JP2007327248A - Prefabricated piles for foundation piles and continuous walls using them - Google Patents
Prefabricated piles for foundation piles and continuous walls using them Download PDFInfo
- Publication number
- JP2007327248A JP2007327248A JP2006159299A JP2006159299A JP2007327248A JP 2007327248 A JP2007327248 A JP 2007327248A JP 2006159299 A JP2006159299 A JP 2006159299A JP 2006159299 A JP2006159299 A JP 2006159299A JP 2007327248 A JP2007327248 A JP 2007327248A
- Authority
- JP
- Japan
- Prior art keywords
- pile
- piles
- plate material
- plate
- foundation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims abstract description 84
- 238000005452 bending Methods 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 abstract description 61
- 239000010959 steel Substances 0.000 abstract description 61
- 238000004519 manufacturing process Methods 0.000 description 19
- 230000000694 effects Effects 0.000 description 16
- 230000002093 peripheral effect Effects 0.000 description 10
- 238000010276 construction Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 239000004567 concrete Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 210000000078 claw Anatomy 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000012467 final product Substances 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011372 high-strength concrete Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Piles And Underground Anchors (AREA)
- Bulkheads Adapted To Foundation Construction (AREA)
Abstract
【課題】従来のH形鋼からなる基礎杭用の既成杭に対して、杭の支持力を増大することのできる基礎杭用の既成杭を提供する。
【解決手段】ウェブとなる板材Bと、その両端に存在しフランジとなる2つの板材Aからなる断面が略H状の基礎杭用の既成杭であって、前記2つの板材Aが、前記板材Bとの接点において、板材Bの幅よりも広がるように断面がくの字状に屈曲し、2つの屈曲した板材Aそれぞれと板材Bとの成す角度が、90°超180°未満であることを特徴とする基礎杭用の既成杭。
【選択図】図1The present invention provides a ready-made pile for a foundation pile that can increase the bearing capacity of the pile compared to a conventional established pile for a foundation pile made of H-shaped steel.
A foundation pile for a foundation pile having a substantially H-shaped cross section, which is composed of a plate material B to be a web and two plate materials A that are present at both ends and to be a flange, the two plate materials A being the plate material At the contact point with B, the cross section is bent in a U-shape so as to be wider than the width of the plate material B, and the angle formed between each of the two bent plate materials A and the plate material B is more than 90 ° and less than 180 °. Prefabricated pile for foundation pile as a feature.
[Selection] Figure 1
Description
本発明は、構造物を支持する基礎杭のうち、現場施工前に工場等で予め製造される既成杭に関するものであり、更には、当該既成杭を使用した連続壁に関するものである。 The present invention relates to a prefabricated pile manufactured in advance in a factory or the like before construction on site among foundation piles that support a structure, and further relates to a continuous wall using the prefabricated pile.
従来、構造物を支持する基礎の一つとして杭基礎がある。杭基礎は更に工場などで製造される既成杭を用いたものと、現場にて掘削過程においてセメントなどを利用し築造する場所打ち杭に大別される。 Conventionally, there is a pile foundation as one of the foundations for supporting the structure. Pile foundations are further divided into those that use prefabricated piles manufactured at factories and others, and cast-in-place piles that are built using cement during the excavation process.
既成杭としては、通常のコンクリートパイル、鋼管パイル、鋼コンクリート複合パイル等、円筒状を基本とした既成杭のほか、建築材料として梁、柱部材に一般的に利用されるH形鋼を利用したH杭がある。 As prefabricated piles, in addition to cylindrical piles such as ordinary concrete piles, steel pipe piles, steel-concrete composite piles, etc., H-shaped steels commonly used for beams and column members were used as building materials. There are H piles.
既成杭としての断面形状において円筒が用いられている理由としては、曲げ荷重における無方向性などもあるが、その製造方法の制約によるところが大きい。鋼管パイルでは多くは熱延コイルを成型装置によって連続的にスパイラル状に成形することから、円筒形状以外の形状は製造しがたい。また、コンクリートパイルの一例であるRC杭(Reinforced spun Concrete Piles)やPHC(Pretensioned spun High strength Concrete Piles)杭は、遠心力を利用した製造方法を採用しているため、同様に円筒状以外の形状は製造しがたい。 The reason why the cylinder is used in the cross-sectional shape as a prefabricated pile is non-directionality in bending load, but it is largely due to restrictions on its manufacturing method. In many steel pipe piles, hot-rolled coils are continuously formed into a spiral shape by a forming apparatus, and it is difficult to manufacture shapes other than cylindrical shapes. In addition, RC piles (Reinforced spun Concrete Piles) and PHC (Pretensioned spun High strength Concrete Piles) piles, which are examples of concrete piles, adopt a manufacturing method that uses centrifugal force. Is hard to manufacture.
一方、H形鋼を利用したH形鋼ぐい(Steel H Piles)は、鋼管パイルやコンクリートパイルで必要となる杭を埋設するための専用重機などを必要とせず、簡易に埋設工事を行えることが特徴とする施工面から見ると非常に利用価値の高い既成杭材料である。このH形鋼を利用したH形鋼杭は、非特許文献1および非特許文献2に記載されているように、土留め壁および中間杭として支持力が期待され、鉛直荷重を受けて構造物を支持するものとして用いられている。
On the other hand, Steel H Piles using H-section steel can be installed easily without the need for dedicated heavy machinery to embed piles required for steel pipe piles or concrete piles. It is a pre-made pile material that has a very high utility value in terms of the characteristic construction surface. As described in Non-Patent Document 1 and
図14は、杭として用いる一般的なH形鋼を示す図であり、2つのフランジである板材1と、これを連結するウェブである板材2によって構成され、板材1と板材2のなす角度は90°である。これは、H形鋼が例えば建築用の梁柱として主に利用されることから、曲げ抵抗性を高くすること、床や他の梁柱との取り合いの関係上、90°が最適角度とされてきたためである。
H形鋼は、現状では曲げ抵抗性を重視した上で決定された形状であり、例えば支持力を始めとした杭としての機能は、形状決定においては全く考慮されていない。 The H-section steel has a shape determined with an emphasis on bending resistance at present, and for example, the function as a pile including a supporting force is not considered at all in the shape determination.
H形鋼は、スラブを孔形ロールやユニバーサルロールによる圧延により成形する形鋼製品であるため、製造面における形状制約は低く、各種用途に応じて最良の形状を製造することは可能であるが、現状は検討すら行われていない。 H-section steel is a shaped steel product that forms a slab by rolling with a hole roll or a universal roll, so the shape restriction on the production surface is low, and it is possible to produce the best shape according to various applications. The current situation has not been studied.
H形鋼において支持力を増加するためには、例えば型式の大きいものを利用するのも一手段ではあるが、この場合、使用する鋼材量が多くなり材料コストが増加してしまう。即ち、大きな型式を利用することにより支持力増加を図ろうとすれば却って施工全体のコストが増加してしまう場合が多かった。 In order to increase the supporting force in the H-section steel, for example, the use of a large type is one means, but in this case, the amount of steel material to be used increases and the material cost increases. That is, if an attempt was made to increase the supporting force by using a large model, the cost of the entire construction was often increased.
本発明は、従来技術の有する上記問題点を鑑みて成されたものであり、円筒状やH形状など既存の断面形状に限定されることなく、特に、従来のH形鋼からなる既成杭に対して、杭の支持力を増大することのできる基礎杭用の既成杭を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and is not limited to existing cross-sectional shapes such as a cylindrical shape or an H shape, and in particular, an existing pile made of a conventional H-shaped steel. On the other hand, it aims at providing the ready-made pile for foundation piles which can increase the bearing capacity of a pile.
杭の支持力は、一般に杭軸部における周面支持力と杭先端部における先端支持力に分けて評価され、周面支持力においては、杭材と周辺地盤の摩擦応力に杭周長と杭長さを乗じて算出される。一方先端支持力においては杭先端部における地盤強度に先端面積を乗じて算出され、杭全体の支持力はその合計に対し安全率を適切に考慮して決定される。 The pile support force is generally evaluated by dividing it into a peripheral support force at the pile shaft and a tip support force at the tip of the pile. In the peripheral support force, the pile circumference and the pile are included in the friction stress of the pile material and the surrounding ground. Calculated by multiplying by length. On the other hand, the tip support force is calculated by multiplying the ground strength at the tip of the pile by the tip area, and the support force of the entire pile is determined by appropriately considering the safety factor.
一般的にH形鋼を杭として利用する場合はH杭とも呼ばれるが、その支持力評価に際しては、H形鋼に外接する長方形を決定し、その辺長の合計を周長として評価し、その長方形面積を先端面積として評価する方法が採用されている。 When H-shaped steel is generally used as a pile, it is also called an H-pile, but when evaluating its bearing capacity, a rectangle circumscribing the H-shaped steel is determined, and the total side length is evaluated as the circumference. A method of evaluating a rectangular area as a tip area is employed.
これは既往の現場試験などにおいて支持力を評価した知見の蓄積から、H形鋼においては,土との相互作用により、H形鋼の表面周長や先端の純断面積のみにて評価する方法では,過少評価であり、土との相互作用を前提として、上記で示す方法が実態に即した評価方法として認められてきた経緯があるためである. This is a method of evaluating only the surface circumference of the H-section steel and the pure cross-sectional area of the tip of the H-section steel by interaction with the soil, based on the accumulation of knowledge that evaluated the bearing capacity in past field tests. This is because it is underestimated, and the method described above has been accepted as an evaluation method based on the actual situation on the premise of interaction with soil.
本発明者等は、断面が略H形状における基礎杭用の既成杭において、支持力を評価する際の周長および先端面積を最大化する部材の組み合わせ形状を鋭意検討した結果、断面略H形状のフランジに相当する部材の角度を変更することで、鋼材量をほとんど変えずに、角度が90°あるH形鋼杭に比較して、周長および先端面積を大きくとることができ、支持力を増加することが可能な基礎杭用の既成杭を見出した。以下にその特徴を述べる。 As a result of earnestly examining the combined shape of the members that maximize the circumference and tip area when evaluating the bearing force in the existing pile for a foundation pile having a substantially H-shaped cross section, the inventors have a substantially H-shaped cross section. By changing the angle of the member corresponding to the flange, the circumference and tip area can be increased compared to H-shaped steel piles with an angle of 90 °, with almost no change in the amount of steel. We found a prefabricated pile for foundation piles that can be increased. The characteristics are described below.
尚、本発明で言う「既成杭」とは、工場にて製作した杭のことである。 In addition, the “prefabricated pile” referred to in the present invention is a pile manufactured at a factory.
(1) ウェブとなる板材Bと、その両端に存在しフランジとなる2つの板材Aからなる断面が略H状の基礎杭用の既成杭であって、前記2つの板材Aが、前記板材Bとの接点において、板材Bの幅よりも広がるように断面がくの字状に屈曲し、2つの屈曲した板材Aそれぞれと板材Bとの成す角度が、90°超180°未満であることを特徴とする。 (1) A cross-section consisting of a plate B serving as a web and two plate A present at both ends and serving as a flange is a prefabricated pile for a foundation pile having a substantially H shape, and the two plates A are the plate B The cross section is bent in a U-shape so that it is wider than the width of the plate material B, and the angle between the two bent plate materials A and the plate material B is more than 90 ° and less than 180 °. And
(2) (1)記載の基礎杭用の既成杭において、前記2つの板材Aそれぞれは、前記板材Bとの接点から途中までは断面がくの字状に屈曲する代わりに直線状を保持し、その先において板材Bの幅よりも広がる方向に断面がくの字状に屈曲しており、当該屈曲部の延長線と前記板材Bとのなす角度が、90°超180°未満であることを特徴とする。 (2) In the prefabricated pile for foundation piles described in (1), each of the two plate materials A maintains a straight shape instead of bending in a cross-sectional shape from the contact point with the plate material B to the middle, Further, the section is bent in a U-shape in a direction wider than the width of the plate material B, and the angle formed by the extension line of the bent portion and the plate material B is more than 90 ° and less than 180 °. And
(3) (2)記載の基礎杭用の既成杭において、前記2つの板材Aそれぞれは、前記直線状を保持した先において断面がくの字状に屈曲し、当該屈曲部の延長線と前記板材Bとのなす角度が、90°超180°未満であることに加えて、更に、その先において断面がくの字状に屈曲していることを特徴とする。 (3) In the prefabricated pile for foundation piles according to (2), each of the two plate materials A is bent into a U-shaped cross section at the point where the linear shape is held, and the extension line of the bent portion and the plate material In addition to being more than 90 ° and less than 180 °, the angle formed with B is further characterized in that the cross section is bent in a dogleg shape at the tip.
(4) (1)〜(3)のいずれかに記載の基礎杭用の既成杭において、前記板材Bがウェブの途中で継手によって連結されていることを特徴とする。 (4) In the ready-made pile for foundation piles in any one of (1)-(3), the said board | plate material B is connected with the joint in the middle of the web, It is characterized by the above-mentioned.
(5) (1)〜(4)のいずれかに記載の基礎杭用の既成杭において、前記2つの板材Aの少なくともいずれかの両端部に、継手を有することを特徴とする。 (5) The prefabricated pile for foundation piles according to any one of (1) to (4), wherein at least one end of each of the two plate members A has joints.
(6) (5)記載の基礎杭用の既成杭を用いた連続壁であって、前記基礎杭用の既成杭を複数隣接させて配置し、当該既成杭における板材Aの両端部の継手により、当該隣接した既成杭同士を連結してなることを特徴とする。 (6) A continuous wall using the prefabricated pile for the foundation pile according to (5), wherein a plurality of the prefabricated piles for the foundation pile are arranged adjacent to each other, and joints at both ends of the plate material A in the preformed pile are used. The adjacent pre-built piles are connected to each other.
以上、説明したように、本発明の断面が略H状の既成杭を基礎杭として使用することで、従来の基礎杭用の既成杭であるH形鋼杭を使用した場合に比べて、少ない鋼材使用量で必要な支持力を発揮することができ、また、鋼材量がこれらの従来の基礎杭と同量の場合には、より支持力を増大することができる。 As described above, the use of a prefabricated pile having a substantially H-shaped cross section as a foundation pile as described above is less than when using an H-shaped steel pile that is a prefabricated pile for a conventional foundation pile. The necessary supporting force can be exhibited by the amount of steel used, and the supporting force can be further increased when the amount of steel is the same as that of these conventional foundation piles.
以下、本発明を適用した基礎杭用の既成杭を実施するための最良の形態について図面を参照しながら詳細に説明をする。 Hereinafter, the best mode for carrying out an existing pile for a foundation pile to which the present invention is applied will be described in detail with reference to the drawings.
(1)第1実施形態
図1は、本発明の第1実施形態である基礎杭用の既成杭51の断面構成図である。ウェブとなる板材B4とその両端に存在しフランジとなる2つの板材A3からなる断面が略H状の杭であって、2つの板材Aが、板材Bとの接点において、板材Bの幅よりも広がるように断面がくの字状に屈曲している。2つの屈曲した板材A3それぞれと板材B4のなす角度5は図1に示すH形鋼とは異なり90°より大きく180°未満となっている。
(1) 1st Embodiment FIG. 1: is a cross-sectional block diagram of the existing
この結果、周面支持力の算定に際して前提とされる周長7は、H形鋼の場合では図2(a)に示すようにH形鋼の幅8(フランジの幅に相当)とH形鋼の高さ9(ウェブの幅+両端のフランジの厚みに相当)で構成される長方形の辺長合計で算出される。
As a result, the
本発明の第1実施形態における周長12は図3(a)で示すように幅13と高さ14で構成される長方形の辺長合計で算出され、板材Aと板材Bとの成す角が90°超180°未満である本発明の第1実施形態の杭は、ウェブとフランジとの成す角度が90°である従来のH形鋼の杭に比較して、その周長は1.0倍超1.3倍以下程度の値を有することが可能となる。
The
更に先端支持力の算定に際して前提とされる先端面積については、一般にH形鋼の杭の場合では図2(b)に示すようにH形鋼の幅8とH形鋼の高さ9を乗じることで得られる長方形面積が先端面積10として採用されるが、本発明の第1実施形態の杭における先端面積においては、図3(a)で示すように幅13と高さ14を乗じて得られる長方形面積が先端面積16として評価され、ウエブとフランジとのなす角度が90°であるH形鋼の杭に比較して、その面積は1.0倍超1.2倍以下程度の値を有することができる。
Furthermore, the tip area assumed for the calculation of the tip bearing capacity is generally multiplied by the
図4(a)は杭の支持力の考え方を示す模式図である。本発明での基礎杭用の既成杭51の支持力は前記で算定された周長12と先端面積16を前提に、杭軸部18においては周辺地盤との摩擦応力および杭長を考慮したうえで、周長と摩擦応力、杭長を乗じることで周面支持力を決定し、杭先端部19においては杭先端部における地盤強度を考慮した上で、先端面積と地盤強度を乗じることで先端支持力を決定する。
Fig.4 (a) is a schematic diagram which shows the view of the bearing capacity of a pile. In the present invention, the bearing capacity of the
前記にて決定した本発明の基礎杭用の既成杭の支持力は、従来のH形鋼の杭と比較するため、ウェブとなる板材Bの幅Yおよび板厚、フランジとなる板材Aの延長幅X(くの字状に屈曲している板材Aの断面の延長長さ:X/2+X/2)および板厚、並びに杭の全長を同一とすると、所要鋼材量が略等しくなるが、角度が90°であるH形鋼に比較して、先端支持力と周面支持力の和となる全体支持力において1.0倍超1.5倍以下程度の高い支持力性能を発揮することができる。 In order to compare the bearing capacity of the existing pile for the foundation pile of the present invention determined above with the conventional H-shaped steel pile, the width Y and the plate thickness of the plate B serving as the web, and the extension of the plate A serving as the flange If the width X (extension length of the cross section of the plate A bent in a U-shape: X / 2 + X / 2), the plate thickness, and the total length of the pile are the same, the required amount of steel material becomes substantially equal. Compared to H-section steel with a 90 ° angle, it can exhibit high bearing capacity performance of more than 1.0 times and less than 1.5 times in total bearing capacity, which is the sum of tip bearing capacity and peripheral surface bearing capacity. it can.
尚、高い支持力性能とは、たとえば荷重沈下曲線において同荷重作用時において沈下しがたい性能を示す。図4(b)は、杭の荷重−沈下曲線を表す概念図で、横軸Pは載荷荷重、縦軸δは変形量を示す。これを見て判るように、H形鋼の杭の荷重〜沈下曲線20に対して本発明の杭での荷重〜沈下曲線21はこの図4(b)のような位置関係を示し、同荷重載荷時においての変形量が小さく、ゆえに高い支持力性能を発揮することが可能となる。
In addition, high bearing force performance shows the performance which is hard to sink at the time of the same load action, for example in a load settlement curve. FIG. 4B is a conceptual diagram showing a load-settlement curve of a pile, in which the horizontal axis P represents the load load and the vertical axis δ represents the amount of deformation. As can be seen from this, the load-
杭を摩擦杭として利用する場合,つまり杭先端を支持する堅固な地層が非常に深く、コスト・施工・設計上の観点から、杭先端を堅固な地層まで到達させずに中間の軟弱な地層付近で止めて利用する場合には、周面支持力依存型の支持機構となるため、可能な限り周面支持力を増大させることが目標となる。この場合、周長増大を重視した断面形状決定がなされるべきであり、板材Aと板材Bのなす角度としては135°前後の角度を採用することが望ましい。 When a pile is used as a friction pile, that is, the solid stratum that supports the pile tip is very deep, and from the viewpoint of cost, construction, and design, the tip of the pile does not reach the solid stratum, and it is near the middle soft stratum In the case of using with a stop, the support mechanism depends on the peripheral surface support force. Therefore, the target is to increase the peripheral surface support force as much as possible. In this case, the cross-sectional shape should be determined with emphasis on increasing the circumferential length, and it is desirable to adopt an angle of about 135 ° as the angle formed by the plate material A and the plate material B.
港湾部のような埋め立て地盤で、支持層よりも上部の地盤が弱く杭と地盤の摩擦力が低い場所において杭を支持杭として利用する場合には、先端支持力依存型の支持機構となるため、可能な限り先端支持力を増大させることが目標となる。この場合には先端面積増大を重視した断面形状決定がなされるべきであり、板材Aと板材Bのなす角度としては120°前後の角度を採用することが望ましい。 When a pile is used as a support pile in a landfill such as a harbor, where the ground above the support layer is weak and the friction force between the pile and the ground is low, the support mechanism depends on the tip support force. The goal is to increase the tip support as much as possible. In this case, the cross-sectional shape should be determined with emphasis on increasing the tip area, and it is desirable to adopt an angle of about 120 ° as the angle formed by the plate material A and the plate material B.
本発明における実施形態における基礎杭を地中へ埋設する際には、設置場所へクレーンなどで吊りこみ地表面へ立て込んだのち、別途クレーンで吊り上げている特定の周波数を与えることが出来る加振重機の部材把持装置により、部材長手方向における上端部の板材Bを把持し、把持部分へ振動を伝達するとともに基礎杭重量と振動重機の自重により施工する方法が最も簡易な施工手段となる。一般的に地盤へ振動を与えると基礎杭と地盤の摩擦が低減されるため、施工においては非常に簡易な施工を行うことが出来る。 When embedding the foundation pile in the embodiment of the present invention in the ground, it is suspended by a crane or the like at the installation location, and then a vibration exciter capable of giving a specific frequency that is separately lifted by the crane With this member gripping device, the simplest construction means is to grip the plate material B at the upper end in the longitudinal direction of the member and transmit the vibration to the gripped part and construct it by the weight of the foundation pile and the weight of the vibration heavy machine. In general, when vibration is applied to the ground, the friction between the foundation pile and the ground is reduced, and therefore, very simple construction can be performed.
尚、第1実施形態における基礎杭用の既成杭の製造方法としては、例えば、熱間圧延や、平鋼の溶接によるビルドアップ等により製造可能である。 In addition, as a manufacturing method of the ready-made pile for foundation piles in 1st Embodiment, it can manufacture by hot rolling, the buildup by welding of a flat steel, etc., for example.
(2)第2実施形態
第1実施形態においては、板材A3は断面くの字状の直線部材であるが、第2実施形態においては、板材A3は断面くの字状に限定されない。図5には本発明の第2実施形態の断面形状を示す。
(2) Second Embodiment In the first embodiment, the plate material A3 is a straight member having a cross-sectional shape, but in the second embodiment, the plate material A3 is not limited to a cross-sectional shape. FIG. 5 shows a cross-sectional shape of the second embodiment of the present invention.
第2実施形態における板材A22は、板材B23との接点24から端部へ向かう途中の点25までは直線状を保持し、その先から端部までにおいてくの字状に屈曲する。即ち、2つの板材A22は、少なくとも板材B23との接点24から屈曲部25に至るまで板材B23に対して略垂直に配設され、また屈曲部25から先端61に至るまで板材B23に対して90°超180°未満の角度θ26で傾斜している。
The plate material A22 in the second embodiment maintains a linear shape up to a
屈曲部25は、フランジ端部に近くても、ウェブとの接続位置に近くても良いが、支持力向上に関してはウェブ近くに位置するほうが望ましい。
The
尚、第2実施形態における基礎杭用の既成杭の製造方法も、第1実施形態における製造方法と同様に製造することができる。 In addition, the manufacturing method of the existing pile for foundation piles in 2nd Embodiment can also be manufactured similarly to the manufacturing method in 1st Embodiment.
(3)第3実施形態
図13(a)に、第3実施形態に係る基礎杭用の既成杭の1例の形状を示す。
(3) 3rd Embodiment In FIG. 13 (a), the shape of one example of the ready-made pile for foundation piles which concerns on 3rd Embodiment is shown.
本実施形態では、第2実施形態の基礎杭用の既成杭において、2つの板材Aそれぞれは、板材Bとの接点から直線状を保持した先において断面がくの字状に屈曲することに加えて、更に、その先において断面がくの字状に屈曲していることを特徴とする。即ち、本実施形態においては、板材B23の両端に2つの板材A22が形成された断面が略H状の杭である。2つの板材A22は、少なくとも板材B23との接合部24から第1の屈曲部62に至るまで板材B23に対して略垂直に配設され、また第1の屈曲部62から第2の屈曲部63に至るまで板材B23に対して90°超180°未満の角度θ26で傾斜している。さらに、この第2の屈曲部63から先端61に至るまで板材B23に対して略垂直に延長されている。ちなみに、この第2の屈曲部63から先端61に至るまでにおいては、ウェブ23に対して略垂直に延長される場合のみならず、従来のH形鋼よりも周長及び先端面積を増大する形状であればいかなる形状で構成されていてもよい。
In this embodiment, in the prefabricated pile for foundation piles of the second embodiment, each of the two plate members A bends in a cross-sectional shape at the point where the straight shape is maintained from the contact point with the plate member B. Furthermore, the cross-section is bent in a dogleg shape at the tip. That is, in this embodiment, the cross section in which the two plate materials A22 are formed at both ends of the plate material B23 is a substantially H-shaped pile. The two plate materials A22 are disposed substantially perpendicular to the plate material B23 from at least the
尚、第3実施形態における基礎杭用の既成杭の製造方法も、第1、第2実施形態における製造方法と同様に製造することができる。 In addition, the manufacturing method of the ready-made pile for foundation piles in 3rd Embodiment can also be manufactured similarly to the manufacturing method in 1st, 2nd embodiment.
(4)第4実施形態
図6には本願発明における第4実施形態を示す。
(4) Fourth Embodiment FIG. 6 shows a fourth embodiment of the present invention.
第1実施形態〜第3実施形態においては、基礎杭は圧延やビルドアップ加工における製作段階完了時において最終形状を成しているが、特に圧延における製造工程においては、設備能力などの制約により最終製品のサイズに影響を受ける場合がある。第4実施形態では、この課題を解決するため板材Bのウェブの途中に継手27を形成している。
In the first to third embodiments, the foundation pile has a final shape at the time of completion of the production stage in rolling or build-up processing. May be affected by product size. In 4th Embodiment, in order to solve this subject, the
この結果、図6の実施例においては最終製品の半分のサイズでの製造となり、製造におけるサイズ制約を緩和することが可能となる。地中には、最終製品の約半分の部材28を最初に地中へ埋設し、その後継手27を互いに嵌合させた上で、残りの部材29を埋設し、埋設完了後には地中内において最終製品形状を構成する。
As a result, in the embodiment of FIG. 6, the manufacturing is performed with a half size of the final product, and the size restriction in manufacturing can be relaxed. In the ground, about half of the
継手は少ないほうが埋設段階における作業手間を削減できることから、少ないほうが望ましく1組の継手がウェブに位置することが望ましい。しかし、製造制約緩和が重要となる場合においては、1組以上の複数組の継手が配置されていても良い。 The smaller the number of joints, the more labor can be reduced in the embedding stage. Therefore, it is desirable that the smaller number of joints be located on the web. However, when it is important to alleviate manufacturing constraints, one or more pairs of joints may be arranged.
継手形状は、圧延製造においては鋼矢板のような鍵爪形状であることが望ましいが、互いに嵌合することが可能であり、離脱しがたいものであれば鍵爪形状に限定されるものではない。又、全て圧延で製造される必要もなく、必要に応じてスリットのついた鋼管などを加工して継手とし、溶接等によりウェブの端部に固着して製作してもよい。 The joint shape is preferably a key claw shape such as a steel sheet pile in rolling production, but is not limited to the key claw shape as long as they can be fitted to each other and cannot be detached. Absent. Moreover, it is not necessary to manufacture all by rolling, and if necessary, a steel pipe with a slit may be processed into a joint, and may be manufactured by being fixed to the end of the web by welding or the like.
(5)第5実施形態
第1実施形態〜第4実施形態においては、単体部材を杭として利用する場合を想定しているが、これらを複数連結させて連続壁として利用してもよい。
(5) Fifth Embodiment In the first to fourth embodiments, it is assumed that a single member is used as a pile, but a plurality of these members may be connected and used as a continuous wall.
図7には第5実施形態を示す。2つの板材A30の少なくとも一方の両端部31に、継手32を有することを特徴とする。継手は、片方の板材Aの両端部に有してもよく、又、両方の板材Aの両端部に有してもよい。 FIG. 7 shows a fifth embodiment. A joint 32 is provided at both ends 31 of at least one of the two plate materials A30. The joint may be provided at both ends of one plate A or may be provided at both ends of both plates A.
継手形状は、圧延製造においては鋼矢板のような鍵爪形状であることが望ましいが、互いに嵌合することが可能であり、離脱しがたいものであれば鍵爪形状に限定されるものではない。特に本実施形態における形状は、非常に複雑な形状であり圧延のみで製造するのは非常に困難であるため、別途、製造した継手を、溶接等によりフランジとなる板材Aの両端部に固着して製作してもよい。 The joint shape is preferably a key claw shape such as a steel sheet pile in rolling production, but is not limited to the key claw shape as long as they can be fitted to each other and cannot be detached. Absent. In particular, since the shape in the present embodiment is a very complicated shape and it is very difficult to manufacture only by rolling, separately manufactured joints are fixed to both end portions of the plate material A serving as a flange by welding or the like. May be produced.
(6)第6実施形態
本願発明における第6実施形態を図8(a)、(b)に示す。これは、第5実施形態である本願発明の基礎杭を複数隣接して配置し、継手を互いに嵌合させることで連結してなることを特徴とする連続壁である。図8(a)は、2つの板材Aの一方における両端部に継手を有する場合で、図8(b)は2つの板材Aの両方における両端部34に継手36を有する場合である。
(6) Sixth Embodiment A sixth embodiment of the present invention is shown in FIGS. This is a continuous wall characterized in that a plurality of foundation piles of the present invention which is the fifth embodiment are arranged adjacent to each other and connected by fitting joints to each other. FIG. 8A shows a case where joints are provided at both ends of one of the two plates A, and FIG. 8B shows a case where joints 36 are provided at both ends 34 of the two plates A.
図8では、複数の基礎杭55を、ウェブとなる板材B同士が略平行になるように配置しているが、これに限られるものではなく、ウェブとなる板材B同士がハの字状に配置される等、他の配置も可能である。 In FIG. 8, although the several foundation pile 55 is arrange | positioned so that board | plate materials B used as a web may become substantially parallel, it is not restricted to this, The board | plate materials B used as a web are C-shaped. Other arrangements are possible, such as being arranged.
連続壁の構成においては、第5実施形態である継手を有した既成杭54と同一形状からなる基礎杭55をまず地中へ埋設し、基礎杭55の一方の継手32と、隣接する基礎杭55の一方の継手32を嵌合させ、地中へ埋設する。これらの継手嵌合と地中への埋設工程を順じ、繰り返し複数の基礎杭を隣接させる方法を用いる。
In the configuration of the continuous wall, a
この際、隣接する基礎杭のウェブとなる板材B同士は、略平行になるように配置し、一枚壁の連続壁を構成するようにすることが好ましい。尚、連続壁に緩やかな曲率をつける場合は、図8(a)のように単体の基礎杭における2つある板材Aの一方の両端部にのみ継手を有する杭を用いて、隣接する板材B同士を曲率に応じたハの字状とすることで、つくることができる。 Under the present circumstances, it is preferable to arrange | position so that the board | plate materials B used as the web of an adjacent foundation pile may become substantially parallel, and to comprise the continuous wall of a single wall. In addition, when attaching a gentle curvature to a continuous wall, as shown in FIG. 8 (a), using a pile having joints only at one end of two plate members A in a single foundation pile, adjacent plate members B It can be made by making each other into a C shape according to the curvature.
第1実施形態〜第4実施形態は、構造物を支持する基礎杭として利用されるが、第6実施形態では地中における壁を構成することができることから、壁面の一方を掘削し他方の壁面に作用する土圧や水圧を支持する地中壁や、地中内における地盤の変動を抑制し地盤強度を向上する地中壁、地中における地下水などの流体の流れを止める止水壁などとしての利用も可能である。 Although 1st Embodiment-4th Embodiment is utilized as a foundation pile which supports a structure, in 6th Embodiment, since the wall in the ground can be comprised, one side of a wall surface is excavated and the other wall surface is comprised. As an underground wall that supports soil pressure and water pressure acting on the ground, an underground wall that suppresses ground fluctuations in the ground and improves the ground strength, and a stationary wall that stops the flow of fluid such as underground water in the ground Can also be used.
図9(a)に示す、従来の広幅系列H形鋼(H-300×300×10×15)を比較例として、本発明に係る実施例を示す。このH形鋼の寸法は、幅a300mm、高さb300mmであり、フランジ板厚tfが15mm、ウェブ板厚twが10mmであり、鋼材断面積は118.4cm2で鋼重は杭長1mあたり93kgとなる。 An embodiment according to the present invention will be described using a conventional wide series H-section steel (H-300 × 300 × 10 × 15) shown in FIG. 9A as a comparative example. The dimensions of this H-shaped steel are width a300mm, height b300mm, flange plate thickness tf 15mm, web plate thickness tw 10mm, steel cross section 118.4cm 2 and steel weight 93kg per pile length Become.
図9には、第1実施形態における実施例1を示し、さらにその発明の効果を試算したのでその結果を示す。 FIG. 9 shows Example 1 in the first embodiment, and further shows the result of trial calculation of the effect of the invention.
本発明の第1実施形態の実施例としては、ウェブとなる板材Bの幅を比較例のH形鋼のウェブの幅と同じ300mmとし、フランジとなる板材Aの延長幅を比較例のH形鋼のフランジの幅と同じ300mmとして、板材Aと板材Bのなす角度θをパラメータとして90°から180°まで変化させ、支持力評価の前提となる周長および先端面積を算出した。 As an example of the first embodiment of the present invention, the width of the plate B serving as a web is set to 300 mm which is the same as the width of the H-shaped steel web of the comparative example, and the extended width of the plate A serving as a flange is the H-shaped of the comparative example. Assuming that the width of the steel flange is 300 mm, the angle θ formed by the plate material A and the plate material B is changed from 90 ° to 180 ° as a parameter, and the peripheral length and tip area which are the premise for the support force evaluation are calculated.
角度以外の条件、板厚、ウェブ長さ、フランジ延長は変更しておらず、結果的に杭長1mあたりの鋼重は変化せず93kgとなっている。 Conditions other than the angle, plate thickness, web length, and flange extension were not changed, and as a result, the steel weight per 1 m of pile length remained unchanged at 93 kg.
検討結果を図9(c)に示すが、本検討例においては,周長は角度が90°より大きく147°未満で本発明の実施形態の周長が比較対象であるH形鋼の周長を上回る結果となり、角度120°において最も大きくなり、H形鋼の1.18倍となった。 The examination results are shown in FIG. 9 (c). In this examination example, the circumference is greater than 90 ° and less than 147 °, and the circumference of the embodiment of the present invention is the comparison object. As a result, it was the largest at an angle of 120 °, which was 1.18 times that of H-section steel.
一方、先端面積においては、角度が90°より大きく180°未満において、本発明の実施形態の先端面積が比較対象であるH形鋼の先端面積を上回る結果となり、角度135°において最も大きくなり、H形鋼の1.30倍となった。 On the other hand, in the tip area, when the angle is greater than 90 ° and less than 180 °, the tip area of the embodiment of the present invention exceeds the tip area of the H-section steel to be compared, and becomes the largest at an angle of 135 °. It was 1.30 times that of H-section steel.
杭の支持力における増大効果は地盤の影響や、摩擦杭や支持杭などの杭の利用形態によって異なる。例えば周面支持力が1.18倍となり先端支持力が1.30倍となれば、全体での支持力はその総和によって算定されることから、H形鋼を利用したH杭に比較して、本発明の実施形態における支持力は1.0倍超1.5倍以下の支持力を有することとなる。 The effect of increasing the bearing capacity of piles varies depending on the influence of the ground and the usage of piles such as friction piles and support piles. For example, if the peripheral support force is 1.18 times and the tip support force is 1.30 times, the total support force is calculated by the sum, so compared to H piles using H-section steel In the embodiment of the present invention, the supporting force is more than 1.0 times and 1.5 times or less.
図10に実施例2として、第2実施形態においての発明の効果を試算した結果を示す。比較対象は前記と同じ広幅系列H形鋼のうち、H-300×300×10×15とした。本発明の第2実施形態の実施例においては、板材Aのうち自由端側からフランジ延長幅aの1/4の部分で屈曲部を有するものとし、ウェブとなる板材Bの幅を比較するH形鋼のウェブの幅と同じとし、フランジとなる板材Aの延長幅を比較するH形鋼のフランジの幅と同じとして、その自由端に近い部分とウェブと呼ばれる板材のなす角度をパラメータとして検討を実施した。杭長1m当たりの鋼重は、第1実施形態の実施例と同様に、93kgである。 FIG. 10 shows the result of trial calculation of the effect of the invention in the second embodiment as Example 2. The comparison target was H-300 × 300 × 10 × 15 among the same wide series H-section steel as described above. In the example of the second embodiment of the present invention, it is assumed that the plate A has a bent portion at a quarter of the flange extension width a from the free end side, and the width of the plate B serving as a web is compared. Considering the angle between the part near the free end and the sheet material called the web as a parameter, assuming that it is the same as the width of the web of the shape steel, and the same width as the flange of the H-shaped steel. Carried out. The steel weight per 1 m of pile length is 93 kg like the Example of 1st Embodiment.
検討の結果は、第1実施例とほぼ同様であり周長と先端面積での増大効果は異なるものの、支持力評価の前提となる周長、先端面積について本発明の実施形態が優れていることが確認された。 The results of the examination are almost the same as in the first example, and the effect of increasing the circumference and the tip area is different, but the embodiment of the present invention is excellent in the circumference and the tip area, which are the premise of the bearing capacity evaluation. Was confirmed.
加えて屈曲部の位置が異なる場合でも発明の効果があることを検証する目的から、屈曲部の位置を2種類変えて効果を算定した実施例3の結果を図11、12に示す。図11は板材Aのうち自由端側からフランジ延長幅aの1/8の部分で屈曲部を有する場合で、図12は板材Aのうち自由端側からフランジ延長幅aの3/8の部分で屈曲部を有する場合である。検討の結果は、第1〜2実施例とほぼ同様であり周長と先端面積での増大効果は異なるものの、支持力評価の前提となる周長、先端面積について本発明の実施形態が優れていることが確認された。 In addition, for the purpose of verifying that the effect of the invention is obtained even when the position of the bent portion is different, the results of Example 3 in which the effect was calculated by changing two types of positions of the bent portion are shown in FIGS. FIG. 11 shows a case where the plate A has a bent portion at 1/8 of the flange extension width a from the free end side, and FIG. 12 shows a portion of the plate A at 3/8 of the flange extension width a from the free end side. This is a case having a bent portion. The results of the examination are almost the same as in the first and second examples, and the effect of increasing the circumference and the tip area is different, but the embodiment of the present invention is excellent in the circumference and the tip area, which are the premise of the bearing capacity evaluation. It was confirmed that
さらに屈曲部のその先に屈曲部を有する第3実施形態の場合でも発明の効果があることを検証する目的から、屈曲部の角度を変えて効果を算定した結果を実施例4として図13に示す。図13は板材Aのうち自由端側からフランジ延長幅aの1/6および2/6の部分で屈曲部を有する場合で、且つ、その間にある部材が板材Bと90°から180°の角度を有する場合である。検討の結果は、第1〜3実施例とほぼ同様である。周長と先端面積での増大効果は異なり、その改善効果も実施例1〜3に比べると比較的小さいが、支持力評価の前提となる周長、先端面積について本発明の実施形態が優れていることが確認された。 Further, for the purpose of verifying that the effect of the invention is also obtained in the case of the third embodiment having a bent portion ahead of the bent portion, the result of calculating the effect by changing the angle of the bent portion is shown in FIG. Show. FIG. 13 shows a case where the plate A has bent portions at 1/6 and 2/6 of the flange extension width a from the free end side, and the member between them has an angle of 90 ° to 180 ° with the plate B This is the case. The result of the examination is almost the same as in the first to third embodiments. The increase effect in the circumference and the tip area is different, and the improvement effect is relatively small compared to Examples 1 to 3, but the embodiment of the present invention is excellent in the circumference and the tip area which are the premise of the bearing capacity evaluation. It was confirmed that
尚、前記4種類の検討は角度のみをパラメータとしていることから、鋼材の純断面積および鋼重においては変更がなく、本発明の実施形態においても断面積は118.4cm2で鋼重は杭長1mあたり93kgとなるため、同材料費用において支持力の増大のみを図ることが可能であることを示している。 In addition, since the four types of examinations use only the angle as a parameter, there is no change in the pure cross-sectional area and steel weight of the steel material. In the embodiment of the present invention, the cross-sectional area is 118.4 cm 2 and the steel weight is the pile length. Since it is 93 kg per meter, it indicates that it is possible to increase the bearing capacity only at the same material cost.
1 フランジである板材
2 ウェブである板材
3 板材A
4 板材B
5 角度
6 H形鋼
7 周長
8 幅
9 高さ
10 先端面積
11 本発明における基礎杭
12 周長
13 幅
14 高さ
15 角度
16 先端面積
18 杭軸部
19 杭先端部
20 H形鋼での荷重〜沈下曲線
21 本発明における基礎杭での荷重〜沈下曲線
22 フランジ
23 ウエブ
24 フランジとウエブとの接点
25 屈曲点
26 角度
27 継手
28 片方の部材
29 他方の部材
30 フランジ
31 両端部
32 継手
34 両端部
36 継手
39 ウエブ
51、52、53、54、55 既成杭
61 先端
62 第1の屈曲部
63 第2の屈曲部
1 Plate material that is flange 2 Plate material that is web 3 Plate material A
4 Plate material B
5 Angle 6 H-
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006159299A JP4705523B2 (en) | 2006-06-08 | 2006-06-08 | Prefabricated piles for foundation piles and continuous walls using them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006159299A JP4705523B2 (en) | 2006-06-08 | 2006-06-08 | Prefabricated piles for foundation piles and continuous walls using them |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007327248A true JP2007327248A (en) | 2007-12-20 |
JP4705523B2 JP4705523B2 (en) | 2011-06-22 |
Family
ID=38927893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006159299A Expired - Fee Related JP4705523B2 (en) | 2006-06-08 | 2006-06-08 | Prefabricated piles for foundation piles and continuous walls using them |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4705523B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013040553A (en) * | 2011-07-21 | 2013-02-28 | Nippon Steel & Sumitomo Metal | Steel sheet pile, and wall body using the same |
CN103452101A (en) * | 2013-08-26 | 2013-12-18 | 江苏鼎达建筑新技术有限公司 | Prestressed concrete pile and supporting pile wall |
CN111118971A (en) * | 2020-01-17 | 2020-05-08 | 中铁二院工程集团有限责任公司 | End socket expansion device of roadbed pile plate structure and construction method |
CN111274633A (en) * | 2020-01-17 | 2020-06-12 | 中交水运规划设计院有限公司 | Pile foundation length calculation method and device and electronic equipment |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103352461B (en) * | 2013-06-28 | 2016-03-09 | 天津宝丰混凝土桩杆有限公司 | A kind of bank protection, keep off native special-shaped campshed |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5478813A (en) * | 1977-12-07 | 1979-06-23 | Kawasaki Steel Co | Method of construction of combination steel sheet pile |
JPS5847819A (en) * | 1981-09-11 | 1983-03-19 | Kawasaki Steel Corp | Continuous steel sheet pile of stepped joint |
JPH0492031U (en) * | 1990-12-21 | 1992-08-11 | ||
JPH09221746A (en) * | 1996-02-20 | 1997-08-26 | Sumitomo Metal Ind Ltd | Steel panel for underground wall construction |
-
2006
- 2006-06-08 JP JP2006159299A patent/JP4705523B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5478813A (en) * | 1977-12-07 | 1979-06-23 | Kawasaki Steel Co | Method of construction of combination steel sheet pile |
JPS5847819A (en) * | 1981-09-11 | 1983-03-19 | Kawasaki Steel Corp | Continuous steel sheet pile of stepped joint |
JPH0492031U (en) * | 1990-12-21 | 1992-08-11 | ||
JPH09221746A (en) * | 1996-02-20 | 1997-08-26 | Sumitomo Metal Ind Ltd | Steel panel for underground wall construction |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013040553A (en) * | 2011-07-21 | 2013-02-28 | Nippon Steel & Sumitomo Metal | Steel sheet pile, and wall body using the same |
CN103452101A (en) * | 2013-08-26 | 2013-12-18 | 江苏鼎达建筑新技术有限公司 | Prestressed concrete pile and supporting pile wall |
CN103452101B (en) * | 2013-08-26 | 2016-08-10 | 江苏鼎达建筑新技术有限公司 | Prestressed-concrete pile and supporting piling wall |
CN111118971A (en) * | 2020-01-17 | 2020-05-08 | 中铁二院工程集团有限责任公司 | End socket expansion device of roadbed pile plate structure and construction method |
CN111274633A (en) * | 2020-01-17 | 2020-06-12 | 中交水运规划设计院有限公司 | Pile foundation length calculation method and device and electronic equipment |
CN111274633B (en) * | 2020-01-17 | 2023-03-14 | 中交水运规划设计院有限公司 | Pile foundation length calculation method and device and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
JP4705523B2 (en) | 2011-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2672012B1 (en) | A mono-pile type foundation structure for connecting steel pipe pile and steel sleeve pipe | |
CN105874128B (en) | Sheet pile | |
JP2009516109A (en) | Temporary earth retaining device | |
KR100915099B1 (en) | Structure for supporting retaining wall of earth with arch material and method constructing the arch structure | |
JP4705523B2 (en) | Prefabricated piles for foundation piles and continuous walls using them | |
CN102713074A (en) | Connected wall structure consisting of steel pipe sheet piles and steel sheet pile, and method of constructing same | |
CN111379335B (en) | Node connecting device of reinforced concrete column and girder steel | |
CN111593739A (en) | Cement mixing pile enclosure wall-profile steel cantilever type combined support | |
CN110761296A (en) | Cement-soil enclosure wall-cast-in-place pile cantilever type combined support and construction method thereof | |
JP2003232033A (en) | Foundation pile structure | |
CN111676982A (en) | Cement-soil enclosure wall-precast pile cantilever type combined support | |
JPH01142122A (en) | Small-diameter steel tubular pile | |
JP2964933B2 (en) | Underground structure, asymmetric U-shaped sheet pile, and method of placing asymmetric U-shaped sheet pile | |
CN114892672B (en) | Foundation pit supporting construction process method | |
JP2013177741A (en) | Earthquake strengthening structure of existent structure foundation employing composite ground pile foundation technique | |
KR101126338B1 (en) | Wave pattern steel plate having a wall | |
CN110093933A (en) | A kind of foundation pit vertically draws anchor support system and its construction method | |
CN115613589A (en) | Double-row PC construction method combined pile enclosure structure and construction method thereof | |
JP5252220B2 (en) | Lateral flow countermeasure structure | |
JP2987371B2 (en) | Underground diaphragm wall | |
JP2006161375A (en) | Steel pipe sheet pile and steel pipe sheet pile connection structure | |
JPH0377323B2 (en) | ||
JP7447879B2 (en) | Construction methods for steel walls, structures, and structures | |
CN220057899U (en) | Differential mutual clutch type supporting pile | |
KR102311110B1 (en) | Structure of the Vertical Sphere for the Cross Sectional Variation and its Construction Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100713 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100913 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110311 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4705523 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140318 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |