
Here, a max is the maximum value of the recess depth a of the recess 2, D is the steel pipe outer diameter, and t is the steel pipe plate thickness.

また、窪み部2は、図8(b)に示すように、直管部3の直管内周面3bよりも凸状に形成された窪み高さbが、鋼管外径D及び鋼管板厚tとの関係で、下記(2)式により規定される関係を満足する。   Further, as shown in FIG. 8 (b), the hollow portion 2 is formed such that the hollow height b formed in a convex shape from the straight pipe inner peripheral surface 3b of the straight pipe portion 3 has a steel pipe outer diameter D and a steel pipe plate thickness t. Therefore, the relationship defined by the following equation (2) is satisfied.

Figure 2015221965
ここで、bmax:窪み部2の窪み高さbの最大値、D:鋼管外径、t:鋼管板厚とする。
Figure 2015221965
Here, b max is the maximum value of the recess height b of the recess 2, D is the steel pipe outer diameter, and t is the steel pipe plate thickness.

窪み部2は、例えば、窪み部2の管周方向Wの略中央25で管軸直交方向Xに最も深く凹状に形成されて、窪み部2の窪み深さaの最大値amaxを有するものとなる。また、窪み部2は、管周方向Wの略中央25から両端部20にかけて窪み部2の窪み深さaが漸減して、管周方向Wの各部mで所定の窪み深さamを有するものとなり、窪み部2の管周方向Wの両端部20で、窪み部2の窪み深さaの最小値aminを有するものとなる。 The hollow portion 2 is formed, for example, in a deepest concave shape in the tube axis orthogonal direction X at the approximate center 25 in the pipe circumferential direction W of the hollow portion 2, and has a maximum value a max of the hollow depth a of the hollow portion 2. It becomes. Moreover, the hollow part 2 has a predetermined hollow depth am at each part m in the pipe circumferential direction W, with the hollow depth a of the hollow part 2 gradually decreasing from the substantially center 25 in the pipe circumferential direction W to both ends 20. Thus, the both end portions 20 of the hollow portion 2 in the pipe circumferential direction W have the minimum value a min of the hollow depth a of the hollow portion 2.

このため、窪み部2は、管周方向Wの各部mにおける窪み深さamの平均値aaveを窪み部2の窪み深さaとして、管周方向Wの各部mにおける窪み深さamの平均値aaveが窪み深さaの最大値amaxの半分程度になるものとすることで、窪み部2の窪み深さaが、窪み深さaの最大値amaxとの関係で、下記(3)式により規定される関係を満足するものとして近似される。なお、窪み部2の窪み深さaは、窪み深さaの最大値amaxとの関係で、下記(3)式により近似するものであるため、実際の製品において、管周方向Wの各部mにおける窪み深さamの平均値aaveを測定等することで算出されてもよいものとする。 For this reason, the hollow part 2 makes the average value aave of the hollow depth am in each part m of the pipe circumferential direction W the hollow depth a of the hollow part 2, and averages the hollow depth am in each part m of the pipe circumferential direction W. By assuming that the value a ave is about half of the maximum value a max of the depression depth a, the depression depth a of the depression portion 2 is related to the maximum value a max of the depression depth a as follows ( 3) It is approximated as satisfying the relationship defined by the equation. In addition, since the dent depth a of the dent part 2 is approximated by the following equation (3) in relation to the maximum value a max of the dent depth a, each part in the pipe circumferential direction W in the actual product. It may be calculated by measuring the average value a ave of the depression depth am at m.

Figure 2015221965
Figure 2015221965

また、窪み部2は、窪み深さaと同様に、窪み部2の管周方向Wの略中央25で、窪み部2の窪み高さbの最大値bmaxを有して、管周方向Wの各部mで所定の窪み高さbmを有するものとなり、窪み部2の管周方向Wの両端部20で、窪み部2の窪み高さbの最小値bminを有するものとなる。 Further, the recessed portion 2, like the recess depth a, at substantially the center 25 of the tube circumferential direction W of the recess portion 2, a maximum value b max of the high depression of the depression part 2 is b, the circumferential direction of the pipe Each portion m of W has a predetermined recess height bm, and both end portions 20 of the recess portion 2 in the pipe circumferential direction W have a minimum value b min of the recess height b of the recess portion 2.

このため、窪み部2は、管周方向Wの各部mにおける窪み高さbmの平均値baveを窪み部2の窪み高さbとして、管周方向Wの各部mにおける窪み高さbmの平均値baveが窪み高さbの最大値bmaxの半分程度になるものとすることで、窪み部2の窪み高さbが、窪み高さbの最大値bmaxとの関係で、下記(4)式により規定される関係を満足するものとして近似される。なお、窪み部2の窪み高さbは、窪み高さbの最大値bmaxとの関係で、下記(4)式により近似するものであるため、実際の製品において、管周方向Wの各部mにおける窪み高さbmの平均値baveを測定等することで算出されてもよいものとする。 Therefore, the recess portion 2, a tube as the circumferential direction W height b recess of each portion average height bm recess in m b ave the recess 2 of the average height bm recess in each part m of the pipe circumferential direction W By assuming that the value b ave is about half of the maximum value b max of the recess height b, the recess height b of the recess portion 2 is related to the maximum value b max of the recess height b as follows ( It is approximated as satisfying the relationship defined by the equation (4). In addition, since the dent height b of the dent part 2 is approximated by the following equation (4) in relation to the maximum value b max of the dent height b, each part in the pipe circumferential direction W in the actual product. It may be calculated by measuring the average value b ave of the depression height bm at m.

Figure 2015221965
Figure 2015221965

ここで、本発明を適用した鋼管1は、その崩壊モードが、図9(a)に示すように、鋼管1の管軸方向Yに圧縮荷重Pが作用することで、窪み部2が管軸方向Yに潰れるように変形しようとするものとなることを、類似する窪み形状の圧縮実験結果の分析から、鋭意検討の末に、見い出されるものとなった。鋼管1は、管周方向Wの鋼管全周長Eに対する全部に窪み部2が形成されて、窪み比率λを100%とした場合に、管軸方向Yに作用する圧縮荷重Pに抵抗する鋼管1の軸圧縮耐力pが、下記(5)、(6)式により算出されるものとなる。   Here, as for the steel pipe 1 to which this invention is applied, as shown in Fig.9 (a), the collapse mode 2 becomes a pipe axis because the compressive load P acts on the pipe-axis direction Y of the steel pipe 1. From the analysis of the compression experiment result of a similar depression shape, it was found after intensive study that it would be deformed so as to collapse in the direction Y. The steel pipe 1 is a steel pipe that resists a compressive load P acting in the pipe axis direction Y when the hollow portion 2 is formed in the entire circumferential length E of the steel pipe in the pipe circumferential direction W and the hollow ratio λ is 100%. The axial compression strength p of 1 is calculated by the following formulas (5) and (6).

Figure 2015221965
Figure 2015221965

Figure 2015221965
ここで、π:円周率、R:鋼管半径(D/2)、σy:鋼管降伏強度とする。
Figure 2015221965
Here, π: pi, R: steel pipe radius (D / 2), σ y : steel pipe yield strength.

上記(5)、(6)式は、窪み比率λが100%の鋼管1の管軸方向Yに圧縮荷重Pが作用した場合を想定して、図9(b)に示すように、鋼管1が蛇腹状に潰れる崩壊モードに基づくモデルを設定することで、鋭意検討の末に、この崩壊モードに基づくモデルから極限解析により導かれたものである。   The above formulas (5) and (6) assume that the compressive load P is applied in the tube axis direction Y of the steel pipe 1 having a recess ratio λ of 100%, as shown in FIG. By setting a model based on the collapse mode that collapses into an accordion-like shape, it was derived from the model based on this collapse mode by extreme analysis after intensive studies.

この極限解析は、鋼管1が蛇腹状に潰れたときの変形により回転モーメントMpが卓越することで、窪み部2の山部頂点8a及び谷部底点8bの各々に塑性ヒンジ8が形成されるものと仮定するものである。各々の塑性ヒンジ8は、回転方向rに回転角θで回転変形することで、塑性ヒンジ8の回転モーメントMpと回転角θとの積(Mp×θ)から、各々の塑性ヒンジ8の内部仕事が算出される。このとき、各々の塑性ヒンジ8による内部仕事の和は、回転角θが4箇所に形成されることによって4×Mp×θとなる。これにより、鋼管1の軸圧縮耐力pは、各々の塑性ヒンジ8がなす内部仕事の和(回転モーメントMpの抵抗がなす仕事)と、圧縮荷重Pが鋼管1を変形させるときの外力がなす外部仕事の和(圧縮荷重Pがなす仕事の和)とのつり合いから、上記(5)、(6)式のように算出されるものとなる。   In this limit analysis, the rotational moment Mp is dominant due to the deformation when the steel pipe 1 is crushed into a bellows shape, so that the plastic hinge 8 is formed at each of the peak portion 8a and the valley bottom point 8b of the recess portion 2. It is assumed. Each plastic hinge 8 is rotationally deformed at the rotation angle θ in the rotation direction r, so that the internal work of each plastic hinge 8 is calculated from the product (Mp × θ) of the rotation moment Mp and the rotation angle θ of the plastic hinge 8. Is calculated. At this time, the sum of internal work by each plastic hinge 8 becomes 4 × Mp × θ by forming the rotation angles θ at four locations. As a result, the axial compressive proof stress p of the steel pipe 1 is the sum of internal work (work done by the resistance of the rotational moment Mp) made by the plastic hinges 8 and the external force made by the external force when the compression load P deforms the steel pipe 1. From the balance with the sum of work (sum of work formed by the compressive load P), it is calculated as in the above formulas (5) and (6).

本発明を適用した鋼管1は、窪み比率λが50%以上、95%以下となるように設定されて、鋼管1の管周方向Wで窪み部2が形成される箇所と、窪み部2が形成されない箇所とが形成される。また、窪み部2の窪み深さaは、窪み深さaの最大値amaxとの関係で、上記(3)式により規定される関係を満足するとともに、窪み部2の窪み高さbは、窪み高さbの最大値bmaxとの関係で、上記(4)式により規定される関係を満足する。 The steel pipe 1 to which the present invention is applied is set so that the depression ratio λ is 50% or more and 95% or less, and the depression 2 is formed in a portion where the depression 2 is formed in the pipe circumferential direction W of the steel pipe 1. A portion that is not formed is formed. Further, the recess depth a of the recess portion 2 is related to the maximum value a max of the recess depth a and satisfies the relationship defined by the above equation (3), and the recess height b of the recess portion 2 is The relationship defined by the above equation (4) is satisfied in relation to the maximum value b max of the recess height b.

このため、本発明を適用した鋼管1は、鋼管1の管周方向Wで窪み部2が形成される箇所の圧縮耐力p1が、上記(3)〜(6)式より、下記(7)、(8)式により規定される関係を満足するものとなる。   For this reason, as for the steel pipe 1 to which this invention is applied, the compressive proof stress p1 of the location where the hollow part 2 is formed in the pipe circumferential direction W of the steel pipe 1 is the following (7) from the said (3)-(6) formula. The relationship defined by the equation (8) is satisfied.

Figure 2015221965
Figure 2015221965

Figure 2015221965
Figure 2015221965

ここで、鋼管外周面1aに窪み部2が形成されない略直管状の通常鋼管5(窪み比率λが0%)においては、管軸方向Yの長尺座屈を生じさせない範囲の圧縮耐力p3が、鋼管断面積Aに依存するもとして、下記(9)式により規定される関係を満足するものとなる。   Here, in the substantially straight tubular normal steel pipe 5 (the hollow ratio λ is 0%) in which the hollow portion 2 is not formed on the outer peripheral surface 1a of the steel pipe, the compressive yield strength p3 in a range in which the long buckling in the pipe axis direction Y is not generated. Depends on the steel pipe cross-sectional area A, the relationship defined by the following equation (9) is satisfied.

Figure 2015221965
ここで、A:鋼管断面積とする。
Figure 2015221965
Here, A: steel pipe cross-sectional area.

このため、本発明を適用した鋼管1は、鋼管1の管周方向Wで窪み部2が形成されない箇所となるリブ部4の圧縮耐力p2が、通常鋼管5の鋼管断面積Aに対して窪み部2が形成される割合を控除することで、上記(9)式と窪み比率λとの関係から、下記(10)式により規定される関係を満足するものとなる。   For this reason, in the steel pipe 1 to which the present invention is applied, the compressive proof stress p2 of the rib part 4 which is a place where the hollow part 2 is not formed in the pipe circumferential direction W of the steel pipe 1 is hollow with respect to the steel pipe cross-sectional area A of the normal steel pipe 5. By subtracting the ratio at which the portion 2 is formed, the relationship defined by the following equation (10) is satisfied from the relationship between the above equation (9) and the depression ratio λ.

Figure 2015221965
Figure 2015221965

したがって、本発明を適用した鋼管1は、鋼管1の管周方向Wで窪み部2が形成される箇所の圧縮耐力p1と、鋼管1の管周方向Wで窪み部2が形成されない箇所の圧縮耐力p2との和が、鋼管外周面1aに窪み部2が形成されない略直管状の通常鋼管5の圧縮耐力p3との関係で、下記(11)〜(13)式により規定される関係を満足することで、通常鋼管5と略同等以上の圧縮耐力を確保したものとなる。   Therefore, in the steel pipe 1 to which the present invention is applied, the compression strength p1 of the portion where the hollow portion 2 is formed in the pipe circumferential direction W of the steel pipe 1 and the compression of the portion where the hollow portion 2 is not formed in the pipe circumferential direction W of the steel pipe 1. The sum of the proof stress p2 satisfies the relationship defined by the following formulas (11) to (13) in relation to the compression proof strength p3 of the generally straight tubular normal steel pipe 5 in which the hollow portion 2 is not formed on the outer peripheral surface 1a of the steel pipe. By doing so, the compression proof stress of approximately equal to or higher than that of the normal steel pipe 5 is ensured.

Figure 2015221965
Figure 2015221965

Figure 2015221965
Figure 2015221965

Figure 2015221965
Figure 2015221965

ここで、本発明を適用した鋼管1は、直管部3の直管板厚t1と窪み部2の窪み板厚t2とが略同一であることから、図5(a)に示すように、鋼管1の管軸方向Yで窪み部2とリブ部4とが形成される部位10においても、図5(b)に示すように、鋼管1の管軸方向Yで直管部3が形成される部位11と同様に、鋼管断面積Aが下記(14)式により規定される関係を満足するものとして近似される。   Here, in the steel pipe 1 to which the present invention is applied, since the straight pipe plate thickness t1 of the straight pipe portion 3 and the hollow plate thickness t2 of the hollow portion 2 are substantially the same, as shown in FIG. Also in the part 10 in which the hollow part 2 and the rib part 4 are formed in the pipe axis direction Y of the steel pipe 1, the straight pipe part 3 is formed in the pipe axis direction Y of the steel pipe 1 as shown in FIG. As with the portion 11, the steel pipe cross-sectional area A is approximated as satisfying the relationship defined by the following equation (14).

Figure 2015221965
Figure 2015221965

以上より、本発明を適用した鋼管1は、上記(12)、(13)式に上記(14)式を代入することで、窪み部2の窪み深さaが、上記(1)式により規定される関係を満足するとともに、窪み部2の窪み高さbが、上記(2)式により規定される関係を満足するものとして算出されるものとなる。なお、本発明を適用した鋼管1は、上記(14)式で鋼管断面積Aを近似したことから、実際の製品において、上記(1)、(2)式におけるt/amax、t/bmaxが、(D−t)/Dを5%程度下回るものとなってもよいものとする。 As described above, in the steel pipe 1 to which the present invention is applied, by substituting the above equation (14) into the above equations (12) and (13), the dent depth a of the dent portion 2 is defined by the above equation (1). In addition to satisfying the relationship, the dent height b of the dent portion 2 is calculated as satisfying the relationship defined by the above equation (2). In addition, since the steel pipe 1 to which the present invention is applied approximates the cross-sectional area A of the steel pipe by the above equation (14), in the actual product, t / a max and t / b in the above equations (1) and (2). The max may be less than (D−t) / D by about 5%.

下記表1は、比較例1〜6と本発明例1〜3とを比較して、本発明例1〜3の圧縮耐力(p1+p2)が、通常鋼管5の圧縮耐力p3よりも大きくなることを、実験結果より表すものである。本発明例1〜3は、t/amaxが(D−t)/D以上となることで、窪み部2の窪み深さaが上記(1)式により規定される関係を満足するものであり、これに対して、比較例1〜6は、t/amaxが(D−t)/D未満となるため、窪み部2の窪み深さaが上記(1)式により規定される関係を満足しないものとなる。ここで、本発明例1〜3は、何れも、鋼管1の管周方向Wの鋼管全周長Eに対する各々の窪み部2の窪み延長Enの合計ΣEnが占める割合(ΣEn/E)が9割を超えて、窪み比率λが90%以上に設定されたものである。 Table 1 below shows that the compression proof stress (p1 + p2) of the inventive examples 1 to 3 is larger than the compressive proof stress p3 of the normal steel pipe 5 by comparing the comparative examples 1 to 6 and the inventive examples 1 to 3. This is expressed from the experimental results. In Invention Examples 1 to 3, when t / a max is equal to or greater than (D−t) / D, the indentation depth a of the indentation portion 2 satisfies the relationship defined by the above equation (1). On the other hand, in Comparative Examples 1 to 6, since t / a max is less than (D−t) / D, the depth a of the recessed portion 2 is defined by the above equation (1). Will not be satisfied. Here, in Examples 1 to 3 of the present invention, the ratio (ΣEn / E) of the total ΣEn of the hollow extension En of each hollow portion 2 to the total circumferential length E of the steel pipe 1 in the pipe circumferential direction W is 9 Exceeding the percentage, the dent ratio λ is set to 90% or more.

Figure 2015221965
Figure 2015221965

図10は、比較例及び本発明例の圧縮耐力をプロットしたものであり、「実験結果と計算結果とが一致する場合」を破線にて示し、「実験結果と計算結果の直線近似式」を直線で示している。この破線と直線とが概ね一致することは、発明者が提案する耐力評価式によって算出された窪み付きの鋼管1の圧縮耐力(p1+p2)が、実際の窪み付きの鋼管1の圧縮耐力(p1+p2)を高い精度で推定するものであることを、実験結果との検証から明らかにするものである。この実験的な検証研究により、発明者が提案する耐力評価式にて実際の窪み付きの鋼管1の圧縮耐力(p1+p2)が精度良く推測できるとともに、この耐力評価式をもとに導き出した上記(1)、(2)式の妥当性を示すものである。   FIG. 10 is a plot of the compressive yield strength of the comparative example and the example of the present invention, in which “when the experimental result and the calculation result match” is indicated by a broken line, and “the linear approximation formula of the experimental result and the calculation result”. It is shown by a straight line. The fact that the broken line and the straight line substantially coincide with each other indicates that the compression strength (p1 + p2) of the steel pipe 1 with the depression calculated by the yield strength evaluation formula proposed by the inventor is the compression strength (p1 + p2) of the actual steel pipe 1 with the depression. It is clarified from the verification with the experimental results that it is estimated with high accuracy. From this experimental verification study, the compressive strength (p1 + p2) of the actual steel pipe 1 with the depression can be accurately estimated by the yield strength evaluation formula proposed by the inventor, and the above-described ( This shows the validity of the equations (1) and (2).

本発明を適用した鋼管1は、図11に示すように、窪み部2の窪み深さaが、上記(1)式により規定される関係を満足するときに、鋼管1の圧縮耐力(p1+p2)を低下させることなく、鋼管外側Oの固結材6や定着材等との間で所定の付着性能を確保することができる。また、本発明を適用した鋼管1は、窪み部2の窪み高さbが、上記(2)式により規定される関係を満足するときに、鋼管1の圧縮耐力(p1+p2)を低下させることなく、鋼管内側Iの固結材6や定着材等との間で所定の付着性能を確保することができる。   As shown in FIG. 11, the steel pipe 1 to which the present invention is applied has a compression strength (p1 + p2) of the steel pipe 1 when the depth a of the recess 2 satisfies the relationship defined by the above formula (1). It is possible to ensure a predetermined adhesion performance with the consolidated material 6 or the fixing material on the outer side O of the steel pipe without lowering. Moreover, the steel pipe 1 to which the present invention is applied has no reduction in the compressive strength (p1 + p2) of the steel pipe 1 when the dent height b of the dent part 2 satisfies the relationship defined by the above equation (2). Predetermined adhesion performance can be secured between the consolidated material 6 and the fixing material on the steel pipe inner side I.

特に、本発明を適用した鋼管1は、窪み比率λが50%以上、95%以下となるように設定されることで、管周方向Wに延びた各々の窪み部2の窪み延長Enの合計ΣEnを十分に長くして、固結材6や定着材等との付着性能を向上させることができるものとなる。なお、本発明を適用した鋼管1は、鋼管外側O又は鋼管内側Iに、経時硬化性材料の固結材6が設けられるものに限られず、埋設された地盤内の土砂等との間で所定の付着性能を確保するものとされてもよい。   In particular, the steel pipe 1 to which the present invention is applied is set so that the depression ratio λ is 50% or more and 95% or less, so that the sum of the depression extensions En of the respective depressions 2 extending in the pipe circumferential direction W is obtained. By making ΣEn sufficiently long, the adhesion performance with the consolidated material 6 and the fixing material can be improved. In addition, the steel pipe 1 to which the present invention is applied is not limited to the steel pipe outer side O or the steel pipe inner side I provided with the hardened material 6 of the time-curable material, and is predetermined with the earth and sand in the buried ground. The adhesion performance may be ensured.

これにより、本発明を適用した鋼管1は、地盤内の土砂や経時硬化性材料等との付着性能の低下を回避すると同時に、鋼管1の圧縮耐力(p1+p2)を低下させることなく、管軸方向Yの圧縮性能を低下させない窪み仕様を有する鋼管1を提供することが可能となる。   Thereby, the steel pipe 1 to which the present invention is applied avoids a decrease in adhesion performance with the earth and sand in the ground, a time-hardening material, and the like, and at the same time, without reducing the compression strength (p1 + p2) of the steel pipe 1. It becomes possible to provide the steel pipe 1 which has the hollow specification which does not reduce the compression performance of Y.

なお、本発明を適用した鋼管1は、図2に示すように、管軸方向Yに並べられて設けられる複数のリブ部4が、管軸方向Yで略一列となるように形成されるものであるが、これに限らず、管周方向Wの位置を互いに異ならせて設けられて、管軸方向Yで略千鳥状等となるように形成されてもよい。   In addition, as shown in FIG. 2, the steel pipe 1 to which the present invention is applied is formed such that a plurality of rib portions 4 arranged side by side in the pipe axis direction Y are arranged substantially in a line in the pipe axis direction Y. However, the present invention is not limited to this, and the positions in the pipe circumferential direction W may be different from each other so as to be substantially staggered in the pipe axis direction Y.

以上、本発明の実施形態の例について詳細に説明したが、上述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。   As mentioned above, although the example of embodiment of this invention was demonstrated in detail, all the embodiment mentioned above showed only the example of actualization in implementing this invention, and these are the technical aspects of this invention. The range should not be construed as limiting.

例えば、本発明を適用した鋼管1は、上述した中小径鋼管に適用されるものに限らず、鋼管外径Dが350mm〜3000mm程度となる大径鋼管に適用されてもよい。なお、本発明を適用した鋼管1は、窪み部2の管軸方向Yの長さBが、窪み部2の窪み深さaに対して、3〜20倍程度に設定されることが望ましい。   For example, the steel pipe 1 to which the present invention is applied is not limited to the above-described medium and small diameter steel pipe, and may be applied to a large diameter steel pipe having a steel pipe outer diameter D of about 350 mm to 3000 mm. In addition, as for the steel pipe 1 to which this invention is applied, it is desirable for the length B of the hollow part 2 of the pipe-axis direction Y to be set about 3 to 20 times with respect to the hollow depth a of the hollow part 2. FIG.

1 :鋼管
1a :鋼管外周面
1b :鋼管内周面
10 :窪み部とリブ部とが形成される部位
11 :直管部が形成される部位
2 :窪み部
2a :窪み外周面
2b :窪み内周面
20 :窪み部の両端部
21 :第1窪み部
22 :第2窪み部
23 :第3窪み部
25 :窪み部の略中央
3 :直管部
3a :直管外周面
3b :直管内周面
4 :リブ部
4a :リブ外周面
4b :リブ内周面
5 :通常鋼管
6 :固結材
7 :地盤
70 :掘削孔又は地盤改良範囲
8 :塑性ヒンジ
8a :山部頂点
8b :谷部底点
W :管周方向
X :管軸直交方向
Y :管軸方向
DESCRIPTION OF SYMBOLS 1: Steel pipe 1a: Steel pipe outer peripheral surface 1b: Steel pipe inner peripheral surface 10: The site | part in which a hollow part and a rib part are formed 11: The site | part in which a straight pipe part is formed 2: The hollow part 2a: The hollow outer peripheral surface 2b: In a hollow Circumferential surface 20: Both end portions 21 of the dent portion: First dent portion 22: Second dent portion 23: Third dent portion 25: Approximate center of the dent portion 3: Straight pipe portion 3a: Straight pipe outer peripheral surface 3b: Straight pipe inner circumference Surface 4: Rib 4a: Rib outer peripheral surface 4b: Rib inner peripheral surface 5: Normal steel pipe 6: Solidified material 7: Ground 70: Excavation hole or ground improvement range 8: Plastic hinge 8a: Mountain top 8b: Valley bottom Point W: Pipe circumferential direction X: Pipe axis orthogonal direction Y: Pipe axis direction

Claims (5)

鋼管外周面に窪み部が形成された鋼管であって、
管軸方向に延びて略直管状に形成された直管部と、管軸直交方向の内側に向けて凹状に形成された窪み部とを備え、
前記窪み部は、前記直管部と略同一の板厚を有するとともに、前記直管部の直管外周面よりも凹状に形成された窪み深さが、鋼管外径及び鋼管板厚との関係で、下記(1)式により規定される関係を満足すること
を特徴とする鋼管。
Figure 2015221965
ここで、amax:前記窪み部の窪み深さの最大値、D:鋼管外径、t:鋼管板厚とする。
A steel pipe in which a hollow portion is formed on the outer peripheral surface of the steel pipe,
A straight pipe portion extending in the tube axis direction and formed in a substantially straight tube shape, and a hollow portion formed in a concave shape toward the inside in the tube axis orthogonal direction,
The hollow portion has substantially the same thickness as the straight pipe portion, and the depth of the hollow formed in a concave shape than the straight pipe outer peripheral surface of the straight pipe portion is related to the steel pipe outer diameter and the steel pipe plate thickness. And satisfying the relationship defined by the following formula (1).
Figure 2015221965
Here, a max is the maximum value of the depth of the recess, D is the outer diameter of the steel pipe, and t is the thickness of the steel pipe.
前記窪み部は、管周方向の鋼管全周長に対する一部のみで管周方向に延びて形成されること
を特徴とする請求項1記載の鋼管。
2. The steel pipe according to claim 1, wherein the hollow portion is formed to extend in the pipe circumferential direction with only a part of the entire length of the steel pipe in the pipe circumferential direction.
前記窪み部は、管周方向の鋼管全周長に対して占める割合が50%以上となるように、管周方向に一又は複数形成されること
を特徴とする請求項1又は2記載の鋼管。
3. The steel pipe according to claim 1, wherein one or a plurality of the recessed portions are formed in the pipe circumferential direction so that a ratio of the entire circumference of the steel pipe in the pipe circumferential direction is 50% or more. .
前記窪み部は、管軸方向に所定の間隔を空けて断続的に複数形成されること
を特徴とする請求項1〜3の何れか1項記載の鋼管。
The steel pipe according to any one of claims 1 to 3, wherein a plurality of the recessed portions are intermittently formed at predetermined intervals in the tube axis direction.
前記窪み部は、前記直管部の直管内周面よりも凸状に形成された窪み高さが、鋼管外径及び鋼管板厚との関係で、下記(2)式により規定される関係を満足すること
を特徴とする請求項1〜4の何れか1項記載の鋼管。
Figure 2015221965
ここで、bmax:前記窪み部の窪み高さの最大値、D:鋼管外径、t:鋼管板厚とする。
The said hollow part has the relationship prescribed | regulated by the following (2) formula by the relationship between the hollow height formed in convex shape rather than the straight pipe inner peripheral surface of the said straight pipe part with a steel pipe outer diameter and steel pipe plate thickness. The steel pipe according to any one of claims 1 to 4, wherein the steel pipe is satisfied.
Figure 2015221965
Here, b max is the maximum value of the dent height of the dent part, D is the outer diameter of the steel pipe, and t is the steel pipe plate thickness.
JP2014105849A 2014-05-22 2014-05-22 Steel pipe Active JP6330478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014105849A JP6330478B2 (en) 2014-05-22 2014-05-22 Steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014105849A JP6330478B2 (en) 2014-05-22 2014-05-22 Steel pipe

Publications (2)

Publication Number Publication Date
JP2015221965A true JP2015221965A (en) 2015-12-10
JP6330478B2 JP6330478B2 (en) 2018-05-30

Family

ID=54785128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014105849A Active JP6330478B2 (en) 2014-05-22 2014-05-22 Steel pipe

Country Status (1)

Country Link
JP (1) JP6330478B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085157A (en) * 2005-08-24 2007-04-05 Nippon Steel Corp Steel pipe pile with recess, its manufacturing method, and composite steel pipe pile using the steel pipe pile
WO2012115138A1 (en) * 2011-02-22 2012-08-30 新日本製鐵株式会社 Steel pipe with concavities, and composite pile
US20140056650A1 (en) * 2011-11-03 2014-02-27 University of Washington through it Center for Commercialization Pile with low noise generation during driving
JP2014181551A (en) * 2013-03-21 2014-09-29 Nippon Steel & Sumitomo Metal Recessed steel pipe joint, joint steel pipe, and joint method of steel pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085157A (en) * 2005-08-24 2007-04-05 Nippon Steel Corp Steel pipe pile with recess, its manufacturing method, and composite steel pipe pile using the steel pipe pile
WO2012115138A1 (en) * 2011-02-22 2012-08-30 新日本製鐵株式会社 Steel pipe with concavities, and composite pile
US20140056650A1 (en) * 2011-11-03 2014-02-27 University of Washington through it Center for Commercialization Pile with low noise generation during driving
JP2014181551A (en) * 2013-03-21 2014-09-29 Nippon Steel & Sumitomo Metal Recessed steel pipe joint, joint steel pipe, and joint method of steel pipe

Also Published As

Publication number Publication date
JP6330478B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP5896004B2 (en) Steel pipe concrete composite pile
CN103370476B (en) Steel pipe with concavities, and composite pile
WO2015159434A1 (en) Steel sheet pile
JP5381760B2 (en) Steel sheet pile retaining wall and design method thereof
JP6330478B2 (en) Steel pipe
JP4890646B2 (en) Combination steel sheet pile, retaining wall composed of combination steel sheet pile, and method for selecting combination steel sheet pile
KR20120045423A (en) Square steel tube improved in resistence for buckling using rolled steel with rib-shape, and method of manufacturing the tube
CA2896419C (en) Coupler for soil nail and method of emplacing same
JP6394180B2 (en) Steel pipe sheet pile joint structure
KR20090006672A (en) Pile and wall using thereof
JP6460835B2 (en) Reinforcing structure of concrete structure and method of reinforcing the same
KR101524317B1 (en) Support for the building industry and method for the production of a pipe of a support for the building industry
JP6274552B2 (en) Foundation pile structure
JP6740891B2 (en) Hat-shaped steel sheet pile
JP2007327248A (en) Prefabricated pile for foundation pile and continuous wall using it
JP2006336407A (en) Manufacturing method for handrail material
JP6515325B2 (en) Reinforcement structure of reinforced steel pipe and concrete structure
JP5772658B2 (en) Hat-type steel sheet piles and structures using hat-type steel sheet piles
JP5267879B2 (en) Seismic reinforcement structure of box culvert
JP6696822B2 (en) Foundation structure
JP6741136B2 (en) Manufacturing method and designing method for hat-shaped steel sheet pile
JP7529051B2 (en) Construction method of steel pipe soil cement composite pile, steel pipe pile, and steel pipe soil cement composite pile
KR101667986B1 (en) Z-shaped steel sheet pile
JP6133621B2 (en) Yamadome wall
JP6423045B1 (en) Caisson blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R151 Written notification of patent or utility model registration

Ref document number: 6330478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350