JP2009150669A - 風洞実験装置 - Google Patents

風洞実験装置 Download PDF

Info

Publication number
JP2009150669A
JP2009150669A JP2007326732A JP2007326732A JP2009150669A JP 2009150669 A JP2009150669 A JP 2009150669A JP 2007326732 A JP2007326732 A JP 2007326732A JP 2007326732 A JP2007326732 A JP 2007326732A JP 2009150669 A JP2009150669 A JP 2009150669A
Authority
JP
Japan
Prior art keywords
wind tunnel
turbulent flow
distance
upstream end
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007326732A
Other languages
English (en)
Inventor
Naoyuki Misaka
直行 三坂
Ryoji Oba
良二 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007326732A priority Critical patent/JP2009150669A/ja
Publication of JP2009150669A publication Critical patent/JP2009150669A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

【課題】汎用性が高く実験等の効率化が図れる風洞実験装置を提供する。
【解決手段】風路Rに流入する気流全体を一様かつ乱れの少ない気流とする整流部11と、前記一様かつ乱れの少ない気流に、実験に必要な平均速度および乱れの分布を与える乱流制御部12と、前記乱流制御部にて発生した乱れをより拡散させる乱流拡散部13と、前記風路を形成する風洞の胴部から気流内に突き出た状態で設置され、先端に設けられた煙吐出口14aから煙を吐出する煙源部14と、を前記風路の風軸方向上流側から下流側に向かって具備する風洞実験装置であって、前記整流部の後流端と、前記乱流制御部の上流端との間の距離は3m〜5mであり、さらに、前記乱流拡散部の上流端と前記煙源部の上流端との間の距離は4.5m〜5.7mであり、かつ、前記整流部の後流端と、前記煙源部の上流端との間の距離は15.7m〜17.7mであることを特徴とする。
【選択図】図1

Description

本発明は風洞実験装置に関し、特に、火力発電所、高速道路、清掃工場などの環境アセスメント、あるいは原子力発電所の安全審査などを評価するのに必要とされるデータを得るために使用される風洞実験装置に関するものである。
図5は従来の風洞実験装置の要部を示す断面図であって、説明をわかりやすくするため風洞実験装置の風路内の配置のみを示す図である。図において、白抜き矢印は図示しない送風機により発生された風の進行方向を示している。
図5に示すように、風洞実験装置100の風路R内には、風上側(送風機が配置されている側)から整流部101、乱流制御部102、および煙源部103が順に配置されている。
整流部101は風路Rの入口側(送風口側)に設けられたものであり、木格子101aおよび整流金網101bから構成されたものである。これら木格子101aおよび整流金網101bにより、風路Rに流入する気流全体が一様かつ乱れの少ない気流とされる。
乱流制御部102は、整流部101の下流側に設けられたものであり、スリット102aおよびスパイア102bから構成されたものである。これらスリット102aおよびスパイア102bにより、整流部101で整流された気流に、実験に必要な平均風速および乱れの分布が与えられる。
煙源部103は、風路Rを形成する風洞の胴部から気流内に突き出た状態で設置され、先端に設けられた煙吐出口103aから煙を吐出する、たとえばL字煙突形をした煙突模型である。なお、この煙源部103の下流側には地形や橋梁等を象った模型が配置されている。
また、この風洞実験装置100では、図5に示すように整流金網101bとスリット102aとの間の距離、すなわち整流部101の後流端と乱流制御部102の上流端との間の距離が4.09m、スリット102aの後流端とスパイア102bの上流端との間の距離が4.25m、スパイア102bの上流端と煙源部103の上流端との間の距離が6.35mになるように配置されている。
図6は、上記のように配置された風洞実験装置100を使用して得られた排煙拡散風洞実験の結果を示すグラフである。図6において、縦軸は水平方向拡散幅、横軸は風下距離を示している。また、図中において直線A〜Fは「気象指針」に示された大気安定度である。ここで、「気象指針」とは原子力安全委員会の「発電用原子炉施設の安全解析に関する気象指針」のことである。
大気安定度を示す直線A〜Fは野外実測値を示すものであり、パスキル線図とも呼ばれる。直線Cと直線Dとで囲まれる範囲は、野外で最も出現頻度が多い条件であり、特に排煙拡散風洞実験の標準的な気流条件とされている。
また、上述した原子力安全委員会の「発電用原子炉施設の安全解析に関する気象指針」に規定されている風洞実験について、標準的な実験方法および実験結果の解析方法をまとめた「発電用原子炉施設の安全解析における放出源の有効高さを求めるための風洞実験 実施基準:2003」には、風洞実験で対象とする範囲は放出源(煙源部)より風下5km程度までとする、ということが記載されている。したがって、排煙拡散風洞実験において水平方向拡散幅が風下5km程度まで直線Cと直線Dとで囲まれる範囲内にあることが要求されている。
しかしながら、図6を見て明らかなように、上記のような風洞実験装置100を使用した場合、風下距離がおおよそ1km以上になると水平方向拡散幅が直線Dよりも図において下側、すなわち直線E,Fの側に外れていってしまう。
このように水平方向拡散幅が直線Dよりも図において下側に外れていくと、実際の自然界における気流条件からずれてしまい、実際とかけ離れた結果が得られてしまうといった問題点があった。
そこで、本出願人は、先に、上述した整流部101、乱流制御部102、および煙源部103を図7に示すように配置した風洞実験装置200を提案し(特許文献1参照)、これを使用して上記と同様の排煙拡散風洞実験を行った。
この風洞実験装置200では、前記整流部101の後流端と、前記乱流制御部102の上流端との間の距離は例えば1.94mであり、かつ前記整流部101の後流端と、前記煙源部103の上流端との間の距離は例えば14.54mに設定されている。
図8は、上記のように配置された風洞実験装置200を使用して得られた排煙拡散風洞実験の結果を示す図6と同様のグラフである。
図8のグラフから、上述した気流制御条件下では、風下5km付近までは、気象指針のC〜Dに入っており、目標値を満足していることが判る。
特許第3917909号公報
従って、原子力の安全審査用風洞実験は、全て図8に示した気流制御条件で実施すれば良いのだが、地形模型の再現範囲によっては、風洞の構造上実施が難しい場合もあるという問題点があった。
その理由の一つとして、例えば図9に示すような大気環境予測に用いる、大型拡散風洞300が既存の設備として有った場合について説明する。
♯3風洞と♯4風洞の2基の風洞を有し、これらの測底部(風路R)は略長さ25m×幅3m×高さ2mとなっており、基本性能は同じであるが、同じ側底部(風路R)に設けているターンテーブル301の大きさが異なる。
ターンテーブル301の大きさは、♯3風洞が直径6mで、♯4風洞が直径12mであり、通常は円形の地形模型をこれらのターンテーブル301上に設置し、実験等の風向替えを簡単に実施できるようにしている。
そこで、図10に、再び従来の気流制御条件を示すが、風洞の整流部101の後流端から煙源部103までの距離は16.69mとなっているが、これは上述した♯4風洞における、整流部101の後流端からターンテーブル301の中心までの距離と同じになっている。
一方、図11に示す特許文献1の気流制御条件の場合、風洞の整流部101の後流端から煙源部103までの距離は14.54mとなっているが、これは上述した♯3風洞における、整流部101の後流端からターンテーブル301の中心までの距離と同じになっている。
よって、もし対象となる風洞実験の地形模型が直径6mを越える場合は、♯4風洞にて実施する方が、風向替えを簡単にできるために、実験等の効率上好ましい。もちろん、♯3風洞においても、直径6mを越える地形模型を設置することは可能であるが、その場合、模型をターンテーブル301の範囲を越えて設置するため、風向を替える場合は、ターンテーブル範囲外の部分については、ジグソーパズル式に模型をセットしなおす必要があり、膨大な手間を要する。
従って、直径6mを越える地形模型を用いる場合は、♯4風洞で実施した方が効率的であるが、上述した風洞の整流部101の後流端からターンテーブル301の中心までの距離が、特許文献1の気流制御条件よりも長いため、そのままの制御では、原子力学会の気象指針を満足できないという不具合を生じているのである。
換言すれば、特許文献1の気流制御条件のみの風洞実験装置では、対象となる風洞実験の地形模型等に制約が生じ、汎用性に乏しいのである。
そこで、本発明の目的は、汎用性が高く実験等の効率化が図れる風洞実験装置を提供することにある。
上記の課題を解決するための本発明に係る風洞実験装置は、
風路に流入する気流全体を一様かつ乱れの少ない気流とする整流部と、
前記一様かつ乱れの少ない気流に、実験に必要な平均速度および乱れの分布を与える乱流制御部と、
前記乱流制御部にて発生した乱れをより拡散させる乱流拡散部と、
前記風路を形成する風洞の胴部から気流内に突き出た状態で設置され、先端に設けられた煙吐出口から煙を吐出する煙源部と、
を前記風路の風軸方向上流側から下流側に向かって具備する風洞実験装置であって、
前記整流部の後流端と、前記乱流制御部の上流端との間の距離は3m〜5mであり、
さらに、前記乱流拡散部の上流端と前記煙源部の上流端との間の距離は4.5m〜5.7mであり、
かつ、前記整流部の後流端と、前記煙源部の上流端との間の距離は15.7m〜17.7mであることを特徴とする。
また、前記整流部の後流端と、前記煙源部の上流端との間の距離は16.69mであることを特徴とする。
また、前記乱流拡散部は、風洞の幅方向に高さ40mm〜50mmの板状の堰にて構成されていることを特徴とする。
また、前記乱流制御部の上流端と、該乱流制御部の後流端との間の距離は6.458mであり、前記乱流制御部の後流端と、前記煙源部の上流端との間の距離は6.35mであることを特徴とする。
本発明に係る風洞実験装置によれば、整流部で整流された気流が乱流制御部により乱れを生起され、この乱れが乱流拡散部でさらに増加され拡散されるため、例えば乱流拡散部が無く整流部の後流端と煙源部の上流端との間の距離が本発明より短い気流制御条件下で所望の水平方向拡散幅が再現できる風洞実験装置(特許文献1参照)と同様に、これと比較して整流部の後流端と煙源部の上流端との間の距離が増大するにもかかわらず、所望の水平方向拡散幅が再現でき、対象となる風洞実験の地形模型等に制約されずに汎用性が高められると共に実験等の効率化が図れる。
以下、本発明に係る風洞実験装置を実施例により図面を用いて詳細に説明する。
図1は本発明の一実施例を示す風洞実験装置の要部を示す断面図であって、説明をわかりやすくするため風洞実験装置の風路内の配置のみを示す図である。図において白抜き矢印は図示しない送風機により発生された風の進行方向を示している。
図1に示すように、風洞実験装置10の風路R内には、風上側(送風機が配置されている側)から整流部11、乱流制御部12、乱流拡散部13、および煙源部14が順に配置されている。
整流部11は風路Rの入口側(送風口側)に設けられたものであり、木格子11aおよび整流金網11bから構成されたものである。
木格子11aは木製の格子部材であり、図示しない送風機から送られてきた気流に乱れを生じさせるものである。また、整流金網11bは木格子11aにより乱された気流を整流する金属製のメッシュ部材である。これら木格子11aおよび整流金網11bにより、この整流金網11bを出て風路Rに流入する気流全体が一様かつ乱れの少ない気流とされて後述する所定距離だけ移動して乱流制御部12に到るようになっている。
乱流制御部12は、整流部11の下流側に設けられたものであり、スリット12aおよびスパイア12bから構成されたものである。
スリット12aは、複数枚(例えば19枚)の薄板部材で構成されたものであり、それぞれの薄板部材は高さ200mm、長さ2000mm、厚さ2〜3mmを有する平面視長方形の部材である。これら薄板部材は、幅3000mmの風路Rの床面に例えば150mmピッチで、その長手方向が風軸方向に沿うように配置されている。
スパイア12bは、例えば19個の平面視T字状の部材で構成されたものである。平面視T字状の部材はそれぞれ、気流に対して上流側に位置する上流側部材12baと、下流側に位置する下流側部材12bbとから構成されている。
上流側部材12baは、高さ520mm、底辺の長さ50mm、厚さ8mmを有する薄板部材で、正面から見て二等辺三角形の形態をなすものである。下流側部材12bbは、高さ440mm、上底の長さ25mm、下底の長さ200mm、厚さ8mm、および上流側部材12baと接する辺と上底・下底とのなす角がそれぞれ直角となる薄板部材で、側方から見て台形の形態をなすものである。これらスパイア12bもまた、前述したスリット12aと同様、幅3000mmの風路Rの床面に、隣り合う下流側部材12bbと下流側部材12bbとが150mmピッチとなるように配置されている。
尚、前記スリット12a及びスパイア12bの具体的な構造は、特許文献1に図面を用いて開示されたものと同様なので、特許文献1を参照して図面を用いての説明は省略する。
これらスリット12aおよびスパイア12bにより、整流部11を通過した一様かつ乱れの少ない気流に、実験に必要な平均速度および乱れの分布が与えられて、後述する所定距離だけ移動して乱流拡散部13に到るようになっている。本実施例の場合には、気流の風速が減じられるとともに風路Rの床面付近を通過する気流に乱流が発生させられるようになっている。
乱流拡散部13は、乱流制御部12のスパイア12b下流に設けられたものであり、高さ40mm〜50mm(図示例では40mm)、長さ3000mmの板状の堰(図示例では、L型のアングル部材)にて構成される。そして、風路Rの床上に風軸方向と直交して設置される。
この乱流拡散部13により、乱流制御部12で生起された気流の乱れがさらに増加され拡散されて後述する所定距離だけ移動して煙源部14に到るようになっている。
煙源部14は、風路Rを形成する風洞の胴部から気流内に突き出た状態で設置され、先端に設けられた煙吐出口14aから煙を吐出する、たとえばL字煙突形をした煙突模型である。なお、この煙源部14の下流側には地形や橋梁等を象った模型が配置されている。
また、この風洞実験装置10では、図にも示すように整流金網11bとスリット12aとの間の距離、すなわち整流部11の後流端と乱流制御部12の上流端との間の距離が3〜5m(図示例では4.09m)、スリット12aの後流端とスパイア12bの上流端との間の距離が4.25m、スパイア12bの上流端と煙源部14の上流端との間の距離が6.35mになるように配置され、さらに、乱流拡散部13の上流端と煙源部14の上流端との間の距離が4.5m〜5.7m(図示例では5.35m)になるように配置されている。そして、前記整流部11の後流端と前記煙源部14の上流端との間の距離は15.7m〜17.7m(図示例では16.69m)に設定されている。
図2は、上記のように配置された風洞実験装置10を使用して得られた排煙拡散風洞実験の結果を示すグラフである。図2において縦軸は水平方向拡散幅、横軸は風下距離を示している。
図2を見てわかるように、上記のような風洞実験装置10を使用した場合、高さ40mmのL型のアングル部材(乱流拡散部13)を用いた場合と高さ50mmのL型のアングル部材(乱流拡散部13)を用いた場合の両方において、風下距離がおおよそ8km以上になって初めて水平方向拡散幅が直線Dよりも図において下側、すなわち直線Eの側に外れていってしまうという結果になっている。
これは前述した「発電用原子炉施設の安全解析のための風洞実験 実施規定(案)」の基準を十分に満たすものであり、この風洞実験装置10は野外の気流状態を正確に再現し得る風洞実験装置であるということが実験により実証されている。
このように本実施例によれば、整流部11で整流された気流が乱流制御部12により乱れを生起され、この乱れが乱流拡散部13でさらに増加され拡散されるため、例えば乱流拡散部13が無く整流部11の後流端と煙源部14の上流端との間の距離が本実施例より短い気流制御条件下で原子力学会の気象指針を満たす所望の水平方向拡散幅が再現できる風洞実験装置(図7及び図11参照)と同様に、これと比較して整流部11の後流端と14煙源部の上流端との間の距離が増大するにもかかわらず、原子力学会の気象指針を満たす所望の水平方向拡散幅が再現でき、対象となる風洞実験の地形模型等に制約されずに汎用性が高められると共に実験等の効率化が図れる。
換言すれば、例えば図9に示した既存の大型拡散風洞300においても、地形模型の再現範囲が直径12km(風洞に換算すると6m)を超える場合には、ターンテーブル301の直径が12mの♯4風洞を用いることができ、実験の効率化が可能となるのである。
尚、上述した気流制御条件は、図3に示すように、多数の予備検討実験を行った結果得られたもので、一意的に得られたものではありません。これらからも、Nr12とNr13を安全審査の風洞実験に適用することができることが判る。
また、図4に、高さ50mmのL型のアングル部材(乱流拡散部13)の設置範囲を検討したグラフに示すように、風下2000m(風洞に換算すると1m)と4000m(風洞に換算すると2m)の実験値が共に原子力学会の気象指針を満たすには、煙源風上−4.5m〜−5.7mが好適であることが判る。
尚、本発明は上記実施例に限定されず、本発明の要旨を逸脱しない範囲で乱流拡散部の形状変更等各種変更が可能であることはいうまでもない。
本発明の一実施例を示す風洞実験装置の要部を示す断面図であって、説明をわかりやすくするため風洞実験装置の風路内の配置のみを示す図である。 図1のように配置された風洞実験装置を使用して得られた排煙拡散風洞実験の結果を示すグラフである。 予備検討実験の気流制御条件による水平方向拡散幅のグラフである。 L型のアングル部材(乱流拡散部13)の設置範囲を検討したグラフである。 従来の風洞実験装置の要部を示す断面図であって、説明をわかりやすくするため風洞実験装置の風路内の配置のみを示す図である。 図5のように配置された風洞実験装置を使用して得られた排煙拡散風洞実験の結果を示すグラフである。 特許文献1の風洞実験装置の要部を示す断面図であって、説明をわかりやすくするため風洞実験装置の風路内の配置のみを示す図である。 図7のように配置された風洞実験装置を使用して得られた排煙拡散風洞実験の結果を示すグラフである。 既存の大型拡散風洞の平面図である。 従来の気流制御条件を図9の既存の大型拡散風洞に適用した断面図である。 特許文献1の気流制御条件を図9の既存の大型拡散風洞に適用した断面図である。
符号の説明
10 風洞実験装置
11 整流部
11a 木格子
11b 整流金網
12 乱流制御部
12a スリット
12b スパイア
13 乱流拡散部
14 煙源部
14a 煙吐出口
R 風路

Claims (4)

  1. 風路に流入する気流全体を一様かつ乱れの少ない気流とする整流部と、
    前記一様かつ乱れの少ない気流に、実験に必要な平均速度および乱れの分布を与える乱流制御部と、
    前記乱流制御部にて発生した乱れをより拡散させる乱流拡散部と、
    前記風路を形成する風洞の胴部から気流内に突き出た状態で設置され、先端に設けられた煙吐出口から煙を吐出する煙源部と、
    を前記風路の風軸方向上流側から下流側に向かって具備する風洞実験装置であって、
    前記整流部の後流端と、前記乱流制御部の上流端との間の距離は3m〜5mであり、
    さらに、前記乱流拡散部の上流端と前記煙源部の上流端との間の距離は4.5m〜5.7mであり、
    かつ、前記整流部の後流端と、前記煙源部の上流端との間の距離は15.7m〜17.7mであることを特徴とする風洞実験装置。
  2. 前記整流部の後流端と、前記煙源部の上流端との間の距離は16.69mであることを特徴とする請求項1に記載の風洞実験装置。
  3. 前記乱流拡散部は、風洞の幅方向に高さ40mm〜50mmの板状の堰にて構成されていることを特徴とする請求項1に記載の風洞実験装置。
  4. 前記乱流制御部の上流端と、該乱流制御部の後流端との間の距離は6.458mであり、前記乱流制御部の後流端と、前記煙源部の上流端との間の距離は6.35mであることを特徴とする請求項1又は2に記載の風洞実験装置。
JP2007326732A 2007-12-19 2007-12-19 風洞実験装置 Withdrawn JP2009150669A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007326732A JP2009150669A (ja) 2007-12-19 2007-12-19 風洞実験装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007326732A JP2009150669A (ja) 2007-12-19 2007-12-19 風洞実験装置

Publications (1)

Publication Number Publication Date
JP2009150669A true JP2009150669A (ja) 2009-07-09

Family

ID=40919961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326732A Withdrawn JP2009150669A (ja) 2007-12-19 2007-12-19 風洞実験装置

Country Status (1)

Country Link
JP (1) JP2009150669A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102840961A (zh) * 2012-08-30 2012-12-26 华南理工大学 一种用收缩管均匀风洞风场的方法
CN105387988A (zh) * 2015-10-21 2016-03-09 南车青岛四方机车车辆股份有限公司 一种孔板风道实验装置
CN106802227A (zh) * 2017-03-28 2017-06-06 吉林大学 一种用于后视镜风洞实验的仿生减阻降噪平板装置
CN107605526A (zh) * 2017-10-27 2018-01-19 北京交科公路勘察设计研究院有限公司 公路隧道分段重点排烟系统以及排烟方法
CN110031178A (zh) * 2019-05-23 2019-07-19 重庆大学 一种模拟龙卷风和下击暴流的一体化风洞
CN113375890A (zh) * 2021-05-14 2021-09-10 中国科学院力学研究所 用于激波风洞的热喷流实验装置
CN116878812A (zh) * 2023-09-08 2023-10-13 中国空气动力研究与发展中心计算空气动力研究所 从轴向方向观测结霜的圆管结霜实验模型及实验方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102840961A (zh) * 2012-08-30 2012-12-26 华南理工大学 一种用收缩管均匀风洞风场的方法
CN105387988A (zh) * 2015-10-21 2016-03-09 南车青岛四方机车车辆股份有限公司 一种孔板风道实验装置
CN106802227A (zh) * 2017-03-28 2017-06-06 吉林大学 一种用于后视镜风洞实验的仿生减阻降噪平板装置
CN106802227B (zh) * 2017-03-28 2023-07-21 吉林大学 一种用于后视镜风洞实验的仿生减阻降噪平板装置
CN107605526A (zh) * 2017-10-27 2018-01-19 北京交科公路勘察设计研究院有限公司 公路隧道分段重点排烟系统以及排烟方法
CN107605526B (zh) * 2017-10-27 2023-08-22 北京交科公路勘察设计研究院有限公司 公路隧道分段重点排烟系统以及排烟方法
CN110031178A (zh) * 2019-05-23 2019-07-19 重庆大学 一种模拟龙卷风和下击暴流的一体化风洞
CN110031178B (zh) * 2019-05-23 2023-11-24 重庆大学 一种模拟龙卷风和下击暴流的一体化风洞
CN113375890A (zh) * 2021-05-14 2021-09-10 中国科学院力学研究所 用于激波风洞的热喷流实验装置
CN116878812A (zh) * 2023-09-08 2023-10-13 中国空气动力研究与发展中心计算空气动力研究所 从轴向方向观测结霜的圆管结霜实验模型及实验方法
CN116878812B (zh) * 2023-09-08 2023-11-17 中国空气动力研究与发展中心计算空气动力研究所 从轴向方向观测结霜的圆管结霜实验模型及实验方法

Similar Documents

Publication Publication Date Title
JP2009150669A (ja) 風洞実験装置
CN110333043B (zh) 一种便捷小型的近地面大气边界层风洞及其在人群风险暴露评估中的应用
CN111462609B (zh) 一种螺旋隧道群的火灾燃烧和通风控制系统
Gupta et al. Wind tunnel investigation of the downwash effect of a rooftop structure on plume dispersion
Huber The influence of building width and orientation on plume dispersion in the wake of a building
JP2002349944A (ja) 一様流吹き出し装置
US6637168B2 (en) Aircraft engine run-up hangar
JP4283286B2 (ja) 立坑集中排気換気方式道路トンネルの換気制御方法
US5517865A (en) Vortex suppression for an eductor
JP5262297B2 (ja) 整流装置
Havens et al. Wind tunnel study of air entrainment into two-dimensional dense gas plumes at the Chemical Hazards Research Center
CN2535778Y (zh) 燃煤锅炉尾部烟气排放烟道的测量标定装置
CN206577907U (zh) 一种应用于湿式电除尘器入口的气流均布组合装置
US6560936B2 (en) Aircraft engine run-up hangar
JP3207707B2 (ja) 乱流格子
IT8224942A1 (it) Deaeratore per grandi ambienti
CN107694756A (zh) 一种应用于湿式电除尘器入口的气流均布组合装置
Yu et al. Prediction of the pollutant diffusion discharged from wind tower of the city traffic tunnel
CN216978317U (zh) 一种建筑风洞装置
JPH0217315Y2 (ja)
JPS6143215Y2 (ja)
Zaki et al. Wind-tunnel analysis of turbulent flow in cross-ventilated buildings with windcatchers: Impact of surrounding buildings
KR102043015B1 (ko) 배기 가스 희석 장치
JP2000318697A (ja) 航空機エンジン地上試験設備
JP2007198851A (ja) 開放型風洞装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110301