JP2009150643A - Natural convection type underfloor heating ventilation system - Google Patents

Natural convection type underfloor heating ventilation system Download PDF

Info

Publication number
JP2009150643A
JP2009150643A JP2008304576A JP2008304576A JP2009150643A JP 2009150643 A JP2009150643 A JP 2009150643A JP 2008304576 A JP2008304576 A JP 2008304576A JP 2008304576 A JP2008304576 A JP 2008304576A JP 2009150643 A JP2009150643 A JP 2009150643A
Authority
JP
Japan
Prior art keywords
air
underfloor
opening
space
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008304576A
Other languages
Japanese (ja)
Other versions
JP4392508B2 (en
Inventor
Masamichi Euchi
正道 繪内
Akira Fukushima
明 福島
Kazuo Amaya
一男 天谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKU KENCHIKU SEKKEI JIMUSHO KK
Hokkaido University NUC
Hokkaido Prefecture
Original Assignee
TAKU KENCHIKU SEKKEI JIMUSHO KK
Hokkaido University NUC
Hokkaido Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKU KENCHIKU SEKKEI JIMUSHO KK, Hokkaido University NUC, Hokkaido Prefecture filed Critical TAKU KENCHIKU SEKKEI JIMUSHO KK
Priority to JP2008304576A priority Critical patent/JP4392508B2/en
Publication of JP2009150643A publication Critical patent/JP2009150643A/en
Application granted granted Critical
Publication of JP4392508B2 publication Critical patent/JP4392508B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a natural convection type underfloor heating ventilation system eliminating temperature variation by simultaneously controlling the circulating volume of warm air while always continuing building ventilation by a natural convection current without performing forcible convection and optionally performing control over room temperature regulation. <P>SOLUTION: This system includes: an underfloor space 2 subjected to foundation insulation; an air supply means 3 supplying outside air to the underfloor space 2; a block heater 4 warming up outside air and recirculating air supplied to the underfloor space 2; a blowout opening 6 blowing off the warm air warmed up by the block heater 4 into a residential space 5; an exhaust means 7 discharging a part of warm air from the residential space 5 to the outside of a building; a return opening 8 returning the warm air circulating in the residential space 5 to the underfloor space 2; and a return air capacity control means 81 regulating the amount of warm air blown off from the blowout opening 6 by controlling an increase and a decrease in the air capacity returned from the return opening 8 to an underfloor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気の温度差から発生する対流運動を利用して、断熱性および気密性に優れた建物の換気と暖房とを行うための自然対流式床下暖房換気システムに関するものである。   The present invention relates to a natural convection type underfloor heating and ventilation system for performing ventilation and heating of a building excellent in heat insulation and airtightness by using convection motion generated from a temperature difference of air.

建物の換気は、建物内の空気と建物外の空気とを交換して、建物内の空気を清浄化したり、湿度調節を図るものであり、生活環境を快適にするとともに、建物を湿気や乾燥から守る等の効果がある。一般的な換気方法には、窓を開けて空気の流れを作る方法や、建物内と建物外とを通気口や換気扇によって連通させる方法がある。   The ventilation of the building is to exchange the air inside the building and the air outside the building to purify the air inside the building and to adjust the humidity, to make the living environment comfortable and to damp and dry the building. There are effects such as protecting from. As a general ventilation method, there are a method of opening a window to create an air flow, and a method of communicating the inside and outside of a building with a vent or a ventilation fan.

一方、暖房は、建物内の気温を高めて寒冷地における室内生活を快適にするために行われるものであり、従来、石油ストーブ等の暖房器具を各部屋に設置して室内が温められる。建物内を素早く温めて温度を保持するには、暖気が建物外へ逃げないように断熱性および気密性に優れている建物が望まれる。   On the other hand, heating is performed in order to increase the temperature in a building and make indoor life comfortable in a cold region. Conventionally, heating equipment such as an oil stove is installed in each room to warm the room. In order to quickly warm the inside of the building and maintain the temperature, a building having excellent heat insulation and airtightness is desired so that warm air does not escape outside the building.

すなわち、換気は外気との交換を行う行為であり、暖房は外気と遮断する行為であるから、換気と暖気とに求められる建物構造は相反するため、換気設備と暖房設備とを兼ね備えるには、バランスのよい構造上の工夫が必須である。かかる換気と暖房の構造バランスが崩れると、換気効率および暖房効率が悪くなってしまう。   That is, ventilation is an act of exchanging with the outside air, and heating is an act of shutting off the outside air, so the building structure required for ventilation and warm air conflicts, so to combine the ventilation and heating equipment, A well-balanced structural device is essential. When the structural balance between ventilation and heating is lost, ventilation efficiency and heating efficiency are deteriorated.

近年、換気と暖房とを同時に行う建物の暖房換気システムとして、建物外から取り込んだ空気を予め床下空間で暖め、空気の対流運動を利用して暖気を建物内に循環させる自然対流式の床下暖房換気システムが提案されている。   In recent years, natural convection type underfloor heating has been used as a heating and ventilation system for buildings that simultaneously perform ventilation and heating, in which air taken in from outside the building is preheated in the space under the floor and the air is circulated through the building using convection motion of air. A ventilation system has been proposed.

例えば、特開平11−193936号公報では、密閉・断熱状態の床下空間と、建物外から床下空間に空気を給気する給気部分と、この給気部分に設けられた暖房装置と、床下と床上とを連通する多数の通孔を設けた床材とを備え、床下空間に給気された空気を加熱し、その暖気を通孔から室内へと供給して、全室を通って換気扇により屋外に排出される床下暖房装置が提案されている(特許文献1)。本発明によると、建物の全室が暖房・換気され、快適な居住空間が得られるとされている。   For example, in Japanese Patent Application Laid-Open No. 11-193936, an underfloor space in a sealed / insulated state, an air supply portion that supplies air to the underfloor space from outside the building, a heating device provided in the air supply portion, A floor material provided with a number of through holes communicating with the floor, heats the air supplied to the space under the floor, supplies the warm air through the holes to the room, and passes through all the rooms by a ventilation fan. An underfloor heating apparatus that is discharged outdoors has been proposed (Patent Document 1). According to the present invention, all the rooms in the building are heated and ventilated to provide a comfortable living space.

また、特開2006−266575号公報では、断熱基礎により形成されている床下空間と、地中に埋設設置され、一端を床下空間で開口させるとともに、他端を建物外に開口させた熱交換パイプと、床下空間から1階床上空間に暖気を送り込む換気装置と、上階へと暖気を送気する送気装置とを有した地熱利用住宅が提案されている(特許文献2)。本発明によると、熱交換パイプを通過する空気は地熱により温められ、床下空間に暖気として蓄積される。そして、その暖気を換気装置及び送気装置により建物内に対流させることにより、暖房の空調負荷を低減しつつ冬の寒さを和らげることができるとされている。   Japanese Patent Laid-Open No. 2006-266575 discloses an underfloor space formed by a heat insulating foundation and a heat exchange pipe that is embedded in the ground and has one end opened in the underfloor space and the other end opened outside the building. In addition, there has been proposed a geothermal-use house having a ventilator that sends warm air from the underfloor space to the upper floor space and an air supply device that sends warm air to the upper floor (Patent Document 2). According to the present invention, air passing through the heat exchange pipe is warmed by geothermal heat and accumulated as warm air in the underfloor space. And it is said that the cold of winter can be relieved, reducing the air-conditioning load of heating by making the warm air convection in a building with a ventilator and an air supply device.

さらに、特開2007−56649号公報では、基礎断熱部と土間断熱部と蓄熱コンクリートとで形成された床下空間と、蓄熱コンクリートの内部に設けた放熱手段と、建物外と床下空間とを連通する外壁・床下吸気口と、建物外と室内とを連通する壁面・室内排気口と、外壁と断熱材との間に設けられた通気空間と、通気空間と居住空間空間である室内とを連通する通気空間・室内吸気口と、天井裏などの小屋裏空間に設けられた換気扇とを有しており、蓄熱コンクリートにより温められた空気が室内とともに通気空間も通って建物外へと排出される住宅の暖房・換気構造が提案されている(特許文献3)。本発明によると、室内空間が暖められ、新鮮な空気により清浄化され、衛生的になることができるとされている。   Furthermore, in JP 2007-56649 A, an underfloor space formed by a basic heat insulating portion, a soil heat insulating portion, and a heat storage concrete, a heat radiating means provided inside the heat storage concrete, and the outside of the building and the underfloor space are communicated. The outer wall / underfloor air inlet, the wall / exhaust vent communicating between the outside of the building and the room, the ventilation space provided between the outer wall and the heat insulating material, and the room as the ventilation space and the living space are communicated. A house that has a ventilation space, indoor air inlet, and a ventilation fan installed in the attic space such as the back of the ceiling, where air warmed by heat storage concrete is exhausted outside the building through the ventilation space as well as the room A heating / ventilating structure has been proposed (Patent Document 3). According to the present invention, the indoor space can be warmed, cleaned with fresh air, and hygienic.

特開平11−193936号公報JP 11-193936 A 特開2006−266575号公報JP 2006-266575 A 特開2007−56649号公報JP 2007-56649 A

しかしながら、特許文献1から特許文献3のに記載された発明においては、暖房を考慮した場合には暖気がどんどん屋外に排出されていくため、暖房装置のランニングコストが高くなるという問題がある。   However, in the inventions described in Patent Document 1 to Patent Document 3, when heating is considered, warm air is discharged to the outdoors more and more, so there is a problem that the running cost of the heating device increases.

また、特許文献2に記載された発明においては、換気装置を動かすためのコストが掛かる問題がある。また、換気装置に換気扇などを用いていると常時換気する上で換気音が問題となる。   Moreover, in the invention described in patent document 2, there exists a problem that the cost for moving a ventilation apparatus starts. In addition, when a ventilation fan or the like is used for the ventilator, ventilation sound becomes a problem when performing continuous ventilation.

さらに、特許文献3に記載された発明においては、蓄熱タイプの暖房器具は、特性として蓄えた熱を徐々に放熱していくため、放熱の温度調節をリアルタイムに行うことが困難である。そこで、暖気の換気量を調節する方法が考えられるが、吹き出し口を閉じてしまうと暖気の流れが停止してしまい、換気ができなくなってしまうという問題がある。   Furthermore, in the invention described in Patent Document 3, since the heat storage type heating appliance gradually dissipates the heat stored as a characteristic, it is difficult to adjust the temperature of the heat dissipation in real time. Therefore, a method of adjusting the ventilation amount of warm air can be considered, but there is a problem that if the outlet is closed, the flow of warm air stops and ventilation cannot be performed.

また、自然対流式の床下暖房換気システムは、理論上、常時換気を続けつつ、室内に緩やかな暖気の流れを作ることによりぬくもりのあるきわめて快適な空間を提供するための建築構造を提案するものであるが、実際の現場では、換気と暖気の流れの調整や室温の制御などが極めて微妙であって難しい。このため、実際の住宅では別途、暖房機を用意したり、強制対流させる等により、温度むらをなくしたり、温度制御するなど、本来の自然対流式床下暖房換気システムのメリットが十分に活かされていない現状にある。   In addition, the natural convection type underfloor heating and ventilation system theoretically proposes an architectural structure to provide a very comfortable space with warmth by creating a gentle warm air flow in the room while maintaining constant ventilation. However, in actual sites, adjustment of ventilation and warm air flow and control of room temperature are very delicate and difficult. For this reason, the benefits of the original natural convection type underfloor heating and ventilation system are fully utilized, such as by preparing a separate heater or forcing convection in an actual house to eliminate temperature unevenness or temperature control. There is no current situation.

本発明は、このような問題点を解決するためになされたものであって、強制対流をさせずに自然対流によって建物の換気を常に継続しつつ同時に暖気の循環量を制御し、室温の調整制御を任意に行って温度むらをなくすることができる自然対流式床下暖房換気システムを提供することを目的としている。   The present invention has been made to solve such a problem, and always maintains the ventilation of the building by natural convection without forced convection, and at the same time, controls the circulation amount of warm air and adjusts the room temperature. An object of the present invention is to provide a natural convection type underfloor heating / ventilation system that can be controlled arbitrarily to eliminate temperature unevenness.

本発明に係る自然対流式床下暖房換気システムの特徴は、建物の床下を基礎断熱した床下空間と、この床下空間に外気を供給する給気手段と、前記床下空間に設置されて当該床下空間に供給される外気や循環空気を暖める蓄熱暖房装置と、この蓄熱暖房装置によって暖められた暖気を床上の居住空間に吹き出す吹出開口部と、建物の屋根に設けられており上昇した前記居住空間から建物の外に前記暖気の一部を排出する排気手段と、前記居住空間を巡った暖気を前記床下空間へ回帰させる回帰開口部と、この回帰開口部から床下へ回帰する空気の量を増減制御することにより前記吹出開口部から吹き出す暖気吹出量を調整する回帰空気量制御手段とを有する点にある。   The natural convection type underfloor heating and ventilation system according to the present invention is characterized by an underfloor space in which the underfloor of the building is fundamentally insulated, an air supply means for supplying outside air to the underfloor space, and the underfloor space installed in the underfloor space. A heat storage and heating device that warms the supplied outside air and circulating air, a blow-off opening that blows the warm air warmed by the heat storage and heating device to the living space on the floor, and a building from the raised living space provided on the roof of the building Exhaust means for discharging a part of the warm air to the outside, a return opening for returning the warm air around the living space to the underfloor space, and an increase / decrease control of the amount of air returning from the return opening to the underfloor Thus, there is a return air amount control means for adjusting the amount of warm air blown out from the blowout opening.

また、本発明において、前記回帰空気量制御手段は、前記回帰開口部の開口面積を増減制御することにより床下への回帰空気量を制御することが好ましい。   Moreover, in this invention, it is preferable that the said return air quantity control means controls the return air quantity to the under floor by carrying out increase / decrease control of the opening area of the said return opening part.

さらに、本発明において、前記回帰開口部は給気手段の近傍に1又は2カ所に集中させて設けられていることが好ましい。   Furthermore, in the present invention, the return opening is preferably provided in one or two locations in the vicinity of the air supply means.

さらにまた、本発明において、間仕切壁および天井懐の内側に形成した空気を流通させる通気路と、この通気路に前記床下空間から暖気を送り込むために前記間仕切壁に形成した壁内送気開口部と、前記通気路から前記床下空間に暖気を回帰させるために他の間仕切壁に形成した壁内回帰開口部とを有しており、前記壁内送気開口部を前記蓄熱暖房装置の近傍に設けるとともに、前記壁内回帰開口部を前記給気手段の近傍に設けることが好ましい。   Furthermore, in the present invention, an air passage that circulates the air formed inside the partition wall and the ceiling pocket, and an air supply opening in the wall that is formed in the partition wall so as to send warm air from the underfloor space to the air passage And an in-wall return opening formed in another partition wall in order to return warm air from the air passage to the underfloor space, and the in-wall air supply opening in the vicinity of the heat storage and heating device. It is preferable to provide the return opening in the wall in the vicinity of the air supply means.

本発明によれば、建物の換気を常に継続しつつ同時に暖気の循環量を制御することにより室温の調整制御が容易になり、室温むらや強制対流を不要としうる本来的な意味での床下暖房換気システムを実現することができる。   According to the present invention, under-floor heating in the original sense that room temperature irregularity and forced convection can be eliminated by facilitating adjustment control of the room temperature by controlling the circulation rate of warm air while continuing ventilation of the building at all times. A ventilation system can be realized.

以下、本発明に係る自然対流式床下暖房換気システム1の実施形態について図面を用いて説明する。図1は自然対流式床下暖房換気システム1を用いた建物10の断面図と当該建物10内の空気の流れを示した図である。   Hereinafter, an embodiment of a natural convection type underfloor heating and ventilation system 1 according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a building 10 using a natural convection type underfloor heating and ventilation system 1 and a diagram showing an air flow in the building 10.

自然対流式床下暖房換気システム1は、建物10の床下を基礎断熱した床下空間2と、この床下空間2に外気を供給する給気手段3と、床下空間2に設置されて当該床下空間2に供給される外気や循環空気を暖める蓄熱暖房装置4と、この蓄熱暖房装置4によって暖められた暖気を床上の居住空間5に吹き出す吹出開口部6と、建物10の屋根11に設けられており上昇した前記居住空間5から建物10の外に暖気の一部を排出する排気手段7と、居住空間5を巡った暖気を前記床下空間2へ回帰させる回帰開口部8と、この回帰開口部8から床下へ回帰する空気の量を増減制御することにより前記吹出開口部6から吹き出す暖気吹出量を調整する回帰空気量制御手段81と、間仕切壁12および天井懐13の内側に形成した空気を流通させる通気路9と、この通気路9に前記床下空間2から暖気を送り込むために前記間仕切壁12に形成した壁内送気開口部91と、前記通気路9から前記床下空間2に暖気を回帰させるために他の間仕切壁12に形成した壁内回帰開口部92とから構成されている。   The natural convection type underfloor heating and ventilation system 1 includes an underfloor space 2 in which the underfloor of the building 10 is basically insulated, an air supply means 3 for supplying outside air to the underfloor space 2, and an underfloor space 2 installed in the underfloor space 2. A regenerative heating device 4 that warms the supplied outside air and circulating air, a blowout opening 6 that blows the warmed air heated by the regenerative heating device 4 into the living space 5 on the floor, and a roof 11 of the building 10 and rises. The exhaust means 7 for discharging part of the warm air from the living space 5 to the outside of the building 10, the return opening 8 for returning the warm air around the living space 5 to the underfloor space 2, and the return opening 8 The return air amount control means 81 that adjusts the amount of warm air blown out from the outlet opening 6 by controlling the increase and decrease of the amount of air returning to the floor, and the air formed inside the partition wall 12 and the ceiling pocket 13 are circulated. Warm air is returned to the underfloor space 2 from the air passage 9, an in-wall air supply opening 91 formed in the partition wall 12 for sending warm air from the underfloor space 2 to the air passage 9, and the air passage 9. For this purpose, it is composed of an intra-wall return opening 92 formed in the other partition wall 12.

以下、各構成部についてより詳細に説明する。   Hereinafter, each component will be described in more detail.

床下空間2は、外から取り込んだ外気や建物10内を循環してきた循環空気を暖めて居住空間5へと送り出すための空気の加熱場所であり、居住空間5を巡回してきた暖気の回収場所でもある。床下空間2は、図1に示すように、建物10の基礎21と床下との間に形成される空間である。基礎21は、コンクリートを打設することにより形成されるとともに、暖房・換気を必要とする1階各部屋の床下空間2に空気を自由に移動させられるように連続基礎として形成されている。また、建物10の外との気密性を高めるとともに、発泡プラスチック保温材などの断熱材22が設けられて断熱処理が施されている。なお、床下空間2には、給気手段3および蓄熱暖房装置4が設けられている。   The underfloor space 2 is an air heating place for warming the outside air taken in from outside and the circulating air circulating in the building 10 and sending it to the living space 5. is there. As shown in FIG. 1, the underfloor space 2 is a space formed between the foundation 21 of the building 10 and the underfloor. The foundation 21 is formed by placing concrete and is formed as a continuous foundation so that air can be freely moved to the underfloor space 2 of each room on the first floor that requires heating and ventilation. Moreover, while improving airtightness with the exterior of the building 10, heat insulating materials, such as a foamed plastic heat insulating material, are provided and the heat insulation process is performed. The underfloor space 2 is provided with an air supply means 3 and a heat storage / heating device 4.

給気手段3は、建物10内外における空気の温度差から発生する対流運動を利用して、外気を床下空間2に供給するためのものである。本実施形態における給気手段3は、塩化ビニル製の円管の開口端部を建物10外と床下空間2とに配置し、連通させている。建物10外に設けられた給気入口31は、自動車の排ガスなどの汚染物質を直接給気してしまうような場所を避けて設けられる。また、給気出口32は前記給気入口31よりも低い位置で開口されている。   The air supply means 3 is for supplying outside air to the underfloor space 2 using convection motion generated from the temperature difference of air inside and outside the building 10. The air supply means 3 in this embodiment arrange | positions the open end part of the circular pipe made from a vinyl chloride in the building 10 exterior and the underfloor space 2, and is making it communicate. The air supply inlet 31 provided outside the building 10 is provided avoiding a place where a pollutant such as exhaust gas from an automobile is directly supplied. The air supply outlet 32 is opened at a position lower than the air supply inlet 31.

なお、給気手段3は前述した実施形態に限定されるものではなく、換気扇等の送風機(図示せず)を設けてもよく、これによれば対流運動が弱くて必要な量の外気を供給できない場合に強制的に供給することができる。また、図2に示すように、給気手段3の一部を地下に埋設させて、供給する外気を床下空間2の任意の位置へ導いてもよいし、地熱を利用して予熱してもよいし、給気入口31を雨水や落ち葉などが入り込んで目詰まりを起こさないようにするため、地面に向かって下方に開口してもよい。   The air supply means 3 is not limited to the above-described embodiment, and a blower (not shown) such as a ventilation fan may be provided. According to this, the convection motion is weak and a necessary amount of outside air is supplied. If it is not possible, it can be forcibly supplied. Further, as shown in FIG. 2, a part of the air supply means 3 may be buried underground and the supplied outside air may be led to an arbitrary position in the underfloor space 2 or may be preheated using geothermal heat. Alternatively, the air supply inlet 31 may be opened downward toward the ground in order to prevent rainwater or fallen leaves from entering and causing clogging.

蓄熱暖房装置4は、給気手段3により床下空間2に供給される外気や、居住空間5を巡回して床下空間2へと回帰してきた循環空気を暖めるためのものである。本実施形態において、蓄熱暖房装置4には、太陽光発電システム41による電力や安価な深夜電力を用いて蓄熱していた熱量を放熱することにより、周囲の空気を暖める蓄熱式暖房器具4が用いられる。また、当該蓄熱暖房装置4は床下空間2の任意の位置に配置してよいが、1階の窓15下に設けられている吹出開口部6の真下ないしその近傍および壁内送気開口部91の真下ないしその近傍に配置することが、室温調整の点からより好ましい。さらに、床下空間2に温度差を付けて対流運動を活発にさせるために、蓄熱暖房装置4を前記給気手段3の給気出口32から離れた位置に設けるのが好ましい。なお、居住者の要望に応じて蓄熱暖房装置4に代えて灯油ストーブやガスストーブ、ヒートポンプや燃料電池等の他の熱源による暖房装置を床下空間2に配置するようにしてもよい。   The heat storage and heating device 4 is for warming the outside air supplied to the underfloor space 2 by the air supply means 3 and the circulating air that circulates in the living space 5 and returns to the underfloor space 2. In this embodiment, the regenerative heating appliance 4 that heats the surrounding air by dissipating the amount of heat that has been stored using the power generated by the solar power generation system 41 or inexpensive late-night power is used for the regenerative heating device 4. It is done. Moreover, although the said thermal storage heating apparatus 4 may be arrange | positioned in the arbitrary positions of the underfloor space 2, it is directly under the blower opening part 6 provided under the window 15 of the first floor, its vicinity, and the in-wall air supply opening part 91. It is more preferable from the point of room temperature adjustment to arrange | position in the right under the vicinity or its vicinity. Furthermore, it is preferable to provide the heat storage and heating device 4 at a position away from the air supply outlet 32 of the air supply means 3 in order to make the underfloor space 2 have a temperature difference and activate the convection motion. In addition, it may replace with the heat storage heating apparatus 4 according to a resident's request, and you may make it arrange | position the heating apparatus by other heat sources, such as a kerosene stove, a gas stove, a heat pump, and a fuel cell, in the underfloor space 2.

吹出開口部6は、上記の蓄熱暖房装置4により暖められた暖気が温度差によって発生する対流運動によって自然に床下空間2から床上の居住空間5へと吹き出すための吹出口である。この吹出開口部6は1階の床面14に形成されて床下空間2と居住空間5とを連通させている。また、吹出開口部6は、床下空間2に物が落ちたり、人間が引っ掛かったりしないないように、羽板等の蓋が取り付けられている。さらに、吹出開口部6は1階の窓15下に設けることにより、窓辺に上昇気流を発生させて、窓15から下降する冷気流(コールドドラフト)の発生を防止している。なお、吹出開口部6は部屋数などに応じて複数箇所に設けてもよい。   The blow-out opening 6 is a blow-out opening through which the warm air heated by the heat storage and heating device 4 is blown out naturally from the underfloor space 2 to the residential space 5 on the floor by convection motion generated by a temperature difference. The blowout opening 6 is formed on the floor surface 14 on the first floor, and communicates the underfloor space 2 and the living space 5. Further, the blowout opening 6 is provided with a cover such as a slat so that an object does not fall into the underfloor space 2 or a person is caught. Further, the blowout opening 6 is provided under the window 15 on the first floor, thereby generating an updraft on the window side and preventing a cold airflow (cold draft) descending from the window 15 from occurring. In addition, you may provide the blowing opening part 6 in multiple places according to the number of rooms.

排気手段7は、対流運動により上昇した暖気の一部を建物10の外に排出することにより、前記給気手段3による外気の取り込みをスムーズにして常時、継続的に換気するためのものである。排気手段7には、例えば、特開2002−121833号公報に記載の断熱構造を有した排気塔71などが用いられる。本実施形態において、排気塔71は建物10の屋根11に設けられており、居住空間5の天井18にあけられた排気口72と連通されている。   The exhaust means 7 is for exhausting a part of the warm air that has risen due to the convection motion out of the building 10, thereby smoothly taking in the outside air by the air supply means 3 and continuously ventilating continuously. . For the exhaust means 7, for example, an exhaust tower 71 having a heat insulating structure described in JP-A No. 2002-121833 is used. In the present embodiment, the exhaust tower 71 is provided on the roof 11 of the building 10 and communicates with an exhaust port 72 opened in the ceiling 18 of the living space 5.

回帰開口部8は、上記排気手段7によって建物10の外に排出されずに建物10内を巡回した空気を床下空間2へ回帰させるためのものである。この回帰開口部8は上記吹出開口部6と同様、床下空間2と居住空間5とを連通するように開口されており、羽板等が取り付けられている。回帰開口部8は床下空間2における前記給気手段3の近傍の床や壁に1又は2カ所に集中して設けるのが好ましく、居住空間5では玄関や階段下等の建物10内で比較的寒いところに設けるのがよい。給気手段3の近傍で、かつ建物10内の気温の低い場所に設けることにより、暖気の対流をよりスムーズに行うことができる。また、1カ所または2カ所に近接させて集中設置することにより、空気の循環が可能となる。仮に回帰開口部8を分散させて設けた場合、回帰開口部8から逆に空気が吹き上げてしまうこともあり、暖気がスムーズに対流しない。本実施形態では、図1に示すように、廊下の階段16下であって給気手段3の真上の壁に回帰開口部8を設けている。   The return opening 8 is for returning the air that has circulated inside the building 10 without being discharged out of the building 10 by the exhaust means 7 to the underfloor space 2. Similar to the blowout opening 6, the return opening 8 is opened to communicate the underfloor space 2 and the living space 5, and a slat or the like is attached thereto. The return openings 8 are preferably provided in one or two places on the floor or wall near the air supply means 3 in the underfloor space 2 and are relatively cold in the building 10 such as the entrance or under the stairs in the living space 5. It is better to provide it. By providing it in the vicinity of the air supply means 3 and at a low temperature in the building 10, warm air convection can be performed more smoothly. In addition, air can be circulated by centrally installing it in one or two locations. If the return openings 8 are distributed and provided, air may blow up from the return openings 8 and warm air does not convection smoothly. In the present embodiment, as shown in FIG. 1, the return opening 8 is provided on the wall below the stairway 16 in the hallway and directly above the air supply means 3.

回帰空気量制御手段81は、回帰開口部8から床下空間2へ回帰する空気の量を増減制御することにより前記吹出開口部6から吹き出す暖気吹出量を調整するためのものである。回帰する空気量の増減制御方法は、開口面積を増減させる方法が考えられるが、これ以外に空気のリターンを邪魔する部材を出入する方法等、適宜選択が可能である。本実施形態では、回帰開口部8の開口面積を増減制御している。開口面積の増減制御方法としては、手動、自動のいずれの方法でもよく、例えば前記羽板の蓋を隙間間隔の異なる蓋に取り替えたり、羽板の上にさらに空気が流通しない蓋を被せる等の手動でもよいし、また、リビングなど居住空間5内の適当な位置に温度センサー(図示しない)を設置し、その温度センサー値に応じて回帰開口部8の開閉を自動的に行うような装置を設けてもよい。   The return air amount control means 81 is for adjusting the amount of warm air blown out from the blowout opening 6 by increasing or decreasing the amount of air returning from the return opening 8 to the underfloor space 2. As a method of increasing / decreasing the amount of air to return, a method of increasing / decreasing the opening area is conceivable, but other methods such as a method of entering / exiting a member that obstructs the return of air can be appropriately selected. In the present embodiment, the opening area of the regression opening 8 is controlled to increase or decrease. As an increase / decrease control method of the opening area, any of manual and automatic methods may be used.For example, the cover of the slat may be replaced with a cover having a different gap interval, or a cover that does not allow air to flow over the slat may be covered. It may be manual, or a device that installs a temperature sensor (not shown) at an appropriate position in the living space 5 such as a living room and automatically opens and closes the return opening 8 according to the temperature sensor value. It may be provided.

本実施形態では、図3に示すように、回帰開口部8に複数のスリットが形成された板状の開口制御板82,83を2枚用意し、1枚を表側に固定して固定開口制御板82とし、もう1枚を裏側に数センチ程度離して水平方向に可変可能に取り付けて可変開口制御板83とした。そして、図3(a)に示すように、可変開口制御板83のほぼ中央上下位置にサーモスタッドバルブ84を取り付けている。サーモスタッドバルブ84は、設定温度に達するとバルブを開閉させる機能を備えている。回帰空気は前記固定開口制御板82と可変開口制御板83のスリットを通って床下空間2にリターンするところ、前記サーモスタッドバルブ84の開閉動作に伴って可変開口制御板83を水平に移動させ、固定開口制御板82のスリット幅を大小制御し、当該スリットを通過できる回帰空気の量を制御するようになっている。なお、サーモスタッドバルブ84は室温の設定に応じて数種用意しておくことが好ましい。   In this embodiment, as shown in FIG. 3, two plate-like opening control plates 82 and 83 each having a plurality of slits formed in the return opening 8 are prepared, and one is fixed on the front side and fixed opening control is performed. A variable opening control plate 83 was obtained by attaching the other plate to the back side by several centimeters so as to be variable in the horizontal direction. Then, as shown in FIG. 3A, a thermo stud valve 84 is attached at a substantially center vertical position of the variable opening control plate 83. The thermo stud valve 84 has a function of opening and closing the valve when the set temperature is reached. When the return air passes through the slits of the fixed opening control plate 82 and the variable opening control plate 83 and returns to the underfloor space 2, the variable opening control plate 83 is moved horizontally and fixed in accordance with the opening / closing operation of the thermostud valve 84. The slit width of the opening control plate 82 is controlled in size to control the amount of return air that can pass through the slit. In addition, it is preferable to prepare several types of thermo stud valves 84 according to the setting of the room temperature.

また、間仕切壁12および天井懐13の内側に形成された通気路9は、図1に示すように、間仕切壁12および天井懐13に暖気を流通させることにより、間仕切壁12や天井18からのふく射熱で居住空間5を暖めるものである。間仕切壁13には前記通気路9に床下空間2から暖気を送り込むために壁内送気開口部91が形成されている。そして、2階の床にもガラリ等から構成される吹出開口部6が形成されており、天井懐13の通気路9内の暖気を2階の居住空間5に吹き出すようになっている。なお、図1に示すように、天井懐13の通気路9を他の間仕切壁12に連通させて、その間仕切壁12の下部に床下空間2に繋がる壁内回帰開口部92を設けて循環させてもよい。前記壁内送気開口部91は前記蓄熱暖房装置4の近傍、特に真上に設けることが好ましく、前記壁内回帰開口部92は前記給気手段3の近傍や窓15下等の冷気の集まりやすい場所に設けることが好ましい。   Further, the air passage 9 formed inside the partition wall 12 and the ceiling pocket 13 circulates warm air through the partition wall 12 and the ceiling pocket 13 as shown in FIG. The living space 5 is warmed by radiant heat. In the partition wall 13, an in-wall air supply opening 91 is formed in order to send warm air from the underfloor space 2 to the air passage 9. The second floor is also formed with a blow-off opening 6 made of louvers or the like, and the warm air in the ventilation passage 9 of the ceiling pocket 13 is blown into the second-floor living space 5. As shown in FIG. 1, the ventilation passage 9 of the ceiling pocket 13 is communicated with the other partition wall 12, and an in-wall return opening 92 connected to the underfloor space 2 is provided at the lower portion of the partition wall 12 for circulation. May be. The in-wall air supply opening 91 is preferably provided in the vicinity of the heat storage and heating device 4, particularly directly above, and the in-wall return opening 92 is a collection of cold air in the vicinity of the air supply means 3 or under the window 15. It is preferable to provide in an easy place.

なお、1階居住空間5の天井18には天井懐13の通気路9に繋がる通気口19が設けられている。この通気口19は、吹出開口部から1階居住空間5に入った暖気を2階へと導くためのものである。   A ventilation hole 19 connected to the ventilation passage 9 of the ceiling pocket 13 is provided in the ceiling 18 of the first-floor living space 5. This ventilation hole 19 is for guiding the warm air which entered the 1st-floor living space 5 from the blowing opening part to the 2nd floor.

つぎに、図1を用いて空気の流れを示しつつ、本実施形態における自然対流式床下暖房換気システム1の作用について説明する。なお、図1において、空気の流れを矢印線で示している。   Next, the operation of the natural convection type underfloor heating / ventilation system 1 in the present embodiment will be described while showing the air flow with reference to FIG. In addition, in FIG. 1, the flow of air is shown by the arrow line.

まず、供給手段3において、床下空間2の気温は外気の気温より高く、さらに給気出口32は給気入口31よりも低い位置に設けられているため、密度差による対流が発生し、換気扇等の動力を用いることなく床下空間2に流れ込む。流れ込んできた外気や建物10内を循環してきた循環空気は、上昇気流が発生して低圧となっている蓄熱暖房装置4の方へ流れる。   First, in the supply means 3, since the temperature of the underfloor space 2 is higher than the temperature of the outside air, and the air supply outlet 32 is provided at a position lower than the air supply inlet 31, convection due to density difference occurs, and a ventilation fan or the like. It flows into the underfloor space 2 without using the power of. The outside air that has flowed in or the circulating air that has circulated through the building 10 flows toward the heat storage and heating device 4 in which a rising airflow is generated and the pressure is low.

蓄熱暖房装置4は、蓄熱していた熱量を放熱することにより周囲の空気を暖め、密度を低くして上昇気流を発生させる。この上昇気流は吹出開口部6から居住空間5へ暖気として吹き出すとともに、壁内送気開口部91からも間仕切壁12内に形成した通気路9に送り込まれる。ちなみに、蓄熱暖房装置4は太陽光発電システム41による電力や深夜の安価な電力により蓄熱することにより、ランニングコストを極めて抑えることができる。さらに、灯油などを用いた火力による暖房装置と比べ、出火の恐れがないため安全・安心に使用できる。   The heat storage and heating device 4 radiates the amount of heat that has been stored, thereby warming the surrounding air and lowering the density to generate an upward air flow. The ascending air current is blown out as warm air from the blowout opening 6 to the living space 5 and is also sent into the ventilation path 9 formed in the partition wall 12 from the in-wall air supply opening 91. Incidentally, the heat storage and heating device 4 can store the heat by the electric power generated by the solar power generation system 41 or the low-cost electric power at midnight, so that the running cost can be extremely suppressed. Furthermore, compared to a heating system that uses kerosene or the like, it can be used safely and securely because there is no risk of fire.

吹出開口部6から吹き出した暖気は、1階の居住空間5を暖めながら上昇して、天井18などに設けられた通気口19から間仕切壁12や天井懐13の通気路9を通り、2階の床に設けられた吹出開口部6から吹き出して2階の天井18へと向かっていく。以後、3階があれば同様な構造によって暖気を送り込む。そして、小屋組みで作ったロフト17に至るようにいずれかの部屋の天井18を開放しておき、ロフト17の天井18に沿って暖気を移動させるとともに、その暖気の一部が居住空間5と建物10外との密度差により排気塔71から屋外へと排出される。排気塔71は断熱構造を備えており、空気を換気しても熱の排出を極力抑えるようにしている。このとき建物10の気密性が高い場合には、建物10内の空気量は一定に保たれるため、給気手段3によって供給された冷気と等しい量が排気塔71から建物の外へと排出される。   The warm air blown out from the blow-out opening 6 rises while warming the living space 5 on the first floor, and passes through the vents 19 provided in the ceiling 18 and the like through the partition wall 12 and the ventilation passage 9 of the ceiling pocket 13 to the second floor. It blows out from the blow-off opening 6 provided on the floor of the floor toward the ceiling 18 on the second floor. After that, if there is a third floor, warm air is sent in by the same structure. Then, the ceiling 18 of one of the rooms is opened so as to reach the loft 17 made of the roof, and the warm air is moved along the ceiling 18 of the loft 17, and part of the warm air is part of the living space 5 and the building. Due to the density difference from the outside, the exhaust tower 71 is discharged to the outside. The exhaust tower 71 has a heat insulating structure, and suppresses heat discharge as much as possible even if air is ventilated. At this time, if the airtightness of the building 10 is high, the amount of air in the building 10 is kept constant, so that an amount equal to the cold air supplied by the air supply means 3 is discharged from the exhaust tower 71 to the outside of the building. Is done.

以上のようなれ暖気の流れにより、居住空間5の全室へと暖気が行き渡り、自然対流の中で建物10全体の暖房と換気が実現される。また、吹出開口部6を窓15近傍に設け、上昇気流を発生させることにより、コールドドラフトを抑え、足元まで暖かい快適な居住空間にすることができる。   Due to the warm air flow as described above, the warm air spreads to all the rooms of the living space 5, and the entire building 10 is heated and ventilated in natural convection. In addition, by providing the blowout opening 6 in the vicinity of the window 15 and generating an ascending air current, a cold draft can be suppressed and a comfortable living space that is warm to the feet can be obtained.

一方、天井18付近の暖気は、外気によって冷やされた天井18や外壁、窓15などからの冷気やふく射熱等によって、吹出開口部6から吹き出した暖気と比べて温度は低くなる。実験によれば2階建て住宅の場合、2℃程度低くなる。それにより、空気が重くなり下降気流が発生する。そして、建物10内で比較的温度の低い玄関や階段16下等へ下りていく。   On the other hand, the temperature of the warm air in the vicinity of the ceiling 18 becomes lower than the warm air blown out from the blowout opening 6 due to cold air or radiant heat from the ceiling 18, the outer wall, the window 15, or the like cooled by the outside air. According to experiments, in the case of a two-story house, it is about 2 ° C lower. As a result, the air becomes heavy and a downdraft is generated. Then, the building 10 descends to a lower temperature entrance or under the stairs 16.

回帰開口部8は、給気手段3の給気出口32の近傍に設けられているため、床下空間2の空気は居住空間5の空気に比べて温度が低く空気密度が濃い。また、吹出開口部6近傍から暖気が吹き出しているため、床下空間2の圧力は居住空間5の圧力に比べて負圧になっている。しかも、本実施形態の回帰開口部8は、1カ所ないし2カ所に集中させているため、リターン空気が分散することなく、必ず回帰開口部8に集約されて床下空間2へと回帰する。 Since the return opening 8 is provided in the vicinity of the air supply outlet 32 of the air supply means 3, the air in the underfloor space 2 has a lower temperature and a higher air density than the air in the living space 5. Further, since warm air is blown out from the vicinity of the blowout opening 6 , the pressure in the underfloor space 2 is negative compared to the pressure in the living space 5. Moreover, since the return openings 8 of the present embodiment are concentrated at one or two places, the return air is always collected and returned to the underfloor space 2 without being dispersed.

以上のように、空気は対流運動により建物10内を循環し、適度に外気と交換することによって、常時換気を継続させつつ、室内に緩やかな暖気の流れを作ることができる。   As described above, air circulates in the building 10 by convection motion and is appropriately exchanged with the outside air, so that a gentle warm air flow can be created in the room while always maintaining ventilation.

また、従来、蓄熱タイプの暖房装置は、主電源を切ったとしても放熱が続いてしまうため、温度調節への反応速度が遅く、リアルタイム制御やフィードバック制御が困難であるという難点を有していた。そこで、本実施形態の自然対流式床下暖房換気システム1では、回帰空気量制御手段81によって、吹出開口部からの暖気の吹き出し量を制御すること、すなわち熱量を床下空間2から居住空間5へ輸送する量を調節することによって、暖房の温度調節を行っている。   In addition, conventionally, a heat storage type heating device has a difficulty in that real-time control and feedback control are difficult because the heat dissipation continues even when the main power is turned off, and the reaction speed to temperature control is slow. . Therefore, in the natural convection type underfloor heating and ventilation system 1 of the present embodiment, the return air amount control means 81 controls the amount of warm air blown from the blowout opening, that is, the amount of heat is transported from the underfloor space 2 to the living space 5. The temperature of the heating is adjusted by adjusting the amount of heating.

図4は回帰開口部8が完全に開口しているときの空気の流れを示した概念図である。図4に示すように、例えば、給気手段3から「100」の空気量が取り込まれ、蓄熱暖房装置4により暖められた暖気は、吹出開口部6からは「500」の循環空気量が吹き出すと仮定する。気密性の高い建物10であれば、入ってきた冷気と同量「100」の空気が排気手段7から排出される。そして、残りの空気量「400」は回帰開口部8から床下空間2へと回帰する。   FIG. 4 is a conceptual diagram showing the air flow when the return opening 8 is completely open. As shown in FIG. 4, for example, when the amount of air of “100” is taken in from the air supply means 3 and the warm air warmed by the heat storage heating device 4, the amount of circulating air of “500” blows out from the outlet opening 6. Assume that In the case of a highly airtight building 10, the same amount of “100” air as the incoming cold air is exhausted from the exhaust means 7. Then, the remaining air amount “400” returns from the return opening 8 to the underfloor space 2.

一方、図5は回帰開口部8が完全に閉口しているときの空気の流れを示した概念図である。図5と同様に給気手段3からは「100」の冷気が取り込まれる。また、建物10の気密性が高いため、取り込まれた冷気と同量「100」の空気が排気手段7から排出される。よって、吹出開口部6から吹き出す吹き出し量は「100」となり、回帰開口部8が完全に開口しているときの半分となる。   On the other hand, FIG. 5 is a conceptual diagram showing the air flow when the return opening 8 is completely closed. As in FIG. 5, “100” cold air is taken in from the air supply means 3. Further, since the building 10 is highly airtight, the same amount of air “100” as the taken-in cold air is discharged from the exhaust means 7. Therefore, the blowout amount blown out from the blowout opening 6 is “100”, which is half that when the return opening 8 is completely opened.

すなわち、本実施形態の自然対流式床下暖房換気システム1は、換気量を減らさずに回帰開口部8の開口面積を制御することによって吹出開口部6からの吹き出し量を制御し、温度調節が可能な画期的な暖房換気システムである。   That is, the natural convection type underfloor heating / ventilation system 1 according to the present embodiment controls the amount of air blown out from the outlet opening 6 by controlling the opening area of the return opening 8 without reducing the amount of ventilation, so that the temperature can be adjusted. It is a revolutionary heating and ventilation system.

なお、暖気の吹き出し量を制御する方法として、吹出開口部6を回帰開口部8と同様に開口面積を制御する装置を設ける方法も考えられる。しかし、吹出開口部6を閉じてしまうと、換気ができなくなってしまうため意味がない。また、暖気が床下空間に必要以上に蓄積されるため必ずしも1階の気温が効果的に下がらない。さらには、吹出開口部6は複数設けているため、他の吹出開口部6から暖気が吹き出したり、回帰開口部8から吹き出してしまうこともあり、吹き出し量をコントロールするのが困難となる。したがって、循環空気量を制御するのには、回帰開口部8で制御するのが好ましい。   As a method for controlling the amount of warm air blown out, a method of providing an apparatus for controlling the opening area of the blowout opening 6 in the same manner as the return opening 8 can be considered. However, if the blowout opening 6 is closed, ventilation becomes impossible, which is meaningless. Moreover, since warm air accumulates more than necessary in the underfloor space, the temperature on the first floor does not necessarily drop effectively. Furthermore, since a plurality of blowout openings 6 are provided, warm air may blow out from other blowout openings 6 or blow out from the return openings 8, making it difficult to control the amount of blowout. Therefore, in order to control the amount of circulating air, it is preferable to control at the return opening 8.

また、図1に示す1階中央の居住空間5のように、間仕切壁12および天井懐13に暖気を流通させることにより、間仕切壁12や天井18からのふく射熱で居住空間5を暖めた場合、蓄熱暖房装置4で暖められた暖気は、間仕切壁12に形成されている壁内送気開口部91から通気路9へ送られ、天井懐13を介して、他の間仕切壁12の通気路9へと進入し、壁内回帰開口部92から床下へと回帰する。このとき、通過した暖気は壁または天井を暖めることにより、そのふく射熱で居住空間5を暖める。このふく射熱による暖房は、居住空間5に直接空気を送り込む方法ではないので、温風が人体などに直接当たる不快感などがない。また、ふく射熱は人体を芯から温め、快適な温度環境を創り出すことができる。   Moreover, when the living space 5 is warmed by the radiant heat from the partition wall 12 or the ceiling 18 by circulating warm air through the partition wall 12 and the ceiling pocket 13 like the living space 5 in the center of the first floor shown in FIG. The warm air heated by the heat storage and heating device 4 is sent to the air passage 9 from the in-wall air supply opening 91 formed in the partition wall 12, and the air passage 9 of the other partition wall 12 through the ceiling pocket 13. To return to the floor from the in-wall return opening 92. At this time, the warm air that has passed warms the living space 5 with its radiant heat by warming the wall or ceiling. This heating by radiant heat is not a method of sending air directly into the living space 5, so there is no unpleasant feeling that the hot air directly hits the human body. Radiant heat can also warm the human body from the core and create a comfortable temperature environment.

以上のような本実施形態によれば、以下のような効果が得られる。
1.換気量を減らさずに温度調節をリアルタイムに行うことができる。
2.蓄熱暖房装置4を各部屋におく必要が無くなり、居住空間5を広く使うことができる。さらには、建物10のイニシャルコストも抑えられる。
3.蓄熱暖房装置4を太陽光発電システム41による電力や安価な深夜電力を用いて蓄熱することによりランニングコストも抑えられる。
4.換気扇などの動力を必要としないため、静かで経済的である。
5.間仕切壁12および天井懐13からのふく射熱により人体を芯から温めることができる。
According to the present embodiment as described above, the following effects can be obtained.
1. The temperature can be adjusted in real time without reducing the ventilation volume.
2. It is not necessary to place the heat storage and heating device 4 in each room, and the living space 5 can be used widely. Furthermore, the initial cost of the building 10 can be reduced.
3. Running heat is also suppressed by storing the heat storage and heating device 4 using electric power from the solar power generation system 41 or inexpensive late-night electric power.
4). Because it does not require power from a ventilator, it is quiet and economical.
5. The human body can be heated from the core by the radiant heat from the partition wall 12 and the ceiling pocket 13.

つぎに、本発明の実施例について説明する。本実施例1では、自然対流式床下暖房換気システム1を導入した2階建ての住宅を構築し、回帰開口部8の開口面積制御によって吹出開口部6から吹き出す暖気の風速、排気口から排出される排気風速、および各空間の温度を計測し、回帰空気量制御手段81による暖房および換気の効果を確認する実験を行った。なお、本実験は北海道立北方建築総合研究所の指導を受けて行われ、以下に記載するデータは、同研究所による分析結果に基づいてまとめたものである。   Next, examples of the present invention will be described. In the first embodiment, a two-story house in which the natural convection type underfloor heating / ventilation system 1 is introduced is constructed, and the warm air speed blown out from the blowout opening 6 by the opening area control of the return opening 8 is discharged from the exhaust port. The experiment was conducted to measure the exhaust air speed and the temperature of each space, and confirm the effects of heating and ventilation by the return air amount control means 81. This experiment was conducted under the guidance of the Hokkaido Northern Architecture Research Institute, and the data described below was compiled based on the analysis results of the laboratory.

図6は実験に用いた住宅の間取り図である。延べ床面積が132mの2階建て4LDKの木造建築であり、リビングダイニング、天井および玄関を繋ぐ吹抜が構築されている。図6(a)に示すように、給気手段3は給気入口31を外壁に設け、可変の給気出口32を玄関下に敷設された管を経由して床下空間2に設けている。また、蓄熱暖房装置4はリビングダイニングの床下空間2における窓15下当たりに設置されている。この蓄熱暖房装置4の真上であって窓下の床面には吹出開口部6が開口されている。さらに、回帰開口部8は玄関と階段の近傍の床面に開口されて給気出口32の近傍へと繋がっている。このような住宅における暖気の流れは、主として、床下空間2から吹出開口部6を介してリビングダイニングに入り、上昇して吹抜を通り、一部は天井18に設けられた排気手段7から建物10外へ排気され、残りは玄関に設けられた回帰開口部8を介して床下空間2へと回帰するようになっている。 FIG. 6 is a floor plan of a house used in the experiment. Total floor area is a wooden building of two-story 4LDK of 132m 2, living-dining, a blow-connecting the ceiling and the entrance has been built. As shown in FIG. 6A, the air supply means 3 is provided with an air supply inlet 31 in the outer wall and a variable air supply outlet 32 in the underfloor space 2 via a pipe laid under the entrance. In addition, the heat storage and heating device 4 is installed near the bottom of the window 15 in the underfloor space 2 of the living dining room. A blow-off opening 6 is opened on the floor surface directly below the heat storage heating device 4 and below the window. Further, the return opening 8 is opened on the floor near the entrance and the stairs and is connected to the vicinity of the air supply outlet 32. The flow of warm air in such a house mainly enters the living dining room from the underfloor space 2 through the blowout opening 6, rises and passes through the blowout, and a part from the exhaust means 7 provided on the ceiling 18 to the building 10. The air is exhausted to the outside, and the remainder returns to the underfloor space 2 through a return opening 8 provided at the entrance.

本実施例1の実験は、外気温がほぼ一定になる午後7時以降に実施した。回帰開口部8を午後7時15分から15分間閉口して、午後7時から1時間の各風速および各空間の温度を測定を行った。風速は、図6(a)および(b)に示すように、和室の窓15の近傍に設けられた吹出開口部6からの吹出風速と天井18に取り付けられた排気手段7の排気口72における排気風速を測定した。また、温度は、居住空間5のうちの和室、和室下の床下空間2および建物10外で測定を行った。   The experiment of Example 1 was conducted after 7 pm when the outside air temperature became almost constant. The return opening 8 was closed for 15 minutes from 7:15 pm, and the wind speed and the temperature of each space were measured for 1 hour from 7:00 pm. As shown in FIGS. 6 (a) and 6 (b), the wind speed is blown from the blowing opening 6 provided in the vicinity of the window 15 of the Japanese-style room and at the exhaust port 72 of the exhaust means 7 attached to the ceiling 18. The exhaust wind speed was measured. Further, the temperature was measured in the Japanese-style room, the under-floor space 2 under the Japanese-style room, and the outside of the building 10 in the living space 5.

図7は5分毎の測定結果を表にまとめた図である。図7に示すように、実験時の外気温は2.5℃〜3℃、床下空間2の温度は25℃前後であった。回帰開口部8を閉口する直前の午後7時15分における和室温度は28.6℃、吹出風速は0.34m/s、吹出風量は62.06m/h、吹出温度は37.3℃であった。 FIG. 7 is a table summarizing measurement results every 5 minutes. As shown in FIG. 7, the outside air temperature during the experiment was 2.5 ° C. to 3 ° C., and the temperature of the underfloor space 2 was around 25 ° C. The Japanese room temperature at 7:15 pm immediately before closing the return opening 8 was 28.6 ° C., the blowing air speed was 0.34 m / s, the blowing air volume was 62.06 m 3 / h, and the blowing temperature was 37.3 ° C. there were.

その後、回帰開口部8を閉口した5分後の午後7時20分には、吹出風速は0.18m/sにまで遅くなり、さらに10〜15分後には約0.1m/sとなり、ほぼ無風に近い状態になった。そして、再開口した10分後の午後7時40分には0.3m/sまで早くなり、ほぼ閉口前の速度に回復した。   Thereafter, at 7:20 pm, 5 minutes after closing the return opening 8, the blowing wind speed decreased to 0.18 m / s, and after about 10 to 15 minutes it became about 0.1 m / s. It became a state close to no wind. And at 7:40 pm, 10 minutes after reopening, it reached 0.3 m / s and recovered to the speed before closing.

一方、回帰開口部8を閉口した5分後の和室温度は32.1℃に上昇した。これは気温の変化が吹出風速の変化に比べ遅いため開口時の影響が残ったためであり、閉口した10分後には28.4℃となり、15分後には26.8℃にまで低下した。そして、再開口した10分後の午後7時40分には27.7℃と上昇し、15分後には30.4℃とほぼ閉口前の温度に回復した。よって、回帰開口部8の開閉制御に従って、室温を迅速かつ適度に調整可能であることがわかる。   On the other hand, the Japanese room temperature 5 minutes after closing the return opening 8 rose to 32.1 ° C. This is because the change in temperature was slower than the change in the blown wind speed, so the effect at the time of opening remained. The temperature became 28.4 ° C. 10 minutes after closing and dropped to 26.8 ° C. after 15 minutes. And 10 minutes after reopening, it rose to 27.7 ° C. at 7:40 pm, and after 15 minutes it recovered to 30.4 ° C., almost the temperature before closing. Therefore, it can be seen that the room temperature can be adjusted quickly and appropriately according to the opening / closing control of the return opening 8.

また、吹出温度は閉口時の午後7時25分において37℃であったが、その5分後には33.1℃まで低下した。これは、開口時および閉口直後において蓄熱暖房装置4で暖められる空気には循環空気が含まれているが、閉口後に時間が経過すると給気手段3によって取り込まれる冷気のみになり、吹出温度の上昇が抑えられたためだと思われる。よって、閉口によって、吹き出し量のみならず、吹き出し温度にも影響があることがわかった。   Moreover, although the blowing temperature was 37 degreeC at 7:25 pm at the time of closing, it fell to 33.1 degreeC five minutes later. This is because the air warmed by the regenerative heating device 4 at the time of opening and immediately after closing contains circulating air, but only the cool air taken in by the air supply means 3 when the time elapses after closing, and the rise of the blowing temperature It seems that this is because of the suppression. Therefore, it was found that the closing affects not only the amount of blowout but also the blowout temperature.

また、排気手段3による排気状況を測定した。図7に示すように、回帰開口部8を閉じたときと開けたときの排気口72における排気風速および排気風量をそれぞれ測定した。その結果、回帰開口部8を閉口してから15分経過したときの排気口72における排気風速は1.21m/s、風量は107.16m/hであった。一方、回帰開口部8を開口してから15分経過後の排気口72における排気風速は1.19m/s、風量は105.39m/hであった。すなわち、回帰開口部8の開閉制御により吹出開口部6からの吹き出し量を増減させても、排気手段7から排気される風速・風量はほぼ変わらず、常に建物10の換気が行われていることがわかる。 Further, the exhaust state by the exhaust means 3 was measured. As shown in FIG. 7, the exhaust air velocity and the exhaust air amount at the exhaust port 72 when the return opening 8 was closed and opened were measured. As a result, the exhaust air velocity at the exhaust port 72 was 1.21 m / s and the air volume was 107.16 m 3 / h when 15 minutes had passed since the regression opening 8 was closed. On the other hand, the exhaust air velocity at the exhaust port 72 after 15 minutes from the opening of the return opening 8 was 1.19 m / s, and the air volume was 105.39 m 3 / h. That is, even if the amount of blowout from the blowout opening 6 is increased or decreased by opening / closing control of the return opening 8, the wind speed and volume exhausted from the exhaust means 7 are not substantially changed, and the building 10 is always ventilated. I understand.

図8は、図7で示した吹出風速、吹出温度および室内温度の測定結果より推定した床下空間2から居住空間5に吹き出した熱供給量をグラフにしたものである。図8に示すように、閉口時の熱量は、開口時に比べ1/4〜1/3倍の熱供給量であると推定され、迅速に室温を調整できると考えられる。   FIG. 8 is a graph showing the amount of heat supplied from the underfloor space 2 to the living space 5 estimated from the measurement results of the blowing air speed, the blowing temperature, and the room temperature shown in FIG. As shown in FIG. 8, the amount of heat at the time of closing is estimated to be 1/4 to 1/3 times the amount of heat supplied at the time of opening, and it is considered that the room temperature can be adjusted quickly.

以上、本実施例1の実験により、自然対流式床下暖房換気システム1が換気と暖房とを同時に行うことが可能であり、回帰開口部8の開口面積を制御することにより吹き出し風速および熱供給量のコントロールができ、室温の調整が可能であることが確かめられた。   As described above, the natural convection type underfloor heating / ventilation system 1 can perform ventilation and heating at the same time by the experiment of the first embodiment, and by controlling the opening area of the return opening 8, the blowing wind speed and the heat supply amount are controlled. It was confirmed that the room temperature can be controlled and the room temperature can be adjusted.

つぎに、実施例2について説明する。本実施例2では、実施例1で実験を行った同じ建物10において、実施例1とは異なる日における床下空間2と居住空間(和室)5との回帰開口部8の開閉による温度変動を測定した。回帰開口部8は、実施例1とは異なり、日中に閉口させておき、午後9時15分頃から翌日午前0時20分頃までの時間帯に開口させた。   Next, Example 2 will be described. In the second embodiment, in the same building 10 where the experiment was performed in the first embodiment, temperature fluctuation due to opening and closing of the return opening 8 between the underfloor space 2 and the living space (Japanese room) 5 on a different day from the first embodiment is measured. did. Unlike Example 1, the return opening 8 was closed during the day, and was opened during the time period from about 9:15 pm to about 0:20 am the next day.

図9は、本実施例2における実験によって得られた床下空間2と居住空間5の温度測定結果を示す折れ線グラフである。この図9の横軸は、本実施例2の実験日における午後7時頃から翌日午前2時頃までの時間を示しており、縦軸は測定された床下空間2と居住空間5の温度を示している。   FIG. 9 is a line graph showing the temperature measurement results of the underfloor space 2 and the living space 5 obtained by the experiment in the second embodiment. The horizontal axis of FIG. 9 shows the time from about 7 pm to about 2 am on the next day on the experiment day of Example 2, and the vertical axis shows the measured temperatures of the underfloor space 2 and the living space 5. Show.

図9に示すように、床下空間2の温度は、回帰開口部8が閉口している午後9時15分頃まで、約22℃に保たれている。この床下空間2の温度は、回帰開口部8が開口されると低下し、開口から約2時間後の午後11時15分頃には約21.5℃まで低下し、その後、回帰開口部8が閉口するまでほぼその温度が維持された。そして、再び回帰開口部8が閉口されると床下空間2の温度は22℃近くまで上昇した。   As shown in FIG. 9, the temperature of the underfloor space 2 is maintained at about 22 ° C. until about 9:15 pm when the return opening 8 is closed. The temperature of the underfloor space 2 decreases when the return opening 8 is opened, and decreases to about 21.5 ° C. at about 11:15 pm about 2 hours after the opening, and then the return opening 8 The temperature was maintained until the mouth closed. And when the regression opening part 8 was closed again, the temperature of the underfloor space 2 rose to near 22 degreeC.

一方、居住空間5の温度は、回帰開口部8が閉口している午後9時15分頃まで、外気温の低下に伴って徐々に低下していたが、回帰開口部8が開口されると、床下空間2から温かい空気が流れ込むため、10分程度で約23℃まで上昇し、その後も23〜24℃の間で安定的に維持された。そして、回帰開口部8を閉口すると、徐々に温度が低下し、22〜23℃の間で安定した。   On the other hand, the temperature of the living space 5 gradually decreased with the decrease in the outside air temperature until about 9:15 pm when the return opening 8 was closed, but when the return opening 8 was opened. Since warm air flows from the underfloor space 2, the temperature rose to about 23 ° C. in about 10 minutes, and was stably maintained between 23 and 24 ° C. thereafter. And when the regression opening part 8 was closed, temperature fell gradually and it stabilized between 22-23 degreeC.

以上、本実施例2の実験によれば、回帰開口部8を閉口および開口させることにより、送風機などの動力を用いることなく、自然対流のみによって床下空間2に蓄えられた熱量を居住空間5へと供給することができ、速やかに温度調節することが可能であることが確かめられた。   As described above, according to the experiment of the second embodiment, the amount of heat stored in the underfloor space 2 only by natural convection is transferred to the living space 5 without using power such as a blower by closing and opening the return opening 8. It was confirmed that the temperature could be quickly adjusted.

つぎに、実施例3について説明する。本実施例3では、実施例1および実施例2で使用した建物と同じ建物10を使用し、二日間にわたって回帰開口部8を開口させた場合と閉口させた場合の床下空間2と居住空間5との温度を測定した。第一日目の実験は午前7時頃から開始し、回帰開口部8を「開口」させた状態とした。一方、第二日目の実験は午前7時頃から開始し、回帰開口部8を「開口」させた状態とし、午後7時頃以降に「閉口」させて、その後の温度差を測定した。   Next, Example 3 will be described. In the third embodiment, the same building 10 as that used in the first and second embodiments is used, and the underfloor space 2 and the living space 5 when the return opening 8 is opened and closed for two days. And the temperature was measured. The experiment on the first day started from around 7 am, and the return opening 8 was “open”. On the other hand, the experiment on the second day was started from around 7:00 am, the return opening 8 was “opened”, “closed” after about 7:00 pm, and the subsequent temperature difference was measured.

図10は、本実施例3の実験結果を示すもので、床下空間2と居住空間5との温度差を示す折れ線グラフである。この図10の横軸は、本実施例3の各実験日における午後5時半頃からその日の深夜12時頃までの時間を示しており、縦軸は測定された床下空間2と居住空間5との温度差を示している。   FIG. 10 shows the experimental results of the third embodiment, and is a line graph showing the temperature difference between the underfloor space 2 and the living space 5. The horizontal axis of FIG. 10 shows the time from about 5:30 pm to about 12:00 midnight on that day on each experimental day of Example 3, and the vertical axis represents the measured underfloor space 2 and living space 5. The temperature difference is shown.

図10に示すように、一日中回帰開口部8を開口させた状態とした第一日目において、床下空間2と居住空間5との温度差は、午後5時半頃には約1.8℃であったのに対し、時間経過とともに徐々に小さくなり、午後11時半頃には約0.8℃になってる。この結果は、夕刻までは日差しや外気温の影響で居住空間5が床下空間2よりも若干気温が高くなっているが、夜になってそれらの影響が収まると、床下空間2から供給される空気によって両者の気温差が小さくなったものと考えられる。   As shown in FIG. 10, the temperature difference between the underfloor space 2 and the living space 5 is about 1.8 ° C. around 5:30 pm on the first day when the return opening 8 is opened all day. On the other hand, it gradually decreased with the passage of time and reached about 0.8 ° C around 11:30 pm. This result shows that until the evening, the living space 5 is slightly warmer than the underfloor space 2 due to the influence of sunlight and outside temperature, but when those influences subside at night, the living space 5 is supplied from the underfloor space 2 It is thought that the temperature difference between the two was reduced by air.

一方、回帰開口部8を午後7時頃に閉口した第二日目において、床下空間2と居住空間5との温度差は、回帰開口部8を閉口する前は約1.5℃であったが、回帰開口部8を閉口すると、その温度差は速やかに大きくなって約20分後には約2.2℃まで温度差が開き、その後、時間経過とともに約1.5〜2.0℃の範囲となった。   On the other hand, on the second day when the return opening 8 was closed around 7 pm, the temperature difference between the underfloor space 2 and the living space 5 was about 1.5 ° C. before the return opening 8 was closed. However, when the regression opening 8 is closed, the temperature difference increases rapidly, and after about 20 minutes, the temperature difference opens up to about 2.2 ° C., and then about 1.5 to 2.0 ° C. over time. It became a range.

以上、本実施例3の実験によれば、回帰開口部8を開口させると、床下空間2から居住空間5へ熱供給が速やかに行われ、居住空間5内が満遍なく温められることにより、温度差が小さくなっていくことが確認できた。一方、回帰開口部8を閉口すると、床下空間2と居住空間5との温度差は1.5〜2.0℃程度の差が生じることが確認できた。すなわち、本件発明に係る自動対流式床下暖房換気システム1の動力源である床下空間2と建物内との温度差が回帰開口部8を開口し続けることにより小さくなると、自然に対流量が少なくなり、熱供給量を自動調節することができるという結果が得られた。   As described above, according to the experiment of the third embodiment, when the return opening 8 is opened, heat is rapidly supplied from the underfloor space 2 to the living space 5 and the inside of the living space 5 is evenly heated. Was confirmed to be smaller. On the other hand, when the return opening 8 was closed, it was confirmed that the temperature difference between the underfloor space 2 and the living space 5 was about 1.5 to 2.0 ° C. That is, when the temperature difference between the underfloor space 2 that is the power source of the automatic convection type underfloor heating and ventilation system 1 according to the present invention and the inside of the building is reduced by continuously opening the regression opening 8, the convection flow is naturally reduced. As a result, the heat supply amount can be automatically adjusted.

なお、本発明に係る自然対流式床下暖房換気システム1は、前述した各実施例に限定されるものではなく、適宜変更することができる。   In addition, the natural convection type underfloor heating / ventilation system 1 according to the present invention is not limited to the above-described embodiments, and can be appropriately changed.

例えば、蓄熱暖房装置4は放熱部が吹出開口6近傍の床下空間2に設ければよく、装置本体を建物10外や任意の床下空間2に設けることができる。また、放熱部は吹出開口部6よりも低い位置でダクトなどで繋がれることにより任意の場所に設けることができる。   For example, the heat storage and heating device 4 may be provided in the underfloor space 2 in the vicinity of the blowout opening 6 of the heat dissipation unit, and the apparatus main body can be provided outside the building 10 or in any underfloor space 2. Moreover, a heat radiating part can be provided in arbitrary places by being connected with a duct etc. in the position lower than the blowing opening part 6. FIG.

本発明に係る自然対流式床下暖房換気システムの実施形態および空気の流れを示す建物断面図である。It is a building sectional view showing an embodiment of a natural convection type underfloor heating ventilation system and air flow according to the present invention. 本発明に係る給気手段の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the air supply means which concerns on this invention. 本実施形態における回帰空気量制御手段の(a)正面図、(b)右側面図、(c)平面図である。It is (a) front view, (b) right view, (c) top view of the return air quantity control means in this embodiment. 本実施形態において、回帰開口部が完全に開口しているときの空気の流れを示した概念図である。In this embodiment, it is the conceptual diagram which showed the flow of the air when the regression opening part is opening completely. 本実施形態において、回帰開口部が完全に閉口しているときの空気の流れを示した概念図である。In this embodiment, it is the conceptual diagram which showed the flow of the air when the regression opening part is completely closed. 実施例1に係る実験に用いた住宅の間取り図であり、(a)断面図、(b)1階平面図、(c)2階平面図である。It is a floor plan of the house used for the experiment concerning Example 1, (a) sectional view, (b) 1st floor plan, (c) 2nd floor plan. 実施例1における測定時間毎の温度、風速および風量の測定値をまとめた表である。It is the table | surface which put together the measured value of the temperature for every measurement time in Example 1, a wind speed, and an air volume. 実施例1における計測時間毎の床下空間から居住空間へ供給した、熱供給量をまとめた棒グラフである。It is the bar graph which put together the heat supply amount supplied to the living space from the underfloor space for every measurement time in Example 1. FIG. 実施例2における測定時間毎の床下空間と居住空間の温度を表す折れ線グラフである。It is a line graph showing the temperature of underfloor space and living space for every measurement time in Example 2. 実施例3における測定時間毎の床下空間と居住空間の温度差を表す折れ線グラフである。It is a line graph showing the temperature difference of the underfloor space and living space for every measurement time in Example 3.

符号の説明Explanation of symbols

1 自然対流式床下暖房換気システム
10 建物
11 屋根
12 間仕切壁
13 天井懐
14 床、床面
15 窓
16 階段
17 ロフト
18 天井
19 通気路
2 床下空間
21 基礎
22 断熱材
3 給気手段
31 給気入口
32 給気出口
4 蓄熱暖房装置
41 太陽光発電システム
5 居住空間
6 吹出開口部
7 排気手段
71 排気塔
72 排気口
8 回帰開口部
81 回帰空気量制御手段
9 通気路
91 壁内送気開口部
92 壁内回帰開口部
DESCRIPTION OF SYMBOLS 1 Natural convection type underfloor heating ventilation system 10 Building 11 Roof 12 Partition wall 13 Ceiling pocket 14 Floor, floor surface 15 Window 16 Stairs 17 Loft 18 Ceiling 19 Ventilation path 2 Underfloor space 21 Foundation 22 Heat insulating material 3 Air supply means 31 Air supply inlet 32 Air supply outlet 4 Heat storage and heating device 41 Photovoltaic power generation system 5 Living space 6 Blowing opening 7 Exhaust means 71 Exhaust tower 72 Exhaust outlet 8 Return opening 81 Return air amount control means 9 Air passage 91 In-wall air supply opening 92 In-wall return opening

Claims (4)

空気の温度差から発生する対流運動を利用して、断熱性および気密性に優れた建物の換気と暖房とを行うための自然対流式床下暖房換気システムであって、
建物の床下を基礎断熱した床下空間と、
この床下空間に外気を供給する給気手段と、
前記床下空間に設置されて当該床下空間に供給される外気や循環空気を暖める蓄熱暖房装置と、
この蓄熱暖房装置によって暖められた暖気を床上の居住空間に吹き出す吹出開口部と、
建物の屋根に設けられており上昇した前記居住空間から建物の外に前記暖気の一部を排出する排気手段と、
前記居住空間を巡った暖気を前記床下空間へ回帰させる回帰開口部と、
この回帰開口部から床下へ回帰する空気の量を増減制御することにより前記吹出開口部から吹き出す暖気吹出量を調整する回帰空気量制御手段と
を有すること特徴とする自然対流式床下暖房換気システム。
A natural convection underfloor heating / ventilation system for ventilating and heating a building having excellent heat insulation and airtightness by using convection motion generated from a temperature difference of air,
Underfloor space with basic insulation of the underfloor of the building,
An air supply means for supplying outside air to the underfloor space;
A heat storage and heating device that is installed in the underfloor space and heats outside air and circulating air supplied to the underfloor space;
A blow-off opening that blows out the warm air heated by the heat storage and heating device to the living space on the floor;
Exhaust means for discharging a part of the warm air out of the building from the raised living space provided on the roof of the building,
A return opening for returning warm air around the living space to the underfloor space;
A natural convection type underfloor heating / ventilation system, comprising: a return air amount control unit that adjusts the amount of warm air blown out from the blowout opening by increasing / decreasing the amount of air returning from the return opening to the underfloor.
請求項1において、前記回帰空気量制御手段は、前記回帰開口部の開口面積を増減制御することにより床下への回帰空気量を制御することを特徴とする自然対流式床下暖房換気システム。   2. The natural convection type underfloor heating and ventilation system according to claim 1, wherein the return air amount control means controls the return air amount to the under floor by increasing or decreasing the opening area of the return opening. 請求項1または請求項2において、前記回帰開口部は前記給気手段の近傍に1又は2カ所に集中させて設けられていることを特徴とする自然対流式床下暖房換気システム。   The natural convection type underfloor heating / ventilation system according to claim 1 or 2, wherein the return opening is concentrated in one or two places in the vicinity of the air supply means. 請求項1から請求項3のいずれかにおいて、間仕切壁および天井懐の内側に形成した空気を流通させる通気路と、この通気路に前記床下空間から暖気を送り込むために前記間仕切壁に形成した壁内送気開口部と、前記通気路から前記床下空間に暖気を回帰させるために他の間仕切壁に形成した壁内回帰開口部とを有しており、
前記壁内送気開口部を前記蓄熱暖房装置の近傍に設けるとともに、前記壁内回帰開口部を前記給気手段の近傍に設けることを特徴とする自然対流式床下暖房換気システム。
4. The air passage formed in the partition wall and the ceiling pocket for circulating air, and the wall formed in the partition wall for sending warm air from the underfloor space to the air passage in any one of claims 1 to 3. An internal air supply opening, and an in-wall return opening formed in another partition wall in order to return warm air from the air passage to the underfloor space,
The natural convection type underfloor heating and ventilation system, wherein the in-wall air supply opening is provided in the vicinity of the heat storage and heating device, and the in-wall return opening is provided in the vicinity of the air supply means.
JP2008304576A 2007-11-30 2008-11-28 Natural convection underfloor heating and ventilation system Expired - Fee Related JP4392508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304576A JP4392508B2 (en) 2007-11-30 2008-11-28 Natural convection underfloor heating and ventilation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007310180 2007-11-30
JP2008304576A JP4392508B2 (en) 2007-11-30 2008-11-28 Natural convection underfloor heating and ventilation system

Publications (2)

Publication Number Publication Date
JP2009150643A true JP2009150643A (en) 2009-07-09
JP4392508B2 JP4392508B2 (en) 2010-01-06

Family

ID=40919940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304576A Expired - Fee Related JP4392508B2 (en) 2007-11-30 2008-11-28 Natural convection underfloor heating and ventilation system

Country Status (1)

Country Link
JP (1) JP4392508B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026105A (en) * 2010-07-21 2012-02-09 Toyota Home Kk Building
JP2017057673A (en) * 2015-09-18 2017-03-23 株式会社から屋 Outside air introduction-based ventilation temperature adjustment-type building
JP2017067376A (en) * 2015-09-30 2017-04-06 大和ハウス工業株式会社 Air conditioning system
JP6406781B1 (en) * 2017-06-20 2018-10-17 株式会社カイトー商会 Underfloor space structure for natural convection air conditioning and building with the same
JP2019100179A (en) * 2019-03-05 2019-06-24 株式会社住まいる館 Radiation heat utilization building
JP6949346B1 (en) * 2021-05-13 2021-10-13 Oneness設計企画株式会社 Ventilation system and building ventilation system
WO2024148753A1 (en) * 2023-01-13 2024-07-18 广东芬尼克兹节能设备有限公司 Ground-embedded air conditioning system and control method therefor, and storage medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026105A (en) * 2010-07-21 2012-02-09 Toyota Home Kk Building
JP2017057673A (en) * 2015-09-18 2017-03-23 株式会社から屋 Outside air introduction-based ventilation temperature adjustment-type building
JP2017067376A (en) * 2015-09-30 2017-04-06 大和ハウス工業株式会社 Air conditioning system
JP6406781B1 (en) * 2017-06-20 2018-10-17 株式会社カイトー商会 Underfloor space structure for natural convection air conditioning and building with the same
JP2019007332A (en) * 2017-06-20 2019-01-17 株式会社カイトー商会 Underfloor space structure for natural convection type air conditioning, and building equipped with the same
JP2019100179A (en) * 2019-03-05 2019-06-24 株式会社住まいる館 Radiation heat utilization building
JP7045710B2 (en) 2019-03-05 2022-04-01 株式会社住まいる館 Buildings that utilize radiant heat
JP6949346B1 (en) * 2021-05-13 2021-10-13 Oneness設計企画株式会社 Ventilation system and building ventilation system
WO2024148753A1 (en) * 2023-01-13 2024-07-18 广东芬尼克兹节能设备有限公司 Ground-embedded air conditioning system and control method therefor, and storage medium

Also Published As

Publication number Publication date
JP4392508B2 (en) 2010-01-06

Similar Documents

Publication Publication Date Title
JP4392508B2 (en) Natural convection underfloor heating and ventilation system
TW201144710A (en) Ventilation and air-conditioning apparatus and method for controlling same
JP5360779B2 (en) Air conditioning system and air conditioning method using the same
JP2006266575A (en) House using geothermal heat
JP6566437B2 (en) Ventilation temperature control building with outside air introduction
JP6208194B2 (en) Air conditioning ventilation system
JP2001311232A (en) Temperature and humidity adjustment function attached house
JP2011052918A (en) Energy saving ventilation system
WO2015194450A1 (en) Heating and cooling ventilation system for multi-family housing complex
JP5715448B2 (en) Building air conditioning system
JP2005273970A (en) Air conditioning system of building
JP4295541B2 (en) Ventilation system
JP4638831B2 (en) Floor heating system
JP2007092323A (en) Roof structure with venting skin and building having roof structure with venting skin
JP5410112B2 (en) Building ventilation structure
JPH0293228A (en) Ventilating device for building
JP2007163023A (en) Heating device and cooling device associated with structure of house
JP3123276U (en) Housing structure
JP5030246B1 (en) Building ventilation insulation structure
JP2005163482A (en) Ventilation system for building
JP7564534B2 (en) Cooling and heating building using a cold air storage tank and method for cooling and heating a building using a cold air storage tank
JP2011163629A (en) Ventilating facility in building
JP2005163369A (en) Ventilation device for dwelling house
JP2006023055A (en) Heating apparatus for building
KR102056817B1 (en) Night Purge operating method using natural ventilation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081225

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20090121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090326

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

R150 Certificate of patent or registration of utility model

Ref document number: 4392508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees