CN106802227B - 一种用于后视镜风洞实验的仿生减阻降噪平板装置 - Google Patents

一种用于后视镜风洞实验的仿生减阻降噪平板装置 Download PDF

Info

Publication number
CN106802227B
CN106802227B CN201710190598.9A CN201710190598A CN106802227B CN 106802227 B CN106802227 B CN 106802227B CN 201710190598 A CN201710190598 A CN 201710190598A CN 106802227 B CN106802227 B CN 106802227B
Authority
CN
China
Prior art keywords
plane
curve
rearview mirror
flat plate
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710190598.9A
Other languages
English (en)
Other versions
CN106802227A (zh
Inventor
陈鑫
冯晓
谢冲
李铭
李延洋
郑开铭
李木一
王佳宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201710190598.9A priority Critical patent/CN106802227B/zh
Publication of CN106802227A publication Critical patent/CN106802227A/zh
Application granted granted Critical
Publication of CN106802227B publication Critical patent/CN106802227B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • G01M9/04Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/08Aerodynamic models
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Rear-View Mirror Devices That Are Mounted On The Exterior Of The Vehicle (AREA)

Abstract

本发明公开了一种用于后视镜风洞实验的仿生减阻降噪平板装置,包括:平面,其上用于固定安装所述后视镜;多个平面支柱,其固定安装于所述平面下方;其中,所述平面与所述平面支柱的截面均包括多个曲线段,并且所述第一曲线段、第二曲线段的下半部轮廓与所述上半部轮廓对称。本发明还公开了一种用于后视镜风洞实验的仿生减阻降噪平板装置,包括:平面,其上用于固定安装所述后视镜;多个平面支柱,其固定安装于所述平面下方;所述第一曲线段、所述第二曲线段以及所述第三曲线段的下半部轮廓与所述上半部轮廓对称。本发明具有仿生平板装置结构简单,拆装方便,对实验者的技术要求较低的特点。

Description

一种用于后视镜风洞实验的仿生减阻降噪平板装置
技术领域
本发明涉及后视镜平板风洞实验领域,具体涉及一种用于后视镜风洞实验的仿生减阻降噪平板装置。
背景技术
良好的汽车空气动力学特性设计,是提高汽车动力性、安全性和经济性的重要途径。后视镜作为汽车外部最大的凸出物,汽车高速行驶时,其尾流区域的气动噪声成为最主要的噪声源,其产生的气动阻力也是整车气动阻力很重要的一部分。基于整车对后视镜进行空气动力学风洞实验的研究往往耗时又耗力,因此提出后视镜——平板风洞实验。参考国外相关研究文献,采用平板固定后视镜的方法,排除其他因素的干扰,单独的进行车外后视镜空气动力学研究。基于此,平板装置的气动阻力和气动噪声是影响风洞实验可靠性的关键因素,因此平板装置的气动阻力和气动噪声越低,后视镜——平板风洞实验的可靠性越高。
游隼是世界上是俯冲最快的鸟类,时速最快可达到300多千米。俯冲时游隼将双翅折起,使翅膀上的飞羽和身体的纵轴平行,头收缩到肩部,身体的整个外部流线型近似于降落的水滴形,使其下降时的空气阻力大大减小,从而使其加速。
蜣螂在土壤中能运动自如且体表没有附着物,此现象得益于其体表的凹坑形非光滑表面,相关研究表明这些凹坑结构能有体表减粘脱附功能,间接地降低了蜣螂的运动阻力。
发明内容
本发明设计开发了一种用于后视镜风洞实验的仿生减阻降噪平板装置。本发明的发明目的之一是解决平板装置的背景噪声干扰以及风阻干扰,同时减少平板装置产生紊流进而对数据产生干扰的问题。
本发明的发明目的之二是解决平板装置在椭圆轮廓以及圆轮廓之间采用直线平滑过渡,进而具有更好的减阻降噪效果,具有更好的稳定性。
本发明提供的技术方案为:
一种用于后视镜风洞实验的仿生减阻降噪平板装置,包括:
平面,其上用于固定安装所述后视镜;
多个平面支柱,其固定安装于所述平面下方;
其中,所述平面与所述平面支柱的截面均包括第一曲线段、第二曲线段,并且所述第一曲线段、第二曲线段的上半部轮廓曲线方程为:
所述第一曲线段、第二曲线段的下半部轮廓与所述上半部轮廓对称。
优选的是,在所述平面的上半部轮廓曲线方程中,a=0.7~0.8m,b=0.5m,L1=0~0.1m,L2=1.2~1.3m,L3=0.8~1m,R=1.8~2m,其中,
优选的是,在所述平面支柱截面的上半部轮廓曲线方程中,a=0.07~0.08m,b=0.05m,L1=0~0.01m,L2=0.12~0.13m,L3=0.08~0.1m,R=0.18~0.2m,其中,
优选的是,所述平面的上表面为光滑平面,所述平面的下表面设置有半圆形凹槽。
优选的是,所述凹槽深度小于7.85mm,并且所述凹槽呈边长为50mm的正方形排布。
一种用于后视镜风洞实验的仿生减阻降噪平板装置,包括:
平面,其上用于固定安装所述后视镜;
多个平面支柱,其固定安装于所述平面下方;
其中,所述平面与所述平面支柱的截面均包括第一曲线段、第二曲线段以及第三曲线段,并且所述第一曲线段、所述第二曲线段以及第三曲线段的上半部轮廓曲线方程为:
式中,k为两曲线切点的斜率;
所述第一曲线段、所述第二曲线段以及所述第三曲线段的下半部轮廓与所述上半部轮廓对称。
优选的是,在所述平面的上半部轮廓曲线方程中,a=0.7~0.75m,b=0.5m,L1=0~0.15m,L2=1.15~1.25m,L3=0.85~1.1m,R=1.75~2.1m,其中,
优选的是,在所述平面支柱截面的上半部轮廓曲线方程中,a=0.07~0.075m,b=0.05m,L1=0~0.015m,L2=0.115~0.125m,L3=0.085~0.11m,R=0.175~0.21m,其中,
优选的是,所述平面的上表面为光滑平面,所述平面的下表面设置有半圆形凹槽。
优选的是,所述凹槽深度小于7.85mm,并且所述凹槽呈边长为50mm的正方形排布。
本发明与现有技术相比较所具有的有益效果:
1、本发明平板装置的桌面和桌腿外形是仿生游隼的水滴流线型,空气阻力系数和脉动压力幅值较低;
2、平板装置桌面的下表面的仿生结构为蜣螂的凹坑形非光滑表面。凹坑的存在一方面使空气形成的边界层紧贴平板装置的下表面,延迟了边界层与下表面的分离,减小了尾流区,减小了前后的压差阻力,进而起到减阻作用;另一方面改善了平板装置桌面尾流区的紊乱程度,降低了脉动压力的幅值;
3、通过分析验证,仿生平板装置比原平板装置具有明显的减阻降噪效果,且稳定性也大大提高;
4、该仿生平板装置在椭圆轮廓以及圆轮廓之间通过直线进行平滑连接,使改进后的仿生平板装置相比较于仅有椭圆轮廓以及圆轮廓的仿生平板装置具有更好的减阻降噪效果,并且稳定性能也大幅度提高;
5、仿生平板装置结构简单,拆装方便,对实验者的技术要求较低;生产成本低廉,使后视镜——平板风洞实验的总成本降低。
附图说明
图1为本发明所述的两曲线段的仿生平板装置水滴流线型图。
图2为本发明所述的仿生平板装置凹坑非光滑表面图。
图3为本发明所述的仿生平板装置凹坑非光滑表面的局部图。
图4为本发明所述的后视镜A固定在圆盘上的示意图。
图5为本发明所述的后视镜A监测点编号和位置示意图。
图6为本发明所述的后视镜B固定在圆盘上的示意图。
图7为本发明所述的后视镜B监测点编号和位置示意图。。
图8为本发明所述的三曲线段的仿生平板装置水滴流线型图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
如图1所示,本发明提供一种用于后视镜风洞实验的仿生减阻降噪平板装置,本发明平板装置的平面和平面支柱截面的外形是仿生游隼俯冲时的水滴流线型,此流线型结构有两部分曲线段组成,前半部分AC段和AE段是椭圆的一部分,后半部分CD段和DE段是半径为R的两段圆弧,且ACD段与AED段对称,AC段CD段相切于点C,AE段与ED段相切于点E;O1是第一部分的圆心,O2是CD段的圆心,设总长度为L,椭圆的长半轴为a,短半轴为b,圆的半径为R,此时设切点C的坐标为(x,y),此处切线的斜率为k,以ACD段为例
椭圆方程:
圆方程:
对椭圆方程求导:
对圆方程求导:x+(y+L3)k=0(4)
那么
由方程(3)、(4)可得:
把y值带入方程(1)得:
把x、y的值带入到方程(5)可得:
在另一种实施例中,由于原模型矩形平面的尺寸为2m×1m×0.03m,圆柱形平面支柱的尺寸为0.05m×1m,其中0.05m为圆柱的半径尺寸,因此本发明平板装置的平面的尺寸为:a=0.7~0.8m,b=0.5m,L1=0~0.1m,L2=1.2~1.3m,L3=0.8~1m,R=1.8~2m,k=0.14~0.63;平面支柱的截面的尺寸为:a=0.07~0.08m,b=0.05m,L1=0~0.01m,L2=0.12~0.13m,L3=0.08~0.1m,R=0.18~0.2m,k=0.14~0.63。
在另一种实施例中,如图2、图3所示,平板装置平面的下表面的仿生结构为蜣螂的凹坑形非光滑表面,凹坑为半球形,而半球的尺寸主要根据边界层的厚度确定,凹坑的深度应小于边界层的厚度,边界层的厚度由以下公式计算得到h=0.035LRe-1/7,Re=ρvL/μ,式中,h是模型边界层的厚度,L是模型的特征长度,Re是模型的雷诺数,ρ是流体密度,v是流体速度,μ为流体动力粘性系数,经计算可得h为7.85mm,因此半球的深度d<7.85mm,为建模方便取d=7.5mm;在本实施例中,经分析可得凹坑排列方式为边长L=50mm的正方形时减阻降噪的效果最好。
实施例1
使用本发明的平板装置进行后视镜风洞实验,为了方便更换模型,将后视镜A固定在圆盘(半径R=200mm)上,再将圆盘固定在平板装置的平板上,将传感器安装在后视镜尾流区域位置,传感器端部与平板装置的平面高度相等,后视镜底座和圆盘的位置关系如图4所示,测量点编号与位置如图5所示,7个测量点在半径为400mm的圆周上,间隔15°均布,第8个测量点在圆盘下游400mm位置,即为标号为12的位置;在本实施例中,数字为测量点编号。
经分析,本平板装置的仿生模型具有明显的减阻降噪效果,且稳定性也提高了,原模型的阻力系数为0.48,仿真模型的阻力系数为0.33,减阻率为31%;原模型的升力系数是0.031,仿生模型的升力系数是0.019,稳定性提高了39%,与原模型相比,仿生平板装置模型的总声压级降低了1~3分贝。
实施例2
使用本发明的平板装置进行后视镜风洞实验,为了方便更换模型,将后视镜B固定在圆盘(半径R=200mm)上,再将圆盘固定在平板装置的平板上,将传感器安装在后视镜尾流区域位置,传感器端部与平板装置的平面高度相等,后视镜底座和圆盘的位置关系如图6所示,测量点编号与位置如图7所示,7个测量点在半径为400mm的圆周上,间隔15°均布,第8个测量点在圆盘下游400mm位置,即为标号为12的位置;在本实施例中,数字为测量点编号。
经分析,本平板装置的仿生模型具有明显的减阻降噪效果,且稳定性也提高了,原模型的阻力系数为0.43,仿生模型的阻力系数为0.29,减阻率为33%;原模型的升力系数是0.03,仿生模型的升力系数是0.019,稳定性提高了37%,与原模型相比,仿生平板装置模型的总声压级降低了1~3分贝。
如图8所示,本发明提供一种用于后视镜风洞实验的仿生减阻降噪平板装置,本发明平板装置的平面和平面支柱截面的外形是仿生游隼俯冲时的水滴流线型,此流线型结构有三部分曲线段组成,前半部分AB段和AF段是椭圆的一部分,后半部分CD段和ED段是半径为R的两段圆弧,中间段BC段和FE段为直线的一部分,且ABCD段与AEED段对称,AB段与BC段相切与点B,BC段与CD段相切于点C,AF段与FE段相切于点F,FE段与ED段相切于点E;O1是第一部分的圆心,O2是CD段的圆心,设总长度为L,椭圆的长半轴为a,短半轴为b,圆的半径为R,此时k中间段BC段的斜率,以ABCD段为例
椭圆方程:
直线方程为:
圆方程:
对椭圆方程求导:
对圆方程求导:x+(y+L3)k=0(4)
椭圆与直线相交于点(x1,y1),圆与直线相交于(x2,y2)
那么
假设k为负
用斜率k表示x1,y1,x2,y2得到
将方程(7)带入(5)即可得斜率k。
在另一种实施例中,由于原模型矩形平面的尺寸为2m×1m×0.03m,圆柱形平面支柱的尺寸为0.05m×1m,其中0.05m为圆柱的半径尺寸,因此本发明平板装置的平面的尺寸为:a=0.7~0.75m,b=0.5m,L1=0~0.15m,L2=1.15~1.25m,L3=0.85~1.1m,R=1.75~2.1m;平面支柱的截面的尺寸为:a=0.07~0.075m,b=0.05m,L1=0~0.015m,L2=0.115~0.125m,L3=0.085~0.11m,R=0.175~0.21m。
在另一种实施例中,如图2、图3所示,平板装置平面的下表面的仿生结构为蜣螂的凹坑形非光滑表面,凹坑为半球形,而半球的尺寸主要根据边界层的厚度确定,凹坑的深度应小于边界层的厚度,边界层的厚度由以下公式计算得到h=0.035LRe-1/7,Re=ρvL/μ,式中,h是模型边界层的厚度,L是模型的特征长度,Re是模型的雷诺数,ρ是流体密度,v是流体速度,μ为流体动力粘性系数,经计算可得h为7.85mm,因此半球的深度d<7.85mm,为建模方便取d=7.5mm;在本实施例中,经分析可得凹坑排列方式为边长L=50mm的正方形时减阻降噪的效果最好。
实施例3
使用本发明的平板装置进行后视镜风洞实验,为了方便更换模型,将后视镜A固定在圆盘(半径R=200mm)上,再将圆盘固定在平板装置的平板上,将传感器安装在后视镜尾流区域位置,传感器端部与平板装置的平面高度相等,后视镜底座和圆盘的位置关系如图4所示,测量点编号与位置如图5所示,7个测量点在半径为400mm的圆周上,间隔15°均布,第8个测量点在圆盘下游400mm位置,即为标号为12的位置;在本实施例中,数字为测量点编号。
经分析,本平板装置的仿生模型具有明显的减阻降噪效果,且稳定性也提高了,原模型的阻力系数为0.48,仿真模型的阻力系数为0.3,减阻率为38%;原模型的升力系数是0.031,仿生模型的升力系数是0.017,稳定性提高了45%,与原模型相比,仿生平板装置模型的总声压级降低了2~3分贝。
实施例4
使用本发明的平板装置进行后视镜风洞实验,为了方便更换模型,将后视镜B固定在圆盘(半径R=200mm)上,再将圆盘固定在平板装置的平板上,将传感器安装在后视镜尾流区域位置,传感器端部与平板装置的平面高度相等,后视镜底座和圆盘的位置关系如图6所示,测量点编号与位置如图7所示,7个测量点在半径为400mm的圆周上,间隔15°均布,第8个测量点在圆盘下游400mm位置,即为标号为12的位置;在本实施例中,数字为测量点编号。
经分析,本平板装置的仿生模型具有明显的减阻降噪效果,且稳定性也提高了,原模型的阻力系数为0.43,仿真模型的阻力系数为0.27,减阻率为37%;原模型的升力系数是0.03,仿生模型的升力系数是0.017,稳定性提高了43%,与原模型相比,仿生平板装置模型的总声压级降低了2~3分贝。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (4)

1.一种用于后视镜风洞实验的仿生减阻降噪平板装置,其特征在于,包括:
平面,其上用于固定安装所述后视镜;
将传感器安装在后视镜尾流区域位置,传感器端部与平面高度相等;
多个平面支柱,其固定安装于所述平面下方;
其中,所述平面与所述平面支柱的截面均包括第一曲线段、第二曲线段以及第三曲线段,并且所述第一曲线段、所述第二曲线段以及第三曲线段的上半部轮廓曲线方程为:
式中,第一曲线段是椭圆的一部分,a为椭圆的长半轴,b为椭圆的短半轴;第二曲线段是直线的一部分,第二曲线段的两端分别与第一曲线段和三曲线段相切;第三曲线段为圆弧,R为圆弧的半径,L1为第二曲线段的长度,L2为第三曲线段的终点到经过第三曲线段的起点的圆弧半径的距离,L3为R与b的差值;k为两曲线切点的斜率;
所述第一曲线段、所述第二曲线段以及所述第三曲线段的下半部轮廓与所述上半部轮廓对称;
所述平面的上表面为光滑平面,所述平面的下表面设置有半圆形凹槽。
2.如权利要求1所述的用于后视镜风洞实验的仿生减阻降噪平板装置,其特征在于,在所述平面的上半部轮廓曲线方程中,a=0.7~0.75m,b=0.5m,L1=0~0.15m,L2=1.15~1.25m,L3=0.85~1.1m,R=1.75~2.1m,其中,
3.如权利要求1所述的用于后视镜风洞实验的仿生减阻降噪平板装置,其特征在于,在所述平面支柱截面的上半部轮廓曲线方程中,a=0.07~0.075m,b=0.05m,L1=0~0.015m,L2=0.115~0.125m,L3=0.085~0.11m,R=0.175~0.21m,其中,
4.如权利要求3所述的用于后视镜风洞实验的仿生减阻降噪平板装置,其特征在于,所述凹槽深度小于7.85mm,并且所述凹槽呈边长为50mm的正方形排布。
CN201710190598.9A 2017-03-28 2017-03-28 一种用于后视镜风洞实验的仿生减阻降噪平板装置 Active CN106802227B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710190598.9A CN106802227B (zh) 2017-03-28 2017-03-28 一种用于后视镜风洞实验的仿生减阻降噪平板装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710190598.9A CN106802227B (zh) 2017-03-28 2017-03-28 一种用于后视镜风洞实验的仿生减阻降噪平板装置

Publications (2)

Publication Number Publication Date
CN106802227A CN106802227A (zh) 2017-06-06
CN106802227B true CN106802227B (zh) 2023-07-21

Family

ID=58981711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710190598.9A Active CN106802227B (zh) 2017-03-28 2017-03-28 一种用于后视镜风洞实验的仿生减阻降噪平板装置

Country Status (1)

Country Link
CN (1) CN106802227B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109774803B (zh) * 2019-03-06 2024-02-06 吉林大学 一种仿生非光滑低阻形态表面贴膜
CN115648950A (zh) * 2022-11-02 2023-01-31 中南大学 一种仿生装置、仿生滑板及受电弓

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145259A (ja) * 2007-12-17 2009-07-02 Railway Technical Res Inst 空力特性向上のための物体の空力特性測定方法、物体形状の最適化方法並びにそれを用いて最適化された物体、及び、空力特性評価実験用形状可変模型
JP2009150669A (ja) * 2007-12-19 2009-07-09 Mitsubishi Heavy Ind Ltd 風洞実験装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160334253A1 (en) * 2014-01-28 2016-11-17 Polyvionics Device for measuring the travelling speed of a fluid in relation to an object
CN103954429B (zh) * 2014-04-02 2016-06-08 西北工业大学 一种仿荷叶杆圆柱绕流减阻测试模型
CN106379240B (zh) * 2016-10-12 2018-08-31 吉林大学 一种仿生型低空气阻力系数赛车用后视镜
CN106529020A (zh) * 2016-11-09 2017-03-22 吉林大学 基于鸮翼的仿生多孔降噪设计方法
CN206648801U (zh) * 2017-03-28 2017-11-17 吉林大学 一种仿生减阻降噪的平板装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145259A (ja) * 2007-12-17 2009-07-02 Railway Technical Res Inst 空力特性向上のための物体の空力特性測定方法、物体形状の最適化方法並びにそれを用いて最適化された物体、及び、空力特性評価実験用形状可変模型
JP2009150669A (ja) * 2007-12-19 2009-07-09 Mitsubishi Heavy Ind Ltd 風洞実験装置

Also Published As

Publication number Publication date
CN106802227A (zh) 2017-06-06

Similar Documents

Publication Publication Date Title
Li et al. Effects of yaw angle on the unsteady aerodynamic performance of the pantograph of a high-speed train under crosswind
CN106802227B (zh) 一种用于后视镜风洞实验的仿生减阻降噪平板装置
CN108763806B (zh) 高速列车过特长双线隧道时列车及隧道表面所受静压的数值模拟分析方法
Tian et al. Flow structure around high-speed train in open air
CN104832291A (zh) “分半分层式”s形进气道的设计方法
US2128686A (en) Streamlined automobile vehicle
CN104239656A (zh) 车身凹坑型非光滑表面特征参数优化设计方法
CN206648801U (zh) 一种仿生减阻降噪的平板装置
Wu et al. Aerodynamic drag performance analysis of different types of high-speed train pantograph fairing
CN206704327U (zh) 一种控制气流的非光滑表面结构
CN104462704A (zh) 一种汽车a柱及汽车侧窗附近气动噪声分析方法
CN111046569B (zh) 一种空化水射流喷嘴结构设计方法
CN204309905U (zh) 一种具有仿生结构的汽车a柱
Bahoosh et al. Numerical Simulations of Spoiler’s Effect on a Hatchback and a‎ Sedan Car Exposed to Crosswind Effect‎
Buresti et al. Methods for the drag reduction of bluff bodies and their application to heavy road-vehicles
Zakher et al. A Comparison Between Experimental Life Road Simulation and Computational Fluid Dynamics and Fluid Structure Interaction for Sedan Car
Venkatesan et al. Studies on race car aerodynamics at wing in ground effect
Zverkov et al. Transitional flow structure on classic and wavy wings at low Reynolds numbers
CN109733491B (zh) 一种基于数学模型布置的仿生非光滑减阻降噪贴膜
CN111824193B (zh) 一种高速列车尾流被动控制方法
TW201821327A (zh) 減少船舶航行阻力的結構
Kandula et al. Experimental analysis on drag coefficient reduction techniques
CN112768868A (zh) 一种轨道车辆及其天线
Chen et al. Parametric optimization of vortex generator configuration for flow control in an intake duct for waterjet propulsion
Shaltout et al. Modeling and Simulation of the Aerodynamic Noise of High‐Speed Train’s Pantograph

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant