JP2009149054A - Biaxially stretched foamed sheet made of polystyrene resin, its manufacturing method, and molded article made from the sheet - Google Patents

Biaxially stretched foamed sheet made of polystyrene resin, its manufacturing method, and molded article made from the sheet Download PDF

Info

Publication number
JP2009149054A
JP2009149054A JP2008277767A JP2008277767A JP2009149054A JP 2009149054 A JP2009149054 A JP 2009149054A JP 2008277767 A JP2008277767 A JP 2008277767A JP 2008277767 A JP2008277767 A JP 2008277767A JP 2009149054 A JP2009149054 A JP 2009149054A
Authority
JP
Japan
Prior art keywords
sheet
foamed
polystyrene resin
biaxially stretched
polystyrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008277767A
Other languages
Japanese (ja)
Other versions
JP5378757B2 (en
Inventor
Hiroyoshi Goan
弘喜 午菴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2008277767A priority Critical patent/JP5378757B2/en
Publication of JP2009149054A publication Critical patent/JP2009149054A/en
Application granted granted Critical
Publication of JP5378757B2 publication Critical patent/JP5378757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/002Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor characterised by the choice of material
    • B29C51/004Textile or other fibrous material made from plastics fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0089Impact strength or toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0221Vinyl resin
    • B32B2266/0228Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/738Thermoformability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biaxially stretched foamed sheet made of polystyrene resin, which is less apt to suffer cracking, breakage, etc. during handling and can be reduced in thickness and weight and be repeatedly used since the sheet has moderate rigidity and is excellent in strengths (impact strength, tear strength, and folding endurance), and which can be cleaned, reutilized, and thermoformed since the sheet is excellent in shape reproducibility and long-lasting antistatic properties, its manufacturing method, and a molded article made from the sheet. <P>SOLUTION: The biaxially stretched foamed sheet made of the polystyrene resin is characterized in that at least one foamed layer and at least one unfoamed layer or foamed layer are laminated. The manufacturing method of the biaxially stretched foamed sheet made of the polystyrene resin, and the molded article made from the sheet are provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ワンウェイの食品用、非食品用の成形用材料のみならず、取り扱い時に割れ、破れ等が起こり難く、或いは繰り返し使用が可能な食品用、非食品用の紙代替材料等向けの多層構造を有するポリスチレン系樹脂製発泡含有二軸延伸シート及びその製造方法、並びに、このシートを原料として製造された成形品に関する。   The present invention is not only a one-way food or non-food molding material but also a multilayer for food or non-food paper substitutes that are difficult to crack, tear, etc. during handling or can be used repeatedly. The present invention relates to a foamed biaxially stretched sheet made of polystyrene resin having a structure, a method for producing the same, and a molded product produced using this sheet as a raw material.

従来、ポリスチレン系非発泡樹脂シート(特に、ハイインパクトポリスチレンシート(以下「HIPS」と記載することがある))、及びポリスチレン系発泡樹脂シート(特に、発泡ポリスチレンシート(以下「PSP」と記載することがある))は、熱成形性が優れているため、惣菜容器等の各種食品容器の製造材料として汎用されている。前者は更に、剛性、二次成形品の寸法安定性に優れ、後者は断熱性、緩衝性、軽量化に優れている。取り扱い時の安全性を考えた場合、前者では緩衝性や柔軟性を付与するのは困難であり、また後者では、断熱性や緩衝性を重視するとシートが高発泡構造となり、剛性や寸法安定性は低下する。そこで機械的強度の低下をカバーするため肉厚となってしまい、保管スペースや輸送コストが高くなってしまう。そこで両者の中間的性能を有し、更に薄肉軽量化が可能で、コスト的に優れたシートの開発が望まれている。   Conventionally, a polystyrene-based non-foamed resin sheet (particularly, a high-impact polystyrene sheet (hereinafter sometimes referred to as “HIPS”)) and a polystyrene-based foamed resin sheet (particularly, a foamed polystyrene sheet (hereinafter referred to as “PSP”). )) Is widely used as a production material for various food containers such as sugar beet containers because of its excellent thermoformability. The former is further excellent in rigidity and dimensional stability of the secondary molded product, and the latter is excellent in heat insulation, buffering, and weight reduction. When considering safety during handling, it is difficult to provide cushioning and flexibility in the former, and in the latter, if heat insulation and cushioning are emphasized, the sheet has a highly foamed structure, and rigidity and dimensional stability Will decline. Therefore, the thickness is increased to cover the decrease in mechanical strength, resulting in an increase in storage space and transportation cost. Therefore, it is desired to develop a sheet that has an intermediate performance between the two, can be reduced in thickness and weight, and is excellent in cost.

また、近年、環境保護と資源の有効利用、コストダウン等の観点から、例えばPSP等の成形材料が、洗浄・粉砕されて再利用され始めている。一方で、食品用、非食品用の紙もプラスチック化による代替で、洗浄、再利用を求める声が高まってきている。   In recent years, from the viewpoints of environmental protection, effective use of resources, cost reduction, and the like, molding materials such as PSP have begun to be reused after being washed and ground. On the other hand, food and non-food papers are also being replaced by plastics, and there is an increasing demand for cleaning and reuse.

特許文献1には、ゴム分含有量20%以下、発泡倍率1.5〜7.0、厚み0.3〜1.0mm、厚み方向の気泡膜数5〜20、残ガス量0.3モル/kg以下である薄肉成形品の加熱成形用押し出し発泡ポリスチレンシートが開示されている。このシートは、厚み0.5mmのトレイ(特許文献1の実施例4)では、リブ構造を多用した場合は実用的なレベルにある(具体的な強度の数値記載はない)が、更なる薄肉化が必要な場合は、割れや破れが起こり易くなり、十分ではない。   In Patent Document 1, the rubber content is 20% or less, the expansion ratio is 1.5 to 7.0, the thickness is 0.3 to 1.0 mm, the number of bubble films in the thickness direction is 5 to 20, and the residual gas amount is 0.3 mol. An extruded expanded polystyrene sheet for heat molding of a thin-walled molded product of / kg or less is disclosed. This sheet is at a practical level in the case of a 0.5 mm-thick tray (Example 4 of Patent Document 1) when a large number of rib structures are used (there is no specific numerical value for strength). When it is necessary to make it, cracks and tears are likely to occur, which is not sufficient.

一方、特許文献2には、化学発泡剤を配合し、発泡倍率1.07〜2.1倍、厚み0.1〜1mmとなるよう二軸延伸し、耐折強さが10以上の成形用スチレン系樹脂シートが開示されている。ここには、二軸延伸することによりPSPの強靭性、成形性が改良されることが記載されているが、発泡倍率が1.24倍以上になると耐折強さは30回以下となり(特許文献2の第1表)、取り扱い時の割れや破れ防止には不十分である。   On the other hand, in Patent Document 2, a chemical foaming agent is blended, biaxially stretched so that the expansion ratio is 1.07 to 2.1 times, and the thickness is 0.1 to 1 mm, and the bending strength is 10 or more. A styrene resin sheet is disclosed. Here, it is described that the toughness and formability of PSP are improved by biaxial stretching, but when the expansion ratio is 1.24 times or more, the bending strength is 30 times or less (patent) Table 1 of Document 2), which is insufficient to prevent cracking and tearing during handling.

特公昭61−003820号公報Japanese Examined Patent Publication No. 61-003820 特公昭64−006014号公報Japanese Patent Publication No. 64-006014

本発明は上記背景技術に鑑みてなされたものであり、本発明の課題は次の(1)及び/又は(2)及び/又は(3)である。
(1)適度な剛性と強度(衝撃強度、引裂強度、耐折強度)に優れるため、取り扱い時に割れ、破れ等が起こり難く、薄肉軽量化や繰り返し使用が可能なポリスチレン系樹脂製発泡二軸延伸シート及びその製造方法、並びにこのシート製の成形品を提供すること。
(2)型再現性に優れるため、熱成形可能なポリスチレン系樹脂製発泡二軸延伸シート及びその製造方法、並びにこのシート製の成形品を提供すること。
(3)持続的帯電防止性に優れるので、洗浄、再利用が可能なポリスチレン系樹脂製発泡二軸延伸シート及びその製造方法、並びにこのシート製の成形品を提供すること。
This invention is made | formed in view of the said background art, and the subject of this invention is the following (1) and / or (2) and / or (3).
(1) Since it has excellent moderate rigidity and strength (impact strength, tear strength, folding strength), it is difficult to crack and break during handling, and it is made of polystyrene resin that is thin and lightweight and can be used repeatedly. To provide a sheet, a manufacturing method thereof, and a molded product made of the sheet.
(2) To provide a moldable reproducible polystyrene resin foam biaxially stretched sheet, a method for producing the same, and a molded article made of this sheet because of excellent mold reproducibility.
(3) To provide a foamed biaxially stretched sheet made of polystyrene resin that can be washed and reused, and a method for producing the same, and a molded product made of this sheet, because it has excellent persistent antistatic properties.

本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、前記諸欠点を解消し、上記課題を達成した、ポリスチレン系樹脂製発泡二軸延伸シート及びその製造方法、並びに該シート製の成形品を完成するに至ったものである。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has solved the above-mentioned drawbacks and has achieved the above-mentioned problems. The finished product was completed.

すなわち、本発明は、少なくとも1層の発泡層と少なくとも1層の非発泡層又は発泡層が積層されていることを特徴とするポリスチレン系樹脂製発泡二軸延伸シートを提供するものである。   That is, the present invention provides a polystyrene resin foamed biaxially stretched sheet, wherein at least one foamed layer and at least one non-foamed layer or foamed layer are laminated.

また、本発明は、非発泡層/発泡層/非発泡層の順に積層され、かつ両非発泡層の厚みの合計が全厚みの1〜70%であることを特徴とする上記のポリスチレン系樹脂製発泡二軸延伸シートを提供するものである。   In the present invention, the polystyrene-based resin is characterized in that the non-foamed layer / foamed layer / non-foamed layer are laminated in this order, and the total thickness of both non-foamed layers is 1 to 70% of the total thickness. A foamed biaxially stretched sheet is provided.

また、本発明は、発泡層/非発泡層/発泡層の順に積層され、かつ非発泡層の厚みが全厚みの5〜95%であることを特徴とする上記のポリスチレン系樹脂製発泡二軸延伸シートを提供するものである。   In the present invention, the foamed biaxial polystyrene resin is characterized in that the foamed layer / non-foamed layer / foamed layer are laminated in this order, and the thickness of the non-foamed layer is 5 to 95% of the total thickness. A stretched sheet is provided.

また、本発明は、発泡層/発泡層/発泡層の順に積層され、かつ各発泡層の厚みが全厚みの1〜99%であることを特徴とする上記のポリスチレン系樹脂製発泡二軸延伸シートを提供するものである。   Further, the present invention is the above-mentioned polystyrene resin foam biaxial stretching, wherein the foamed layer / foamed layer / foamed layer are laminated in this order, and the thickness of each foamed layer is 1 to 99% of the total thickness. A sheet is provided.

また、本発明は、上記のポリスチレン系樹脂製発泡二軸延伸シートを原料とし、熱成形法によって製造されたものであることを特徴とする成形品を提供するものである。   In addition, the present invention provides a molded product characterized by being manufactured by a thermoforming method using the above polystyrene resin foamed biaxially stretched sheet as a raw material.

また、本発明は、発泡剤を含むポリスチレン系樹脂組成物と、発泡剤を含まないポリスチレン系樹脂組成物を別々の押出機で溶融混練して1つの口金から共押出させてシートを形成し、該シートを冷却後再加熱して二軸方向に共延伸することにより、少なくとも1層の非発泡層と少なくとも1層の発泡層を積層させることを特徴とする上記のポリスチレン系樹脂製発泡二軸延伸シートの製造方法を提供するものである。   Further, the present invention forms a sheet by melt-kneading a polystyrene resin composition containing a foaming agent and a polystyrene resin composition not containing a foaming agent in separate extruders and coextruding from one die, The polystyrene-based biaxial foam made of the above-mentioned polystyrene resin, wherein the sheet is reheated after being cooled and co-stretched in the biaxial direction to laminate at least one non-foamed layer and at least one foamed layer A method for producing a stretched sheet is provided.

また、本発明は、発泡剤を含むポリスチレン系樹脂組成物を、少なくとも2台以上の押出機で別々に溶融混練して1つの口金から共押出させてシートを形成し、該シートを冷却後再加熱して二軸方向に共延伸することにより、少なくとも2層以上の発泡層のみを積層させることを特徴とする上記のポリスチレン系樹脂製発泡二軸延伸シートの製造方法を提供するものである。   Further, the present invention provides a polystyrene-based resin composition containing a foaming agent, which is separately melt-kneaded with at least two extruders and coextruded from a single die to form a sheet. The present invention provides a method for producing the above-mentioned polystyrene resin foamed biaxially stretched sheet, wherein only two or more foamed layers are laminated by heating and co-stretching in the biaxial direction.

本発明によれば、次の(1)、(2)、(3)及び/又は(4)が達成できる。
(1)本発明に係るポリスチレン系樹脂製発泡二軸延伸シートは、優れた強度(衝撃強度、引裂強度、耐折強度)を有するので、熱成形して得られる成形品の薄肉軽量化が可能で、単位質量あたりの原材料からより多くの成形品を製造することができる。
(2)本発明に係るポリスチレン系樹脂製発泡二軸延伸シートは、型再現性に優れるため、熱成形性に優れる。
(3)本発明に係るポリスチレン系樹脂製発泡二軸延伸シートは、適度な剛性と同時に柔軟性、緩衝性を併せ持つので、取り扱い時に割れ、破れ等が起こり難く、安全に使用することができる。
(4)本発明に係るポリスチレン系樹脂製発泡二軸延伸シートは、洗浄を含む繰り返し使用による帯電防止性の低下が少ないので、毎回廃棄する紙代替用としてコスト的メリットを有するのみならず、自然保護にもつながる。
(5)帯電防止剤を外層にのみ又は外層に多く配合することによって、製造原料コストを上げずに表面抵抗値を下げることができる。
According to the present invention, the following (1), (2), (3) and / or (4) can be achieved.
(1) The polystyrene resin foamed biaxially stretched sheet according to the present invention has excellent strength (impact strength, tear strength, folding strength), so that it is possible to reduce the thickness and weight of the molded product obtained by thermoforming. Thus, a larger number of molded products can be produced from the raw materials per unit mass.
(2) Since the polystyrene resin foam biaxially stretched sheet according to the present invention is excellent in mold reproducibility, it is excellent in thermoformability.
(3) Since the polystyrene resin foamed biaxially stretched sheet according to the present invention has both moderate rigidity and flexibility and buffering properties, it is difficult to crack and break during handling, and can be used safely.
(4) Since the polystyrene resin foamed biaxially stretched sheet according to the present invention has little reduction in antistatic property due to repeated use including washing, it has not only a cost advantage as a substitute for paper discarded every time, but also naturally It also leads to protection.
(5) By blending a large amount of antistatic agent only in the outer layer or in the outer layer, the surface resistance value can be lowered without increasing the production raw material cost.

以下、本発明について説明するが、本発明は以下の実施の形態に限定されるものではなく、任意に変形して実施することができる。   Hereinafter, the present invention will be described. However, the present invention is not limited to the following embodiments, and can be arbitrarily modified and implemented.

本発明におけるポリスチレン系樹脂組成物は、ゴム成分を含有しないポリスチレン系樹脂を(A)、ゴム成分を含有するポリスチレン系樹脂を(B)とした場合、(A)単独、(B)単独、又は、(A)と(B)の混合物により構成される。   The polystyrene resin composition in the present invention is (A) alone, (B) alone, or (B) a polystyrene resin containing a rubber component. , (A) and a mixture of (B).

(A)の代表例としては、一般用ポリスチレン(以下、「GPPS」と記載することがある)等のポリスチレンが挙げられ、更には、スチレン、アルキルスチレン(例えば、o−、m−、p−メチルスチレン、p−エチルスチレン、p−t−ブチルスチレン)、α−アルキルスチレン(例えば、α−メチルスチレン、α−エチルスチレン)等の芳香族ビニル化合物の単独重合体、これら単量体を組み合わせた共重合体、スチレン−(メタ)アクリル酸エステル共重合体(例えば、スチレン−アクリル酸ブチル共重合体)、スチレン−(メタ)アクリル酸共重合体等が挙げられる。ここに(メタ)アクリル酸とはアクリル酸又はメタクリル酸をいう。これらの(A)は、単独または2種類以上を組み合わせて使用することができる。   Typical examples of (A) include polystyrene such as general-purpose polystyrene (hereinafter sometimes referred to as “GPPS”), and further styrene and alkylstyrene (for example, o-, m-, p-). Homopolymers of aromatic vinyl compounds such as methyl styrene, p-ethyl styrene, pt-butyl styrene), α-alkyl styrene (eg, α-methyl styrene, α-ethyl styrene), and combinations of these monomers And styrene- (meth) acrylic acid ester copolymers (for example, styrene-butyl acrylate copolymers), styrene- (meth) acrylic acid copolymers, and the like. Here, (meth) acrylic acid means acrylic acid or methacrylic acid. These (A) can be used individually or in combination of 2 or more types.

(A)としては、好ましくはGPPSである。上記したGPPS以外の(A)は、GPPSに対して、GPPSとの相溶性を有する範囲で、単独または2種類以上を組み合わせて使用することが好ましい。   (A) is preferably GPPS. (A) other than the above-described GPPS is preferably used alone or in combination of two or more in a range having compatibility with GPPS.

GPPSのなかでも、温度200℃、荷重5kgにおいてのメルトフローレートが0.5〜20g/10分の範囲のGPPSが好ましく、2〜10g/10分の範囲のGPPSが特に好ましい。このようなGPPSを用いることにより、比較的低温での溶融混練、押出発泡が可能となり、また後述する練り込み型帯電防止剤の分散性が良化する。   Among GPPS, GPPS having a melt flow rate of 0.5 to 20 g / 10 minutes at a temperature of 200 ° C. and a load of 5 kg is preferable, and GPPS having a range of 2 to 10 g / 10 minutes is particularly preferable. By using such GPPS, melt kneading and extrusion foaming at a relatively low temperature are possible, and dispersibility of the kneading type antistatic agent described later is improved.

上記(B)としては、例えば、グラフト型共重合体の代表であるHIPS、ABA型ブロック共重合体の代表であるスチレン−ブタジエン−スチレンブロック共重合体(以下、「SBS」と記載することがある)、スチレン−イソプレン−スチレンブロック共重合体(以下、「SIS」と記載することがある)等が挙げられる。「HIPS」には、ゴム成分に少なくともスチレン系単量体がグラフト重合したグラフト型のHIPS単独以外に、このグラフト型のHIPSとGPPSとをブレンドしたブレンド型HIPSも含む(但し、ブレンドされたGPPSは(A)に分類される)。   Examples of (B) include HIPS, which is representative of graft copolymers, and styrene-butadiene-styrene block copolymers (hereinafter, “SBS”), which are representative of ABA type block copolymers. And styrene-isoprene-styrene block copolymer (hereinafter sometimes referred to as “SIS”). “HIPS” includes a blend type HIPS obtained by blending this graft type HIPS and GPPS in addition to a graft type HIPS alone in which at least a styrene monomer is graft-polymerized to a rubber component (however, blended GPPS). Are classified as (A)).

上記(B)のゴム成分を有するポリスチレン系樹脂は、相溶性を有する範囲で水素添加物であってもよい。   The polystyrene resin having the rubber component (B) may be a hydrogenated product as long as it has compatibility.

上記(B)の製造において用いられるゴムとしては、例えば、ブタジエンゴム、イソプレンゴム、アクリルゴム、ブタジエン−イソプレンゴム等の非スチレン系ゴム;スチレン−ブタジエンゴム、スチレン−イソプレンゴム等のスチレン系ゴムを挙げることができる。なかでもブタジエンゴムが好ましく、ブタジエンゴムのなかでも、シス−1,4構造の含有率の高いハイシス型が、同含有率の低いローシス型より熱安定性の点から好ましい。   Examples of the rubber used in the production of (B) include non-styrene rubbers such as butadiene rubber, isoprene rubber, acrylic rubber, and butadiene-isoprene rubber; and styrene rubbers such as styrene-butadiene rubber and styrene-isoprene rubber. Can be mentioned. Among them, butadiene rubber is preferable, and among butadiene rubbers, a high cis type having a high content of cis-1,4 structure is preferable from the viewpoint of thermal stability than a low cis type having a low content.

本発明における「ゴム成分」とは、ポリスチレン系樹脂に結合された、例えば上記のゴムが有するような低弾性率の成分をいう。   The “rubber component” in the present invention refers to a component having a low elastic modulus that is bonded to a polystyrene-based resin, for example, the rubber described above.

また、「ゴム成分の含有量」は、一塩化ヨウ素、ヨウ化カリウム及びチオ硫酸ナトリウム標準液を用いた電位差滴定でジエン含有量を測定し、ジエン含有量を「ゴム成分の含有量」として計算する。分析方法は、例えば、日本分析化学会高分子分析研究懇談会編、「新版 高分子分析ハンドブック」、紀伊國屋書店(1995年度版)、P.659「(3)ゴム含量」に記載されており、この方法で測定し、そのように測定した値として定義される。後述する、シート全体に対する「シートのゴム成分含有量」も同様に測定し、そのように測定した値として定義される。   “Rubber component content” is determined by measuring the diene content by potentiometric titration using iodine monochloride, potassium iodide and sodium thiosulfate standard solution, and calculating the diene content as “rubber component content”. To do. Analytical methods include, for example, the Japan Analytical Chemical Society, Polymer Analysis Research Roundtable, “New Edition Polymer Analysis Handbook”, Kinokuniya (1995 version), P.A. 659 “(3) Rubber content”, measured by this method and defined as the value so measured. The “sheet rubber component content” for the entire sheet, which will be described later, is also measured in the same manner, and is defined as a value measured as such.

そこで、(B)中の「ゴム成分の含有量」は、(B)全体に対して、3〜50質量%が好ましく、5〜40質量%がより好ましく、7〜30質量%が特に好ましい。   Therefore, the “content of rubber component” in (B) is preferably 3 to 50% by mass, more preferably 5 to 40% by mass, and particularly preferably 7 to 30% by mass with respect to the whole (B).

(B)としては、温度200℃、荷重5kgにおいてのメルトフローレートが0.5〜20g/10分の範囲のHIPSやSISが好ましく、2〜10g/10分の範囲のHIPSやSISが特に好ましい。(B)は1種類で、または2種類以上を組み合わせて用いることができる。   (B) is preferably HIPS or SIS in which the melt flow rate at a temperature of 200 ° C. and a load of 5 kg is in the range of 0.5 to 20 g / 10 minutes, and particularly preferably HIPS or SIS in the range of 2 to 10 g / 10 minutes. . (B) can be used singly or in combination of two or more.

このようなポリスチレン系樹脂を用いることにより比較的低温での溶融混練、押出発泡が可能となり、また後述する練り込み型帯電防止剤の分散性が良化する。   By using such a polystyrene resin, melt kneading and extrusion foaming at a relatively low temperature are possible, and dispersibility of the kneading type antistatic agent described later is improved.

本発明における発泡剤としては、プロパン、ブタン、ペンタン、ヘキサン等の揮発性発泡剤;炭酸アンモニウム、重炭酸アンモニウム、重炭酸ナトリウム、クエン酸ナトリウム、アゾ化合物(アゾビスイソブチロニトリル、アゾジカルボンアミド、ジアゾアミノベンゼン等)、スルホニルヒドラジド化合物(ベンゼンスルホニルヒドラジド、p−トルエンスルホニルヒドラジド、ジフェニルオキシ−4,4‘−ビススルホニルヒドラジド等)、ニトロソ化合物(N,N’−ジニトロソペンタメチレントリアミン等)等の化学発泡剤(分解型発泡剤);二酸化炭素、窒素ガス等の気体;水等が挙げられ、これらの発泡剤を組み合わせて使用してもよい。   Examples of the foaming agent in the present invention include volatile foaming agents such as propane, butane, pentane, and hexane; ammonium carbonate, ammonium bicarbonate, sodium bicarbonate, sodium citrate, azo compounds (azobisisobutyronitrile, azodicarbonamide , Diazoaminobenzene, etc.), sulfonyl hydrazide compounds (benzenesulfonyl hydrazide, p-toluenesulfonyl hydrazide, diphenyloxy-4,4′-bissulfonyl hydrazide, etc.), nitroso compounds (N, N′-dinitrosopentamethylenetriamine, etc.) Chemical foaming agents (decomposable foaming agents) such as carbon dioxide, nitrogen gas and other gases; water and the like. These foaming agents may be used in combination.

発泡成形の方法には、(1)化学発泡剤を添加して押出成形する方法、(2)発泡ガス原料を注入しながら押出成形する方法、(3)液状の発泡ガス原料を樹脂組成物に含浸させたものを押出成形する方法等を適用することができる。なかでも発泡剤のハンドリング性、二軸延伸時の安定性、及び発泡倍率の観点から、(1)の方法が好ましく、ポリスチレンベースのマスターバッチ化されたもの(例えば、永和化成工業(株)製ポリスレンESシリーズ、三協化成(株)製セルマイクMB6000シリーズ)が好適に使用できる。また、食品用途向けには、上記のなかからポリオレフィン等衛生協議会登録品を選択的に使用できる。   The foam molding method includes (1) a method of extruding by adding a chemical foaming agent, (2) a method of extruding while injecting a foaming gas raw material, and (3) a liquid foaming gas raw material into the resin composition. A method of extruding the impregnated material or the like can be applied. Of these, the method (1) is preferable from the viewpoint of handling properties of the foaming agent, stability during biaxial stretching, and foaming ratio, and a polystyrene-based masterbatch (for example, manufactured by Eiwa Kasei Kogyo Co., Ltd.) Polyslen ES series, Sankyo Kasei Co., Ltd. Cell Microphone MB6000 series) can be suitably used. In addition, for food use, a product registered by the Sanitation Council such as polyolefin can be selectively used from the above.

発泡剤の含有量は、前記ポリスチレン系樹脂100質量部に対して、通常0.1〜5質量部、好ましくは0.3〜3質量部である。発泡剤が少な過ぎると、柔軟性、緩衝性が得られないばかりでなく、シート表面外観も見劣りしてしまう場合があり、一方、多過ぎるとシート表面外観が悪化するばかりでなく、強度(衝撃強度、引裂強度、耐折強度)が低下したり、熱成形時の型再現性や成形品外観が悪化してしまったりする場合がある。   Content of a foaming agent is 0.1-5 mass parts normally with respect to 100 mass parts of said polystyrene-type resins, Preferably it is 0.3-3 mass parts. If the amount of the foaming agent is too small, not only the flexibility and buffering properties are not obtained, but also the sheet surface appearance may be inferior. On the other hand, if the amount is too large, not only the sheet surface appearance deteriorates but also the strength (impact Strength, tear strength, and bending strength) may be reduced, and mold reproducibility during thermoforming and appearance of a molded product may be deteriorated.

また、T−ダイ等の口金に対する追従性や表面外観を改良するための充填剤(例えば、タルク、シリカ、カオリン、マイカ、炭酸カルシウム、炭酸マグネシウム等)や気泡調整剤(例えば多価カルボン酸等の酸性塩、多価カルボン酸と炭酸ナトリウム又は重炭酸ナトリウムとの反応混合物等)を用いてもよく、発泡剤同様マスターバッチ化されたものを用いてもよい。これら充填剤や気泡調整剤の割合は、ポリスチレン系樹脂組成物100質量部に対して、通常0.01〜2質量部である。   Moreover, fillers (for example, talc, silica, kaolin, mica, calcium carbonate, magnesium carbonate, etc.) and bubble regulators (for example, polyvalent carboxylic acids, etc.) for improving followability to the die such as T-die and surface appearance. Or a reaction mixture of a polyvalent carboxylic acid and sodium carbonate or sodium bicarbonate, or the like, or a master batch as well as a foaming agent may be used. The ratio of these fillers and bubble regulators is usually 0.01 to 2 parts by mass with respect to 100 parts by mass of the polystyrene resin composition.

本発明のポリスチレン系樹脂製発泡二軸延伸シートは持続的帯電防止性を有し、具体的には、JIS K6911に準拠して測定したシート表面抵抗値が10〜1013Ωであることが好ましい。 The polystyrene resin foamed biaxially stretched sheet of the present invention has a continuous antistatic property, and specifically, the sheet surface resistance value measured according to JIS K6911 is 10 7 to 10 13 Ω. preferable.

上記ポリスチレン系樹脂組成物には帯電防止剤が含有されることが好ましい。帯電防止剤は特に限定はないが、界面活性剤等の低分子量型帯電防止剤、高分子型帯電防止剤等が挙げられる。界面活性剤は、カチオン系、アニオン系、両イオン系、非イオン系に大別され、最も一般的に使われるのは、効果と経済性のバランスの良いアニオン系であり、代表的には、1)脂肪酸塩類、2)高級アルコール硫酸エステル塩類、3)液体脂肪油硫酸エステル塩類、4)脂肪族アミン及び脂肪族アミドの硫酸塩類、5)脂肪族アルコールリン酸エステル塩類、6)二塩基性脂肪酸エステル塩類、7)脂肪酸アミドスルホン酸塩類、8)アルキルアリールスルホン酸塩類、9)ホルマリン縮合のナフタレンスルホン酸塩類等が挙げられる。   The polystyrene resin composition preferably contains an antistatic agent. The antistatic agent is not particularly limited, and examples thereof include a low molecular weight type antistatic agent such as a surfactant, and a polymer type antistatic agent. Surfactants are roughly classified into cationic, anionic, zwitterionic, and nonionic, and the most commonly used is anionic with a good balance between effect and economic efficiency. 1) fatty acid salts, 2) higher alcohol sulfates, 3) liquid fatty oil sulfates, 4) sulfates of aliphatic amines and amides, 5) aliphatic alcohol phosphates, 6) dibasic Examples thereof include fatty acid ester salts, 7) fatty acid amide sulfonates, 8) alkylaryl sulfonates, 9) formalin-condensed naphthalene sulfonates, and the like.

また、熱に弱く高コストであるが帯電防止性が高いカチオン系としては、1)脂肪族アミン塩類、2)四級アンモニウム塩類、3)アルキルピリジニウム塩類等が挙げられる。更には、アニオン系の弱点である耐熱性をやや改良した両性イオン系としては、1)イミダゾリン誘導体類、2)カルボン酸アンモニウム類、3)硫酸エステルアンモニウム類、4)リン酸エステルアンモニウム類、5)スルホン酸アンモニウム類等が挙げられる。   Further, examples of the cationic system which is weak against heat and high in cost but has high antistatic properties include 1) aliphatic amine salts, 2) quaternary ammonium salts, and 3) alkylpyridinium salts. Furthermore, amphoteric ion systems with slightly improved heat resistance, which are weak points of anionic systems, include 1) imidazoline derivatives, 2) ammonium carboxylates, 3) ammonium sulfate esters, 4) ammonium phosphate esters, 5 ) Ammonium sulfonates and the like.

これら界面活性剤等の低分子量型帯電防止剤についても発泡剤同様、マスターバッチ化されたものを用いてもよい。また、食品用途向けには上記のなかから、ポリオレフィン等衛生協議会登録品を選択的に使用することが好ましい。帯電防止性の付与方式としては公知の方法である[1]:練り込みタイプの帯電防止剤の使用、[2]:塗布タイプの帯電防止剤の使用、[3]:[1]と[2]の併用等が挙げられる。   As for these low molecular weight type antistatic agents such as surfactants, those in the form of a masterbatch may be used like the foaming agent. Moreover, it is preferable to selectively use a Sanitation Council registered product such as polyolefin from among the above for food use. [1]: Use of a kneading type antistatic agent, [2]: Use of a coating type antistatic agent, [3]: [1] and [2]. ] And the like.

ポリスチレン系樹脂と「界面活性剤等の低分子量型帯電防止剤」との割合(質量比、多層シートの場合は低分子量型帯電防止剤を含む1つの層当りの質量比)は、ポリスチレン系樹脂/帯電防止剤=80/20〜99.5/0.5の範囲から選択することが好ましく、特に好ましくは90/10〜99/1である。帯電防止剤が少な過ぎる場合は、帯電防止性や持続的帯電防止性が劣る場合があり、一方、多過ぎる場合は、それ以上の効果がでない場合、帯電防止剤の過剰なブリードアウトにより接触物が汚染される場合がある。   The ratio of the polystyrene resin to the “low molecular weight type antistatic agent such as a surfactant” (mass ratio, in the case of a multilayer sheet, the mass ratio per layer including the low molecular weight type antistatic agent) is the polystyrene resin. / Antistatic agent is preferably selected from the range of 80/20 to 99.5 / 0.5, particularly preferably 90/10 to 99/1. If the amount of the antistatic agent is too small, the antistatic property or the sustained antistatic property may be inferior. On the other hand, if the amount is too large, if there is no further effect, the contact material is caused by excessive bleeding out of the antistatic agent. May become contaminated.

用途が洗浄を含む繰り返し使用の場合は、特に限定されないが、なかでもシート表面への帯電防止剤の過剰なブリードアウトによる接触物の汚染が防止できることから、高分子型帯電防止剤が好ましく、具体的には、ポリエーテルエステル系高分子型帯電防止剤等のノニオン系高分子型帯電防止剤、エチレン・不飽和カルボン酸共重合体のカリウムアイオノマーやポリスチレンスルホン酸系高分子型帯電防止剤等のアニオン系高分子型帯電防止剤、ポリアクリルエステル系高分子型帯電防止剤等のカチオン系高分子型帯電防止剤等が好ましいものとして挙げられる。なかでも、帯電防止性能に優れる点で、ポリエーテルエステル系高分子型帯電防止剤やエチレン・不飽和カルボン酸共重合体のカリウムアイオノマーが好ましく、ポリエーテルエステルアミド系高分子型帯電防止剤やエチレン・(メタ)アクリル酸ランダム共重合体のカリウムアイオノマーが特に好ましい。ここでエチレン・(メタ)アクリル酸ランダム共重合体のカリウムアイオノマーには帯電防止性能を上げる目的でグリセリンやポリエチレングリコールを含んでいても良い。尚、(メタ)アクリル酸とはアクリル酸又はメタクリル酸をいう。   In the case of repeated use including cleaning, the use is not particularly limited, but a polymer type antistatic agent is preferable because it can prevent contamination of the contact material due to excessive bleeding out of the antistatic agent to the sheet surface. Specifically, nonionic polymer antistatic agents such as polyether ester polymer antistatic agents, potassium ionomers of ethylene / unsaturated carboxylic acid copolymers, polystyrene sulfonic acid polymer antistatic agents, etc. Cationic polymer antistatic agents such as anionic polymer antistatic agents and polyacrylic ester polymer antistatic agents are preferred. Of these, polyether ester polymer type antistatic agents and potassium ionomers of ethylene / unsaturated carboxylic acid copolymers are preferred from the viewpoint of excellent antistatic performance, and polyether ester amide polymer type antistatic agents and ethylene are preferred. -A potassium ionomer of a (meth) acrylic acid random copolymer is particularly preferred. Here, the potassium ionomer of the ethylene / (meth) acrylic acid random copolymer may contain glycerin or polyethylene glycol for the purpose of improving the antistatic performance. In addition, (meth) acrylic acid means acrylic acid or methacrylic acid.

ポリスチレン系樹脂と高分子型帯電防止剤との割合(質量比、多層シートの場合は高分子型帯電防止剤を含む1つの層当りの質量比)はポリスチレン系樹脂/高分子型帯電防止剤=50/50〜99.5/0.5の範囲から選択することが好ましく、更に好ましくは60/40〜95/5である。   The ratio of the polystyrene resin to the polymer antistatic agent (mass ratio, in the case of a multilayer sheet, the mass ratio per layer including the polymer antistatic agent) is polystyrene resin / polymer antistatic agent = It is preferable to select from the range of 50/50 to 99.5 / 0.5, and more preferably 60/40 to 95/5.

上記した界面活性剤等の低分子量型帯電防止剤;上記したポリエーテルエステル系高分子型帯電防止剤、カリウムアイオノマー等の高分子型帯電防止剤;等の帯電防止剤は、いずれの層に含有させてもよいが、外層にのみ又は内層より外層に多く配合させることによって、ポリスチレン系樹脂製発泡二軸延伸シートの帯電防止性能を下げずに帯電防止剤の使用量を減らすことができる。すなわち、製造原料コストを上げずに表面抵抗値を十分に下げることができる。特に、発泡層/発泡層/発泡層の順で積層された本発明のポリスチレン系樹脂製発泡二軸延伸シートにおいては、上記した理由でその積層形態の効果をより発揮する。   Antistatic agents such as the above surfactants and other low molecular weight antistatic agents; the above-described polyether ester polymer antistatic agents and polymer antistatic agents such as potassium ionomer; However, the amount of the antistatic agent used can be reduced without lowering the antistatic performance of the polystyrene resin foamed biaxially stretched sheet by blending only in the outer layer or more in the outer layer than in the inner layer. That is, the surface resistance value can be sufficiently lowered without increasing the manufacturing raw material cost. In particular, in the polystyrene resin foamed biaxially stretched sheet of the present invention laminated in the order of foamed layer / foamed layer / foamed layer, the effect of the laminated form is more exhibited for the reasons described above.

また、前記高分子型帯電防止剤と共に、その分散剤を添加してもよい。分散剤としては特に限定されないが、例えば、分子鎖内にポリスチレン系樹脂との相溶性がある非極性ユニットと、高分子型帯電防止剤との相溶性がある極性ユニットを有する共重合体が挙げられ、具体的には酸変性オレフィン系樹脂等が挙げられる。分散剤の割合はポリスチレン系樹脂と高分子型帯電防止剤との合計100質量部に対して、通常0.01〜20質量部、好ましくは1〜10質量部である。   In addition, the dispersant may be added together with the polymer type antistatic agent. Although it does not specifically limit as a dispersing agent, For example, the copolymer which has a nonpolar unit compatible with a polystyrene-type resin in a molecular chain, and a polar unit compatible with a polymer type antistatic agent is mentioned. Specific examples include acid-modified olefin resins. The ratio of the dispersing agent is usually 0.01 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass in total of the polystyrene resin and the polymer antistatic agent.

上記ポリスチレン系樹脂組成物には、本発明の目的を損なわない範囲で、その他充填剤、その他分散剤、内部潤滑剤、熱安定剤、酸化防止剤、紫外線吸収剤、難燃剤、可塑剤、防曇剤、抗菌剤、顔料、染料、流動性改良剤、増粘剤、カーボンブラック、ケッチェンブラック、黒鉛、補強材等の各種添加剤を配合してもよい。   The polystyrene-based resin composition includes other fillers, other dispersants, internal lubricants, thermal stabilizers, antioxidants, ultraviolet absorbers, flame retardants, plasticizers, anti-proofing agents, as long as the object of the present invention is not impaired. Various additives such as a clouding agent, an antibacterial agent, a pigment, a dye, a fluidity improver, a thickener, carbon black, ketjen black, graphite, and a reinforcing material may be blended.

上記ポリスチレン系樹脂組成物には、相溶性を損なわない他の樹脂も含有させることができる。他の樹脂としては、ポリフェニレンエーテル(GPPS及び/又はHIPSと完全相溶系を形成することが好ましい)等が挙げられる。但し、実質的には、ポリオレフィン系樹脂、ポリエステル系樹脂またはポリアミド系樹脂のいずれも含んでいないものであることが好ましい(ここに高分子型帯電防止剤は除くものとする)。これらの樹脂を実質的に含有すると、相溶性が低いため、もしくは相溶化剤を併用してもまだ相溶性が不十分なため、二軸延伸が困難となり、可能な場合でも強度(特に引裂強度、耐折強度)が低下してしまう場合があり、コスト的に優れたシートの開発が困難となってしまう場合がある。尚、上記「ポリオレフィン系樹脂」には、前記したポリスチレン系樹脂は含まれない。   The polystyrene-based resin composition can also contain other resins that do not impair the compatibility. Examples of other resins include polyphenylene ether (which preferably forms a completely compatible system with GPPS and / or HIPS). However, it is preferable that substantially no polyolefin-based resin, polyester-based resin or polyamide-based resin is contained (here, the polymer type antistatic agent is excluded). When these resins are substantially contained, the compatibility is low, or the compatibility is still insufficient even with the use of a compatibilizing agent, so biaxial stretching becomes difficult, and even when possible, the strength (particularly the tear strength) , Folding strength) may be reduced, and it may be difficult to develop a sheet having excellent cost. The “polyolefin resin” does not include the polystyrene resin.

本発明のポリスチレン系樹脂製発泡二軸延伸シートは、以下の(1)、(2)又は(3)の形態であることが好ましい。
(1)非発泡層/発泡層/非発泡層の順に積層され、かつ両非発泡層の厚みの合計が全厚みの1〜70%である上記のポリスチレン系樹脂製発泡二軸延伸シート
(2)発泡層/非発泡層/発泡層の順に積層され、かつ非発泡層の厚みが全厚みの5〜95%である上記のポリスチレン系樹脂製発泡二軸延伸シート
(3)発泡層/発泡層/発泡層の順に積層され、かつ各発泡層の厚みが全厚みの1〜99%である上記のポリスチレン系樹脂製発泡二軸延伸シート
The polystyrene resin foamed biaxially stretched sheet of the present invention is preferably in the following form (1), (2) or (3).
(1) The above-mentioned polystyrene resin foamed biaxially stretched sheet (2), which is laminated in the order of non-foamed layer / foamed layer / non-foamed layer, and the total thickness of both non-foamed layers is 1 to 70% of the total thickness. ) The above-mentioned polystyrene resin foamed biaxially stretched sheet (3) foamed layer / foamed layer, which is laminated in the order of foamed layer / non-foamed layer / foamed layer, and the thickness of the non-foamed layer is 5 to 95% of the total thickness. / The foamed biaxially stretched sheet made of the polystyrene resin, wherein the foamed layers are laminated in the order of the foamed layers, and the thickness of each foamed layer is 1 to 99% of the total thickness.

本発明のポリスチレン系樹脂製発泡二軸延伸シートの製造方法については、上記(1)と(2)のポリスチレン系樹脂製発泡二軸延伸シートでは、発泡剤を含むポリスチレン系樹脂組成物と、発泡剤を含まないポリスチレン系樹脂組成物を別々の押出機で溶融混練して1つの口金から共押出させてシートを形成し、該シートを冷却後再加熱して二軸方向に共延伸することにより、少なくとも1層の非発泡層と少なくとも1層の発泡層を積層させる製造方法が好ましい。   About the manufacturing method of the polystyrene resin foam biaxially stretched sheet of the present invention, in the polystyrene resin foamed biaxially stretched sheet of (1) and (2), a polystyrene resin composition containing a foaming agent, and foaming are used. By melt-kneading a polystyrene-based resin composition not containing an agent in a separate extruder and co-extruding from one die to form a sheet, reheating the sheet after cooling, and co-stretching in a biaxial direction A production method in which at least one non-foamed layer and at least one foamed layer are laminated is preferable.

また、上記(3)のポリスチレン系樹脂製発泡二軸延伸シートについては、発泡剤を含むポリスチレン系樹脂組成物を、少なくとも2台以上の押出機で別々に溶融混練して1つの口金から共押出させてシートを形成し、該シートを冷却後再加熱して二軸方向に共延伸することにより、少なくとも2層以上の発泡層のみを積層させる製造方法が好ましい。   In addition, for the polystyrene resin foamed biaxially stretched sheet of (3) above, a polystyrene resin composition containing a foaming agent is separately melt-kneaded by at least two extruders and coextruded from one die. A production method in which only a foam layer of at least two layers is laminated by forming a sheet, reheating the sheet after cooling, and co-stretching in a biaxial direction is preferable.

上記(1)、(2)又は(3)のいずれのポリスチレン系樹脂製発泡二軸延伸シートであっても、別々の押出機で溶融混練して1つの口金から共押出させてシートを形成し、該シートを冷却後再加熱して二軸方向に共延伸することが好ましいが、更に以下のように製造することが特に好ましい。ただし、本発明は以下の具体的範囲には限定されず、本発明の思想の範囲内で変形が可能である。   Any polystyrene resin foamed biaxially stretched sheet of (1), (2) or (3) above is melt-kneaded with a separate extruder and coextruded from a single die to form a sheet. The sheet is preferably reheated after cooling and co-stretched in the biaxial direction, but it is particularly preferable to produce the sheet as follows. However, the present invention is not limited to the following specific scope and can be modified within the scope of the idea of the present invention.

例えば、「HIPS等の上記(B)」及び/又は「GPPS等の上記(A)」と帯電防止剤、必要に応じてその他各種添加剤を所定量計量しながら二軸押出機にて溶融混練し、ペレット化して帯電防止剤含有マスターバッチを準備する。帯電防止剤の種類によっては市販のマスターバッチを使用することもできるし、市販品をそのまま使用することもできる。   For example, melt-kneading in a twin screw extruder while measuring a predetermined amount of “the above (B) such as HIPS” and / or “the above (A) such as GPPS”, an antistatic agent, and various other additives as required. And pelletizing to prepare an antistatic agent-containing masterbatch. Depending on the type of the antistatic agent, a commercially available master batch can be used, or a commercially available product can be used as it is.

次に少なくとも2台の押出機を準備する。一方には、HIPSやGPPS或いは帯電防止剤含有マスターバッチを秤量してブレンダーやタンブラーによって攪拌し、ドライブレンド物(発泡剤を含まないポリスチレン系樹脂組成物)として投入し、溶融混練する。他方には、HIPSやGPPS或いは帯電防止剤含有マスターバッチ並びに発泡剤マスターバッチを秤量して、ブレンダーやタンブラーによって攪拌し、ドライブレンド物(発泡剤を含むポリスチレン系樹脂組成物)として投入し、溶融混練する。   Next, at least two extruders are prepared. On the other hand, HIPS, GPPS, or an antistatic agent-containing master batch is weighed, stirred by a blender or tumbler, charged as a dry blend (polystyrene resin composition containing no foaming agent), and melt-kneaded. On the other hand, HIPS, GPPS or antistatic agent-containing masterbatch and foaming agent masterbatch are weighed, stirred with a blender or tumbler, charged as a dry blend (polystyrene resin composition containing a foaming agent), and melted. Knead.

次に、これら押出機に接続された1組のフィードブロック及びフィードブロックダイ、或いはマルチマニホールドダイ(これらのダイを総称して「T−ダイ」と称することがある)にて合流・積層させ連続的に押出発泡させながら共押出して冷却ロールで急冷する。次に急冷した、少なくとも1層の発泡層と「少なくとも1層の非発泡層若しくは発泡層」とが積層された発泡原反シートを加熱ロールで再加熱し、ロール延伸法で縦延伸、続いてテンター法で横延伸し、連続的に共延伸(逐次二軸延伸)を行う。そして最後にワインダーにてロール状に巻き取る方法が好ましい。   Next, a set of feed blocks and feed block dies connected to these extruders or a multi-manifold die (these dies may be collectively referred to as “T-die”) are joined and stacked to be continuous. Co-extrusion is performed while extruding and foaming, and the product is quenched with a cooling roll. Next, the foam raw sheet in which at least one foamed layer and “at least one non-foamed layer or foamed layer” are laminated is re-heated with a heating roll, and longitudinally stretched by a roll stretching method. Transverse stretching is performed by the tenter method, and continuous co-stretching (sequential biaxial stretching) is performed. Finally, a method of winding in a roll with a winder is preferable.

ここで、本発明のポリスチレン系樹脂製発泡二軸延伸シートは、少なくとも1層の発泡層と「少なくとも1層の非発泡層若しくは発泡層」が積層された構成であることが必須である。こうすることで、少なくとも1層の発泡層と少なくとも1層の非発泡層が積層された構成の場合には、発泡基材を二軸延伸しても、縦延伸時の端部からの破断や端部不良による横延伸時のチャック外れを抑えることが可能となり、二軸延伸安定性が確保され、歩留まり向上につながる。また同時に、ポリスチレン系樹脂製発泡二軸延伸シート自体や該シートを原料として製造された成形品自体の強度も向上することとなる。即ち通常の押出発泡だけでは困難な薄肉軽量化が二軸延伸技術により可能となる。   Here, the polystyrene resin foamed biaxially stretched sheet of the present invention must have a configuration in which at least one foamed layer and “at least one non-foamed layer or foamed layer” are laminated. In this way, in the case of a configuration in which at least one foamed layer and at least one non-foamed layer are laminated, even if the foamed base material is biaxially stretched, breakage from the end during longitudinal stretching It is possible to suppress chuck detachment at the time of lateral stretching due to defective edges, and biaxial stretching stability is ensured, leading to an improvement in yield. At the same time, the strength of the polystyrene resin foamed biaxially stretched sheet itself and the molded product itself produced using the sheet as a raw material are also improved. That is, it is possible to reduce the thickness and weight, which is difficult only by ordinary extrusion foaming, by the biaxial stretching technique.

一方、発泡層と発泡層とが積層された構成の場合には、所望の層に帯電防止剤を配合することによって、帯電防止剤の全体の使用量を減らすことが可能であり、また非発泡層が積層された構成より、よりシート全体としての柔軟性や緩衝性を高めることが可能である。但し、発泡層のみからなるシートの二軸延伸安定性は、非発泡層が積層された構成より低下する傾向にあるが、(1)押出発泡品の特徴として厚さ方向で表面付近より中央付近の方が発泡倍率が高くなるので、発泡積層構成品は同じ厚みの単層発泡構成品に比べ、一つの層における厚さ方向の発泡倍率の振れを抑えることができ、縦・横延伸時のシート穴開きやそれに伴う破断を抑えることが可能となる。(2)各層の発泡倍率/及び又はゴム成分含有量を変えることで(例えば、3層構造で、両外層の発泡倍率/及び又はゴム成分含有量を中間層のそれより低くする、或いはその逆にすることで)、縦延伸時の端部からの破断や、縦・横延伸時のシート穴開きやそれに伴う破断を抑えることが可能となり、二軸延伸安定性が向上する。   On the other hand, in the case of a structure in which a foam layer and a foam layer are laminated, it is possible to reduce the total amount of use of the antistatic agent by blending the antistatic agent into a desired layer, and non-foaming It is possible to increase the flexibility and cushioning properties of the entire sheet from the structure in which the layers are laminated. However, the biaxial stretching stability of the sheet consisting only of the foamed layer tends to be lower than that of the structure in which the non-foamed layer is laminated. Since the foaming ratio is higher, the foamed laminated component can suppress the fluctuation of the foaming magnification in the thickness direction in one layer compared to the single-layer foamed component of the same thickness, It is possible to suppress sheet hole opening and breakage associated therewith. (2) By changing the expansion ratio / and / or rubber component content of each layer (for example, in a three-layer structure, the expansion ratio / and / or rubber component content of both outer layers is made lower than that of the intermediate layer, or vice versa. Therefore, it is possible to suppress breakage from the end during longitudinal stretching, sheet punching during longitudinal and lateral stretching, and breakage associated therewith, and improve biaxial stretching stability.

具体的な層構成として、非発泡層/発泡層/非発泡層の場合は、両非発泡層の厚みの合計が全厚みの1〜70%とすることが好ましい。より好ましくは3〜45%、更に好ましくは5〜20%である。ここで、両非発泡層の厚みの合計が1%未満では二軸延伸安定性が保てなかったり、シートが強度不足になったりする場合がある。逆に70%より厚いとシートの剛性が高くなるばかりか、柔軟性、緩衝性が低下する場合がある。   As a specific layer structure, in the case of non-foamed layer / foamed layer / non-foamed layer, the total thickness of both non-foamed layers is preferably 1 to 70% of the total thickness. More preferably, it is 3-45%, More preferably, it is 5-20%. Here, if the total thickness of both non-foamed layers is less than 1%, biaxial stretching stability may not be maintained, or the sheet may have insufficient strength. On the contrary, if it is thicker than 70%, not only the rigidity of the sheet is increased, but also the flexibility and the buffering property may be lowered.

他の具体的な層構成として、発泡層/非発泡層/発泡層の場合は、非発泡層の厚みが全厚みの5〜95%が好ましい。より好ましくは10〜65%、更に好ましくは15〜35%である。ここで、非発泡層の厚みが5%未満では二軸延伸安定性が保てなかったり、シートが強度不足になったりする場合がある。逆に95%より厚いとシートの剛性が高くなるばかりか、柔軟性、緩衝性が低下してしまい、シートの発泡外観(手触り感、凹凸等)も失われてしまう場合がある。   As another specific layer configuration, in the case of foam layer / non-foam layer / foam layer, the thickness of the non-foam layer is preferably 5 to 95% of the total thickness. More preferably, it is 10 to 65%, and further preferably 15 to 35%. Here, if the thickness of the non-foamed layer is less than 5%, biaxial stretching stability may not be maintained, or the sheet may have insufficient strength. On the other hand, if it is thicker than 95%, not only the rigidity of the sheet will be increased, but also the flexibility and buffering properties will be reduced, and the foamed appearance (feel, unevenness, etc.) of the sheet may be lost.

他の具体的な層構成として、発泡層/発泡層/発泡層の場合は、各発泡層の厚みが全厚みの1〜99%であることが好ましい。より好ましくは5〜95%、更に好ましくは10〜80%である。ここで、各発泡層のどこかの層の厚みが薄過ぎたり、逆に厚過ぎたりすると、共押出自身が困難であったり、可能な場合でも二軸延伸時に厚みの厚い層が破泡してシートに穴が開き、更には破断が発生する場合がある。また、層構成が非対称の場合、シートが反ったり、繰り返し使用中に変形したりする場合があり、層構成が対称の場合でも、シートの発泡外観(手触り感、凹凸等)が失われてしまう場合がある。   As another specific layer structure, in the case of foam layer / foam layer / foam layer, the thickness of each foam layer is preferably 1 to 99% of the total thickness. More preferably, it is 5-95%, More preferably, it is 10-80%. Here, if the thickness of any of the foam layers is too thin, or conversely too thick, coextrusion itself is difficult, or even if possible, a thick layer breaks during biaxial stretching. As a result, a hole may be formed in the sheet and a break may occur. In addition, when the layer structure is asymmetric, the sheet may be warped or deformed during repeated use, and even when the layer structure is symmetric, the foamed appearance (feel, texture, etc.) of the sheet is lost. There is a case.

本発明に係るポリスチレン系樹脂製発泡二軸延伸シートの厚みは0.05〜1mmが好ましい。薄肉軽量化の観点から、より好ましくは0.08〜0.5mmであり、更に好ましくは0.1〜0.3mmである。シートの厚みが0.05mm未満では、シート自体及び成形品自体の剛性が不足し、シートとして繰り返し使用する場合、折れたり皺が入り易くなったりする場合がある。また該シートを原料として製造された成形品(トレイ等)の場合は、収納した食品等の保持、保存が困難になってしまう場合がある。一方、厚さが1mmを超えると、シートや成形品の嵩や、スタック高さが高くなり、結局保管スペースや輸送コストが高くなってしまい、リサイクル及びコストの観点から好ましくない。本発明の方法で製造されたポリスチレン系樹脂製発泡二軸延伸シート(本発明のポリスチレン系樹脂製発泡二軸延伸シート)は、他の物性を良好に保ちつつ、上記厚みを実現することが可能である。特に薄肉軽量化しても二軸延伸の安定性確保と、割れや破れが起こり難いための強度確保が可能である。   The thickness of the polystyrene resin foamed biaxially stretched sheet according to the present invention is preferably 0.05 to 1 mm. From the viewpoint of reducing the thickness and weight, it is more preferably 0.08 to 0.5 mm, and still more preferably 0.1 to 0.3 mm. When the thickness of the sheet is less than 0.05 mm, the rigidity of the sheet itself and the molded product itself is insufficient, and when used repeatedly as a sheet, the sheet may be easily folded or wrinkled. In the case of a molded product (tray or the like) manufactured using the sheet as a raw material, it may be difficult to hold and store the stored food. On the other hand, when the thickness exceeds 1 mm, the bulk of the sheet or the molded product and the stack height increase, resulting in an increase in storage space and transportation cost, which is not preferable from the viewpoint of recycling and cost. The polystyrene resin foamed biaxially stretched sheet produced by the method of the present invention (polystyrene resin foamed biaxially stretched sheet of the present invention) can achieve the above-mentioned thickness while maintaining other physical properties in good condition. It is. In particular, it is possible to ensure the stability of biaxial stretching and the strength to prevent cracking and tearing even if the thickness and weight are reduced.

本発明のポリスチレン系樹脂製発泡二軸延伸シートには、ゴム成分が実質的に含有されていることが好ましい。本発明のポリスチレン系樹脂製発泡二軸延伸シートのゴム成分含有量(以下、「シートのゴム成分含有量」と記載することがある。)は、より好ましくは0.1〜30質量%であり、特に好ましくは1.0〜20質量%であり、更に好ましくは5.0〜15質量%である。ここで、本発明における「シートのゴム成分含有量」とは、前記の例えばHIPS、SIS、SBS等の樹脂全体に対する「ゴム成分の含有量」とは異なり、ポリスチレン系樹脂製発泡二軸延伸シート全体に対するゴム成分含有量を意味する。すなわち、個々の樹脂におけるゴム成分の含有量ではなく、ポリスチレン系樹脂製発泡二軸延伸シート又は該シートを原料として製造された成形品に対するゴム成分含有量を意味し、測定方法は前記した「ゴム成分の含有量」の場合と同様である。ゴム成分が実質的に含有されていなかったり、「シートのゴム成分含有量」が0.1質量%未満であったりすると、製造された発泡二軸延伸シート及び成形品(容器等)の、衝撃強度、引裂強度、耐折強度が向上せず、割れ易く、或いは破れ易くなってしまう場合がある。一方、「シートのゴム成分含有量」が30質量%を超えると、製造時の押出安定性や延伸安定性が悪くなるばかりでなく、製造された発泡二軸延伸シート及び成形品の剛性が低下してしまう場合がある。   The polystyrene-based foamed biaxially stretched sheet of the present invention preferably contains a rubber component substantially. The rubber component content of the polystyrene resin foamed biaxially stretched sheet of the present invention (hereinafter sometimes referred to as “the rubber component content of the sheet”) is more preferably 0.1 to 30% by mass. Especially preferably, it is 1.0-20 mass%, More preferably, it is 5.0-15 mass%. Here, the “rubber component content of the sheet” in the present invention is different from the “content of rubber component” for the whole resin such as HIPS, SIS, SBS, etc., and is a polystyrene resin foamed biaxially stretched sheet. It means the rubber component content relative to the whole. That is, it means not the content of the rubber component in each resin, but the content of the rubber component in the polystyrene resin foamed biaxially stretched sheet or a molded product produced from the sheet. This is the same as the case of “content of component”. If the rubber component is not substantially contained, or if the “rubber component content of the sheet” is less than 0.1% by mass, the impact of the produced biaxially stretched sheet and molded product (container, etc.) In some cases, the strength, tear strength, and folding strength are not improved, and are easily broken or easily broken. On the other hand, when the “rubber component content of the sheet” exceeds 30% by mass, not only the extrusion stability and the stretching stability during production are deteriorated, but also the rigidity of the produced biaxially stretched sheet and molded product is lowered. May end up.

「シートのゴム成分含有量」が上記範囲内に入るようにするには、ゴム成分の含有量が多い(B)を少量使用して範囲内に入るようにしても、ゴム成分の含有量が少ない(B)を多量に使用して範囲内に入るようにしてもよい。また、ゴム成分を含まない(A)の含有量で調整してもよい。また、それぞれの層の厚みを調整して上記範囲に入るようにしてもよい。   In order to make the “rubber component content of the sheet” within the above range, even if a small amount of (B) containing a large amount of the rubber component is used, A small amount (B) may be used in a large amount so as to fall within the range. Moreover, you may adjust with content of (A) which does not contain a rubber component. Further, the thickness of each layer may be adjusted so as to fall within the above range.

本発明におけるポリスチレン系樹脂製発泡二軸延伸シートの縦方向(シートの押出し方向、以下「MD」と記載することがある)と横方向(シートの押出し方向と直角方向、以下「TD」と記載することがある)の熱収縮応力の平均値は0.10〜2.0MPaであることが好ましい。より好ましくは、0.20〜1.0MPa、更に好ましい範囲は0.30〜0.7MPaである。この平均値が0.10MPa未満では、シート自体及びこのシートを成形した成形品自体が割れ易く、或いは破れ易くなる場合がある。また熱成形時、特に熱板加熱式圧空成形時には金型外周のワク部分で裂けて成形不良が発生する場合もある。逆に平均値が2.0MPaより高くなると、熱成形時の型再現性(シートが金型キャビティ形状を忠実に再現する性能)が不良となる場合がある。また、熱成形用でない場合でもシートの剛性が高くなりすぎ柔軟性、緩衝性の点から好ましくない場合がある。   The longitudinal direction (extrusion direction of the sheet, hereinafter sometimes referred to as “MD”) and lateral direction (direction perpendicular to the extrusion direction of the sheet, hereinafter “TD”) of the polystyrene resin foamed biaxially stretched sheet in the present invention. The average value of the heat shrinkage stress is preferably 0.10 to 2.0 MPa. More preferably, it is 0.20 to 1.0 MPa, and a more preferable range is 0.30 to 0.7 MPa. If this average value is less than 0.10 MPa, the sheet itself and the molded product itself formed from this sheet may be easily broken or easily broken. Also, during thermoforming, particularly hot plate heating type air pressure molding, there may be a case where a molding failure occurs due to tearing at the back portion of the outer periphery of the mold. Conversely, if the average value is higher than 2.0 MPa, the mold reproducibility during thermoforming (the ability of the sheet to faithfully reproduce the mold cavity shape) may be poor. Further, even when not for thermoforming, the rigidity of the sheet becomes too high, which may not be preferable in terms of flexibility and buffering properties.

本発明において「熱収縮応力」とは、ポリスチレン系樹脂製発泡二軸延伸シートが、ASTM D−1504に準拠した日理工業社製の「DN式ストレステスター」を使用して、熱収縮される際の最大荷重を測定し、その最大荷重の値から熱収縮前の該シートの断面積で除した数値(単位[MPa])を意味する。   In the present invention, “thermal shrinkage stress” means that a polystyrene resin foamed biaxially stretched sheet is thermally shrunk using a “DN-type stress tester” manufactured by Nichi Kogyo Co., Ltd. according to ASTM D-1504. It means a numerical value (unit [MPa]) obtained by measuring the maximum load at the time and dividing the maximum load value by the cross-sectional area of the sheet before thermal shrinkage.

本発明のポリスチレン系樹脂製発泡二軸延伸シートの「延伸」については、延伸工程を経ているものであれば、延伸倍率等に関し特に限定はない。本発明のポリスチレン系樹脂製発泡二軸延伸シートのMDとTDの延伸倍率は、MDとTDの熱収縮応力の平均値が上記範囲に入るように定められていることが好ましい。好ましくはMD、TDいずれも1.1〜5.0倍、特に好ましくは2.0〜3.0倍である。また、用途に合わせた表面状態を達成するため、或いは二次加工時に収縮させる目的でMDとTDで熱収縮応力や延伸倍率に大きく差をつけ、異方性を持たせてもよい。   The “stretching” of the polystyrene resin foamed biaxially stretched sheet of the present invention is not particularly limited with respect to the stretching ratio and the like as long as it has undergone a stretching process. The MD and TD stretch ratios of the polystyrene resin foamed biaxially stretched sheet of the present invention are preferably determined so that the average value of the thermal shrinkage stress of MD and TD falls within the above range. Preferably both MD and TD are 1.1 to 5.0 times, particularly preferably 2.0 to 3.0 times. Further, in order to achieve a surface state suitable for the application or for the purpose of shrinking at the time of secondary processing, the thermal shrinkage stress and the draw ratio may be greatly different between MD and TD to give anisotropy.

上記の延伸倍率とは、ポリスチレン系樹脂製発泡二軸延伸シートの試験片に記入した直線の長さが収縮前後で変化した割合であり、具体的には、次式、すなわち、延伸倍率=Y/Z、によって算出される値(単位[倍])を意味する。この式において、Yは、ポリスチレン系樹脂製発泡二軸延伸シートの試験片に、定規及び筆記用具を用いて、MD及びTDに描いた直線の長さ[mm]を示し、Zは140℃のシリコーンオイルバスに、上記試験片を10分間浸漬し収縮させた後の、上記直線の長さ[mm]を示す。   The above draw ratio is the ratio of the length of the straight line written on the test piece of the polystyrene-based resin foamed biaxially stretched sheet before and after shrinkage. Specifically, the following formula, that is, the draw ratio = Y This means a value (unit [times]) calculated by / Z. In this formula, Y represents the length [mm] of a straight line drawn on MD and TD using a ruler and a writing instrument on a test piece of a polystyrene-based resin foamed biaxially stretched sheet, and Z is 140 ° C. The length [mm] of the straight line after the test piece is immersed and contracted in a silicone oil bath for 10 minutes is shown.

本発明のポリスチレン系樹脂製発泡二軸延伸シートにおける「発泡」とは、発泡倍率1.01倍〜20倍かつ気泡セルの平均長径10μm〜5000μmとなっているものをいう。   The “foaming” in the polystyrene resin foamed biaxially stretched sheet of the present invention means a foaming ratio of 1.01 to 20 times and an average major axis of the cell of 10 μm to 5000 μm.

本発明のポリスチレン系樹脂製発泡二軸延伸シートの発泡倍率は、上記「発泡」の定義に入っていれば、所望する用途、特性等に応じて選択でき特に限定はないが、1.1〜2.5倍とすることが好ましい。1.1倍未満ではシート外観、柔軟性、緩衝性、手触り感等が低下し、2.5倍を超えるとシートの剛性や外観、表面均一性等が低下してしまう場合があり、特にシート厚みが薄い場合は、シート端部からの破断頻度が多くなり、二軸延伸の連続運転が不可能となってしまう場合がある。発泡倍率は、好ましくは1.2〜2.0倍、特に好ましくは、1.3〜1.7倍である。発泡倍率の制御は、発泡剤の種類、特に配合量、発泡押出時の樹脂温度、樹脂圧力等によって可能である。   The foaming ratio of the polystyrene resin foamed biaxially stretched sheet of the present invention is not particularly limited as long as it falls within the definition of “foaming” and can be selected according to the desired application, characteristics, etc. It is preferably 2.5 times. If it is less than 1.1 times, the sheet appearance, flexibility, cushioning, hand feeling, etc. will be reduced, and if it exceeds 2.5 times, the rigidity, appearance, surface uniformity, etc. of the sheet may be reduced. When the thickness is thin, the frequency of breakage from the sheet end increases, and continuous operation of biaxial stretching may become impossible. The expansion ratio is preferably 1.2 to 2.0 times, particularly preferably 1.3 to 1.7 times. The expansion ratio can be controlled by the type of foaming agent, particularly the blending amount, the resin temperature during foaming extrusion, the resin pressure, and the like.

発泡倍率(P)は、JIS K7222に準拠して測定した発泡シートの密度(Q)と、JIS K7112のD法に準拠して測定した、その発泡体材料の発泡させていない状態の密度(R)より、P=R/Qにより求めることができる。   The expansion ratio (P) is the density (Q) of the foam sheet measured according to JIS K7222, and the density (R) of the foam material measured according to JIS K7112 D method (R). ), P = R / Q.

また、気泡セルのサイズについても特に限定されないが、平均長径を10〜5000μmにすることが好ましく、100〜3000μmにすることが特に好ましい。平均アスペクト比(=気泡の平均長径/気泡の平均短径)は1〜5にすることが好ましく、1〜4にすることが特に好ましい。   Moreover, although it does not specifically limit about the size of a bubble cell, It is preferable to make an average major axis into 10-5000 micrometers, and it is especially preferable to set it as 100-3000 micrometers. The average aspect ratio (= average long diameter of bubbles / average short diameter of bubbles) is preferably 1 to 5, and particularly preferably 1 to 4.

最外層若しくは表面の極近傍に発泡層がある場合には、例えば意匠性のある表面外観、表面均一性、パール調の光沢や手触り感を得る目的で、平均長径を200〜2000μmにすることが好ましく、500〜1000μmにすることが特に好ましい。平均アスペクト比(=気泡の平均長径/気泡の平均短径)は1〜4にすることが好ましく、1〜2にすることが特に好ましい。平均長径や平均アスペクト比は、シート面に対して垂線方向から電子顕微鏡で観察した写真を用いて計測する。従って、上記「平均長径」と「平均アスペクト比」における「平均」は個数平均である。発泡倍率、気泡長径の平均長さ、平均アスペクト比が上記範囲であると、良好な表面外観、表面均一性、パール調の光沢や手触り感が得られる。また、熱成形時の型再現性が良く、濃淡や気泡痕のない外観の良好な製品を得ることができる。   When there is a foam layer in the outermost layer or in the very vicinity of the surface, the average major axis may be set to 200 to 2000 μm, for example, for the purpose of obtaining a design-like surface appearance, surface uniformity, pearly luster and feel. The thickness is preferably 500 to 1000 μm. The average aspect ratio (= average long diameter of bubbles / average short diameter of bubbles) is preferably 1 to 4, and particularly preferably 1 to 2. The average major axis and the average aspect ratio are measured using photographs observed with an electron microscope from the direction perpendicular to the sheet surface. Therefore, the “average” in the “average major axis” and the “average aspect ratio” is a number average. When the expansion ratio, the average length of the bubble major axis, and the average aspect ratio are within the above ranges, good surface appearance, surface uniformity, pearly luster and feel can be obtained. In addition, it is possible to obtain a product having good mold reproducibility at the time of thermoforming and having a good appearance with no shading or bubble trace.

一方、発泡層が内層の場合、平均長径や平均アスペクト比は、シート流れ方向と平行なシート断面に対して電子顕微鏡で観察した写真を用いて計測する。この場合、気泡セルは延伸により扁平形状となっており、上記の視野形状とは異なる。気泡セルのサイズについても特に限定されないが、平均長径を10〜5000μmにすることが好ましく、100〜3000μmにすることが特に好ましい。また、平均アスペクト比(=気泡の平均長径/気泡の平均短径)は2〜20にすることが好ましく、2〜10にすることが特に好ましい。   On the other hand, when the foam layer is an inner layer, the average major axis and the average aspect ratio are measured using a photograph observed with an electron microscope with respect to a sheet cross section parallel to the sheet flow direction. In this case, the bubble cell has a flat shape due to stretching, and is different from the visual field shape described above. The size of the bubble cell is not particularly limited, but the average major axis is preferably 10 to 5000 μm, particularly preferably 100 to 3000 μm. The average aspect ratio (= average long diameter of bubbles / average short diameter of bubbles) is preferably 2 to 20, particularly preferably 2 to 10.

気泡セルの大きさや形状の制御は、発泡剤の種類、配合量、特に発泡押出時の樹脂温度、樹脂圧力、特にMD、TDの延伸倍率等によって制御することが可能である。具体的には、縦延伸倍率及び/又は横延伸倍率が大きくなると平均長径は大きくなり、縦延伸倍率と横延伸倍率の差が大きくなる(異方性が大きくなる)と、それに応じて平均アスペクト比も大きくなる。   Control of the size and shape of the bubble cell can be controlled by the type and blending amount of the foaming agent, particularly the resin temperature at the time of foaming extrusion, the resin pressure, particularly the MD, TD stretch ratio, and the like. Specifically, when the longitudinal draw ratio and / or the transverse draw ratio is increased, the average major axis is increased, and when the difference between the longitudinal draw ratio and the transverse stretch ratio is increased (anisotropy is increased), the average aspect is accordingly increased. The ratio also increases.

本発明に係るポリスチレン系樹脂製発泡二軸延伸シートは、JIS K7127に準拠して測定した引張弾性率が0.6〜2.2GPaであり、衝撃強度が200kg・cm/cm以上であり、引裂強度が2.5N/mm以上であり、耐折強度が200回以上であることが好ましい。引張弾性率、衝撃強度、引裂強度及び耐折強度の全てを上記範囲とすることで、二軸延伸による薄肉軽量化を行っても適度な剛性と同時に強度(衝撃強度、引裂強度、耐折強度)を併せ持つことが可能となる。よって、取り扱い時に割れ、破れ等が起こり難く、繰り返し使用が可能となる。引張弾性率、衝撃強度、引裂強度及び耐折強度は、実施例の方法で測定したもので定義される。   The polystyrene resin foamed biaxially stretched sheet according to the present invention has a tensile elastic modulus measured according to JIS K7127 of 0.6 to 2.2 GPa, an impact strength of 200 kg · cm / cm or more, and tearing. The strength is preferably 2.5 N / mm or more, and the folding strength is preferably 200 times or more. By making all of the tensile modulus, impact strength, tear strength, and folding strength within the above ranges, even when thinning and lightening by biaxial stretching, the strength (impact strength, tear strength, bending strength) is also available. ). Therefore, cracking, tearing and the like are unlikely to occur during handling, and repeated use is possible. The tensile elastic modulus, impact strength, tear strength, and folding strength are defined by those measured by the methods of the examples.

特に好ましくは、上記の点で、引張弾性率が1.0〜1.9GPa、衝撃強度が300kg・cm/cm以上、引裂強度が3.0N/mm以上、及び/又は、耐折強度が300回以上である。   Particularly preferably, in terms of the above, the tensile modulus is 1.0 to 1.9 GPa, the impact strength is 300 kg · cm / cm or more, the tear strength is 3.0 N / mm or more, and / or the bending strength is 300. More than once.

本発明におけるポリスチレン系樹脂製発泡二軸延伸シートは、例えば食品用途向け等の場合、二軸延伸後ロール状に巻き取る前に、離型剤を塗布してもよい。塗布方法は特に限定はなく、例えば、25℃における粘度が1,000〜20,000mm/sのジメチルシリコーンオイルと乳化剤を含むジメチルシリコーンエマルジョンを、固形分濃度を0.1〜5質量%程度とした水溶液とし、スプレーコーター、エアーナイフコーター、スクィーズロールコーター、グラビアロールコーター、ナイフコーター等によって塗布し、熱風乾燥機等によって乾燥させる方法が好ましい。離型剤には帯電防止剤を混合してもよく、混合する割合はシリコーンオイル(固形分)との合計量に対して30〜80質量%が好ましい。 In the polystyrene resin foamed biaxially stretched sheet according to the present invention, for example, for food use, a release agent may be applied before winding into a roll after biaxial stretching. The coating method is not particularly limited. For example, a dimethylsilicone emulsion containing a dimethylsilicone oil having a viscosity at 25 ° C. of 1,000 to 20,000 mm 2 / s and an emulsifier, and a solid content concentration of about 0.1 to 5% by mass. A method in which the aqueous solution is coated with a spray coater, an air knife coater, a squeeze roll coater, a gravure roll coater, a knife coater or the like and dried with a hot air drier or the like is preferable. An antistatic agent may be mixed with the release agent, and the mixing ratio is preferably 30 to 80% by mass with respect to the total amount with the silicone oil (solid content).

尚、離型剤には、本発明の効果を損なわない範囲で、必要に応じて、前記以外の帯電防止剤、ブロッキング防止剤、粘度調節剤、消泡剤、紫外線吸収剤、着色防止剤、抗菌剤、顔料、染料等の各種添加剤を配合することができる。   In the release agent, as long as the effect of the present invention is not impaired, an antistatic agent other than the above, an antiblocking agent, a viscosity modifier, an antifoaming agent, an ultraviolet absorber, an anti-coloring agent, Various additives such as antibacterial agents, pigments and dyes can be blended.

本発明に係るポリスチレン系樹脂製発泡二軸延伸シートは、熱成形法によって容器・トレイ等の成形品に成形することができる。熱成形法には限定はなく、真空成形法、圧空成形法、真空成形法と圧空成形法とを組み合わせた差圧成形法等、従来から知られている方法が挙げられる。なかでも、例えば、金型からの圧空圧と熱板側からの真空圧とにより、シートを熱板に近接または密着させて加熱し、その直後に熱板側からの圧空圧と金型側からの真空圧により、加熱、軟化したシートを金型に押し付けて成形する熱板加熱式圧空成形法により型再現性の良好な成形品を得ることができる。   The polystyrene resin foamed biaxially stretched sheet according to the present invention can be formed into a molded product such as a container or a tray by a thermoforming method. There is no limitation on the thermoforming method, and conventionally known methods such as a vacuum forming method, a pressure forming method, and a differential pressure forming method combining a vacuum forming method and a pressure forming method are exemplified. Among them, for example, the sheet is heated close to or in close contact with the hot plate by the compressed air pressure from the mold and the vacuum pressure from the hot plate side, and immediately after that, the compressed air pressure from the hot plate side and the mold side is used. A molded product with good mold reproducibility can be obtained by a hot plate heating type air pressure molding method in which a heated and softened sheet is pressed against a mold by the vacuum pressure.

以下、実施例により本発明を詳しく説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。原材料としては、以下の特性を有する市販品を使用し、ポリスチレン系樹脂製発泡二軸延伸シート、及び、このシートから得られた成形品の評価項目は以下の通りである。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to a following example, unless the summary is exceeded. As raw materials, commercially available products having the following properties are used, and the evaluation items of the polystyrene resin foamed biaxially stretched sheet and the molded product obtained from this sheet are as follows.

<原材料>
[(A)ゴム成分を有しないポリスチレン系樹脂]
1.GPPS:一般用ポリスチレン
PSジャパン社製、商品名:HH102、温度200℃、荷重5kgにおいてのメルトフローレート(以下、「MFR(200℃、5kg)」と記載する)が3.5g/10分である。
2.SC:スチレン−アクリル酸ブチル共重合体
PSジャパン社製、商品名:SC004、MFR(200℃、5kg)が6.5g/10分である。
<Raw materials>
[(A) Polystyrene resin having no rubber component]
1. GPPS: Polystyrene for general use, manufactured by PS Japan Co., Ltd., trade name: HH102, temperature 200 ° C., load at 5 kg (hereinafter referred to as “MFR (200 ° C., 5 kg)”) is 3.5 g / 10 min. is there.
2. SC: Styrene-butyl acrylate copolymer PS Japan make, brand name: SC004, MFR (200 degreeC, 5 kg) is 6.5 g / 10min.

[(B)ゴム成分を有するポリスチレン系樹脂]
3.HIPS:耐衝撃性ポリスチレン
PSジャパン社製、商品名:HT478、MFR(200℃、5kg)が3.0g/10分である。
4.SIS:スチレン−イソプレン−スチレンブロック共重合体
旭化成ケミカルズ社製、商品名:AFX(R)i−350、MFR(200℃、5kg)が8g/10分である。
[(B) Polystyrene resin having a rubber component]
3. HIPS: high impact polystyrene manufactured by PS Japan, trade name: HT478, MFR (200 ° C., 5 kg) is 3.0 g / 10 min.
4). SIS: Styrene-isoprene-styrene block copolymer manufactured by Asahi Kasei Chemicals Corporation, trade name: AFX (R) i-350, MFR (200 ° C., 5 kg) is 8 g / 10 min.

[帯電防止剤]
5.高分子型:ポリエーテルエステルアミド
三洋化成工業社製、商品名:ペレスタット NC6321と、上記HIPSを15:85(質量比)で、二軸押出機にて混練して再ペレット化し、15質量%マスターバッチとしたものである。
6.界面活性剤:アルキルスルホン酸塩系
花王社製、商品名:エレストマスターS−520、PSベースの20質量%マスターバッチタイプ、ポリ衛協登録品である。
7.高分子型:エチレン・メタクリル酸共重合物のカリウムイオンアイオノマー
三井デュポンポリケミカル社製、商品名:ENTIRA MK400、ポリ衛協登録品である。
[Antistatic agent]
5. Polymer type: polyether ester amide Sanyo Kasei Kogyo Co., Ltd., trade name: Pelestat NC6321, and the above HIPS at 15:85 (mass ratio), kneaded in a twin screw extruder and re-pelletized, 15% master It is a batch.
6). Surfactant: Alkylsulfonic acid salt type manufactured by Kao Corporation, trade name: Elest Master S-520, PS-based 20% by mass master batch type, registered product of Poly-Ekyo.
7). Polymer type: Potassium ion ionomer of ethylene / methacrylic acid copolymer, manufactured by Mitsui DuPont Polychemical Co., Ltd., trade name: ENTIRA MK400, registered by Poly-Ekyo.

[発泡剤]
8.FA−1:発泡剤
永和化成工業社製、商品名:ポリスレンES106、分解温度200℃、PSベースの10質量%マスターバッチタイプである。
9.FA−2:発泡剤
永和化成工業社製、商品名:ポリスレンES405、分解温度155℃、PSベースの40質量%マスターバッチタイプ、ポリ衛協登録品である。
[Foaming agent]
8). FA-1: Effervescent agent manufactured by Eiwa Kasei Kogyo Co., Ltd., trade name: Polyslen ES106, decomposition temperature 200 ° C., PS-based 10% by mass master batch type.
9. FA-2: Effervescent agent, manufactured by Eiwa Kasei Kogyo Co., Ltd., trade name: Polyslen ES405, decomposition temperature 155 ° C., PS-based 40% by mass master batch type, registered by Poly Sankyo.

<評価項目>
(1)延伸安定性
実施例、比較例に記載した条件で多層構造を有するポリスチレン系樹脂製発泡二軸延伸シートを製造する際、樹脂温度等の条件がほぼ一定になってから、2時間連続してシート破断がないかを目視にて観察した。
○:2時間中1回も破断なし
×:2時間中1回以上の破断あり
<Evaluation items>
(1) Stretch stability When producing a polystyrene resin foamed biaxially stretched sheet having a multilayer structure under the conditions described in the Examples and Comparative Examples, the conditions such as the resin temperature become almost constant for 2 hours. Then, the sheet was visually observed for breakage.
○: No break once every 2 hours ×: One or more breaks during 2 hours

(2)熱収縮応力の縦方向と横方向の平均値
実施例、比較例で得られた発泡(又は非発泡)二軸延伸(又は未延伸)シートから、大きさが10mm×100mmの試験片を、各シートにつきMDを長辺したもの5個と、TDを長辺としたもの5個を作成した。これらの試験片につき、ASTM D−1504に準拠した日理工業社製の「DN式ストレステスター」を使用して、設定温度180℃の条件で熱収縮により生じる最大荷重を測定し、初期試験片の断面積で除した値を熱収縮応力(単位[MPa])とした。MD及びTDについて5個の試験片の平均値を求め、更にMDとTDの平均値から熱収縮応力の平均値を求めた。
(2) Average value of heat shrinkage stress in longitudinal direction and transverse direction Test piece having a size of 10 mm × 100 mm from the foamed (or non-foamed) biaxially stretched (or unstretched) sheet obtained in Examples and Comparative Examples Were prepared for each sheet with 5 long sides of MD and 5 with long sides of TD. For these test pieces, the maximum load generated by heat shrinkage was measured at a set temperature of 180 ° C. using a “DN-type stress tester” made by Nichi Kogyo Co., Ltd. in accordance with ASTM D-1504. The value divided by the cross-sectional area was defined as the heat shrinkage stress (unit [MPa]). For MD and TD, the average value of 5 test pieces was determined, and the average value of heat shrinkage stress was determined from the average value of MD and TD.

(3)引張弾性率
実施例、比較例で得られた発泡(又は非発泡)二軸延伸(又は未延伸)シートから、JIS K7127に準拠し、試験片タイプ2(幅10mm)をMD、TD各5個作成し、東洋精機社製「オートグラフDSS2000」を用い、初期クランプ間距離5cm、引張速度10mm/分の条件で測定して平均値を求め、更にMDとTDの平均値から全平均としての引張弾性率(単位[GPa])を求めた。
(3) Tensile elastic modulus From the foamed (or non-foamed) biaxially stretched (or unstretched) sheet obtained in the examples and comparative examples, test piece type 2 (width 10 mm) is MD, TD in accordance with JIS K7127. Create 5 each, and use “Autograph DSS2000” manufactured by Toyo Seiki Co., Ltd. to obtain an average value by measuring at an initial clamp distance of 5 cm and a tensile speed of 10 mm / min. The tensile elastic modulus (unit [GPa]) was obtained.

(4)衝撃強度
実施例、比較例で得られた発泡(又は非発泡)二軸延伸(又は未延伸)シートから、大きさが100mm×100mmの試験片を各シートにつき5個作成し、JIS P8134に準拠した東洋精機社製「パンクチャーテスタ(先端は12.7mm丸球面ヘッドを使用)」を使用して、試験片の破壊に要したエネルギーの量(衝撃強度[kg・cm])を目盛板より読み取った。このエネルギー量をシート厚さ[cm]で除した値を衝撃強度(パンクチャー衝撃強度、単位[kg・cm/cm])とし、測定した5個の試験片の平均値を求めた。この値が200kg・cm/cm以上であると衝撃強度が良好と判定し、200kg・cm/cm未満では劣ると判定した。
○:200kg・cm/cm以上
×:200kg・cm/cm未満
(4) Impact strength Five test pieces having a size of 100 mm × 100 mm were prepared for each sheet from the foamed (or non-foamed) biaxially stretched (or unstretched) sheets obtained in the examples and comparative examples. The amount of energy (impact strength [kg · cm]) required to destroy the test piece was measured using a “puncture tester (the tip uses a 12.7 mm round spherical head)” manufactured by Toyo Seiki Co., Ltd. according to P8134. Read from the scale plate. The value obtained by dividing the amount of energy by the sheet thickness [cm] was used as the impact strength (puncture impact strength, unit [kg · cm / cm]), and the average value of the measured five test pieces was determined. When this value was 200 kg · cm / cm or more, the impact strength was determined to be good, and when it was less than 200 kg · cm / cm, it was determined to be inferior.
○: 200 kg · cm / cm or more ×: less than 200 kg · cm / cm

(5)引裂強度
実施例、比較例で得られた発泡(又は非発泡)二軸延伸(又は未延伸)シートから、大きさが50mm×64mmの試験片を、各シートのMDを長辺として5個、TDを長辺として5個作成した。これら試験片の短辺(50mm)側の中央端から長辺と平行に長さが13mmの切れ込みを入れ、東洋精機社製「軽荷重引裂試験機」を使用して、引裂いた時の指示値を読み取り、この指示値から初期試験片の厚さ[mm]で除した値を引裂強度(単位[N/mm])とした。MD及びTDについて、各々長辺とした5個の試験片での平均値を求め、両者の平均値から全平均値を求めた。この値が2.5N/mm以上であると引裂強度が良好と判定し、2.5N/mm未満では劣ると判定した。
○:2.5N/mm以上
×:2.5N/mm未満
(5) Tear strength From the foamed (or non-foamed) biaxially stretched (or unstretched) sheets obtained in Examples and Comparative Examples, test pieces having a size of 50 mm × 64 mm were used, and the MD of each sheet was taken as the long side. Five were created with TD as the long side. An indication value when the test piece is torn using a “light load tear tester” manufactured by Toyo Seiki Co., Ltd., with a notch of 13 mm in length parallel to the long side from the center end on the short side (50 mm) side of these test pieces. The value obtained by dividing the indicated value by the thickness [mm] of the initial test piece was taken as the tear strength (unit [N / mm]). About MD and TD, the average value in five test pieces made into each long side was calculated | required, and the total average value was calculated | required from both average values. When this value was 2.5 N / mm or more, the tear strength was determined to be good, and when it was less than 2.5 N / mm, it was determined to be inferior.
○: 2.5 N / mm or more ×: less than 2.5 N / mm

(6)耐折強度
実施例、比較例で得られた発泡(又は非発泡)二軸延伸(又は未延伸)シートから、大きさが15mm×150mmの試験片を、各シートのMDを長辺として5個、TDを長辺として5個作成した。これらの試験片につき、JIS P−8115に準拠した東洋精機社製「MIT耐揉疲労試験機」を使用し、折り曲げ角±90°、折り曲げ速度175rpm、荷重1kgの条件で、破断するまでの折り曲げ回数を計測し、この回数を耐折強度(単位[回])とした。MD及びTDについて各5個の平均値を求め、両者の平均値から全平均値を求めた。この値が200回以上であると耐折強度が良好と判定し、200回未満では劣ると判定した。
○:200回以上
×:200回未満
(6) Folding strength From the foamed (or non-foamed) biaxially stretched (or unstretched) sheets obtained in the examples and comparative examples, test pieces having a size of 15 mm × 150 mm, and the MD of each sheet as the long side And 5 with TD as the long side. For these test pieces, using a “MIT weather resistance tester” manufactured by Toyo Seiki Co., Ltd. in accordance with JIS P-8115, bending until breaking occurs at a folding angle of ± 90 °, a bending speed of 175 rpm, and a load of 1 kg. The number of times was measured, and this number of times was defined as the bending strength (unit: times). For MD and TD, five average values were obtained, and the total average value was obtained from the average value of both. When this value was 200 times or more, the folding strength was determined to be good, and when it was less than 200 times, it was determined to be inferior.
○: 200 times or more ×: less than 200 times

(7)表面抵抗値
実施例、比較例で得られた発泡(又は非発泡)二軸延伸(又は未延伸)シートから、大きさが100mm×100mmのサンプルを5個作成し、23℃、相対湿度50%で24時間状態調整した。次にJIS K6911に準拠し、三菱化学社製「ハイレスターUP MCP−450型(JボックスUタイプ)」を使用し、印加電圧500V、測定時間60秒の条件で表面抵抗値(単位[Ω])を測定し、その平均値を求めた。また、これらシートサンプルを60℃の流水で3分間洗浄し、清浄な紙で水分を拭き取り、23℃、相対湿度50%で24時間状態調整後、洗浄前と同条件で表面抵抗値を測定し、その平均値を求めた。
(7) Surface resistance value From the foamed (or non-foamed) biaxially stretched (or unstretched) sheets obtained in Examples and Comparative Examples, five samples having a size of 100 mm × 100 mm were prepared, and the relative temperature was 23 ° C. Conditioned for 24 hours at 50% humidity. Next, in accordance with JIS K6911, the surface resistance value (unit: [Ω]) was used under the conditions of an applied voltage of 500 V and a measurement time of 60 seconds using “High Lester UP MCP-450 type (J box U type)” manufactured by Mitsubishi Chemical Corporation. ) Was measured and the average value was determined. In addition, these sheet samples were washed with running water at 60 ° C. for 3 minutes, wiped with clean paper, conditioned for 24 hours at 23 ° C. and 50% relative humidity, and then measured for surface resistance under the same conditions as before washing. The average value was obtained.

(8)型再現性
実施例、比較例で得られた発泡(又は非発泡)二軸延伸(又は未延伸)シートの、幅方向に対して3箇所(左端、中央、右端)からMD、TDの方向が分かるようにシートサンプルを切り出した。これらシートサンプルを、熱板加熱式圧空成形機(関西自動成形機社製「PK−450型」)に下記評価型を取り付け、熱板温度はシート厚みが0.11mmの時は128℃、同0.3mm及び0.4mmの時は136℃、同0.7mmの時は140℃とし、加熱時間2.0秒(シート厚みが0.7mmの時は10秒)、加熱圧力1.0kg/cm(≒0.10MPa)、成形時間1.0秒、成形圧力3.0kg/cm(≒0.29MPa)、金型温度60℃の条件で成形を行い、シート溝部を目視で観察し、型再現性が良好な最大絞り比(単位[なし])を求めた。MD及びTD各々について上記3ヶ所の平均値を求め、両者の平均値から全平均値を求めた。この値が1.00以上であると型再現性が良好と判定し、1.00未満では劣ると判定した。
○:1.00以上
×:1.00未満
(8) Mold reproducibility MD, TD from three places (left end, center, right end) in the width direction of the foamed (or non-foamed) biaxially stretched (or unstretched) sheets obtained in Examples and Comparative Examples. A sheet sample was cut out so that the direction of the sheet was understood. These sheet samples were attached to a hot plate heating type pneumatic molding machine (“PK-450 type” manufactured by Kansai Automatic Molding Machine Co., Ltd.) with the following evaluation type, and the hot plate temperature was 128 ° C. when the sheet thickness was 0.11 mm. When 0.3 mm and 0.4 mm, 136 ° C., when 0.7 mm, 140 ° C., heating time 2.0 seconds (10 seconds when sheet thickness is 0.7 mm), heating pressure 1.0 kg / cm 2 (≒ 0.10MPa), molding time 1.0 seconds, a molding pressure 3.0kg / cm 2 (≒ 0.29MPa) , subjected to molding at a mold temperature of 60 ° C., to observe the sheet groove visually The maximum aperture ratio (unit: [none]) with good mold reproducibility was obtained. For each of MD and TD, the average value of the above three locations was determined, and the total average value was determined from the average value of both. When this value was 1.00 or more, the mold reproducibility was determined to be good, and when it was less than 1.00, it was determined to be inferior.
○: 1.00 or more ×: less than 1.00

[評価型]
形状が長方形で、長辺(シートのMDと平行)200mm、短辺(シートのTDと平行)150mmの絞り比評価用型である。この長方形面内に、絞り比(開口部の最大深さ/開口部の幅)が0.1刻みで0.3〜1.2まで深さの異なる多数の溝が設けられている金型。溝の開口部幅はいずれも10mm、溝長さは50〜70mmであり、MD及びTDの各方向に10個設けられている。
[Evaluation type]
It is a drawing ratio evaluation mold having a rectangular shape, a long side (parallel to the sheet MD) of 200 mm, and a short side (parallel to the sheet TD) of 150 mm. A mold in which a number of grooves with different depths from 0.3 to 1.2 are provided in this rectangular plane with a drawing ratio (maximum depth of opening / width of opening) in increments of 0.1. The groove opening width is 10 mm, the groove length is 50 to 70 mm, and ten grooves are provided in each of MD and TD directions.

実施例1
<主に帯電防止性を必要としない非食品用途向け>
両外層用として表1に記載した割合の樹脂組成、発泡剤マスターバッチ(以下、マスターバッチを「(MB)」と記載する)を秤量し、リボンブレンダーによって均一混合してドライブレンド物とした後、タンデム115mmφ押出機(池貝鉄工社製)に供給し、シリンダー温度約190℃の条件で溶融した。一方、内層用として、表1に記載した割合の樹脂組成を秤量し、リボンブレンダーによって均一混合してドライブレンド物とした後、ベント式65mmφ押出機(プラ技研社製)に供給し、シリンダー温度約220℃の条件で溶融した。
Example 1
<For non-food applications that do not mainly require antistatic properties>
After weighing out the resin composition and foaming agent master batch (hereinafter referred to as “(MB)”) in the proportions shown in Table 1 for both outer layers, and uniformly mixing with a ribbon blender to obtain a dry blend product And supplied to a tandem 115 mmφ extruder (manufactured by Ikekai Tekko Co., Ltd.) and melted at a cylinder temperature of about 190 ° C. On the other hand, for the inner layer, the resin composition in the ratio shown in Table 1 was weighed and uniformly mixed with a ribbon blender to obtain a dry blend, and then supplied to a vent type 65 mmφ extruder (manufactured by Plastic Giken Co., Ltd.). It melted at about 220 ° C.

上記各押出機に接続用導管を介して装着された2種3層用フィードブロック&分配ブロック(プラ技研社製)及び面長850mmのT−ダイ(プラ技研社製;コートハンガータイプ)からシート状に押出して、80℃に設定した冷却ロールで急冷し、両外層が発泡層で内層が非発泡層からなる未延伸発泡シートを得た。得られた未延伸発泡シートをロール方式縦延伸機、続いてテンター横延伸機によって、縦方向に約2.5倍、横方向に約2.5倍延伸し、厚さ0.11mm、幅980mmの二軸延伸発泡シートをロール状に巻き取った。延伸安定性は良好であった。上記(1)〜(6)、(8)の評価を行い、得られた結果を表1に記載した。   Sheets from the feed block & distribution block for 2 types and 3 layers (Pura Giken Co., Ltd.) and a 850 mm T-die (Pura Giken Co., Ltd .; coat hanger type) mounted on each of the extruders via a connecting conduit. And then rapidly cooled with a cooling roll set at 80 ° C. to obtain an unstretched foam sheet in which both outer layers are foam layers and the inner layer is a non-foam layer. The obtained unstretched foamed sheet was stretched about 2.5 times in the longitudinal direction and about 2.5 times in the transverse direction by a roll type longitudinal stretching machine and then a tenter transverse stretching machine, and the thickness was 0.11 mm and the width was 980 mm. The biaxially stretched foam sheet was wound into a roll. The stretching stability was good. The above (1) to (6) and (8) were evaluated, and the obtained results are shown in Table 1.

実施例2
<主に帯電防止性を必要とする非食品用途向け>
両外層用として表1に記載した割合の帯電防止剤(MB)を秤量し、ベント式65mmφ押出機(プラ技研社製)に供給し、シリンダー温度約220℃の条件で溶融した。一方、内層用として、表1に記載した割合の樹脂組成、発泡剤(MB)を秤量し、リボンブレンダーによって均一混合してドライブレンド物とした後、タンデム115mmφ押出機(池貝鉄工社製)に供給し、シリンダー温度約190℃の条件で溶融した。
Example 2
<For non-food applications that mainly require antistatic properties>
The antistatic agent (MB) in the ratio shown in Table 1 for both outer layers was weighed and supplied to a vent type 65 mmφ extruder (manufactured by Plastic Giken Co., Ltd.), and melted at a cylinder temperature of about 220 ° C. On the other hand, for the inner layer, after weighing the resin composition and the foaming agent (MB) in the proportions shown in Table 1 and uniformly mixing them with a ribbon blender to obtain a dry blend product, the tandem 115 mmφ extruder (manufactured by Ikekai Tekko) The mixture was fed and melted at a cylinder temperature of about 190 ° C.

上記各押出機に接続用導管を介して装着された2種3層用フィードブロック&分配ブロック(プラ技研社製;実施例1とは流路が異なるタイプ)及び面長850mmのT−ダイ(プラ技研社製;コートハンガータイプ)からシート状に押出して、80℃に設定した冷却ロールで急冷し、両外層が非発泡層で内層が発泡層からなる未延伸発泡シートを得た。得られた未延伸発泡シートをロール方式縦延伸機、続いてテンター横延伸機によって、縦方向に約2.5倍、横方向に約2.5倍延伸し、厚さ0.3mm、幅980mmの二軸延伸発泡シートをロール状に巻き取った。延伸安定性は良好であった。上記(1)〜(7)の評価を行い、得られた結果を表1に記載した。   A feed block and distribution block for two types and three layers (made by Pla Giken Co., Ltd .; a type having a different flow path from Example 1) and a T-die having a surface length of 850 mm (mounted on each of the extruders via a connecting conduit) Extruded into a sheet form from Plastic Giken Co., Ltd. (Coat Hanger Type) and quenched with a cooling roll set at 80 ° C. to obtain an unstretched foamed sheet in which both outer layers are non-foamed layers and inner layers are foamed layers. The obtained unstretched foamed sheet was stretched about 2.5 times in the longitudinal direction and about 2.5 times in the transverse direction by a roll-type longitudinal stretching machine and then a tenter transverse stretching machine, with a thickness of 0.3 mm and a width of 980 mm. The biaxially stretched foam sheet was wound into a roll. The stretching stability was good. The above (1) to (7) were evaluated, and the obtained results are shown in Table 1.

実施例3
<主に帯電防止性を必要としない食品用途向け>
表1に記載した割合の樹脂組成、発泡剤(MB)を用いた以外は実施例2と同様の手順で二軸延伸発泡シートを製造した(但し、65mmφ押出機のシリンダー温度を約200℃とした)。尚、層比率の変更は押出機回転数の変更で行った。延伸安定性は良好であった。また、シートに離型性を付与するため、横延伸後、一方の面にジメチルシリコーンエマルジョン(信越化学工業社製「KM9738」)の固形分濃度3質量%水溶液をスプレーコーターによって塗布し、熱風乾燥機によって乾燥させた後、ロール状に巻き取った。被覆量既知のシートから作成した検量線を用いて定量した被覆量は20mg/mであった。このロールについては上記(1)〜(8)の評価を行い、得られた結果を表1に記載した。
Example 3
<Mainly for food applications that do not require antistatic properties>
A biaxially stretched foam sheet was produced in the same procedure as in Example 2 except that the ratio of the resin composition and the foaming agent (MB) described in Table 1 were used (however, the cylinder temperature of the 65 mmφ extruder was about 200 ° C. did). The layer ratio was changed by changing the number of revolutions of the extruder. The stretching stability was good. Also, in order to impart releasability to the sheet, after transverse stretching, a 3% by weight aqueous solution of dimethyl silicone emulsion (“KM9738” manufactured by Shin-Etsu Chemical Co., Ltd.) is applied on one side with a spray coater and dried with hot air After drying with a machine, it was wound into a roll. The coating amount determined using a calibration curve prepared from a sheet with a known coating amount was 20 mg / m 2 . About this roll, said (1)-(8) evaluation was performed and the obtained result was described in Table 1.

実施例4
<主に帯電防止性を必要とする食品用途向け>
表1に記載した割合の樹脂組成、帯電防止剤(MB)、発泡剤(MB)を用いた以外は実施例1と同様の手順で二軸延伸発泡シートを製造した。延伸安定性は良好であった。尚、シートに離型性を付与するため、実施例3と同様の手順でジメチルシリコーンエマルジョン塗布後、乾燥し、ロール状に巻き取った。被覆量は20mg/mであった。このロールについては上記(1)〜(8)の評価を行い、得られた結果を表1に記載した。
Example 4
<For food applications that mainly require antistatic properties>
A biaxially stretched foam sheet was produced in the same procedure as in Example 1 except that the resin composition, the antistatic agent (MB), and the foaming agent (MB) in the proportions shown in Table 1 were used. The stretching stability was good. In order to impart releasability to the sheet, the dimethyl silicone emulsion was applied in the same procedure as in Example 3, then dried and wound into a roll. The coating amount was 20 mg / m 2 . About this roll, said (1)-(8) evaluation was performed and the obtained result was described in Table 1.

実施例5
両外層用として表1に記載した割合の樹脂組成、帯電防止剤(カリウムアイオノマー)、発泡剤(MB)を秤量し、リボンブレンダーによって均一混合してドライブレンド物とした後、ベント孔を塞いだ65mmφ押出機(プラ技研社製)に供給し、シリンダー温度約190℃の条件で溶融した。一方、内層用として、表1に記載した割合の組成物、発泡剤(MB)を秤量し、リボンブレンダーによって均一混合してドライブレンド物とした後、タンデム115mmφ押出機(池貝鉄工社製)に供給し、シリンダー温度約190℃の条件で溶融した。
Example 5
For both outer layers, the resin composition in the proportions listed in Table 1, antistatic agent (potassium ionomer), and foaming agent (MB) were weighed and mixed uniformly with a ribbon blender to form a dry blend, and then the vent hole was blocked. It was supplied to a 65 mmφ extruder (manufactured by Plastic Giken Co., Ltd.) and melted at a cylinder temperature of about 190 ° C. On the other hand, for the inner layer, the composition and the foaming agent (MB) in the proportions shown in Table 1 were weighed and uniformly mixed with a ribbon blender to obtain a dry blend, and then the tandem 115 mmφ extruder (manufactured by Ikekai Tekko). The mixture was fed and melted at a cylinder temperature of about 190 ° C.

上記各押出機に接続用導管を介して装着された、実施例2と同じタイプの2種3層用フィードブロック&分配ブロック(プラ技研社製)及び面長850mmのT−ダイ(プラ技研社製;コートハンガータイプ)からシート状に押出して、80℃に設定した冷却ロールで急冷し、全層が発泡層からなる未延伸発泡シートを得た。得られた未延伸発泡シートをロール方式縦延伸機、続いてテンター横延伸機によって、縦方向に約2.0倍、横方向に約2.3倍延伸し、厚さ0.4mm、幅980mmの二軸延伸発泡シートをロール状に巻き取った。延伸安定性は良好であった。上記(1)〜(7)の評価を行い、得られた結果を表1に記載した。   Two types and three layers of feed block & distribution block (Pura Giken Co., Ltd.) of the same type as in Example 2 and a T-die (Pla Giken Co., Ltd.) with a surface length of 850 mm, mounted on each of the extruders via a connecting conduit. Made from a coat hanger type) and quenched with a cooling roll set at 80 ° C. to obtain an unstretched foamed sheet in which all layers consist of foamed layers. The obtained unstretched foamed sheet was stretched about 2.0 times in the longitudinal direction and about 2.3 times in the transverse direction by a roll type longitudinal stretching machine and then a tenter transverse stretching machine, and the thickness was 0.4 mm and the width was 980 mm. The biaxially stretched foam sheet was wound into a roll. The stretching stability was good. The above (1) to (7) were evaluated, and the obtained results are shown in Table 1.

比較例1
表2に記載した割合の樹脂組成、帯電防止剤(カリウムアイオノマー)、発泡剤(MB)を用いた以外は実施例5と同様の手順で、全層発泡層で構成された二軸延伸発泡シートを製造した。しかし、横方向に約2.5倍延伸したまま、縦方向の倍率を約2.5倍に上げたところ、縦延伸部での破断が発生したためサンプリングを中止した。縦延伸部でシートの端が裂けたような状態になっていた。よって、評価は未実施とした。
Comparative Example 1
A biaxially stretched foam sheet composed of a foamed layer of all layers in the same procedure as in Example 5 except that the resin composition, antistatic agent (potassium ionomer), and foaming agent (MB) described in Table 2 were used. Manufactured. However, when the longitudinal magnification was increased to about 2.5 times while being stretched about 2.5 times in the transverse direction, sampling was stopped because a fracture occurred in the longitudinally stretched portion. The end of the sheet was torn at the longitudinally stretched portion. Therefore, evaluation was not carried out.

比較例2
表2に記載した割合の樹脂組成、帯電防止剤(カリウムアイオノマー)、発泡剤(MB)を用いた以外は比較例1と同様の手順で、全層発泡層で構成された二軸延伸発泡シートを製造した。但し、延伸倍率を縦方向に約2.0倍、横方向に約2.3倍として、厚さ0.4mm、幅980mmの二軸延伸発泡シートをロール状に巻き取った。延伸安定性は良好であった。上記(1)〜(7)の評価を行い、得られた結果を表2に記載した。
Comparative Example 2
A biaxially stretched foam sheet composed of an expanded foam layer in the same manner as in Comparative Example 1 except that the resin composition, antistatic agent (potassium ionomer), and foaming agent (MB) described in Table 2 were used. Manufactured. However, a biaxially stretched foamed sheet having a thickness of 0.4 mm and a width of 980 mm was wound in a roll shape with the draw ratio being about 2.0 times in the vertical direction and about 2.3 times in the horizontal direction. The stretching stability was good. The above (1) to (7) were evaluated, and the obtained results are shown in Table 2.

比較例3
表2に記載した割合の樹脂組成、発泡剤(MB)を用いた以外は実施例3と同様の手順で、両外層が非発泡層で内層が発泡層からなる厚さ0.7mmの発泡未延伸シートを作成し、二軸延伸を行わず、そのままサンプリングした。但し、ゴム成分を含有しないポリスチレン系樹脂を用い、65mmφ押出機のシリンダー温度を約220℃、115mmφ押出機のそれを約190℃とした。このシートについて上記(1)〜(6)、(8)の評価を行い、得られた結果を表2に記載した。尚、(5)引裂強度は上記記載の評価方法ではシートを完全に引裂くことができず、測定不可能であった。また、(8)型再現性の評価(圧空成形)時、金型外周の型枠部でシートが裂け、成形不良が発生した。
Comparative Example 3
Except for using the resin composition and the foaming agent (MB) in the ratios shown in Table 2, the same procedure as in Example 3 was applied, and both the outer layer was a non-foamed layer and the inner layer was a foamed layer. A stretched sheet was prepared and sampled as it was without performing biaxial stretching. However, a polystyrene resin not containing a rubber component was used, and the cylinder temperature of the 65 mmφ extruder was about 220 ° C., and that of the 115 mmφ extruder was about 190 ° C. The sheets (1) to (6) and (8) were evaluated for this sheet, and the results obtained are shown in Table 2. Note that (5) tear strength was not measurable because the evaluation method described above could not tear the sheet completely. In addition, (8) during evaluation of mold reproducibility (pressure forming), the sheet was torn at the mold part on the outer periphery of the mold, and molding defects occurred.

比較例4
実施例4と同様の手順で、両外層が発泡層で内層が非発泡層からなる厚さ0.7mmの発泡未延伸シートを作成し、二軸延伸を行わず、そのままサンプリングした。このシートについては上記(1)〜(8)の評価を行い、得られた結果を表2に記載した。尚、(5)引裂強度は上記記載の評価方法ではシートを完全に引裂くことができず、測定不可能であった。
Comparative Example 4
In the same procedure as in Example 4, a 0.7 mm-thick foam unstretched sheet in which both outer layers were foamed layers and inner layers were non-foamed layers was sampled without performing biaxial stretching. This sheet was evaluated in the above (1) to (8), and the obtained results are shown in Table 2. Note that (5) tear strength was not measurable because the evaluation method described above could not tear the sheet completely.

比較例5
表2に記載した割合の樹脂組成のみを用いた以外は実施例3と同様の手順で、全層非発泡層で構成された二軸延伸シートを製造した。但し、65mmφ押出機、115mmφ押出機共にシリンダー温度は約220℃とし、シート厚み0.11mmの非発泡二軸延伸シートをロール状に巻き取った。延伸安定性は良好であった。これらのロールについて上記(1)〜(6)、(8)の評価を行い、得られた結果を表2に記載した。
Comparative Example 5
A biaxially stretched sheet composed of all non-foamed layers was produced in the same procedure as in Example 3 except that only the resin composition in the proportion described in Table 2 was used. However, the cylinder temperature was about 220 ° C. for both the 65 mmφ and 115 mmφ extruders, and a non-foamed biaxially stretched sheet having a sheet thickness of 0.11 mm was wound into a roll. The stretching stability was good. These rolls were evaluated in the above (1) to (6) and (8), and the results obtained are shown in Table 2.

Figure 2009149054
表1中、「PHR」は、per hundred resin、即ち樹脂組成100質量部に対する発泡剤(マスターバッチ)の混合量(質量部)を表す。実施例2で用いた高分子型帯電防止剤には、前記したようにHIPSを含有する。
Figure 2009149054
In Table 1, “PHR” represents a per hundred resin, that is, a mixing amount (parts by mass) of a foaming agent (master batch) with respect to 100 parts by mass of the resin composition. The polymer type antistatic agent used in Example 2 contains HIPS as described above.

Figure 2009149054
Figure 2009149054

上記表1及び表2より、次のことが明らかとなった。
(1)非発泡層と発泡層が共押出・共延伸された積層構造を有するポリスチレン系樹脂製発泡二軸延伸シートは延伸安定性に優れていた(実施例1〜実施例4参照)。また、発泡層/発泡層/発泡層が共押出・共延伸された積層構造を有するポリスチレン系樹脂製発泡二軸延伸シートも延伸安定性に優れていた(実施例5参照)。
(2)シートの厚み、ゴム成分含有量、熱収縮応力の縦方向と横方向の平均値が、いずれも請求項5で規定する要件を満たす積層構造のポリスチレン系樹脂製発泡二軸延伸シートは、適度な剛性と同時に強度(衝撃強度、引裂強度、耐折強度)が優れていた(実施例1〜実施例5参照)。
(3)また、上記積層構造のポリスチレン系樹脂製発泡二軸延伸シートは、型再現性が良好で、熱成形用途に優れていた(実施例1、3、4参照)。
(4)「発泡層/発泡層/発泡層」でも、ゴム成分含有量を0.1%以上とし、かつ延伸倍率を下げれば(縦方向に約2.0倍、横方向に約2.3倍)、延伸安定性がよく、また表面抵抗値が十分に小さく優れていた(実施例5参照)。
これに対して、ゴム成分含有量が0%でかつ延伸倍率が通常範囲(縦方向に約2.5倍、横方向に約2.5倍)では、そもそも延伸安定性が悪くシートができなかった(比較例1参照)。また、ゴム成分含有量が0%でも延伸倍率を下げれば(縦方向に約2.0倍、横方向に約2.3倍)、一応、延伸安定性は良くシートはできたが、他の物性が極めて劣っていた(比較例2参照)。
(5)非発泡層と発泡層が共押出された積層構造を有し、シートの厚みが請求項5の範囲内であっても、共延伸を伴わないポリスチレン系樹脂製発泡未延伸シートは、熱収縮応力の縦方向と横方向の平均値が0.1MPa未満となり、耐折強度と衝撃強度が劣ってしまい、或いはゴム成分含有量が請求項5の範囲内であっても耐折強度が劣ってしまい、割れ易く、或いは破れ易いばかりでなく、繰り返し使用が困難であった。また、熱成形に際しても成形不良が発生したり、或いは十分な型再現性が得られなかったりして、成形用途には不向きであった(比較例3、4参照)。
(6)また、シートの厚み、ゴム成分含有量、熱収縮応力の縦方向と横方向の平均値が請求項5の範囲内であっても、発泡層を有しないポリスチレン系樹脂製二軸延伸シートは、剛性(引張弾性率)が高くなりすぎ、緩衝性や柔軟性に欠けるので、取り扱い時の安全性が低下した(比較例5参照)。
(7)積層構造を有するポリスチレン系樹脂製発泡二軸延伸シートであっても、帯電防止剤を含有しないと、表面抵抗値が13乗のオーダーより高くなってしまい、帯電防止性が必要な用途に限っては不向きではあった(実施例3参照)。
From the above Tables 1 and 2, the following became clear.
(1) A polystyrene resin foamed biaxially stretched sheet having a laminated structure in which a non-foamed layer and a foamed layer were coextruded and costretched was excellent in stretching stability (see Examples 1 to 4). In addition, a polystyrene resin foamed biaxially stretched sheet having a laminated structure in which the foamed layer / foamed layer / foamed layer were coextruded and costretched was also excellent in stretching stability (see Example 5).
(2) A polystyrene-based resin foamed biaxially stretched sheet having a laminated structure in which the sheet thickness, the rubber component content, and the average value of the heat shrinkage stress in the longitudinal direction and the transverse direction all satisfy the requirements specified in claim 5 The strength (impact strength, tear strength, folding strength) was excellent at the same time as moderate rigidity (see Examples 1 to 5).
(3) Moreover, the polystyrene-type resin-made foam biaxially stretched sheet of the said laminated structure had favorable mold reproducibility, and was excellent in the thermoforming use (refer Example 1, 3, 4).
(4) Even in the “foamed layer / foamed layer / foamed layer”, if the rubber component content is 0.1% or more and the draw ratio is lowered (about 2.0 times in the longitudinal direction and about 2.3 in the transverse direction) Times), the stretching stability was good, and the surface resistance value was sufficiently small and excellent (see Example 5).
In contrast, when the rubber component content is 0% and the stretching ratio is in the normal range (about 2.5 times in the longitudinal direction and about 2.5 times in the transverse direction), the stretching stability is poor and the sheet cannot be formed. (See Comparative Example 1). Also, even if the rubber component content was 0%, if the draw ratio was lowered (about 2.0 times in the longitudinal direction and about 2.3 times in the transverse direction), the sheet had a good stretching stability. The physical properties were extremely poor (see Comparative Example 2).
(5) It has a laminated structure in which a non-foamed layer and a foamed layer are coextruded, and even if the thickness of the sheet is within the range of claim 5, a polystyrene-based resin foam unstretched sheet without co-stretching is: The average value of the heat shrinkage stress in the longitudinal direction and the transverse direction is less than 0.1 MPa, the folding strength and impact strength are inferior, or the folding strength is low even if the rubber component content is within the range of claim 5. Not only was it inferior, it was easy to break or torn, but it was difficult to use repeatedly. In addition, molding failure occurred during thermoforming, or sufficient mold reproducibility could not be obtained, making it unsuitable for molding applications (see Comparative Examples 3 and 4).
(6) Biaxial stretching made of polystyrene resin having no foamed layer even if the sheet thickness, rubber component content, and the average value of the heat shrinkage stress in the longitudinal and transverse directions are within the range of claim 5 Since the sheet has too high rigidity (tensile modulus) and lacks cushioning and flexibility, the safety during handling is reduced (see Comparative Example 5).
(7) Even if it is a polystyrene resin foamed biaxially stretched sheet having a laminated structure, if it does not contain an antistatic agent, the surface resistance value becomes higher than the order of 13th power, and an antistatic property is required. It was unsuitable for only (see Example 3).

本発明に係る積層構造を有するポリスチレン系樹脂製発泡二軸延伸シート及びこのシートを原料に製造した成形品は、適度な剛性と優れた強度(衝撃強度、引裂強度、耐折強度)、更には柔軟性、緩衝性を具備し、更に層構成によっては優れたシート外観を具備するので、食品、非食品向けの紙代替シート、或いは洗浄工程を含む繰り返し使用用途に好適である。また、型再現性が優れるので食品用途、非食品用途に係わらず、容器やトレイ、立体形状物等に好適に使用することができる。   A polystyrene resin foamed biaxially stretched sheet having a laminated structure according to the present invention and a molded product produced from this sheet as a raw material have moderate rigidity and excellent strength (impact strength, tear strength, folding strength), Since it has flexibility and buffering properties, and has an excellent sheet appearance depending on the layer structure, it is suitable for food, non-food-use paper substitute sheets, or for repeated use including a washing process. Moreover, since the mold reproducibility is excellent, it can be suitably used for containers, trays, three-dimensionally shaped articles, etc. regardless of food use or non-food use.

Claims (9)

少なくとも1層の発泡層と少なくとも1層の非発泡層又は発泡層が積層されていることを特徴とするポリスチレン系樹脂製発泡二軸延伸シート。   A foamed biaxially oriented sheet made of polystyrene resin, wherein at least one foamed layer and at least one non-foamed layer or foamed layer are laminated. 非発泡層/発泡層/非発泡層の順に積層され、かつ両非発泡層の厚みの合計が全厚みの1〜70%であることを特徴とする請求項1記載のポリスチレン系樹脂製発泡二軸延伸シート。   2. The polystyrene-based resin foamed product according to claim 1, wherein the non-foamed layer / foamed layer / non-foamed layer are laminated in this order, and the total thickness of both non-foamed layers is 1 to 70% of the total thickness. Axial stretched sheet. 発泡層/非発泡層/発泡層の順に積層され、かつ非発泡層の厚みが全厚みの5〜95%であることを特徴とする請求項1記載のポリスチレン系樹脂製発泡二軸延伸シート。   2. The polystyrene-based foamed biaxially stretched sheet made of polystyrene resin according to claim 1, wherein the foamed layer / non-foamed layer / foamed layer are laminated in this order, and the thickness of the non-foamed layer is 5 to 95% of the total thickness. 発泡層/発泡層/発泡層の順に積層され、かつ各発泡層の厚みが全厚みの1〜99%であることを特徴とする請求項1記載のポリスチレン系樹脂製発泡二軸延伸シート。   2. The polystyrene-based foamed biaxially stretched sheet made of polystyrene resin according to claim 1, wherein the foamed layer / the foamed layer / the foamed layer are laminated in this order, and the thickness of each foamed layer is 1 to 99% of the total thickness. 下記(1)〜(7)を同時に満たすことを特徴とする請求項1ないし請求項4のいずれかの請求項記載のポリスチレン系樹脂製発泡二軸延伸シート。
(1)シートの厚みが0.05〜1mm
(2)シートのゴム成分含有量が0.1〜30質量%
(3)熱収縮応力の縦方向と横方向の平均値が0.10〜2.0MPa
(4)JIS K7127に準拠して測定した引張弾性率が0.6〜2.2GPa
(5)衝撃強度が200kg・cm/cm以上
(6)引裂強度が2.5N/mm以上
(7)耐折強度が200回以上
5. The polystyrene resin foamed biaxially stretched sheet according to any one of claims 1 to 4, wherein the following (1) to (7) are simultaneously satisfied.
(1) Sheet thickness is 0.05 to 1 mm
(2) The rubber component content of the sheet is 0.1 to 30% by mass.
(3) The average value of the heat shrinkage stress in the vertical and horizontal directions is 0.10 to 2.0 MPa.
(4) Tensile modulus measured according to JIS K7127 is 0.6 to 2.2 GPa
(5) Impact strength is 200 kg · cm / cm or more (6) Tear strength is 2.5 N / mm or more (7) Folding strength is 200 times or more
JIS K6911に準拠して測定した表面抵抗値が10〜1013Ωである請求項1ないし請求項5のいずれかの請求項記載のポリスチレン系樹脂製発泡二軸延伸シート。 The polystyrene-based foamed biaxially stretched sheet made of polystyrene resin according to any one of claims 1 to 5, wherein the surface resistance value measured in accordance with JIS K6911 is 10 7 to 10 13 Ω. 請求項1ないし請求項6のいずれかの請求項記載のポリスチレン系樹脂製発泡二軸延伸シートを原料とし、熱成形法によって製造されたものであることを特徴とする成形品。   A molded article produced by a thermoforming method using the polystyrene resin foamed biaxially stretched sheet according to any one of claims 1 to 6 as a raw material. 発泡剤を含むポリスチレン系樹脂組成物と、発泡剤を含まないポリスチレン系樹脂組成物を別々の押出機で溶融混練して1つの口金から共押出させてシートを形成し、該シートを冷却後再加熱して二軸方向に共延伸することにより、少なくとも1層の非発泡層と少なくとも1層の発泡層を積層させることを特徴とする請求項1ないし請求項3、請求項5、請求項6のいずれかの請求項記載のポリスチレン系樹脂製発泡二軸延伸シートの製造方法。   A polystyrene resin composition containing a foaming agent and a polystyrene resin composition not containing a foaming agent are melt-kneaded in separate extruders and coextruded from a single die to form a sheet. 6. The method according to claim 1, wherein at least one non-foamed layer and at least one foamed layer are laminated by heating and co-stretching in a biaxial direction. A method for producing a polystyrene resin foamed biaxially stretched sheet according to any one of the preceding claims. 発泡剤を含むポリスチレン系樹脂組成物を、少なくとも2台以上の押出機で別々に溶融混練して1つの口金から共押出させてシートを形成し、該シートを冷却後再加熱して二軸方向に共延伸することにより、少なくとも2層以上の発泡層のみを積層させることを特徴とする請求項1、請求項4ないし請求項6のいずれかの請求項記載のポリスチレン系樹脂製発泡二軸延伸シートの製造方法。   A polystyrene-based resin composition containing a foaming agent is melt-kneaded separately with at least two extruders and coextruded from one die to form a sheet, and the sheet is cooled and reheated to biaxially The foamed biaxial stretching made of polystyrene-based resin according to any one of claims 1 to 4, wherein only two or more foamed layers are laminated by co-stretching to each other. Sheet manufacturing method.
JP2008277767A 2007-11-30 2008-10-29 Polystyrene resin foamed biaxially stretched sheet, method for producing the same, and molded article made of this sheet Active JP5378757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277767A JP5378757B2 (en) 2007-11-30 2008-10-29 Polystyrene resin foamed biaxially stretched sheet, method for producing the same, and molded article made of this sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007310746 2007-11-30
JP2007310746 2007-11-30
JP2008277767A JP5378757B2 (en) 2007-11-30 2008-10-29 Polystyrene resin foamed biaxially stretched sheet, method for producing the same, and molded article made of this sheet

Publications (2)

Publication Number Publication Date
JP2009149054A true JP2009149054A (en) 2009-07-09
JP5378757B2 JP5378757B2 (en) 2013-12-25

Family

ID=40678591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277767A Active JP5378757B2 (en) 2007-11-30 2008-10-29 Polystyrene resin foamed biaxially stretched sheet, method for producing the same, and molded article made of this sheet

Country Status (2)

Country Link
JP (1) JP5378757B2 (en)
WO (1) WO2009069699A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173245A (en) * 2010-02-23 2011-09-08 Kaneka Corp Extruded foam superior in insulating performance
JP2012126032A (en) * 2010-12-15 2012-07-05 Denki Kagaku Kogyo Kk Polystyrene based resin laminate foamed sheet
JP2013035195A (en) * 2011-08-08 2013-02-21 Kaneka Corp Method for producing extrusion foam with excellent heat insulation performance
JP2013043351A (en) * 2011-08-24 2013-03-04 Kaneka Corp Extruded foam excellent in heat insulation performance
JP2013154939A (en) * 2012-01-31 2013-08-15 Kyoraku Co Ltd Plastic container
JP2013173273A (en) * 2012-02-24 2013-09-05 Sekisui Plastics Co Ltd Polystyrene based resin laminated foamed sheet
JP2014037098A (en) * 2012-08-17 2014-02-27 Jsp Corp Polystyrenic resin laminate foam sheet
JP2016159442A (en) * 2015-02-26 2016-09-05 株式会社ジェイエスピー Plate-like polystyrene-based resin laminated foam
JP2018184563A (en) * 2017-04-27 2018-11-22 株式会社カネカ Method for producing styrenic resin extruded foamed body
JP2020032598A (en) * 2018-08-29 2020-03-05 積水化学工業株式会社 Foamed composite sheet
JP6864772B1 (en) * 2020-09-17 2021-04-28 積水化成品工業株式会社 Polystyrene resin foam sheet and polystyrene resin foam container
JP6870162B1 (en) * 2020-09-17 2021-05-12 積水化成品工業株式会社 Polystyrene resin foam sheet and polystyrene resin foam container
WO2022191177A1 (en) * 2021-03-08 2022-09-15 デンカ株式会社 Foamed film, heat shrinkable film, and label

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022049735A (en) * 2020-09-17 2022-03-30 積水化成品工業株式会社 Polystyrenic laminated resin foam sheet, and polystyrenic laminated resin foam container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101026A (en) * 1981-12-12 1983-06-16 Sekisui Plastics Co Ltd Continuous manufacture of polystyrene foamed and molded item
JPS61149344A (en) * 1984-12-25 1986-07-08 Japan Styrene Paper Co Ltd Base material for molded ceiling member for automobile

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4360609B2 (en) * 2003-07-10 2009-11-11 株式会社ジェイエスピー Production method of polystyrene resin foam sheet for thermoforming, polystyrene resin foam sheet for thermoforming
JP2006281452A (en) * 2005-03-31 2006-10-19 Dainippon Ink & Chem Inc Antistatic laminated sheet and its molded product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101026A (en) * 1981-12-12 1983-06-16 Sekisui Plastics Co Ltd Continuous manufacture of polystyrene foamed and molded item
JPS61149344A (en) * 1984-12-25 1986-07-08 Japan Styrene Paper Co Ltd Base material for molded ceiling member for automobile

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173245A (en) * 2010-02-23 2011-09-08 Kaneka Corp Extruded foam superior in insulating performance
JP2012126032A (en) * 2010-12-15 2012-07-05 Denki Kagaku Kogyo Kk Polystyrene based resin laminate foamed sheet
JP2013035195A (en) * 2011-08-08 2013-02-21 Kaneka Corp Method for producing extrusion foam with excellent heat insulation performance
JP2013043351A (en) * 2011-08-24 2013-03-04 Kaneka Corp Extruded foam excellent in heat insulation performance
JP2013154939A (en) * 2012-01-31 2013-08-15 Kyoraku Co Ltd Plastic container
JP2013173273A (en) * 2012-02-24 2013-09-05 Sekisui Plastics Co Ltd Polystyrene based resin laminated foamed sheet
JP2014037098A (en) * 2012-08-17 2014-02-27 Jsp Corp Polystyrenic resin laminate foam sheet
JP2016159442A (en) * 2015-02-26 2016-09-05 株式会社ジェイエスピー Plate-like polystyrene-based resin laminated foam
JP2018184563A (en) * 2017-04-27 2018-11-22 株式会社カネカ Method for producing styrenic resin extruded foamed body
JP7042038B2 (en) 2017-04-27 2022-03-25 株式会社カネカ Method for manufacturing styrene resin extruded foam
JP2020032598A (en) * 2018-08-29 2020-03-05 積水化学工業株式会社 Foamed composite sheet
JP7280673B2 (en) 2018-08-29 2023-05-24 積水化学工業株式会社 foam composite sheet
JP6864772B1 (en) * 2020-09-17 2021-04-28 積水化成品工業株式会社 Polystyrene resin foam sheet and polystyrene resin foam container
JP6870162B1 (en) * 2020-09-17 2021-05-12 積水化成品工業株式会社 Polystyrene resin foam sheet and polystyrene resin foam container
JP2022050020A (en) * 2020-09-17 2022-03-30 積水化成品工業株式会社 Polystyrenic resin foam sheet and polystyrenic resin foam container
JP2022050294A (en) * 2020-09-17 2022-03-30 積水化成品工業株式会社 Polystyrenic resin foam sheet and polystyrenic resin foam container
WO2022191177A1 (en) * 2021-03-08 2022-09-15 デンカ株式会社 Foamed film, heat shrinkable film, and label

Also Published As

Publication number Publication date
WO2009069699A1 (en) 2009-06-04
JP5378757B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP5378757B2 (en) Polystyrene resin foamed biaxially stretched sheet, method for producing the same, and molded article made of this sheet
TWI404634B (en) A laminated foam of polyethylene resin
JP4276488B2 (en) Polyethylene resin extruded foam sheet, molded body of foam sheet, assembly box, lining sheet for concrete formwork, and method for producing foam sheet
JP5792950B2 (en) Polystyrene resin laminated foam sheet
JP2010013167A (en) Styrenic resin sheet for transporting base plate glass
JP2010201623A (en) Laminated sheet
JP4484184B2 (en) Polystyrene resin foam sheet, thermoplastic resin laminated foam sheet, and containers thereof
JP4769205B2 (en) Impact-resistant polystyrene biaxially stretched sheet, and molded product of this sheet
JP2009034934A (en) Laminated sheet for container
JP2001162735A (en) Thermoplastic resin laminated foamed sheet, polystyrene- based resin foamed sheet and container thereof
JP2009149050A (en) Method of manufacturing polystyrene based resin made foamed biaxially stretched sheet, sheet and molded product using the sheet
JP2008069289A (en) Polystyrene-based resin laminated foamed sheet and method for producing the same
JP6280718B2 (en) Laminated foam sheet and container
JP2006248187A (en) Polypropylene resin-laminated foamed sheet, its manufacturing method and its molding
JP6801536B2 (en) Foam film
JP6715149B2 (en) Method for producing resin foam sheet and resin foam molded article
JP4547972B2 (en) Polypropylene resin laminated foam sheet and molded body
JP6212422B2 (en) Polystyrene resin foam plate and method for producing the same
JP2002166508A (en) Polystyrenic resin foamed sheet and container comprising the same
JP2019025858A (en) Polystyrene-based resin laminate foam sheet and packaging container
JP7356763B1 (en) Laminated sheets and thermoformed products
JP3448757B2 (en) Laminated polystyrene resin foam container
JP4312649B2 (en) Polypropylene resin laminated foam sheet and molded article thereof
JP2002331624A (en) Multilayered polypropylene resin foamed sheet and assembling box therefor
JP5478319B2 (en) Peripheral frame material for container, manufacturing method thereof and container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R150 Certificate of patent or registration of utility model

Ref document number: 5378757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350