JP2009164417A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2009164417A
JP2009164417A JP2008001517A JP2008001517A JP2009164417A JP 2009164417 A JP2009164417 A JP 2009164417A JP 2008001517 A JP2008001517 A JP 2008001517A JP 2008001517 A JP2008001517 A JP 2008001517A JP 2009164417 A JP2009164417 A JP 2009164417A
Authority
JP
Japan
Prior art keywords
diffusion region
region
drain
type
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008001517A
Other languages
English (en)
Inventor
Kunihiro Kajiwara
邦裕 梶原
Seiichi Moriyama
誠一 森山
Makoto Watabe
真 渡部
Hiroyuki Kageyama
博行 景山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008001517A priority Critical patent/JP2009164417A/ja
Publication of JP2009164417A publication Critical patent/JP2009164417A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】半導体装置において、面積の増大を招くことなく高い電流能力を得ることができる高耐圧MOSトランジスタの構造を提供する。
【解決手段】例えば高耐圧P型MOSトランジスタ構造では、低濃度N型拡散領域108の上において、ゲートGの右方及び左方に、低濃度P型拡散領域109が形成され、その上に高濃度P型拡散領域106が形成される。前記高濃度P型拡散領域106の内方には、高濃度N型拡散領域104が形成され、このN型拡散領域104は、コンタクト107を介してその上層のソース又はドレイン領域113、114に接続される。前記高濃度P型拡散領域106には、コンタクト107は形成されない。前記ゲートGの近傍には、前記低濃度N型拡散領域108と、前記低濃度及び高濃度N型拡散領域109、106と、高濃度N型拡散領域104とにより寄生バイポーラトランジスタ203、204が形成される。
【選択図】図1

Description

本発明は、半導体装置に関わり、特に、トランジスタの面積の増大を招くことなく高い電流能力を得ることができる高耐圧MOSトランジスタの構造に関するものである。
近年、フラットパネルディスプレイ装置(以下FPDと称す)の普及が急速に拡大しており、中でも薄型で大画面、高精細の表示装置としてプラズマディスプレイパネル(以下PDPと称す)が注目されている。
PDPは、電極間の放電を利用した自発光型の表示パネルであり、放電を起こさせるためには高い電圧を印加する必要がある。そのため、低消費電力や高発光効率が求められている。
また、FPDの普及の急速な拡大に伴い、他のFPD装置と市場の競合により、低価格化も求められている。PDPでは、高電圧の表示駆動用のドライバICを1つのパネルセットに複数個使用しており、このドライバICでの低電力駆動化、高発光効率駆動化、コストダウン化は、PDPの市場競争力に大きく影響を与える。
高耐圧でMOSトランジスタを製造するプロセスは、通常のCMOS製造プロセスの構造に例えば特許文献1に記載されるLOCOSオフセットを加えることにより、高耐圧にできるので、SOI(Silicon on Insulator)などに比べ、特殊なプロセス工程を必要とせず、安価なドライバICを製造できるという利点がある。
特開2006−287250号公報
しかしながら、前記従来のLOCOSを備えた高耐圧MOSプロセスの構造では、大きな電流能力が必要とされる場合には、そのトランジスタのゲート幅を広く設定する必要があって、トランジスタの面積増加を強いられて、チップサイズアップとなり、このチップサイズアップはドライバICのコストアップを招いてしまう。
また、チップサイズアップを回避する目的で、単位面積当たりのトランジスタ電流能力を向上させる場合には、工程追加などを含めた大幅な製造プロセス条件の見直しを行う必要があって、チップ設計及びプロセス設計の両面からコストアップ要因となる問題点があった。
本発明の目的は、高耐圧を維持しながら、MOSトランジスタの面積の増大を招くことなく、高い電流能力を得ることができる高耐圧MOSトランジスタの構造を提供することにある。
前記目的を達成するために、本発明の半導体装置では、LOCOSを備えた高耐圧MOSトランジスタにおいて、内部に寄生バイポーラトランジスタを形成しておき、前記高耐圧MOSトランジスタのソース- ドレイン間電流の一部を前記寄生NPNバイポーラトランジスタのベース電流として、その寄生NPNバイポーラトランジスタをONさせることにより、高耐圧MOSトランジスタとして大きな電流能力を得るようにする。
具体的に、請求項1記載の発明の半導体装置は、ソース、ドレイン、及び前記ソースと前記ドレインとの間に位置するゲートを備え、前記ソースと前記ゲートとの間及び前記ドレインと前記ゲートとの間に各々LOCOSが形成された高耐圧MOS構造の半導体装置であって、前記ソース、ドレイン及びゲートは、半導体基板上に配置された第1の極性を持った第1の拡散領域の上に形成され、更に、前記ソース及びドレインは、各々、前記第1の拡散領域の上に配置され且つ前記第1の極性とは異なる第2の極性を持った第2の拡散領域と、前記第2の拡散領域の上に配置され且つ前記第2の極性を持ち、前記第2の拡散領域よりも濃度の濃い第3の拡散領域と、前記第2の拡散領域の上に配置され且つ前記第1の極性を持ち、前記第1の拡散領域よりも濃度の濃い第4の拡散領域とを備えており、前記ソース及びドレインでは、各々、前記第3の拡散領域は前記第4の拡散領域の外側に位置すると共に、前記第4の拡散領域内には、上層のソース又はドレイン領域に接続される少なくとも1つ以上のコンタクトが配置され、前記ソース及びドレインの第4の拡散領域内に設けられる前記コンタクトは、各々、前記ゲートに近い側の前記第3の拡散領域との境界近傍に配置され、前記ソース及びドレインのうち何れか一方の前記第3の拡散領域内には、前記第4の拡散領域内に配置された前記コンタクトと前記ゲートとの間の領域において、上層のソース又はドレイン領域に接続されるコンタクトは配置されておらず、前記ソース及びドレインの第4の拡散領域内に設けられる前記コンタクトは、前記ゲートの幅方向の第4の拡散領域の端部にも配置され、前記ソース及びドレインの前記第3の拡散領域内には、前記第4の拡散領域のゲート幅方向の端部に配置された前記コンタクトと前記第3の拡散領域のゲート幅方向の端部との間の領域において、上層のソース又はドレイン領域に接続されるコンタクトは配置されていないことを特徴とする。
請求項2記載の発明は、前記請求項1記載の半導体装置において、前記第4の拡散領域内には、前記第3の拡散領域の一部が配置されることを特徴とする。
請求項3記載の発明は、前記請求項1記載の半導体装置において、前記第3の拡散領域は、前記第4の拡散領域内に配置されることを特徴とする。
請求項4記載の発明は、前記請求項1記載の半導体装置において、前記LOCOSの下方には、前記第2の極性を持つ高耐圧用のオフセット領域が配置されることを特徴とする。
請求項5記載の発明は、前記請求項1〜4記載の半導体装置において、前記第1の極性はN型、前記第2の極性はP型、前記第1及び第4の拡散領域はN型拡散領域、前記第2及び第3の拡散領域はP型拡散領域であることを特徴とする。
請求項6記載の発明は、前記請求項1〜4記載の半導体装置において、前記第1の極性はP型、前記第2の極性はN型、前記第1及び第4の拡散領域はP型拡散領域、前記第2及び第3の拡散領域はN型拡散領域であることを特徴とする。
以上により、請求項1〜6記載の発明では次の作用を有する。すなわち、高耐圧MOSトランジスタにおいて、例えばP型を例示して説明すると、そのON動作時には、ソースのP型第3拡散領域からN型第1拡散領域を経てドレインのP型第3拡散領域に電流が流れる。この際、高耐圧MOSトランジスタのドレインでは、N型第1拡散領域とP型第3拡散領域とN型第4拡散領域とによりNPNバイポーラトランジスタが形成されていて、前記ソース- ドレイン間電流の一部が前記寄生NPNバイポーラトランジスタのベース電流となって、この寄生NPNバイポーラトランジスタをONさせる。その結果、この寄生NPNバイポーラトランジスタを通じた電流経路が新たに生成されるので、前記ソース- ドレイン間電流が増大することになる。
その際、高耐圧MOSトランジスタのドレインにおいて、そのゲート側の領域では、ゲートに近い順に、P型第3拡散領域、N型第4拡散領域が位置し、このN型第4拡散領域には上層のソース又はドレイン領域へのコンタクトが配置され、前記P型第3拡散領域には上層のソース又はドレイン領域へのコンタクトは配置されない。ここで、このP型第3拡散領域からその上層のドレイン領域へのコンタクトが配置される場合には、このコンタクトを経る電流経路からドレイン領域へ流れる電流が存在して、その分の電流だけ寄生NPNバイポーラトランジスタに流れるベース電流が減るが、本請求項1〜6記載の発明では、そのようなベース電流の減少がないので、寄生NPNバイポーラトランジスタに流れるベース電流が多く確保されて、高耐圧MOSトランジスタのソース- ドレイン間電流の増大が確保される。
以上説明したように、請求項1〜6記載の発明の半導体装置によれば、チップサイズアップを抑えつつ、高耐圧P型MOSトランジスタの電流能力を大きく得ることができる。
以下、本発明の実施形態における半導体装置について、図面を参照しながら説明する。
(実施形態1)
本発明の実施形態1の半導体装置を図1及び図2に基づいて説明する。図1は断面構造図を示し、同図(a)は高耐圧P型MOSトランジスタを上面からみた透視図、同図(b)は同図(a)のA‐A‘線断面図、同図(c)は同図(a)のB‐B’線断面図である。また、図2は等価回路図を示す。
図1(a)において、110はP型基板、108はP型基板110の上方に形成された低濃度のN型(第1の極性)の拡散領域(N型の第1拡散領域)である。
また、101はゲート酸化膜、102は前記ゲート酸化膜101の上方に形成されたトランジスタゲートであって、コンタクト107を介して上方のゲート領域116に接続される。以上の構成によってゲートGが構成される。
前記ゲートGの左方向及び右方向には、各々、前記低濃度N型拡散領域108の上方において、低濃度のP型(第2の極性)の拡散領域(P型の第2拡散領域)109が形成され、この低濃度P型拡散領域109の上方に高濃度P型拡散領域(P型の第3拡散領域)106が形成される。この高濃度P型拡散領域109の内方には、中心部を残して高濃度N型拡散領域(N型の第4拡散領域)104が形成される。この高濃度N型拡散領域104は、その周辺に配置した複数個(図1(a)では8個)のコンタクト107を介して上方のソース又はドレイン領域113に接続される。この高濃度N型拡散領域104の内方に位置する高濃度P型拡散領域(符号106aで示す)もコンタクト107を介して前記上方のソース又はドレイン領域113に接続される。以上の構成により、前記ゲートGの左方向及び右方向には、ソースS及びドレインDが形成されている。
前記ゲートGのゲート酸化膜101の左方及び右方には、各々、LOCOS111が形成されていて、このLOCOS111によりソースSとゲートGとの間及びゲートGとドレインDとの間を素子分離して高耐圧のMOSトランジスタ構造としている。前記LOCOS111の下方には高圧部オフセット領域103が形成されており、より高耐圧化が図られている。
尚、図1(a)〜(c)において、105は低濃度のN型拡散領域である素子分離領域、112は固定電位供給端子であって、前記素子分離領域105の外方に形成した高濃度N型拡散領域104に固定電位を与える。また、同図(b)及び(c)では、コンタクト層115以上の上層部も示しているが、同図(a)ではこの上層部を含まずに示している。
本実施形態では、高耐圧P型MOSトランジスタ内に、次のようにNPNバイポーラトランジスタが形成される。以下、ゲートGの図1(b)左方をソースS、右方をドレインDとして説明する。ドレインDの領域において、図1(b)に○印で囲んだゲートG側の領域では、同図にトランジスタの記号を付したように、低濃度N型拡散領域108と、低濃度P型拡散領域109、103及び高濃度P型拡散領域106と、高濃度N型拡散領域104とにより、NPNバイポーラトランジスタ203が形成されている。ここで、このNPNバイポーラトランジスタ203のベース電流は、ゲートGの方向から流れ込んできた電流が、更に高濃度N型拡散領域104からこの領域104に形成したコンタクト107を経て上層のドレイン領域114に流れる電流である。ここで、同断面図の○印内の高濃度P型拡散領域106にはコンタクト107は設けられず、その図中右方に位置してNPNバイポーラトランジスタ203のエミッタとなる高濃度N型拡散領域104にはコンタクト107が配置されている。従って、ゲートGの方向から流れ込んできた電流の多くは、前記エミッタとなる高濃度N型拡散領域104に流れ込んだ後、コンタクト107を経て上層のドレイン領域114に流れて、多くのベース電流が確保されることになる。
図1(c)の断面図でも同様に、同図に2つの○印を示した領域内において、高濃度P型拡散領域106にはドレイン領域114へのコンタクト107は設けられず、その高濃度P型拡散領域106の内方に位置する高濃度N型拡散領域104にドレイン領域114へのコンタクト107が配置されているので、前記高濃度N型拡散領域104からコンタクト107を経てドレイン領域114に流れるベース電流が多く確保される。
従って、高耐圧P型MOSトランジスタ内にNPNバイポーラトランジスタ203を形成するためには、ドレインDの領域において、高濃度P型拡散領域106の内方側に高濃度N型拡散領域104を配置する必要があり、更に、そのNPNバイポーラトランジスタ203のベース電流を多く確保するためには、前記高濃度N型拡散領域104の周縁のうち、ゲートGに近い領域と、図1(a)に示すゲート幅方向の両端部のうち少なくとも一端部とに、各々、ドレイン領域Dへのコンタクト107を配置すると共に、そのコンタクト107の配置位置の外方に位置する高濃度P型拡散領域106の領域にはドレイン領域Dへのコンタクトを配置しない構成が必要である。
以上、ゲートG左方の領域をソースS、右方の領域をドレインDとして説明したが、その反対に、ゲートG右方の領域がソースS、左方の領域がドレインDとなる場合についても、前記と同様であって、ドレインDのゲートG側の領域においてNPN寄生バイポーラトランジスタ204(図1(b)参照)が形成される。
従って、本実施形態では、高耐圧P型MOSトランジスタのON動作時には、そのソース- ドレイン電流の一部がNPN寄生バイポーラトランジスタ203のベース電流となって、NPN寄生バイポーラトランジスタ203をONさせるので、高耐圧P型MOSトランジスタ自体よりも大きな電流能力を得ることができる。
図1(a)〜(c)に示した断面構造によれば、既存の高耐圧MOS製造プロセスを用いてバイポーラトランジスタ並みの大きな電流能力を持つ高耐圧MOSトランジスタが得られると共に、従来の通常の電流能力を持つ(寄生バイポーラトランジスタを持たない通常の)高耐圧MOSトランジスタも前記大電流能力の高耐圧MOSトランジスタと同一基板110上に形成できる。従って、チップ設計において、負荷の軽いブロックには従来の高耐圧MOSトランジスタ、ドライバ出力ブロックのように駆動負荷が重く且つ大きな電流能力を必要とする場合には、本実施形態の図1(a)〜(c)の断面構造の高耐圧MOSトランジスタを使用することにより、チップサイズを抑えることができる。
図2(a)は、前記図1で構成されたトランジスタ構造によって形成された寄生NPNバイポーラトランジスタを含む高耐圧P型MOSトランジスタの等価回路を示す。同図において、203、204は各々寄生NPNバイポーラトランジスタ、102はトランジスタゲート、113はソース又はドレイン領域、114はドレイン又はソース領域である。P型MOSトランジスタのゲートがオフしているときは動作しない。
同図(b)は、P型MOSトランジスタのゲート102がオンしているとき、113をソース領域、114をドレイン領域とした場合の電流経路を示す。ソース領域113からドレイン領域114に流れる電流経路がNPN寄生バイポーラトランジスタ203のベース電流[3]となり、NPN寄生バイポーラトランジスタ203をオンさせる。その結果として、NPN寄生バイポーラトランジスタ203を経た電流経路[2]が形成されるので、通常のP型MOSトランジスタよりも大きな電流能力を得ることができる。
更に、同図(c)は、P型MOSトランジスタのゲート102がオンしているとき、114をソース領域、113をドレイン領域とした場合の電流経路を示す。ソース領域114からドレイン領域113に流れる電流経路がNPN寄生バイポーラトランジスタ204のベース電流となり、NPN寄生バイポーラトランジスタ204をオンさせる。その結果として、NPN寄生バイポーラトランジスタ204を経た電流経路[2]が形成されるので、通常のP型MOSトランジスタよりも大きな電流能力を得ることができる。
(実施形態2)
次に、本発明の実施形態2の高耐圧P型MOSトランジスタを図3を用いて説明する。
図3は本発明の実施形態2の高耐圧P型MOSトランジスタの一例を示す断面構造図を示し、同図(a)は上面からみた透視図、同図(b)は同図(a)のA‐A‘断面図、同図(c)はP型トランジスタのB‐B‘断面図である。
本実施形態2と前記実施形態1との違いは、高濃度P型拡散領域106内にある高濃度N型拡散領域104の配置の形状である。
具体的には、図3(a)において、高濃度N型拡散領域104の形状を英文字の「I」形状に構成し、この領域内に9個のコンタクト107を配置したものである。
前記の構造においても、高耐圧P型MOSトランジスタ内にNPNバイポーラトランジスタを形成するために、ゲートDの左方及び右方のソース及びドレイン領域S、Dにおいて、高濃度P型拡散領域106の内方側に高濃度N型拡散領域104が配置されている。更に、NPNバイポーラトランジスタのベース電流を多く確保するために、前記高濃度N型拡散領域104の周縁のうち、ゲートGに近い領域と、ゲート幅方向の両端部とに、各々、ドレイン領域Dへのコンタクト107aを配置すると共に、そのコンタクト107aの配置位置の外方に位置する高濃度P型拡散領域106の領域にはドレイン領域Dへのコンタクトは配置されない構成が採用されている。その他の構成は、図1と同様であるので、その説明を省略する。
従って、本実施形態においても、高耐圧P型MOSトランジスタのON動作時には、そのソース- ドレイン電流の一部がNPN寄生バイポーラトランジスタのベース電流となって、NPN寄生バイポーラトランジスタをONさせるので、高耐圧P型MOSトランジスタ自体よりも大きな電流能力を得ることができる。
尚、図3(a)に示したように、高濃度N型拡散領域104に配置した3個のコンタクト107cとゲートGとの間には、高濃度P型拡散領域106に配置した3個のコンタクト107bが位置しているが、高濃度N型拡散領域104に配置した2個のコンタクト107aに関しては、そのゲートGとの間の高濃度P型拡散領域106にコンタクト107bは配置されていないので、NPN寄生バイポーラトランジスタのベース電流は多く確保される。
(実施形態3)
次に、本発明の実施形態3の高耐圧P型MOSトランジスタを図4を用いて説明する。
図4は本発明の実施形態3の高耐圧P型MOSトランジスタの一例を示す断面構造図を示し、同図(a)は上面からみた透視図、同図(b)は同図(a)のA‐A‘断面図、同図(c)はP型トランジスタのB‐B‘断面図である。
本実施形態3と前記実施形態1との違いは、高濃度P型拡散領域106内にある高濃度N型拡散領域104の配置の形状である。
具体的には、図4(a)において、高濃度N型拡散領域104を、同図で高濃度P型拡散領域106の上部の領域に偏って配置すると共に、横方向に線状に延びるように配置し、この高濃度N型拡散領域104に横方向に3つのコンタクト107が配置されている。
前記の構造においても、高耐圧P型MOSトランジスタ内にNPNバイポーラトランジスタを形成するために、ゲートDの左方及び右方のソース及びドレイン領域S、Dにおいて、高濃度P型拡散領域106の内方に高濃度N型拡散領域104が配置される。更に、前記NPNバイポーラトランジスタのベース電流を多く確保するために、前記高濃度N型拡散領域104のゲートGに近い領域にドレイン領域Dへのコンタクト107aを配置すると共に、そのコンタクト107aの配置位置のゲートG方向に位置する高濃度P型拡散領域106の領域、ゲート幅方向で図中上方に位置する高濃度P型拡散領域106の領域とには、各々、ドレイン領域Dへのコンタクトは配置されない構成が採用されている。その他の構成は、図1と同様であるので、その説明を省略する。
従って、本実施形態においても、高耐圧P型MOSトランジスタのON動作時には、そのソース- ドレイン電流の一部がNPN寄生バイポーラトランジスタのベース電流となって、NPN寄生バイポーラトランジスタをONさせるので、高耐圧P型MOSトランジスタ自体よりも大きな電流能力を得ることができる。
(実施形態4)
次に、本発明の実施形態4の高耐圧P型MOSトランジスタを図5を用いて説明する。
図5は本発明の実施形態4の高耐圧P型MOSトランジスタの一例を示す断面構造図を示し、同図(a)は上面からみた透視図、同図(b)は同図(a)のA‐A‘断面図、同図(c)はP型トランジスタのB‐B‘断面図である。
本実施形態4と前記実施形態1との違いは、ゲートGの右方の領域をソースS、左方の領域をドレインDとした場合に、ソースSでは、高濃度P型拡散領域106の内方に高濃度N型拡散領域104を配置し、この高濃度N型拡散領域104に9個のコンタクト107を配置すると共に、高濃度P型拡散領域106にもコンタクト107を配置している。更に、ドレインDでは、高濃度P型拡散領域106の内方に高濃度N型拡散領域104を配置し、この高濃度N型拡散領域104に9個のコンタクト107を配置すると共に、高濃度P型拡散領域106には何らコンタクト107を配置しない構成を採用している。
前記の構造においては、高耐圧P型MOSトランジスタのドレインDにおいてのみNPNバイポーラトランジスタを形成するために、ドレインDにおいて、高濃度P型拡散領域106の内方に高濃度N型拡散領域104が配置されると共に、前記NPNバイポーラトランジスタのベース電流を多く確保するために、前記高濃度N型拡散領域104のゲートGに近い領域にドレイン領域Dへのコンタクト107aを配置すると共に、高濃度P型拡散領域106の全域にその上方のドレイン領域113へのコンタクト107を配置しない構成が採用されている。
従って、本実施形態においても、高耐圧P型MOSトランジスタのON動作時には、そのゲートGの左方の領域をドレインDとする場合に限り、そのソース- ドレイン電流がソースSでのコンタクト107から高濃度P型拡散領域106及びゲートGを経てドレインD側に流れた後、このドレインDにおいて、そのソース- ドレイン電流の一部がNPN寄生バイポーラトランジスタのベース電流となって、NPN寄生バイポーラトランジスタをONさせるので、高耐圧P型MOSトランジスタ自体よりも大きな電流能力を得ることができる。
(実施形態5)
次に、本発明の実施形態5の高耐圧P型MOSトランジスタを図6を用いて説明する。
図6は本発明の実施形態5の高耐圧P型MOSトランジスタの一例を示す断面構造図を示し、同図(a)は上面からみた透視図、同図(b)は同図(a)のA‐A‘断面図、同図(c)はP型トランジスタのB‐B‘断面図である。
本実施形態5と前記実施形態1との違いは、高濃度P型拡散領域106の内方に配置する高濃度N型拡散領域104の形状である。
具体的には、図6(a)において、高濃度N型拡散領域104は、高濃度P型拡散領域106の内方に十字形状に配置され、この高濃度N型拡散領域104に合計6つのコンタクト107が配置されている。
前記の構造においても、高耐圧P型MOSトランジスタ内にNPNバイポーラトランジスタを形成するために、ゲートGの左方及び右方のソース及びドレイン領域S、Dにおいて、高濃度P型拡散領域106の内方に高濃度N型拡散領域104が配置される。更に、前記NPNバイポーラトランジスタのベース電流を多く確保するために、前記高濃度N型拡散領域104のゲートGに近い領域にドレイン領域113、114へのコンタクト107aを配置すると共に、図6(a)で上端に位置する箇所、即ち、ゲート幅方向の上端部及び下端部のうち上端部に、ドレイン領域113、114へのコンタクト107bを配置する。更に、前記コンタクト107aの配置位置のゲートG方向に位置する高濃度P型拡散領域106の領域と、ゲート幅方向で図中上方に位置する高濃度P型拡散領域106の領域とには、各々、ドレイン領域113、114へのコンタクト107は配置されない構成が採用されている。その他の構成は、図1と同様であるので、その説明を省略する。
従って、本実施形態においても、高耐圧P型MOSトランジスタのON動作時には、そのソース- ドレイン電流の一部がNPN寄生バイポーラトランジスタのベース電流となって、NPN寄生バイポーラトランジスタをONさせるので、高耐圧P型MOSトランジスタ自体よりも大きな電流能力を得ることができる。
図7は、以上で説明した寄生バイポーラトランジスタを持つ本願発明の高耐圧MOSトランジスタの電圧−電流特性を示す。従来では、ソース- ドレイン間電圧Vを上昇させても、ソース- ドレイン電流Iはほぼ一定値であるのに対し、本願発明では、ソース- ドレイン間電圧Vを上昇させると、所定電圧値の時点で寄生バイポーラトランジスタがON動作して、ソース- ドレイン電流Iが増大すると共に、この電流増大に伴い電圧降下が生じてソース- ドレイン間電圧Vが減少していることが判る。
尚、以上の説明については、LOCOS111の下方に高耐圧用のP型のオフセット領域103を形成したが、この高耐圧用のP型のオフセット領域103がなくても、NPNバイポーラトランジスタ203、204は形成される。
また、以上の説明では、高耐圧P型MOSトランジスタについて説明を行ったが、高耐圧N型MOSトランジスタについて本発明を適用できるのは勿論である。
以上説明したように、本発明の半導体装置は、高耐圧MOS製造プロセスを用いて、チップサイズを抑えながら、バイポーラトランジスタ並みの大きな電流能力を得ることができるので、高耐圧を必要とするディスプレイ用の駆動ICなどに有用である。
本発明の実施形態1の高耐圧P型MOSトランジスタの概略図であって、同図(a)は上面から見た透視図、同図(b)は同図(a)のA‐A‘断面図、同図(c)は同図(a)のB‐B‘断面図である。 (a)は図1(a)の高耐圧P型MOSトランジスタの等価回路図、同図(b)は一方をソース領域、他方をドレイン領域とした場合の電流経路を示す図、同図(c)はソース領域及びドレイン領域を同図(b)とは逆にした場合の電流経路を示す図である。 本発明の実施形態2の高耐圧P型MOSトランジスタの概略図であって、同図(a)は上面から見た透視図、同図(b)は同図(a)のA‐A‘断面図、同図(c)は同図(a)のB‐B‘断面図である。 本発明の実施形態3の高耐圧P型MOSトランジスタの概略図であって、同図(a)は上面から見た透視図、同図(b)は同図(a)のA‐A‘断面図、同図(c)は同図(a)のB‐B‘断面図である。 本発明の実施形態4の高耐圧P型MOSトランジスタの概略図であって、同図(a)は上面から見た透視図、同図(b)は同図(a)のA‐A‘断面図、同図(c)は同図(a)のB‐B‘断面図である。 本発明の実施形態5の高耐圧P型MOSトランジスタの概略図であって、同図(a)は上面から見た透視図、同図(b)は同図(a)のA‐A‘断面図、同図(c)は同図(a)のB‐B‘断面図である。 本願発明の高耐圧MOSトランジスタの電圧−電流特性を示す図である。
符号の説明
S ソース
D ドレイン
G ゲート
101 ゲート酸化膜
102 トランジスタゲート
103 P型高耐圧用のオフセット領域
104 高濃度N型拡散領域(第4のN型拡散領域)
105 分離領域
106 高濃度P型拡散領域(第3のP型拡散領域)
107、107a、107b、107c コンタクト
108 低濃度N型拡散領域(第1のN型拡散領域)
109 低濃度P型拡散領域(第2のP型拡散領域)
110 P型基板
111 LOCOS
112 固定電位供給端子
113、114 ソース又はドレイン領域
202、203 寄生NPNバイポーラトランジスタ

Claims (6)

  1. ソース、ドレイン、及び前記ソースと前記ドレインとの間に位置するゲートを備え、前記ソースと前記ゲートとの間及び前記ドレインと前記ゲートとの間に各々LOCOSが形成された高耐圧MOS構造の半導体装置であって、
    前記ソース、ドレイン及びゲートは、半導体基板上に配置された第1の極性を持った第1の拡散領域の上に形成され、
    更に、前記ソース及びドレインは、各々、
    前記第1の拡散領域の上に配置され且つ前記第1の極性とは異なる第2の極性を持った第2の拡散領域と、
    前記第2の拡散領域の上に配置され且つ前記第2の極性を持ち、前記第2の拡散領域よりも濃度の濃い第3の拡散領域と、
    前記第2の拡散領域の上に配置され且つ前記第1の極性を持ち、前記第1の拡散領域よりも濃度の濃い第4の拡散領域とを備えており、
    前記ソース及びドレインでは、各々、前記第3の拡散領域は前記第4の拡散領域の外側に位置すると共に、前記第4の拡散領域内には、上層のソース又はドレイン領域に接続される少なくとも1つ以上のコンタクトが配置され、
    前記ソース及びドレインの第4の拡散領域内に設けられる前記コンタクトは、各々、前記ゲートに近い側の前記第3の拡散領域との境界近傍に配置され、
    前記ソース及びドレインのうち何れか一方の前記第3の拡散領域内には、前記第4の拡散領域内に配置された前記コンタクトと前記ゲートとの間の領域において、上層のソース又はドレイン領域に接続されるコンタクトは配置されておらず、
    前記ソース及びドレインの第4の拡散領域内に設けられる前記コンタクトは、前記ゲートの幅方向の第4の拡散領域の端部にも配置され、
    前記ソース及びドレインの前記第3の拡散領域内には、前記第4の拡散領域のゲート幅方向の端部に配置された前記コンタクトと前記第3の拡散領域のゲート幅方向の端部との間の領域において、上層のソース又はドレイン領域に接続されるコンタクトは配置されていない
    ことを特徴とする半導体装置。
  2. 前記請求項1記載の半導体装置において、
    前記第4の拡散領域内には、前記第3の拡散領域の一部が配置される
    ことを特徴とする半導体装置。
  3. 前記請求項2記載の半導体装置において、
    前記第4の拡散領域内に配置された前記第3の拡散領域内には、前記ソース及びドレイン領域へのコンタクトが形成される
    ことを特徴とする半導体装置。
  4. 前記請求項1記載の半導体装置において、
    前記LOCOSの下方には、前記第2の極性を持つ高耐圧用のオフセット領域が配置される
    ことを特徴とする半導体装置。
  5. 前記請求項1〜4記載の半導体装置において、
    前記第1の極性はN型、前記第2の極性はP型、
    前記第1及び第4の拡散領域はN型拡散領域、前記第2及び第3の拡散領域はP型拡散領域である
    ことを特徴とする半導体装置。
  6. 前記請求項1〜4記載の半導体装置において、
    前記第1の極性はP型、前記第2の極性はN型、
    前記第1及び第4の拡散領域はP型拡散領域、前記第2及び第3の拡散領域はN型拡散領域である
    ことを特徴とする半導体装置。
JP2008001517A 2008-01-08 2008-01-08 半導体装置 Pending JP2009164417A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008001517A JP2009164417A (ja) 2008-01-08 2008-01-08 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008001517A JP2009164417A (ja) 2008-01-08 2008-01-08 半導体装置

Publications (1)

Publication Number Publication Date
JP2009164417A true JP2009164417A (ja) 2009-07-23

Family

ID=40966672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008001517A Pending JP2009164417A (ja) 2008-01-08 2008-01-08 半導体装置

Country Status (1)

Country Link
JP (1) JP2009164417A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012991B2 (en) 2013-08-05 2015-04-21 Seiko Epson Corporation Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012991B2 (en) 2013-08-05 2015-04-21 Seiko Epson Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
JP5564818B2 (ja) 電源クランプ回路
US20140131765A1 (en) ESD Devices Comprising Semiconductor Fins
US9640526B2 (en) Semiconductor device
JP5265951B2 (ja) 保護回路
US8785972B2 (en) Semiconductor electrostatic protection circuit device
JP2017059691A (ja) 半導体装置および半導体装置の製造方法
JP5079974B2 (ja) 半導体装置
JP2008078361A (ja) 半導体集積回路装置
JP2018120955A (ja) 半導体装置
JP2007214267A (ja) 半導体装置
JP2010129663A (ja) 半導体装置
JP2006165056A (ja) 半導体装置及びその製造方法
JP2011142242A (ja) Esd保護素子、半導体装置およびプラズマディスプレイ装置
JP2007059543A (ja) Esd保護回路及びesd保護回路製造方法
JP2009032968A (ja) 半導体装置及びその製造方法
JP2009164417A (ja) 半導体装置
EP2937906A1 (en) Semiconductor ESD device
JP5055740B2 (ja) 半導体装置
JP2007081009A (ja) 駆動回路およびデータ線ドライバ
JP4788276B2 (ja) 半導体装置
JP2008210995A (ja) 半導体装置
JP4620387B2 (ja) 半導体保護装置
JP2009187987A (ja) 半導体装置
JP4671666B2 (ja) 駆動回路
US9087714B2 (en) Semiconductor integrated circuit and semiconductor integrated circuit apparatus