JP4360609B2 - Production method of polystyrene resin foam sheet for thermoforming, polystyrene resin foam sheet for thermoforming - Google Patents

Production method of polystyrene resin foam sheet for thermoforming, polystyrene resin foam sheet for thermoforming Download PDF

Info

Publication number
JP4360609B2
JP4360609B2 JP2003272772A JP2003272772A JP4360609B2 JP 4360609 B2 JP4360609 B2 JP 4360609B2 JP 2003272772 A JP2003272772 A JP 2003272772A JP 2003272772 A JP2003272772 A JP 2003272772A JP 4360609 B2 JP4360609 B2 JP 4360609B2
Authority
JP
Japan
Prior art keywords
foam sheet
sheet
mol
polystyrene
isobutane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003272772A
Other languages
Japanese (ja)
Other versions
JP2005028817A (en
Inventor
健一 高瀬
卓 川田
晃 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2003272772A priority Critical patent/JP4360609B2/en
Publication of JP2005028817A publication Critical patent/JP2005028817A/en
Application granted granted Critical
Publication of JP4360609B2 publication Critical patent/JP4360609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、熱成形用ポリスチレン系樹脂発泡シートの製造方法、熱成形用ポリスチレン系樹脂発泡シートに関する。 The present invention relates to a method for producing a polystyrene resin foam sheet for thermoforming relates to a polystyrene resin foam sheet for thermoforming.

ポリスチレン系樹脂発泡シートは熱成形性に優れ、得られた成形品の外観が美麗で、しかも軽量で断熱性に優れる等の特徴を有するため、食品容器の熱成形用発泡シートとして近年大量に使用されている。かかるポリスチレン系樹脂発泡シートは、押出機内でポリスチレン系樹脂を加熱して溶融し、これに発泡剤やタルク等の気泡調節剤を添加して前記溶融樹脂と混練した後、押出機から大気圧中に押出して発泡させる等の方法によって製造されている。上記発泡剤としては、安価である上、発泡シートを熱成形する際の二次成形性に優れる等の理由で、従来から工業用ブタンが広く使用されてきた。   Polystyrene resin foam sheets have excellent thermoformability, the appearance of the resulting molded products are beautiful, light weight and excellent heat insulation, etc., so they have been used in large quantities as thermoforming foam sheets for food containers in recent years. Has been. Such a polystyrene resin foam sheet is obtained by heating and melting a polystyrene resin in an extruder, adding a foam control agent such as a foaming agent or talc to the melted resin, kneading with the molten resin, and then from the extruder at atmospheric pressure. It is manufactured by a method such as extrusion and foaming. Conventionally, industrial butane has been widely used as the foaming agent because it is inexpensive and has excellent secondary formability when thermoforming a foam sheet.

しかしながら、ノルマルブタンを約70%含有する工業用ブタンを発泡剤として用いた場合、ポリスチレン系樹脂発泡シート中に発泡剤として含まれているノルマルブタンの逸散速度が速いため、発泡シート中の発泡剤残存量が短期間で極度に低下してしまう。発泡シート中の発泡剤残存量は、多すぎても少なすぎても良好な熱成形を行うことができず、発泡シート中の発泡剤残存量が少なくなりすぎると、発泡シートを熱成形する際の加熱による厚みの膨張が少なくなり、この結果、目的とする厚み(以下、熱成形時の加熱による発泡シートの膨張を「二次発泡」といい、発泡シートが膨張した後の厚みを「二次発泡厚」という。)の成形品が得られなくなる。このため、発泡シートを熱成形する時に目的とする二次発泡厚を得ることができる熱成形適性期間(以下、シートライフと呼ぶ。)が短いという問題があった。   However, when industrial butane containing about 70% of normal butane is used as a foaming agent, the dissipation rate of normal butane contained as a foaming agent in the polystyrene resin foam sheet is high, so foaming in the foamed sheet The remaining amount of the agent is extremely lowered in a short period. If the foaming agent residual amount in the foamed sheet is too much or too little, good thermoforming cannot be performed, and if the foaming agent residual amount in the foamed sheet becomes too small, when the foamed sheet is thermoformed As a result, the expansion of the foamed sheet due to heating during thermoforming is referred to as “secondary foaming”. The molded product of “next foaming thickness” is not obtained. For this reason, there has been a problem that the thermoforming suitability period (hereinafter referred to as sheet life) capable of obtaining the desired secondary foam thickness when thermoforming the foam sheet is short.

このような問題を解決するために発泡シート中からの逸散の速いノルマルブタンの割合を0〜30重量%とし、逸散の遅いイソブタンの割合を100〜70重量%とした発泡剤を用いる方法(特許文献1)、ノルマルブタン30重量%超〜50重量%、イソブタン70重量%未満〜50重量%の発泡剤を用い、発泡シートの全体密度と表層密度との間に特定の関係が成り立つように押出発泡する方法(特許文献2)等が提案されている。   In order to solve such a problem, a method of using a foaming agent in which the ratio of normal butane which is rapidly dissipated from the foamed sheet is 0 to 30% by weight and the ratio of isobutane which is slowly dissipated is 100 to 70% by weight. (Patent document 1), normal butane is used in an amount of more than 30% by weight to 50% by weight and isobutane is less than 70% by weight to 50% by weight, and a specific relationship is established between the overall density of the foamed sheet and the surface layer density. A method of extrusion foaming (Patent Document 2) and the like has been proposed.

特公平5−42977号公報Japanese Patent Publication No. 5-42977 特開平7−165969号公報JP-A-7-165969

しかしながらイソブタン含有量の多い発泡剤を用いる特許文献1の方法は、得られた発泡シート中のイソブタン含有量が多く、ポリスチレン系樹脂発泡シート中からのイソブタンの逸散速度は遅いという問題がある。このため発泡シート中の発泡剤量が加熱成形に適正な量まで低下するまでに時間がかかり、その前に熱成形を行なうと、イソブタンの可塑化効果によって発泡シートを熱成形して得られる成形品に表面荒れが発生し、このような成形品は外観が損われる上に成形品表面への印刷適性も低下し、商品として通用しないものであった。このため、発泡シート中の発泡剤量を熱成形に適した量まで低下させるための熟成期間が長く必要となり、発泡シート製造後に熟成のために長期間在庫しておかなくてはならないので、保管にかかるコストのために成形品がコスト高となるという新たな問題が発生した。   However, the method of Patent Document 1 using a foaming agent having a large isobutane content has a problem that the content of isobutane in the obtained foamed sheet is large and the rate of dissipation of isobutane from the polystyrene resin foamed sheet is slow. For this reason, it takes time until the amount of the foaming agent in the foamed sheet is reduced to an appropriate amount for thermoforming. If thermoforming is performed before that, molding obtained by thermoforming the foamed sheet by the plasticizing effect of isobutane. Surface roughness occurred in the product, and such a molded product was not suitable as a product because the appearance was impaired and the printability on the surface of the molded product was also reduced. For this reason, a long aging period is required to reduce the amount of foaming agent in the foamed sheet to an amount suitable for thermoforming, and it must be stocked for a long time for aging after the foamed sheet is manufactured. Due to this cost, a new problem has arisen that the cost of the molded product is high.

一方、特許文献2に記載の方法では、特許文献1の方法に比べて発泡シート中からの逸散が速いノルマルブタンの割合が高い発泡剤を用いるため、熟成期間が短くて済み、また発泡シートの全体密度に対して表層密度を特定範囲内に制御して発泡し表層密度を相対的に高めることにより、熱成形時の発泡シートの表面荒れを防ぐことができる。しかしながらこの方法でも、以下のような二つの問題点を残していた。   On the other hand, the method described in Patent Document 2 uses a foaming agent having a high ratio of normal butane that is quickly dissipated from the foamed sheet as compared with the method of Patent Document 1, so that the aging period can be shortened. By controlling the surface layer density within a specific range with respect to the total density of the foam and relatively increasing the surface layer density, surface roughness of the foamed sheet during thermoforming can be prevented. However, this method still has the following two problems.

第一の問題は、冬季においては2週間程度の熟成期間では足りずに3〜4週間が必要であるという問題である。この問題は、ノルマルブタンはイソブタンに比較すると、ポリスチレン系樹脂に対する透過速度が速いとはいっても、空気のポリスチレン系樹脂に対する透過速度に比較すると1/8程度の速さであることに起因するものである。その結果、夏季には2週間程度の熟成期間で熱成形可能な範囲までノルマルブタンの残存量が減少するが、冬季には熱成形可能な範囲まで減少するには3〜4週間かかっていた。   The first problem is that in the winter season, a ripening period of about 2 weeks is insufficient and 3 to 4 weeks are required. This problem is due to the fact that normal butane has a faster permeation rate to polystyrene resins than isobutane, but is about 1/8 faster than the permeation rate of air to polystyrene resins. It is. As a result, in summer, the residual amount of normal butane decreased to a range where thermoforming was possible in an aging period of about 2 weeks, but in winter, it took 3 to 4 weeks to decrease to a range where thermoforming was possible.

第二の問題は、2週間程度の熟成ではロール状に巻かれている発泡シートの巻き方向及び幅方向において、二次発泡厚や熱成形性が大きく変化し、熱成形の安定性に欠ける上に、得られた成形品の厚みが、成形品ごとに大きく異なり品質安定性が欠けることである。上記第二の問題は、ロール状に巻かれている発泡シートの外側部分においては発泡剤の残存量が低下しているのに対し、ロールの中心よりに巻き込まれている部分では発泡剤の残存量が多いことが原因として考えられる。また、発泡シートの幅方向端部側では発泡剤の残存量が低下しているのに対し、幅方向中央部においては発泡剤の残存量が多いことも原因として考えられる。   The second problem is that after aging for about 2 weeks, the secondary foam thickness and thermoformability change greatly in the winding direction and width direction of the foamed sheet wound in a roll shape, and the stability of thermoforming is lacking. In addition, the thickness of the obtained molded product is greatly different for each molded product, and the quality stability is lacking. The second problem is that the remaining amount of the foaming agent is reduced in the outer part of the foam sheet wound in a roll shape, whereas the remaining foaming agent is present in the part wound from the center of the roll. A large amount is considered as a cause. In addition, the remaining amount of the foaming agent is decreased on the width direction end portion side of the foam sheet, whereas the remaining amount of the foaming agent is large in the center portion in the width direction.

即ち、イソブタンはポリスチレン系樹脂に対する透過速度が空気に対して非常に遅いために熟成期間中においてもほとんど発泡シート外に逸散することがないのに対し、ノルマルブタンは熟成期間中に徐々に発泡シート外へ逸散するために、ロール状に巻かれた外側(外気と接している)とロール状に巻き込まれている内側の部分(ロールの中心よりの部分)で発泡剤の残存量に大きな差が生じることが、熱成形性や二次発泡厚の違いが生じる原因であると考えられる。   That is, isobutane has a very low permeation rate with respect to the polystyrene resin, so that it hardly dissipates outside the foamed sheet even during the aging period, whereas normal butane gradually foams during the aging period. In order to dissipate out of the sheet, the remaining amount of foaming agent is large at the outer side (in contact with the outside air) wound in a roll shape and the inner part (portion from the center of the roll) wound in the roll shape. The difference is considered to be the cause of the difference in thermoformability and secondary foam thickness.

又、ノルマルブタンのポリスチレン系樹脂に対する透過速度が空気の1/8程度なので、発泡シート中のノルマルブタン量が減少する速度より、空気が発泡シート中に侵入してくる速度が速いため、発泡シートの気泡中の内圧が大気圧以上となることも、ロール状に巻かれた発泡シートの外側と内側と中間部(ロールの外側と内側との間の部分)とで二次発泡厚や熱成形性が変化することの原因であると考えられる。   Also, since the permeation rate of normal butane to polystyrene resin is about 1/8 that of air, the rate at which air enters the foam sheet is faster than the rate at which the amount of normal butane in the foam sheet decreases. The internal pressure in the air bubbles may be greater than atmospheric pressure, and the secondary foam thickness and thermoforming of the foam sheet wound in a roll shape on the outside, inside and middle (the part between the outside and inside of the roll) It is thought to be a cause of the change of sex.

即ち、ロール状に巻かれた発泡シートの幅方向外側における気泡中の内圧が大気圧以上になると、圧力の影響で発泡シートがわずかながら膨張して、隣合う発泡シート同士が互いに締め付けあってシールされたような状態になり、気体が発泡シート同士の間を通って流通することが妨げられるようになる。その結果、ロールの中間部に位置する発泡シート中のノルマルブタンは、発泡シートと発泡シートの当接面の隙間を通って逸散しにくくるとともに、空気も発泡シート内に入りにくくなる。このため、発泡シートのロール中間部と外側に巻かれた部分とでは、更には発泡シートの押出方向の同じ場所でも幅方向の端部と幅方向の中央部とでは、ノルマルブタン含有量と空気含有量が大きく異なることになると考えられる。   That is, when the internal pressure in the bubbles on the outer side in the width direction of the foam sheet wound in a roll shape becomes atmospheric pressure or more, the foam sheet expands slightly due to the influence of the pressure, and the adjacent foam sheets are tightened and sealed together. As a result, the gas is prevented from flowing through between the foam sheets. As a result, normal butane in the foam sheet located in the middle portion of the roll is less likely to escape through the gap between the contact surfaces of the foam sheet and the foam sheet, and air is less likely to enter the foam sheet. For this reason, the normal butane content and the air at the intermediate portion of the roll of the foam sheet and the portion wound outwardly, and at the end portion in the width direction and the central portion in the width direction even at the same location in the extrusion direction of the foam sheet. It is thought that the content will vary greatly.

本発明者等は、上記課題を解決するため鋭意研究した結果、イソブタン、ノルマルペンタン、イソペンタンから選ばれる少なくとも1種と、炭酸ガス、水、沸点140℃以下のエーテル、沸点140℃以下のジアルキルカーボネートから選ばれた少なくとも1種とを特定の割合で含む混合発泡剤を主成分とする物理発泡剤を用いてポリスチレン系樹脂発泡シートを製造する方法を先に提案した(特願2002−28740号)。この方法は、厚み0.5〜5mm、見掛け密度70〜150kg/mであって熱成形性に優れた発泡シートを得る好適な方法であるが、本願発明者等は更に鋭意研究した結果、見掛け密度が150kg/mを超える発泡シートであっても、2週間程度の熟成期間で熱成形が可能になると共に、ロール状に巻いて熟成した発泡シートの部位の違いによる熱成形性が安定し、安定した二次発泡厚が得られ、これにより同じロールから得られた成形品間の厚みの均一性に優れた成形品を得ることができ、しかもシートライフが長い熱成形用ポリスチレン系樹脂発泡シートを得ることができる方法を見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that at least one selected from isobutane, normal pentane, and isopentane, carbon dioxide, water, ether having a boiling point of 140 ° C. or lower, and dialkyl carbonate having a boiling point of 140 ° C. or lower. Previously proposed a method for producing a polystyrene-based resin foam sheet using a physical foaming agent mainly composed of a mixed foaming agent containing at least one selected from the above (Japanese Patent Application No. 2002-28740). . This method is a suitable method for obtaining a foam sheet having a thickness of 0.5 to 5 mm and an apparent density of 70 to 150 kg / m 3 and excellent thermoformability. also apparent density a foam sheet in excess of 150 kg / m 3, with the thermoforming aging period of about 2 weeks is possible, thermoformability due to the difference in the site of the foam sheet was aged wound into a roll stabilized In addition, a stable secondary foam thickness can be obtained, which makes it possible to obtain a molded product with excellent thickness uniformity between molded products obtained from the same roll, and a long-life polystyrene-based polystyrene resin. The present inventors have found a method capable of obtaining a foam sheet and have completed the present invention.

本発明は、
(1)ポリスチレン系樹脂と物理発泡剤とを押出機にて加熱、混練して発泡性溶融樹脂とし、該発泡性溶融樹脂を押出発泡することにより、厚みが0.5〜3.0mm、見掛け密度が150kg/m超、420kg/m以下の発泡シートを得る方法において、イソブタン50〜95モル%と、二酸化炭素又は/及び水5〜50モル%とからなる混合物理発泡剤(但し、前記発泡剤からなる混合物理発泡剤に含まれる発泡剤量の合計は100モル%である。)を主成分とする物理発泡剤を、ポリスチレン系樹脂1kg当たりのイソブタン添加量が下記(1)式の関係を満足するように添加することを特徴とする熱成形用ポリスチレン系樹脂発泡シートの製造方法。
30(モル/m)≦α×d≦65(モル/m) (1)
(但し、αはポリスチレン系樹脂1kg当たりに対するイソブタン添加量(モル/kg)、dは発泡シートの見掛け密度(kg/m)である。)
(2)厚みが0.5〜3.0mm、見掛け密度が150kg/m超、420kg/m以下の発泡シートにおいて、該発泡シートを発泡シート製造直後から温度23℃、相対湿度50%の雰囲気下に移動して熟成した場合に、熟成開始30分経過後から90日間熟成するまでの間、発泡シート中に残留する全有機物理発泡剤に対するイソブタンの割合が90〜100モル%であり、且つ下記(2)式の関係を満足する量のイソブタンが残留していることを特徴とする熱成形用ポリスチレン系樹脂発泡シート、
30(モル/m)≦β×d≦60(モル/m) (2)
(但し、βはポリスチレン系樹脂1kg当たりに対する発泡シート中の残留イソブタン量(モル/kg)、dは発泡シートの見掛け密度(kg/m)である。)
(3)ポリスチレン系樹脂が、ポリスチレン90〜30重量%と、ポリフェニレンエーテル10〜70重量%とからなる上記(2)記載の熱成形用ポリスチレン系樹脂発泡シート、
(4)片面又は両面に熱可塑性樹脂フィルムが積層されている上記(2)又は(3)記載の熱成形用ポリスチレン系樹脂発泡シート、
を要旨とする。
The present invention
(1) A polystyrene resin and a physical foaming agent are heated and kneaded in an extruder to form a foamable molten resin, and the foamable molten resin is extruded and foamed to give a thickness of 0.5 to 3.0 mm. In a method for obtaining a foamed sheet having a density of more than 150 kg / m 3 and 420 kg / m 3 or less, a mixed physical foaming agent comprising 50 to 95 mol% of isobutane and 5 to 50 mol% of carbon dioxide or / and water (however, The total amount of foaming agent contained in the mixed physical foaming agent composed of the foaming agent is 100 mol%.) The physical foaming agent having a main component of isobutane addition amount per 1 kg of polystyrene resin is represented by the following formula (1) A method for producing a polystyrene-based resin foam sheet for thermoforming, which is added so as to satisfy the above relationship.
30 (mol / m 3 ) ≦ α × d ≦ 65 (mol / m 3 ) (1)
(Where α is the amount of isobutane added per 1 kg of polystyrene resin (mol / kg), and d is the apparent density (kg / m 3 ) of the foam sheet.)
(2) In a foam sheet having a thickness of 0.5 to 3.0 mm, an apparent density of more than 150 kg / m 3 and 420 kg / m 3 or less, the foam sheet has a temperature of 23 ° C. and a relative humidity of 50% immediately after the foam sheet is produced. When moving to the atmosphere and aging, the ratio of isobutane to the total organic physical foaming agent remaining in the foamed sheet is 90 to 100 mol% after 30 minutes from the start of aging until aging for 90 days, And a polystyrene-based resin foam sheet for thermoforming, characterized in that an amount of isobutane that satisfies the relationship of the following formula (2) remains:
30 (mol / m 3 ) ≦ β × d ≦ 60 (mol / m 3 ) (2)
(Where β is the amount of residual isobutane (mol / kg) in the foamed sheet relative to 1 kg of polystyrene-based resin, and d is the apparent density (kg / m 3 ) of the foamed sheet.)
(3) The polystyrene-based resin foam sheet for thermoforming as described in (2) above, wherein the polystyrene-based resin comprises 90 to 30% by weight of polystyrene and 10 to 70% by weight of polyphenylene ether;
(4) A polystyrene-based resin foam sheet for thermoforming as described in (2) or (3) above, wherein a thermoplastic resin film is laminated on one side or both sides,
Is the gist.

本発明の熱成形用ポリスチレン系樹脂発泡シートの製造方法においては、ポリスチレン系樹脂に対する透過速度が空気よりも極めて遅い特定量のイソブタンと、ポリスチレン系樹脂に対する透過速度が空気よりも数倍速い特定量の二酸化炭素又は/及び水とからなる混合物理発泡剤を主成分とする発泡剤を、イソブタンの添加量が特定の範囲となるように添加したため、本発明方法によって得られる発泡シートは、熟成期間が短縮され冬季であっても2週間程度の熟成期間で熱成形が可能になる。しかも、10日〜2週間程度の熟成期間であっても、ロール状に巻いた発泡シートの巻き方向及び幅方向における部位の違いによる熱成形性のばらつきが極めて少ないため品質の一定した成形品を得ることができる。   In the method for producing a polystyrene-based resin foam sheet for thermoforming according to the present invention, a specific amount of isobutane having a permeation rate with respect to a polystyrene resin that is extremely slower than air, and a specific amount having a permeation rate with respect to the polystyrene resin that is several times faster than air. The foaming sheet obtained by the method of the present invention has a aging period because the foaming agent mainly composed of a mixed physical foaming agent composed of carbon dioxide and / or water is added so that the amount of isobutane added falls within a specific range. Is shortened and thermoforming becomes possible in the aging period of about 2 weeks even in winter. Moreover, even in the aging period of about 10 days to 2 weeks, a molded product with a constant quality is obtained because there is very little variation in thermoformability due to the difference in the part in the winding direction and width direction of the foam sheet wound in a roll shape. Obtainable.

本発明の熱成形用ポリスチレン系樹脂発泡シートは、特定範囲の厚み、特定範囲の見掛け密度、特定範囲の物理発泡剤の合計残存量、特定範囲のイソブタンの残存量を有していることにより、本発明の発泡シートはシートライフが長い。またロール状に巻いて熟成した発泡シートの全体において、熱成形時の二次発泡性の均一性が高く、しかも熱成形時に発泡シートの表面荒れが生じることがない。このため本発明のポリスチレン系樹脂発泡シートを熱成形して得た容器等の成形品は、成形品間で厚みばらつきが小さいとともに表面状態が良好であり、品質が均一である等の効果を有する。   The polystyrene-based resin foam sheet for thermoforming of the present invention has a specific range of thickness, a specific range of apparent density, a specific range of physical foaming agent total residual amount, a specific range of isobutane residual amount, The foam sheet of the present invention has a long sheet life. Further, the entire foamed sheet wound in a roll and aged is highly uniform in secondary foamability during thermoforming, and the surface of the foamed sheet does not become rough during thermoforming. For this reason, molded articles such as containers obtained by thermoforming the polystyrene resin foam sheet of the present invention have effects such as small variations in thickness between molded articles, good surface condition, and uniform quality. .

本発明の熱成形用ポリスチレン系樹脂発泡シートの製造方法において、ポリスチレン系樹脂を押出機にて加熱、熔融、混練し、更に物理発泡剤を押出機内に圧入して混練して発泡性溶融樹脂とし、該発泡性溶融樹脂を押出機内の高圧域から低圧域に押出して、熱成形用ポリスチレン系樹脂発泡シート(以下、単に発泡シートという。)を得る。前記発泡性溶融樹脂は、押出機先端に取り付けた環状ダイを通して、押出機内の高圧域から低圧域に押出して円筒状に発泡させた後、この円筒状発泡体を押出方向に切り開いてシート状とすることが、発泡シートを効率的に製造できるので好ましい。但し、本発明においては、押出機先端に取り付けたTダイを通して、発泡性溶融樹脂を押出発泡してもよい。     In the method for producing a polystyrene resin foam sheet for thermoforming according to the present invention, the polystyrene resin is heated, melted and kneaded in an extruder, and further a physical foaming agent is press-fitted into the extruder and kneaded to obtain a foamable molten resin. The foamable molten resin is extruded from a high pressure region to a low pressure region in an extruder to obtain a polystyrene-based resin foam sheet for thermoforming (hereinafter simply referred to as a foam sheet). The foamable molten resin is extruded from a high pressure region to a low pressure region in an extruder through an annular die attached to the tip of the extruder and foamed into a cylindrical shape, and then the cylindrical foam is cut in the extrusion direction to form a sheet. It is preferable that the foamed sheet can be efficiently manufactured. However, in the present invention, the foamable molten resin may be extruded and foamed through a T die attached to the tip of the extruder.

本発明において用いられるポリスチレン系樹脂は、スチレンの単独重合体樹脂、スチレンと他のモノマーとが共重合したスチレン系共重合体樹脂、スチレンの単独重合体樹脂又は/及びスチレン系共重合樹脂とスチレン−ブタジエンブロック共重合体との混合物、ゴム状重合体の存在下でスチレン系モノマーを重合することによって得られるゴム変性スチレン系樹脂(耐衝撃性ポリスチレン樹脂)、或いは上記したポリスチレン系樹脂と他の樹脂との混合物等の、スチレン成分比率が50重量%以上であるポリスチレン系樹脂あるいはポリスチレン系樹脂組成物が例示される。ただし、ポリスチレン系樹脂とポリフェニレンエーテルの混合物に限っては、スチレン成分比率が25重量%以上であるものをポリスチレン系樹脂あるいはポリスチレン系樹脂組成物とする。ポリスチレン系樹脂の脆性改善等が要求される場合は、ポリスチレン90〜30重量%と、ポリフェニレンエーテル10〜70重量%の混合物を用いることが好ましい。スチレン系共重合体を構成する、スチレンと共重合可能な他のモノマーとしては、例えばアクリル酸、メタクリル酸、無水マレイン酸、ブタジエン、アクリロニトリル等が挙げられるが、ブタジエンが好ましい。   The polystyrene resin used in the present invention is a styrene homopolymer resin, a styrene copolymer resin obtained by copolymerization of styrene and other monomers, a styrene homopolymer resin or / and a styrene copolymer resin and styrene. -A mixture with a butadiene block copolymer, a rubber-modified styrene resin (impact polystyrene resin) obtained by polymerizing a styrene monomer in the presence of a rubber-like polymer, or the above-mentioned polystyrene resin and other Examples thereof include a polystyrene resin or a polystyrene resin composition having a styrene component ratio of 50% by weight or more, such as a mixture with a resin. However, only a mixture of polystyrene resin and polyphenylene ether is a polystyrene resin or polystyrene resin composition having a styrene component ratio of 25% by weight or more. When the brittleness improvement of a polystyrene-type resin is requested | required, it is preferable to use the mixture of 90-30 weight% of polystyrene and 10-70 weight% of polyphenylene ether. Examples of other monomers that can be copolymerized with styrene constituting the styrene-based copolymer include acrylic acid, methacrylic acid, maleic anhydride, butadiene, acrylonitrile, and the like, but butadiene is preferable.

本発明方法において物理発泡剤としては、イソブタン50〜95モル%と、二酸化炭素、水の中から選択される1種以上を5〜50モル%含む混合物理発泡剤(但し、イソブタンと、水又は/及び二酸化炭素の合計は100モル%)を主成分とするものを用いる。このような混合物理発泡剤を主体とする物理発泡剤を用いて得たポリスチレン系樹脂発泡シートは、夏期よりも長い熟成期間が必要な冬季であっても夏季よりも短い熟成期間(例えば2週間以下)で熱成形が可能になると共に、短い熟成期間であっても、ロール状に巻いた発泡シートの巻き方向及び幅方向の位置の違いによる熱成形性のばらつきが少なく、成形品間の厚みばらつきの小さい成形品を得ることができ、しかも発泡シートのシートライフも長いという利点がある。このような利点は、発泡シートをロール状に巻いた状態にて保管又は熟成する場合に非常に有利であり、1本のロールで発泡シートの長さが長いほど(ロールの直径が大きくなるほど)より有益である。1本のロールにおける発泡シートの長さは150m以上が好ましく、160〜650mがより好ましく、180〜450mが更に好ましい。   In the method of the present invention, the physical foaming agent is a mixed physical foaming agent containing 50 to 95 mol% of isobutane, 5 to 50 mol% of carbon dioxide and water selected from water (provided that isobutane and water or / And the total amount of carbon dioxide is 100 mol%). A polystyrene resin foam sheet obtained using a physical foaming agent mainly composed of such a mixed physical foaming agent has an aging period shorter than the summer (for example, 2 weeks) even in the winter when an aging period longer than the summer is required. The following is possible: thermoforming is possible, and even during a short aging period, there is little variation in thermoformability due to the difference in position in the winding direction and width direction of the foamed sheet wound in a roll, and the thickness between molded products There is an advantage that a molded product with small variation can be obtained and the sheet life of the foamed sheet is also long. Such an advantage is very advantageous when the foamed sheet is stored or aged in a state of being wound in a roll shape, and the longer the length of the foamed sheet in one roll (the larger the diameter of the roll). More useful. The length of the foam sheet in one roll is preferably 150 m or more, more preferably 160 to 650 m, and still more preferably 180 to 450 m.

一方、イソブタンとともに混合物理発泡剤を構成する二酸化炭素や水は、ポリスチレン系樹脂に対する透過速度が極めて速く、ポリスチレン系樹脂に対する空気の透過速度よりも数倍速い(空気のポリスチレン系樹脂に対する透過速度の5倍を超える)ので、大部分が発泡シート製造直後に発泡シート中から逸散し、ノルマルブタンのように熟成期間中徐々に発泡シート外へ散逸することがない。このためロール状に巻いたシートのロールの外側に位置した部分と内側に位置した部分とで、残存発泡剤量が大きく異なることがなく、シートの長手方向及び幅方向における残存発泡剤量も均一なものとなる。これは次の現象によるものと推測される。即ち、発泡シート製造直後に発泡シート内に空気が浸透してくるスピードよりも遥かに速いスピードで二酸化炭素や水の大部分が発泡シート中から逸散するため、製造直後の気泡内は従来よりも減圧状態となる。そのため、発泡シートの締付け状態が多少緩めになって、発泡シートと発泡シートとの当接面の間隙を通って空気が効率よく流通するため、発泡シート内への空気の透過が助長され、早い時期(製造後概ね10日前後)に発泡シート内に空気の大部分が浸透して空気量が安定する。一方、イソブタンはノルマルブタンと比較して抜けが遥かに遅いものであるから、ロール内のどこをとってもイソブタン含有量は製造直後から長期間(製造後概ね半年前後)概ね一定している。以上の通り、製造後早い時期に発泡シート内の空気量とイソブタン量が安定し、それが長期間持続することにより、ロール内のどこをとってもシートの長手方向及び幅方向における残存発泡剤量が均一なものとなるのである。   On the other hand, carbon dioxide and water constituting the mixed physical foaming agent together with isobutane have an extremely high permeation rate for polystyrene resins and several times faster than the permeation rate of air for polystyrene resins (the rate of permeation rate of air to polystyrene resins). Therefore, most of them are dissipated from the foamed sheet immediately after the foamed sheet is produced, and are not gradually dissipated out of the foamed sheet during the aging period like normal butane. For this reason, the amount of remaining foaming agent does not differ greatly between the portion located outside the roll of the sheet wound in a roll shape and the portion located inside, and the amount of remaining foaming agent in the longitudinal and width directions of the sheet is also uniform. It will be something. This is presumed to be due to the following phenomenon. In other words, most of the carbon dioxide and water escape from the foam sheet at a speed much faster than the speed at which air penetrates into the foam sheet immediately after the foam sheet is manufactured. Will also be in a reduced pressure state. For this reason, the tightening state of the foam sheet is somewhat loosened, and air efficiently circulates through the gap between the contact surfaces of the foam sheet and the foam sheet. This facilitates air permeation into the foam sheet and is quick. Most of the air permeates into the foam sheet at the time (approximately 10 days after production), and the amount of air is stabilized. On the other hand, since isobutane has a far slower release than normal butane, the isobutane content is almost constant for a long period of time (approximately half a year after production) immediately after production, regardless of where it is in the roll. As described above, the amount of air and isobutane in the foamed sheet is stabilized early in the manufacturing process, and the amount of residual foaming agent in the longitudinal and width directions of the sheet can be reduced anywhere in the roll by maintaining it for a long period of time. It will be uniform.

イソブタンと、二酸化炭素又は/及び水との混合物理発泡剤におけるイソブタンの割合が50モル%未満の場合(二酸化炭素又は/及び水の割合が50モル%を超える場合)は、得られる発泡シートの二次発泡厚が小さなものとなる。混合発泡剤におけるイソブタンと、二酸化炭素又は/及び水の割合は、好ましくはイソブタン60〜95モル%、二酸化炭素又は/及び水40〜5モル%であるが、シートライフが長く、発泡シートの保管温度がどうしても高くなる夏季において製造後40日経過後でも十分な二次発泡厚を得ることができるという点からは、特にイソブタンを70〜95モル%、二酸化炭素又は/及び水を30〜5モル%含むことが好ましい。一方、混合物理発泡剤中のイソブタンの割合が95モル%を超える場合(二酸化炭素又は/及び水の割合が5モル%未満の場合)、イソブタンの可塑化効果により発泡シートの熱成形可能な加熱温度や加熱時間の範囲が狭くなり、熱成形性が低下する虞がある。即ち、わずかでも加熱しすぎると発泡シートの表面荒れが発生するのに対し、加熱しすぎを警戒して加熱時間を短めにすると加熱不足になり、発泡シートが破れたり、金型形状どおりの成形品を得ることができなくなるという不都合が発生しやすくなる。また、発泡シート中の空気量が安定するのに時間がかかりすぎる虞がある。かかる不都合を回避する上で、混合物理発泡剤中のイソブタンの割合は90モル%以下が好ましく、イソブタン75〜90モル%、二酸化炭素又は/及び水10〜25モル%が好ましい。   When the proportion of isobutane in the mixed physical foaming agent of isobutane and carbon dioxide or / and water is less than 50 mol% (when the proportion of carbon dioxide or / and water exceeds 50 mol%), The secondary foam thickness is small. The ratio of isobutane and carbon dioxide or / and water in the mixed foaming agent is preferably 60 to 95 mol% of isobutane and 40 to 5 mol% of carbon dioxide or / and water, but the sheet life is long and the foam sheet is stored. From the point that a sufficient secondary foaming thickness can be obtained even after 40 days have passed after production in the summer when the temperature is inevitably high, in particular, isobutane is 70 to 95 mol%, carbon dioxide and / or water is 30 to 5 mol%. It is preferable to include. On the other hand, when the proportion of isobutane in the mixed physical foaming agent exceeds 95 mol% (when the proportion of carbon dioxide or / and water is less than 5 mol%), the foam sheet can be thermoformed by the plasticizing effect of isobutane. There is a possibility that the range of temperature and heating time is narrowed and thermoformability is lowered. In other words, the surface of the foamed sheet may be roughened if it is heated too much, but if the heating time is shortened by virtue of being overheated, the heating will be insufficient, the foamed sheet will be torn, or the mold will be molded according to the shape of the mold. The inconvenience that the product cannot be obtained is likely to occur. Moreover, it may take too much time for the amount of air in the foam sheet to stabilize. In order to avoid such inconvenience, the proportion of isobutane in the mixed physical foaming agent is preferably 90 mol% or less, preferably 75 to 90 mol% of isobutane, 10 to 25 mol% of carbon dioxide and / or water.

本発明においてポリスチレン系樹脂の発泡に用いる物理発泡剤としては、上記イソブタンと、二酸化炭素又は/及び水とからなる混合物理発泡剤を主成分とする(混合物理発泡剤中でイソブタンと、二酸化炭素又は/及び水の総和が80モル%〜100モル%である)ものであり、好ましくは85モル%以上、更に好ましくは90モル%以上、最も好ましくは95モル%以上含有するものである。イソブタンと、二酸化炭素又は/及び水との混合物理発泡剤とともに併用することができる他の発泡剤としては、例えば、イソブタンと同様に遅逸散性発泡剤であるノルマルペンタンやイソペンタン、二酸化炭素や水と同様に早期逸散性発泡剤であるジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、塩化メチル等が用いられる。その他プロパン、ノルマルブタン等を用いることができる。但し、ポリスチレン系樹脂に対する透過速度が空気の1/8程度であるノルマルブタンや同程度の透過速度を有するプロパン等の発泡剤の使用は、極力避けるか、或いは使用してもできる限り少ない方が好ましく、具体的には、混合物理発泡剤中のノルマルブタンの含有量は0〜10モル%とすることが好ましく、0〜5モル%がより好ましい。また他の発泡剤として化学発泡剤も使用することができるが、化学発泡剤を使用する場合には、気泡サイズを小さくする気泡調節剤としての少量の使用にとどめることが好ましく、具体的にはポリスチレン系樹脂100重量部に対し0.01〜1重量部が好ましい。   In the present invention, the physical foaming agent used for foaming the polystyrene-based resin is mainly composed of a mixed physical foaming agent composed of the above isobutane and carbon dioxide or / and water (isobutane and carbon dioxide in the mixed physical foaming agent). Or / and the sum of water is 80 mol% to 100 mol%), preferably 85 mol% or more, more preferably 90 mol% or more, and most preferably 95 mol% or more. Examples of other blowing agents that can be used in combination with a mixed physical blowing agent of isobutane and carbon dioxide or / and water include, for example, normal pentane, isopentane, carbon dioxide, As with water, dimethyl ether, ethyl methyl ether, diethyl ether, methyl chloride and the like, which are early dissipative blowing agents, are used. In addition, propane, normal butane and the like can be used. However, the use of foaming agents such as normal butane, which has a permeation rate of about 1/8 of that of polystyrene resin, and propane having a permeation rate of the same level should be avoided as much as possible or as little as possible. Specifically, the normal butane content in the mixed physical foaming agent is preferably 0 to 10 mol%, more preferably 0 to 5 mol%. In addition, chemical foaming agents can also be used as other foaming agents, but when using chemical foaming agents, it is preferable to use only a small amount as a foam control agent that reduces the bubble size, specifically, 0.01-1 weight part is preferable with respect to 100 weight part of polystyrene-type resin.

参考として、空気のポリスチレン系樹脂に対する透過速度を100とした場合の各種発泡剤の透過速度を表1に示す。   As a reference, Table 1 shows the permeation rates of various foaming agents when the permeation rate of air to polystyrene resin is 100.

(表1)

Figure 0004360609
(Table 1)
Figure 0004360609

本発明方法において、発泡性溶融樹脂中に、下記(1)式を満足する量のイソブタンが添加されるように物理発泡剤を添加する。   In the method of the present invention, a physical foaming agent is added so that isobutane in an amount satisfying the following formula (1) is added to the foamable molten resin.

30(モル/m) ≦ α×d ≦ 65(モル/m)……(1)
但し、αは押出発泡に使用するポリスチレン系樹脂1kgに対するイソブタンの添加量(モル/kg)、dは押出発泡にて得られる発泡シートの見かけ密度(kg/m)であり、本発明では150(kg/m)超、420(kg/m)以下ある。
30 (mol / m 3 ) ≦ α × d ≦ 65 (mol / m 3 ) (1)
Where α is the amount of isobutane added (kg / kg) to 1 kg of polystyrene resin used for extrusion foaming, and d is the apparent density (kg / m 3 ) of the foamed sheet obtained by extrusion foaming. More than (kg / m 3 ) and 420 (kg / m 3 ) or less.

α×dが30(モル/m)未満となる場合、目的とする見掛け密度の発泡シートを得ても、熱成形時における十分な二次発泡厚が得られないものとなる虞があり、型に忠実な成形品が得られにくくなる。一方、65(モル/m)を超える場合は、目的とする見かけ密度の発泡シートを得ても、熱成形時においても後述するβ×dが60(モル/m)を越えて存在して発泡シートを構成するポリスチレン系樹脂中に溶解して存在するイソブタンの含有量が多目となる結果、熱成形時の加熱に際して表面荒れ(有機揮発性発泡剤の過剰な存在によりポリスチレン樹脂が可塑化されて必要以上に熱に敏感となり、加熱に際して表面の気泡が破壊され、外観が著しく悪化する現象)が生じ易くなる。そのような観点からα×dの下限は32(モル/m)以上が好ましく、35(モル/m)以上がより好ましく、またその上限は60(モル/m)以下が好ましく、55(モル/m)以下がより好ましい。 When α × d is less than 30 (mol / m 3 ), even if a foam sheet having an intended apparent density is obtained, a sufficient secondary foam thickness at the time of thermoforming may not be obtained. It becomes difficult to obtain a molded product faithful to the mold. On the other hand, when it exceeds 65 (mol / m 3 ), even if a foam sheet having the desired apparent density is obtained, β × d described later is present exceeding 60 (mol / m 3 ) even during thermoforming. As a result of the increased content of isobutane dissolved in the polystyrene resin constituting the foamed sheet, the surface becomes rough during heating during thermoforming (polystyrene resin is plasticized due to the excessive presence of organic volatile foaming agent). It becomes more sensitive to heat than necessary, and bubbles on the surface are destroyed during heating, and the appearance is remarkably deteriorated). From such a viewpoint, the lower limit of α × d is preferably 32 (mol / m 3 ) or more, more preferably 35 (mol / m 3 ) or more, and the upper limit thereof is preferably 60 (mol / m 3 ) or less. (Mole / m 3 ) or less is more preferable.

ポリスチレン系樹脂に物理発泡剤を添加して溶融混練した発泡性溶融樹脂には、通常、発泡シートの気泡径を調整するために気泡調整剤が添加される。該気泡調整剤としては、タルク、カオリン、マイカ、シリカ、炭酸カルシウム、硫酸バリウム、酸化チタン、クレー、酸化アルミニウム、ベントナイト、ケイソウ土等の無機物粉末、又は重炭酸ナトリウム、クエン酸モノナトリウム塩等が例示される。これらの気泡調整剤は、通常は単独で使用されるが2種以上組合せて用いてもよい。気泡調整剤として用いる無機物粉末は、粒子径が小さいほど発泡シートの気泡径を小さくする効果が大きいので、粒子径の小さい無機粉末ほど少ない使用量で発泡シートの気泡径を小さくすることができる。かかる観点から無機物粉末の平均粒子径(遠心沈降法)は30μm以下であることが好ましく、20μm以下であることがより好ましく、15μm以下であることが更に好ましい。但し、平均粒子径が小さくなるほど加工に費用がかかり、無機物粉末の価格が高くなるので、0.1μmを下限とすることが好ましい。上記無機物粉末の中でも、タルクが気泡径を小さくする効果が大きいと共に安価なので最も好ましい。   In order to adjust the bubble diameter of the foamed sheet, a cell regulator is usually added to the foamable molten resin obtained by adding a physical foaming agent to a polystyrene resin and melt-kneading. Examples of the air conditioner include talc, kaolin, mica, silica, calcium carbonate, barium sulfate, titanium oxide, clay, aluminum oxide, bentonite, diatomaceous earth and the like, or sodium bicarbonate, monosodium citrate, and the like. Illustrated. These bubble regulators are usually used alone, but may be used in combination of two or more. Since the inorganic powder used as the bubble adjusting agent has a larger effect of reducing the bubble diameter of the foam sheet as the particle size is smaller, the inorganic powder having a smaller particle diameter can reduce the bubble diameter of the foam sheet with a smaller amount of use. From this viewpoint, the average particle diameter (centrifugal sedimentation method) of the inorganic powder is preferably 30 μm or less, more preferably 20 μm or less, and further preferably 15 μm or less. However, the smaller the average particle size, the higher the processing cost and the higher the price of the inorganic powder, so 0.1 μm is preferable as the lower limit. Among the inorganic powders, talc is most preferable because it has a large effect of reducing the bubble diameter and is inexpensive.

発泡性溶融樹脂中には、本発明の目的を著しく損なわない範囲で、更に必要に応じて各種の添加剤、例えば、造核剤、酸化防止剤、熱安定剤、帯電防止剤、導電性付与剤、耐候剤、紫外線吸収剤、難燃剤、無機充填剤等を添加することができる。これらの添加剤や前記気泡調整剤は、押出機内でポリスチレン系樹脂を溶融して発泡性溶融樹脂を調製する際に添加しても良いが、予めポリスチレン系樹脂中に含有されていても良い。   In the foamable molten resin, various additives such as a nucleating agent, an antioxidant, a thermal stabilizer, an antistatic agent, and conductivity imparting are added as necessary, as long as the object of the present invention is not significantly impaired. Agents, weathering agents, ultraviolet absorbers, flame retardants, inorganic fillers, and the like can be added. These additives and the above-mentioned air conditioner may be added when the polystyrene-based resin is melted in the extruder to prepare a foamable molten resin, but may be previously contained in the polystyrene-based resin.

本発明方法は、厚み0.5〜3.0mm、見掛け密度150kg/m超、420kg/m以下のポリスチレン系樹脂発泡シートを得る方法であるが、好ましくは厚み0.8〜2.5mm、見掛け密度150kg/m超〜350kg/mの発泡シートを得るために好適である。このような見かけ密度の範囲及び厚みの範囲は、金型に忠実なシャープな成形品を得る上で重要な要素である。 The method of the present invention is a method of obtaining a polystyrene-based resin foam sheet having a thickness of 0.5 to 3.0 mm, an apparent density of more than 150 kg / m 3 and 420 kg / m 3 or less, preferably a thickness of 0.8 to 2.5 mm. is suitable for obtaining a foamed sheet of apparent density 150 kg / m 3 super ~350kg / m 3. Such an apparent density range and thickness range are important factors in obtaining a sharp molded product faithful to the mold.

本発明のポリスチレン系樹脂発泡シートは厚み0.5〜3.0mm、好ましくは0.8〜2.5mm、見掛け密度150kg/m超〜420kg/mである。発泡シートの厚みが0.5mm未満の場合は、熱成形によって得られる成形品の強度が低下しすぎる虞があり、厚みが3.0mmを超える場合は、熱成形性が悪くなり、成形品に厚みむらが発生する虞がある。また見掛け密度が150kg/m以下の場合は、金型どおりの形状のシャープな成形品を得ることができなくなる虞がある上に、得られる成形品の強度も低下する虞がある。一方、見掛け密度が420kg/mを超える場合は、軽量性、断熱性、緩衝性等の発泡体の特徴が失われる虞がある。発泡シートの見掛け密度は、特に150〜350kg/mである場合に、熱成形性に優れると共に、軽量性、断熱性、金型転写性が特に優れたものとなるため好ましい。 Polystyrene resin foam sheet thickness 0.5~3.0mm of the present invention, preferably 0.8~2.5Mm, apparent density 150 kg / m 3 Super ~420kg / m 3. If the thickness of the foamed sheet is less than 0.5 mm, the strength of the molded product obtained by thermoforming may be reduced too much, and if the thickness exceeds 3.0 mm, the thermoformability will deteriorate and the molded product will be deteriorated. There is a risk of uneven thickness. When the apparent density is 150 kg / m 3 or less, there is a possibility that a sharp molded product having a shape as in the mold cannot be obtained, and the strength of the obtained molded product may be lowered. On the other hand, when the apparent density exceeds 420 kg / m 3 , there is a possibility that the characteristics of the foam such as lightness, heat insulation, and buffering properties may be lost. The apparent density of the foamed sheet is particularly preferable when it is 150 to 350 kg / m 3, since it is excellent in thermoformability and is particularly excellent in lightness, heat insulation, and mold transferability.

本発明発泡シート中には、残存する全有機物理発泡剤量に対する割合が90〜100モル%であって、下記(2)式を満たす量のイソブタンが残留していることが必要である。   In the foamed sheet of the present invention, it is necessary that the proportion of the total organic physical foaming agent remaining is 90 to 100 mol% and that isobutane in an amount satisfying the following formula (2) remains.

30(モル/m) ≦ β×d ≦ 60(モル/m) (2)
(但し、βはポリスチレン系樹脂1kg当たりに対する発泡シート中の残留イソブタン量(モル/kg)、dは発泡シートの見掛け密度(kg/m)である。)
30 (mol / m 3 ) ≦ β × d ≦ 60 (mol / m 3 ) (2)
(Where β is the amount of residual isobutane (mol / kg) in the foamed sheet relative to 1 kg of polystyrene-based resin, and d is the apparent density (kg / m 3 ) of the foamed sheet.)

発泡シートを製造する際に、ポリスチレン系樹脂に添加した発泡剤中のイソブタンは、発泡性溶融樹脂を押出機から押出発泡させて発泡シートが得られるまでの間に、発泡性溶融樹脂や発泡シート中から殆ど逸散することがなく、得られた発泡シート中からの逸散も非常に遅い。このため発泡性溶融樹脂中に添加されたイソブタン量:α(モル/kg)と、発泡シート中に残留するイソブタン量:β(モル/kg)は、製造時等に多少の気散があり、その後極めて緩やかなスピードで発泡シートから徐々に抜け出ていくのでβの方がやや小さめとなるが、製造1日後から4ヶ月の間はわずかな減少が見られるだけであり、大きな変化はない。発泡シート中のイソブタン残存量が上記(2)式より求められる下限値未満の量の場合、前記したように熱成形において十分な二次発泡厚が得られなくなり、上限値を超える量の場合、熱成形時の加熱に際して表面荒れが発生しやすい。またイソブタンの残留量が上記(2)式から求められる範囲にあっても、発泡シート中に残留する全有機発泡剤量に対して90モル%未満の場合(即ち、イソブタン以外の有機物理発泡剤が10モル%を超える量残留している場合)、同じロール内での成形品間の厚みばらつきを生じる原因となる。このような観点から、空気がシートの気泡内に浸透してロールの全体にわたって気泡内の空気量が概ね安定する時期である製造240時間後においては、発泡シート中に残存する有機物理発泡剤の内、イソブタンの割合が90モル%以上であることが好ましく、92モル%以上がより好ましく、95〜100%が更に好ましい。また、その際のイソブタンの残存量は発泡シート1kgあたり5〜20gの範囲が好ましい。   The isobutane in the foaming agent added to the polystyrene resin during the production of the foamed sheet is the foamable molten resin or foamed sheet until the foamed sheet is obtained by extruding and foaming the foamable molten resin from the extruder. There is almost no escape from the inside, and the escape from the obtained foamed sheet is very slow. For this reason, the amount of isobutane added in the foamable molten resin: α (mol / kg) and the amount of isobutane remaining in the foamed sheet: β (mol / kg) have some dispersal during production, etc. After that, the sheet gradually escapes from the foam sheet at an extremely slow speed, so β is slightly smaller, but only a slight decrease is observed for 4 months from the first day of production, and there is no significant change. When the residual amount of isobutane in the foamed sheet is less than the lower limit obtained from the above formula (2), as described above, a sufficient secondary foam thickness cannot be obtained in thermoforming, and when the amount exceeds the upper limit, Surface roughness is likely to occur during heating during thermoforming. Further, even when the residual amount of isobutane is within the range determined from the above formula (2), when the amount is less than 90 mol% with respect to the total amount of the organic foaming agent remaining in the foamed sheet (that is, an organic physical foaming agent other than isobutane) In the case where the residual amount exceeds 10 mol%), this causes a variation in thickness between molded products in the same roll. From this point of view, the organic physical foaming agent remaining in the foam sheet after 240 hours of production, which is a time when air penetrates into the bubbles of the sheet and the amount of air in the bubbles is generally stabilized over the entire roll. Of these, the proportion of isobutane is preferably 90 mol% or more, more preferably 92 mol% or more, and still more preferably 95 to 100%. Further, the residual amount of isobutane at that time is preferably in the range of 5 to 20 g per kg of the foam sheet.

尚、本明細書における発泡シートの厚みは、発泡シートの全幅に亘って等間隔に10個所の厚みを測定し、求められた各測定値の算術平均値を言う。また発泡シートの見掛け密度は、発泡シートの単位面積(1cm)あたりの重量(g)を、発泡シートの厚み(cm)により除して得た値(g/cm)を、kg/m単位に換算することにより求められる。 In addition, the thickness of the foam sheet in this specification refers to the arithmetic average value of each measured value obtained by measuring the thickness at 10 locations at equal intervals over the entire width of the foam sheet. The apparent density of the foamed sheet is a value (g / cm 3 ) obtained by dividing the weight (g) per unit area (1 cm 2 ) of the foamed sheet by the thickness (cm) of the foamed sheet, kg / m Calculated by converting to 3 units.

また発泡シート中の有機物理発泡剤の残存量は、発泡シートから採取した測定試料を、トルエンを入れた蓋付の試料ビンの中に入れ、撹拌して発泡シート中の発泡剤をトルエンに溶解させた後、発泡剤を溶解したトルエンをマイクロシリンジで採取してガスクロマトグラフィー分析にかけて、内部標準法により求めることができる。   The remaining amount of the organic physical foaming agent in the foamed sheet is determined by placing the measurement sample collected from the foamed sheet in a sample bottle with a lid containing toluene and stirring to dissolve the foaming agent in the foamed sheet in toluene. Then, the toluene in which the blowing agent is dissolved can be collected with a microsyringe and subjected to gas chromatography analysis, which can be determined by an internal standard method.

本発明の発泡シートはその連続気泡率が0〜15%、更に0〜10%であることが、熱成形時の二次発泡性に優れたものとなり、得られる成形品の機械的強度、厚みの均一性において特に良好なものとなる点から好ましい。   The foamed sheet of the present invention has an open cell ratio of 0 to 15%, more preferably 0 to 10%, which is excellent in secondary foamability during thermoforming, and the mechanical strength and thickness of the resulting molded product. It is preferable from the point of being particularly good in uniformity.

本明細書における連続気泡率(%)とは、ASTM D−2856−70(手順C)に準じて次の様に行なって得た値であり、エアピクノメーターを使用して測定試料の真の体積Vx(cm)を求め、測定試料の外寸から見掛けの体積Va(cm3)を求め、下記(3)式により算出することができる。尚、真の体積Vxとは、測定試料中の樹脂の体積と独立気泡部分の体積との和である。 The open cell ratio (%) in the present specification is a value obtained in the following manner in accordance with ASTM D-2856-70 (Procedure C), and is the true value of the measurement sample using an air pycnometer. The volume Vx (cm 3 ) is obtained, the apparent volume Va (cm 3 ) is obtained from the outer dimension of the measurement sample, and can be calculated by the following equation (3). The true volume Vx is the sum of the volume of the resin in the measurement sample and the volume of the closed cell portion.

連続気泡率(%)={(Va−Vx)/(Va−W/ρ)}×100 (3)   Open cell ratio (%) = {(Va−Vx) / (Va−W / ρ)} × 100 (3)

上記(3)式において、Wは測定試料の重量(g)、ρは発泡シートを構成する基材樹脂の密度(g/cm)である。連続気泡率の測定における測定用試料の寸法は縦25mm、横25mm、厚み40mmである。本発明においては、1枚のサンプルでは上記測定用試料の厚みに適合した寸法のものが得られないので、複数枚のサンプルを重ね合わせたときに厚みが最も40mmに近づくが40mmを越えない枚数の複数枚のサンプルを同時にエアピクノメーターで測定する。上記測定試料のサンプリング箇所は発泡シートの幅方向の両端から各50mmの部分を除いた部分から無作為に選んだ個所とし、1ロールからの測定数は10とし、それぞれ連続気泡率を求めると共にそれらの算術平均値を算出し、その値をもって本発明発泡シートの連続気泡率とする。 In the above formula (3), W is the weight (g) of the measurement sample, and ρ is the density (g / cm 3 ) of the base resin constituting the foamed sheet. The dimensions of the measurement sample in the measurement of the open cell ratio are 25 mm in length, 25 mm in width, and 40 mm in thickness. In the present invention, a single sample cannot be obtained with a size suitable for the thickness of the above-mentioned measurement sample. Therefore, when a plurality of samples are overlapped, the thickness is closest to 40 mm but does not exceed 40 mm. Measure multiple samples at the same time with an air pycnometer. The sampling location of the measurement sample is a location randomly selected from the portions excluding the 50 mm portions from the both ends in the width direction of the foam sheet, the number of measurements from one roll is 10, and the open cell ratio is obtained for each of them. Is calculated as the open cell ratio of the foamed sheet of the present invention.

本発明発泡シートにおいては、発泡シートの厚み方向の平均気泡径:X、発泡シートの押出方向(MD)の平均気泡径:Y、発泡シートの幅方向の平均気泡径:Zとの間に、下記(a)〜(c)式で現される関系が成り立つものが好ましい。   In the foam sheet of the present invention, the average cell diameter in the thickness direction of the foam sheet: X, the average cell diameter in the extrusion direction of the foam sheet (MD): Y, the average cell diameter in the width direction of the foam sheet: Z, Those satisfying the relation expressed by the following formulas (a) to (c) are preferable.

0.3 ≦ X/Y ≦ 1.0 ……(a)       0.3 ≦ X / Y ≦ 1.0 (a)

0.3 ≦ X/Z ≦ 1.0 ……(b)       0.3 ≦ X / Z ≦ 1.0 (b)

60μm ≦ (X+Y+Z)/3 ≦ 100μm ……(c)     60 μm ≦ (X + Y + Z) / 3 ≦ 100 μm (c)

X/Y、X/Zの値が上記範囲を満足するような形状の気泡を有する発泡シートは、熱成形性、得られる成形品の機械的強度において優れたものとなる。しかしながら、X/Y、X/Zの一方又は両方が0.3未満の場合は、扁平な形状の気泡となるため、発泡シートを熱成形して得られる成形品の機械的強度が低下する虞がある。一方、X/Y、X/Zの一方又は両方が1.0を超える発泡シートは、熱成形時のシートのドローダウンが大きなものとなる虞がある。発泡シートの厚み方向の平均気泡径:Xと押出方向の平均気泡径:Yとの比:X/Y、厚み方向の平均気泡径:Xと幅方向の平均気泡径:Zの比:X/Zは、各々0.4〜0.8であることがより好ましい。   A foamed sheet having bubbles in such a shape that the values of X / Y and X / Z satisfy the above ranges is excellent in thermoformability and mechanical strength of the resulting molded product. However, when one or both of X / Y and X / Z is less than 0.3, flat bubbles are formed, and the mechanical strength of a molded product obtained by thermoforming the foamed sheet may be reduced. There is. On the other hand, a foam sheet in which one or both of X / Y and X / Z exceeds 1.0 may cause a large drawdown of the sheet during thermoforming. Average cell diameter in the thickness direction of the foamed sheet: ratio of X and average cell size in the extrusion direction: Y: X / Y, average cell size in the thickness direction: ratio of X and average cell size in the width direction: Z ratio: X / More preferably, each Z is 0.4 to 0.8.

上記厚み方向の平均気泡径:X、押出方向の平均気泡径:Y、幅方向の平均気泡径:Zは、発泡シートの押出方向の垂直断面及び、幅方向の垂直断面を顕微鏡で観察して求めることができる。押出方向の平均気泡径:Yを求めるには、まず発泡シートの押出方向に沿った垂直断面を顕微鏡等で拡大撮影し、得られた垂直断面拡大図中において、発泡シート表面付近、中央部及び裏面付近に、それぞれ、拡大前の長さが2mmに相当する水平な線を引く。次に、各線分と交差する気泡の数n(nは、該線分上に気泡の一部が交差するものも含む。)を求め、計算式:[2/(n−1)]により各線分上の気泡1個あたりの平均気泡径を、表面付近、厚み方向中央部、裏面付近に引いた計3本の線分の各々から求め、求められた気泡1個当たりの各平均気泡径の算術平均値をもってY(mm)とする。   The average cell diameter in the thickness direction: X, the average cell diameter in the extrusion direction: Y, and the average cell diameter in the width direction: Z are obtained by observing the vertical section in the extrusion direction and the vertical section in the width direction of the foam sheet with a microscope. Can be sought. In order to obtain the average cell diameter in the extrusion direction: Y, first, a vertical cross section along the extrusion direction of the foam sheet is magnified and photographed with a microscope or the like. In the vicinity of the back surface, a horizontal line corresponding to a length of 2 mm before enlargement is drawn. Next, the number n of bubbles intersecting with each line segment (n includes those in which a part of the bubbles intersects with the line segment) is obtained, and each line is calculated according to the calculation formula: [2 / (n-1)]. The average bubble diameter per bubble in the minute is obtained from each of the three line segments drawn near the surface, in the center in the thickness direction, and near the back surface, and the average bubble diameter of each obtained bubble is calculated. Let the arithmetic mean value be Y (mm).

一方、幅方向の平均気泡径:Zについては、発泡シートの幅方向に沿った垂直断面を顕微鏡等で拡大撮影し、得られた幅方向垂直断面拡大図中に、発泡シート表面付近、中央部及び、裏面付近に、拡大前の長さが2mmに相当する水平な線を引き、前記、押出方向の平均気泡径:Yを求める操作と同様の操作により求められる値をZ(mm)とする。また厚み方向の平均気泡径:Xについては、押出方向垂直断面拡大図によって求める。まず測定用試料の押出方向垂直断面拡大図中に、発泡シートの全厚みに亘って垂直な直線を引き、該直線と交差する気泡の数nを求め、計算式:[発泡シートの厚み/n]により求められる値をX(mm)とする。 On the other hand, for the average cell diameter in the width direction: Z, a vertical section along the width direction of the foam sheet was magnified and photographed with a microscope or the like. In addition, a horizontal line corresponding to a length of 2 mm before enlargement is drawn in the vicinity of the back surface, and the value obtained by the same operation as the operation for obtaining the average bubble diameter Y in the extrusion direction is defined as Z (mm). . Further, the average cell diameter: X in the thickness direction is determined by an enlarged vertical sectional view in the extrusion direction. First, in a vertical cross-sectional enlarged view of the measurement sample in the extrusion direction, a straight line is drawn over the entire thickness of the foamed sheet to obtain the number n 2 of bubbles intersecting the straight line, and the calculation formula: [thickness of foamed sheet / The value obtained from n 2 ] is X (mm).

本発明の発泡シートは、その片面又は両面に非発泡の熱可塑性樹脂シートやフィルムを積層しても良く、非発泡のシートやフィルムを積層すると、熱成形性、剛性、引裂き強度等を改良することができるため好ましい。発泡シートの片面又は両面にシートやフィルムが積層された積層シートは、発泡シートと、シートやフィルムとをそれぞれ別工程で製造し、これらを熱又は接着剤にて積層する方法、押出発泡した発泡シートに他の押出機からフィルムやシートを押出して積層するエクストルージョンラミネート法、発泡性溶融樹脂と非発泡性熱可塑性溶融樹脂とを共押出する共押出法等により得ることができる。   The foam sheet of the present invention may be laminated with a non-foamed thermoplastic resin sheet or film on one or both sides thereof, and when a non-foamed sheet or film is laminated, the thermoformability, rigidity, tear strength, etc. are improved. This is preferable. A laminated sheet in which a sheet or film is laminated on one or both sides of a foamed sheet is a method in which a foamed sheet and a sheet or film are produced in separate processes, and these are laminated with heat or an adhesive, and foamed by extrusion foaming. It can be obtained by an extrusion laminating method in which a film or sheet is extruded and laminated on the sheet from another extruder, a co-extrusion method in which a foamable molten resin and a non-foamable thermoplastic molten resin are coextruded.

上記シートやフィルムを構成する熱可塑性樹脂としては、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン−酢酸ビニル共重合体等のポリエチレン系樹脂、ポリスチレン、耐衝撃性ポリスチレン等のポリスチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等が挙げられる。これらの熱可塑性樹脂のうち、発泡シートに対してダイレクトに熱接着可能であるポリスチレン系樹脂が好ましい。   Examples of the thermoplastic resin constituting the sheet or film include high-density polyethylene, low-density polyethylene, linear low-density polyethylene, polyethylene resins such as ethylene-vinyl acetate copolymer, polystyrene such as polystyrene and high-impact polystyrene. Resin, polypropylene resin, polyester resin and the like. Of these thermoplastic resins, polystyrene resins that can be directly heat bonded to the foamed sheet are preferable.

上記発泡シートに積層するシートやフィルムの厚みに制限はないが、通常0.01〜0.3mmである。該厚みが薄すぎる場合は、非発泡のシートやフィルムを積層することによるシート物性等の向上効果が不十分となる虞があり、厚すぎると軽量性が低下し、経済性が悪くなる虞がある。   Although there is no restriction | limiting in the thickness of the sheet | seat and film laminated | stacked on the said foamed sheet, Usually, it is 0.01-0.3 mm. If the thickness is too thin, the effect of improving the physical properties of the sheet by laminating a non-foamed sheet or film may be insufficient, and if it is too thick, the lightness may be reduced and the economy may be deteriorated. is there.

本発明の発泡シートは、雄型及び/又は雌型からなる金型を用いて熱成形することができる。該熱成形法としては、真空成形や圧空成形、更にこれらの応用としてフリードローイング成形、プラグ・アンド・リッジ成形、リッジ成形、マッチド・モールド成形、ストレート成形、ドレープ成形、リバースドロー成形、エアスリップ成形、プラグアシスト成形、プラグアシストリバースドロー成形等やこれらを組み合わせた成形方法等が挙げられる。かかる熱成形法は、短時間に連続して成形品を得ることができるので好ましい方法である。   The foamed sheet of the present invention can be thermoformed using a mold comprising a male mold and / or a female mold. The thermoforming methods include vacuum forming, pressure forming, and free drawing forming, plug and ridge forming, ridge forming, matched mold forming, straight forming, drape forming, reverse draw forming, and air slip forming. , Plug assist molding, plug assist reverse draw molding and the like, and molding methods combining these. This thermoforming method is a preferable method because a molded product can be obtained continuously in a short time.

本発明の発泡シートから熱成形によって得られた成形品は、トレイ、丼、弁当箱、カップ等の用途に好適に用いられる。   The molded product obtained by thermoforming from the foamed sheet of the present invention is suitably used for applications such as trays, baskets, lunch boxes and cups.

以下、実施例を挙げて本発明を更に詳細に説明する。
実施例1〜5、比較例1〜3
表2又は表3に示した樹脂と、タルク1重量部とを直径90mmの第一押出機に投入して加熱溶融混練した後、表2又は表3に示した物理発泡剤を第一押出機内に圧入して混練した。次いで第一押出機と接続された直径120mmの第二押出機内で上記溶融混練物を冷却し、表2又は表3に示す樹脂温度で直径110mmの環状ダイから押出して円筒状に発泡させた。次いでこの円筒状の発泡体を直径333mmの円柱状の冷却装置の側面に沿わせて引き取り、押出方向に切り開いて発泡シートとし、これを直径266mmの棒状回転体を利用して発泡シート200m長さ分を1本のロール状に巻き取り、棒状回転体から引抜いて発泡シートのロール体を得た。この操作を繰り返し複数本のロール体を得た。
Hereinafter, the present invention will be described in more detail with reference to examples.
Examples 1-5, Comparative Examples 1-3
The resin shown in Table 2 or 3 and 1 part by weight of talc are put into a first extruder having a diameter of 90 mm and heated, melted and kneaded, and then the physical foaming agent shown in Table 2 or Table 3 is added to the first extruder. The mixture was pressed and kneaded. Next, the melt-kneaded product was cooled in a second extruder having a diameter of 120 mm connected to the first extruder, extruded from an annular die having a diameter of 110 mm at the resin temperature shown in Table 2 or Table 3, and foamed into a cylindrical shape. Next, the cylindrical foam is taken along the side surface of a columnar cooling device having a diameter of 333 mm, cut in the extrusion direction to form a foam sheet, and this is made into a foam sheet having a length of 200 m using a rod-shaped rotary body having a diameter of 266 mm. The portion was wound up into one roll and pulled out from the rod-like rotating body to obtain a foam sheet roll. This operation was repeated to obtain a plurality of roll bodies.

Figure 0004360609
Figure 0004360609

Figure 0004360609
Figure 0004360609

尚、表2、表3に示す樹脂は以下の通りである。また表中、PSはポリスチレン、PPEはポリフェニレンエーテル、SBSはスチレン−ブタジエン−スチレン共重合体を示す。
HH32:ポリスチレン(出光石油化学株式会社製)
PKN4752:変性ポリフェニレンエーテル(日本ジーイープラスチックス株式会社製、PS/PPE=30/70)
タフプレン125:スチレン−ブタジエン−スチレン共重合体(旭化成製)
The resins shown in Tables 2 and 3 are as follows. In the table, PS is polystyrene, PPE is polyphenylene ether, and SBS is styrene-butadiene-styrene copolymer.
HH32: Polystyrene (made by Idemitsu Petrochemical Co., Ltd.)
PKN4752: Modified polyphenylene ether (manufactured by GE Plastics, Inc., PS / PPE = 30/70)
Toughprene 125: Styrene-butadiene-styrene copolymer (manufactured by Asahi Kasei)

実施例1〜5、及び比較例1〜3において得られた発泡シートの厚み(mm)、坪量(g/m)、見かけ密度d(kg/m)、β×d(モル/m)、二次発泡倍率A、二次発泡倍率B、熱成形時の発泡シートの表面荒れ、熱成形時の発泡シート品質安定性Q及びQ’等を表4〜表7に併せて示す。 The thickness (mm), basis weight (g / m 2 ), apparent density d (kg / m 3 ), β × d (mol / m) of the foamed sheets obtained in Examples 1 to 5 and Comparative Examples 1 to 3 3 ), secondary foaming ratio A, secondary foaming ratio B, surface roughness of the foamed sheet at the time of thermoforming, foam sheet quality stability Q and Q 'at the time of thermoforming are shown in Tables 4 to 7 together.

Figure 0004360609
Figure 0004360609

Figure 0004360609
Figure 0004360609

Figure 0004360609
Figure 0004360609

Figure 0004360609
Figure 0004360609

表4〜表7に示す発泡シートの諸物性は以下のようにして求めた。
(1)β×d
ロール体製造直後に、温度23℃、相対湿度50%の雰囲気の養生室にロール体を移動し、そこで30分間経過後に、ロール体最外周部のシート幅方向中央部より発泡シートサンプルを切り出した。このサンプル1gをトルエンの入った蓋付きの試料ビンの中に入れ、内部標準としてシクロペンタンを加え、蓋を閉めた後十分に攪拌して発泡シート中の有機系物理発泡剤をトルエンに溶解させ、ガスクロマトグラフィー分析を行なって得たガスクロマトグラムのピーク面積から下記(4)式を用いて試料中におけるイソブタンの濃度(重量%)を計算し、モル/kgに換算した。続いてβ×d(モル/m)を計算した。
また、同様にして同養生室で10日熟成後のロール体と90日熟成後のロール体についても、30分後のものと同様にして、β×d(モル/m)を計算した。尚、比較例3ではβとしてはイソブタンの残存濃度より計算したβ×d(モル/m)を表5に示したが、その項目の()内にノルマルブタンの残存濃度をβとしてβ×d(モル/m)を計算した結果を参考までに示しておいた。
Various physical properties of the foam sheets shown in Tables 4 to 7 were determined as follows.
(1) β × d
Immediately after manufacturing the roll body, the roll body was moved to a curing chamber having an atmosphere of a temperature of 23 ° C. and a relative humidity of 50%, and after 30 minutes, a foamed sheet sample was cut out from the central part of the outermost peripheral part of the roll body in the sheet width direction. . Place 1g of this sample in a sample bottle with a lid containing toluene, add cyclopentane as an internal standard, close the lid and stir well to dissolve the organic physical foaming agent in the foamed sheet in toluene. The concentration (wt%) of isobutane in the sample was calculated from the peak area of the gas chromatogram obtained by gas chromatography analysis using the following formula (4) and converted to mol / kg. Subsequently, β × d (mol / m 3 ) was calculated.
Similarly, β × d (mol / m 3 ) was calculated for the roll body after 10 days aging and the roll body after 90 days aging in the same curing room as in the case after 30 minutes. In Comparative Example 3, β × d (mol / m 3 ) calculated from the residual concentration of isobutane was shown as β in Table 5. However, in the item (), the residual concentration of normal butane was β and β × The result of calculating d (mol / m 3 ) is shown for reference.

=(F×A×W×100)÷(A×Wsm)……(4)
:試料中における物理発泡剤の重量%濃度
:補正係数
:標準物質のピーク面積
:発泡剤のピーク面積
:標準物質の重量
sm:試料重量
x i = (F i × A i × W s × 100) ÷ (A s × W sm ) (4)
x i : Weight% concentration of physical foaming agent in sample F i : Correction coefficient A s : Peak area of standard material A i : Peak area of foaming agent W s : Weight of standard material W sm : Sample weight

測定機は(株)島津製作所製GC−14Bを用い、次の条件で測定した。
(a)カラム:(株)島津製作所製カラムSilicone DC550 20% on Chromosorb W AW-DMCS 60/80メッシュ、4.1m×3.2mm
(b)カラム温度:40℃
(c)検出器温度:180℃
(d)注入口温度:180℃
(e)検出器:FID
(f)キャリアガス:窒素140ml/min.
(g)試料量:2μl
The measuring machine was GC-14B manufactured by Shimadzu Corporation and measured under the following conditions.
(A) Column: Shimadzu Corporation column Silicone DC550 20% on Chromosorb W AW-DMCS 60/80 mesh, 4.1 m × 3.2 mm
(B) Column temperature: 40 ° C
(C) Detector temperature: 180 ° C
(D) Inlet temperature: 180 ° C
(E) Detector: FID
(F) Carrier gas: nitrogen 140 ml / min.
(G) Sample volume: 2 μl

(2)二次発泡倍率の測定
上記発泡シートのロール体を、温度23℃、相対湿度50%の雰囲気下で、製造直後から10日間熟成した。熟成終了後、ロール体の最外周部から260mm×260mmの試験片を切り出し、厚みを測定した。次に、タバイエスペック(株)製恒温器:パーフェクトオーブンオリジナルPH−200を用い、上記試験片の周囲を内寸が縦200mm、横200mmの木枠に固定した状態で、145℃(ダンパー開度30)で27秒間加熱して二次発泡させ、室温(23℃)まで冷却してから厚み(二次発泡厚を想定した厚み。ここでは二次発泡厚という。)を測定した。二次発泡厚を加熱前の試験片の厚みで除した値を、二次発泡倍率Aとした。
ロール体の中間部(長さ200mの発泡シートのロール巻外側端から、芯側に向かって長さ120mの部分)の発泡シート幅方向中央部から260mm×260mmの試験片を切り出し、該試験片について前記ロール体の最外周部から切出した試験片と同様の条件で、加熱し二次発泡させ、同様にして二次発泡厚を加熱前の試験片の厚みで除した値を、二次発泡倍率Bとした。
また、ロール体の中間部の発泡シート幅方向端部から260mm×260mmの試験片を切り出し、該試験片について前記ロール体の最外周部から切出した試験片と同様の条件で、加熱し二次発泡させ、同様にして二次発泡厚を加熱前の試験片の厚みで除した値を、二次発泡倍率Cとした。
(2) Measurement of secondary foaming ratio The roll body of the foamed sheet was aged for 10 days immediately after production in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50%. After completion of aging, a 260 mm × 260 mm test piece was cut out from the outermost periphery of the roll body, and the thickness was measured. Next, using a thermostat made by Tabai Espec Co., Ltd .: Perfect Oven Original PH-200, the circumference of the above test piece is fixed to a wooden frame with an inner dimension of 200 mm in length and 200 mm in width. 30) for 27 seconds to cause secondary foaming, and after cooling to room temperature (23 ° C.), the thickness (thickness assuming a secondary foaming thickness, here referred to as secondary foaming thickness) was measured. A value obtained by dividing the secondary foaming thickness by the thickness of the test piece before heating was defined as a secondary foaming ratio A.
A test piece of 260 mm × 260 mm was cut out from the center part in the width direction of the foam sheet in the middle part of the roll body (the part 120 m long from the roll winding outer end of the foam sheet having a length of 200 m toward the core side). Under the same conditions as the test piece cut out from the outermost peripheral part of the roll body, the second foaming was performed by heating and secondary foaming, and the secondary foaming thickness was divided by the thickness of the test specimen before heating. The magnification was B.
Further, a 260 mm × 260 mm test piece was cut out from the end of the roll sheet in the width direction of the intermediate portion of the roll body, and the test piece was heated under the same conditions as those of the test piece cut out from the outermost peripheral portion of the roll body to obtain a secondary A value obtained by foaming and dividing the secondary foaming thickness by the thickness of the test piece before heating was designated as the secondary foaming ratio C.

(3)品質安定性Q10及びQ10’
各例の製造条件と同じ条件で製造された別なロール体を、前記と同様に、製造直後から温度23℃、相対湿度50%の雰囲気下で、製造直後から10日間熟成した。このロール体について、ロール体の最外周部の二次発泡倍率Aとロール体の中間部の二次発泡倍率Bとの差「A−B」の絶対値を求め、下記(5)式により発泡シートをロール状に巻いた状態で熟成した後の品質安定性Qを求めた。
また、ロール体の中間部の幅方向端部の二次発泡倍率Cとロール体の中間部の幅方向中央部の二次発泡倍率Bとの差「C−B」の絶対値を求め、下記(6)式により発泡シートをロール状に巻いた状態で熟成した後の品質安定性Q’を求めた。
尚、品質安定性Q10及びQ10’は絶対値が小さいほど、二次発泡倍率の差が小さく品質が安定していることを意味する。
(3) Quality stability Q10 and Q10 ′
Another roll body manufactured under the same conditions as the manufacturing conditions of each example was aged for 10 days immediately after the production in the atmosphere of 23 ° C. and 50% relative humidity immediately after the production, as described above. For this roll body, the absolute value of the difference “A−B” between the secondary foaming ratio A at the outermost peripheral portion of the roll body and the secondary foaming ratio B at the intermediate portion of the roll body is obtained, and foaming is performed by the following formula (5). The quality stability Q after aging in a state where the sheet was rolled up was determined.
Further, the absolute value of the difference “C−B” between the secondary foaming ratio C at the widthwise end of the intermediate part of the roll body and the secondary foaming ratio B at the center part in the widthwise direction of the intermediate part of the roll body is obtained, The quality stability Q ′ after aging in a state in which the foamed sheet was wound into a roll was obtained by the equation (6).
In addition, quality stability Q10 and Q10 'means that the smaller the absolute value, the smaller the difference in secondary foaming ratio and the more stable the quality.

品質安定性Q10=(|(A−B)|/A)×100 ……(5)       Quality stability Q10 = (| (A−B) | / A) × 100 (5)

品質安定性Q10’=(|(C−B)|/C)×100 ……(6)       Quality stability Q10 '= (| (CB) | / C) × 100 (6)

(4)品質安定性Q90及びQ90’
各例の製造条件と同じ条件で製造された別なロール体を、前記と同様に、製造直後から温度23℃、相対湿度50%の雰囲気下で、製造直後から90日間熟成した。このロール体について、二次発泡倍率A、B、Cをそれぞれ後述の二次発泡倍率D、E、Fに換えた他は前記品質安定性Q10及びQ10’と同様にして品質安定性Q90及びQ90’を求めた。
(4) Quality stability Q90 and Q90 ′
Another roll body manufactured under the same conditions as the manufacturing conditions of each example was aged for 90 days immediately after manufacture in an atmosphere of 23 ° C. and 50% relative humidity immediately after manufacture, as described above. For this roll body, the quality stability Q90 and Q90 are the same as the quality stability Q10 and Q10 ′ except that the secondary foaming ratios A, B, and C are respectively changed to secondary foaming ratios D, E, and F described later. 'Sought.

(5)ロングライフ性
各例の製造条件と同じ条件で製造された別なロール体を、前記と同様に、製造直後から温度23℃、相対湿度50%の雰囲気下で、製造直後から90日間熟成した。このロール体について、前記と同様に、最外周部の二次発泡倍率D、ロール体の中間部の発泡シート幅方向中央部の二次発泡倍率E、ロール体の中間部の発泡シート幅方向端部の二次発泡倍率Fを求め、D、E、Fが全て下記の二次発泡倍率を満たすものを○、D、E、Fのいずれか1つでも満たさないものを×とした。尚、発泡シートの坪量に応じて要求される二次発泡倍率の下限は異なるが、本例では下記の基準を採用した。
発泡シートの坪量350g/m:1.6倍以上
発泡シートの坪量290g/m:1.8倍以上
発泡シートの坪量250および240g/m:2.0倍以上
(5) Long life property Another roll body manufactured under the same conditions as the manufacturing conditions of each example was subjected to 90 days from immediately after the manufacture in the atmosphere of 23 ° C. and 50% relative humidity immediately after the manufacture, as described above. Aged. About this roll body, the secondary foaming ratio D of the outermost periphery part, the secondary foaming ratio E of the foam sheet width direction center part of the intermediate part of a roll body, and the foam sheet width direction end of the intermediate part of a roll body are similar to the above. The secondary foaming ratio F of the part was determined, and those in which D, E, and F all satisfy the following secondary foaming ratio were evaluated as x that did not satisfy any one of ◯, D, E, and F. In addition, although the minimum of the secondary foaming ratio requested | required according to the basic weight of a foam sheet differs, the following reference | standard was employ | adopted in this example.
Foam sheet basis weight 350 g / m 2 : 1.6 times or more Foam sheet basis weight 290 g / m 2 : 1.8 times or more Foam sheet basis weight 250 and 240 g / m 2 : 2.0 times or more

(6)熱成形時の発泡シートの表面荒れ
発泡シートのロール体を製造直後から温度23℃、相対湿度50%の雰囲気下に置き、製造から10日間熟成後のロール体の中間部の幅方向中央部から試験片を切り出し、前記二次発泡倍率の測定と同様の条件で二次発泡させた後、試験片表面を観察し、
表面荒れがないもの:○
表面荒れがあるもの:×
として評価した。
(6) Surface roughness of foam sheet during thermoforming The roll body of the foam sheet is placed in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50% immediately after production, and the width direction of the intermediate part of the roll body after aging for 10 days from production. Cut out the test piece from the center, and after secondary foaming under the same conditions as the measurement of the secondary expansion ratio, observe the surface of the test piece,
No surface roughness: ○
Surface roughness: ×
As evaluated.

(7)剛性評価
発泡シートのロール体を製造直後から温度23℃、相対湿度50%の雰囲気下に置き、製造から10日間熟成後のロール体の最外周部の幅方向中央部から、縦10cm、横2.5cmのサンプルを作製し、JIS K7203に準拠し、試験速度10mm/min.で曲げ試験を行い、曲げ弾性率求め、
曲げ弾性率25MPa以上:○
曲げ弾性率25MPa未満:×
として評価した。
(7) Rigidity evaluation The roll body of the foam sheet is placed in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50% immediately after manufacture, and 10 cm in length from the center in the width direction of the outermost periphery of the roll body after aging for 10 days from manufacture. , A sample having a width of 2.5 cm was prepared, and in accordance with JIS K7203, the test speed was 10 mm / min. Perform a bending test at
Flexural modulus 25 MPa or more: ○
Flexural modulus less than 25 MPa: ×
As evaluated.

(8)耐衝撃性(ダートインパクト試験)
発泡シートのロール体を製造直後から温度23℃、相対湿度50%の雰囲気下に置き、製造から10日間養生後に、ロール体の中間部の幅方向中央部から試験片を切り出し、JIS K7124のA法に従いダートインパクト試験を行い、50%破壊エネルギーを求め、
50%破壊エネルギー250mJ以上:○
50%破壊エネルギー100mJ以上、250mJ未満:△
50%破壊エネルギー100mJ未満:×
として評価した。
(8) Impact resistance (dirt impact test)
The roll body of the foam sheet is placed in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50% immediately after the production, and after curing for 10 days from the production, a test piece is cut out from the center in the width direction of the middle part of the roll body. Dart impact test is performed according to the law, 50% fracture energy is obtained,
50% destruction energy 250mJ or more: ○
50% fracture energy 100 mJ or more and less than 250 mJ: △
50% destruction energy less than 100 mJ: ×
As evaluated.

実施例と比較例の結果は次のことを示している。
実施例1〜5の結果は、いずれもα×dを本発明の範囲内として低発泡のポリスチレン系樹脂発泡シートを製造した結果、β×dを本発明の範囲内とすることができた。また、製造時に発泡剤としてイソブタンに加え、水又は二酸化炭素を少量併用した結果、熟成10日後の早期であっても、熟成90日後のかなりの期間経過後であっても、いずれも品質安定性が高いことが分る。また、長期にわたり高い二次発泡性能が持続するものであることが分る。また、ポリスチレン樹脂にポリフェニレンエーテル樹脂を混合した実施例2〜4の発泡シートは、実施例1の発泡シートとの比較より、低発泡のポリスチレン系樹脂発泡シート欠点である脆さが改善(耐衝撃性アップ)されていることが分る。また、実施例2〜4の発泡シートにおけるその脆さ改善効果は、ポリスチレン樹脂にスチレン系熱可塑性エラストマーを混合した実施例5では達成し得ない剛性をも兼備していることも分る。
一方、比較例1は、実施例1と対比されるものであって、イソブタンの添加量を少なくし、その発泡力の不足分を水の添加量を多くすることで補った例であるが、その結果、α×dが本発明の範囲を下回る条件となったものである。このようにして得られた発泡シートは、β×dが本発明の範囲の下限を下回ったため、品質安定性は問題ないが、二次発泡倍率を高くすることができず、結果としてロングライフ性にも劣るものであった。
また、比較例2は、実施例2と対比されるものであり、イソブタンの添加量を多くし、その分発泡温度を下げて製造したが、その結果、α×dが本発明の範囲を上回る条件となったものである。このようにして得られた発泡シートは、品質安定性やロングライフ性は問題ないが、10日後においてもβ×dが本発明の範囲の上限を上回っているため(イソブタンの含有量が多すぎたため)熱成形時の加熱で表面荒れが発生するものであった。
また、比較例3は、実施例3と対比されるものであり、二酸化炭素を使用せずにイソブタンの添加量を少なくし、その発泡力の不足分をノルマルブタンで補った例を示す。その結果、イソブタンの残存濃度に基づくβ×dは本発明の範囲ではあったものの、ノルマルブタンの影響を受け、熟成10日後においてはロール体の中間部の発泡シート幅方向中央部においては空気の浸透が不十分となり、その部分における二次発泡倍率が極端に小さく、品質安定性に欠けるものとなった。また、熟成90日後においても、ノルマルブタンの影響を受け、ロール体の最外周部においてはノルマルブタンの気散が著しく、その部分における二次発泡倍率が大きく低下し、ロングライフ性が不十分なものとなった。
The results of Examples and Comparative Examples show the following.
As for the results of Examples 1 to 5, as a result of producing a low foamed polystyrene resin foam sheet with α × d within the range of the present invention, β × d could be within the range of the present invention. In addition to isobutane as a foaming agent at the time of manufacture, as a result of using a small amount of water or carbon dioxide, both in the early stage after 10 days of aging and after a considerable period of time after 90 days of aging, both are stable in quality. Can be found to be expensive. Moreover, it turns out that high secondary foaming performance is maintained over a long period of time. In addition, the foamed sheets of Examples 2 to 4 in which a polyphenylene ether resin was mixed with polystyrene resin improved the brittleness, which is a defect of the low foamed polystyrene resin foam sheet, compared with the foamed sheet of Example 1 (impact resistance) It can be seen that it has been improved). Moreover, it turns out that the brittleness improvement effect in the foamed sheets of Examples 2 to 4 also has rigidity that cannot be achieved in Example 5 in which a polystyrene resin is mixed with a styrene-based thermoplastic elastomer.
On the other hand, Comparative Example 1 is contrasted with Example 1 and is an example in which the addition amount of isobutane is reduced and the lack of foaming power is compensated by increasing the addition amount of water. As a result, α × d is less than the range of the present invention. Since the foamed sheet thus obtained has β × d below the lower limit of the range of the present invention, there is no problem in quality stability, but the secondary foaming ratio cannot be increased, resulting in long life. It was also inferior.
Comparative Example 2 was compared with Example 2 and was produced by increasing the amount of isobutane added and lowering the foaming temperature by that amount. As a result, α × d exceeded the scope of the present invention. It was a condition. The foamed sheet thus obtained has no problem in terms of quality stability and long life, but β × d exceeds the upper limit of the range of the present invention even after 10 days (the content of isobutane is too large). For this reason, surface roughness was generated by heating during thermoforming.
Comparative Example 3 is contrasted with Example 3, and shows an example in which the amount of isobutane added is reduced without using carbon dioxide, and the lack of foaming power is compensated with normal butane. As a result, although β × d based on the residual concentration of isobutane was within the scope of the present invention, it was affected by normal butane, and after 10 days of aging, air was present in the middle portion of the roll sheet in the width direction of the foam sheet. The penetration was insufficient, the secondary foaming ratio at that portion was extremely small, and quality stability was lacking. In addition, even after 90 days of aging, the normal butane is affected by the normal butane, and the normal butane is greatly diffused at the outermost peripheral portion of the roll body, the secondary foaming ratio at that portion is greatly reduced, and the long life property is insufficient. It became a thing.

Claims (4)

ポリスチレン系樹脂と物理発泡剤とを押出機にて加熱、混練して発泡性溶融樹脂とし、該発泡性溶融樹脂を押出発泡することにより、厚みが0.5〜3.0mm、見掛け密度が150kg/m超、420kg/m以下の発泡シートを得る方法において、イソブタン50〜95モル%と、二酸化炭素又は/及び水5〜50モル%とからなる混合物理発泡剤(但し、前記発泡剤からなる混合物理発泡剤に含まれる発泡剤量の合計は100モル%である。)を主成分とする物理発泡剤を、ポリスチレン系樹脂1kg当たりのイソブタン添加量が下記(1)式の関係を満足するように添加することを特徴とする熱成形用ポリスチレン系樹脂発泡シートの製造方法。
30(モル/m) ≦ α×d ≦ 65(モル/m) (1)
(但し、αはポリスチレン系樹脂1kg当たりに対するイソブタン添加量(モル/kg)、dは発泡シートの見掛け密度(kg/m)である。)
A polystyrene resin and a physical foaming agent are heated and kneaded in an extruder to obtain a foamable molten resin, and the foamable molten resin is extruded and foamed to obtain a thickness of 0.5 to 3.0 mm and an apparent density of 150 kg. / m 3 greater than the 420 kg / m 3 process to obtain the following foam sheet, isobutane 50-95 mol% and carbon dioxide and / or water 5-50 mole percent of a mixed physical foaming agent (however, the blowing agent The total amount of the foaming agent contained in the mixed physical foaming agent is 100 mol%.) With the physical foaming agent having the main component, the addition amount of isobutane per 1 kg of the polystyrene resin satisfies the relationship of the following formula (1): A method for producing a polystyrene-based resin foam sheet for thermoforming, characterized by being added in a satisfactory manner.
30 (mol / m 3 ) ≦ α × d ≦ 65 (mol / m 3 ) (1)
(Where α is the amount of isobutane added per 1 kg of polystyrene resin (mol / kg), and d is the apparent density (kg / m 3 ) of the foam sheet.)
厚みが0.5〜3.0mm、見掛け密度が150kg/m超、420kg/m以下の発泡シートにおいて、該発泡シートを発泡シート製造直後から温度23℃、相対湿度50%の雰囲気下に移動して熟成した場合に、熟成開始30分経過後から90日間熟成するまでの間、発泡シート中に残留する全有機物理発泡剤に対するイソブタンの割合が90〜100モル%であり、且つ下記(2)式の関係を満足する量のイソブタンが残留していることを特徴とする熱成形用ポリスチレン系樹脂発泡シート。
30(モル/m)≦β×d≦60(モル/m) (2)
(但し、βはポリスチレン系樹脂1kg当たりに対する発泡シート中の残留イソブタン量(モル/kg)、dは発泡シートの見掛け密度(kg/m)である。)
In a foam sheet having a thickness of 0.5 to 3.0 mm, an apparent density of more than 150 kg / m 3 and 420 kg / m 3 or less, the foam sheet is placed in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50% immediately after the foam sheet is manufactured. When moving and ripening, the ratio of isobutane to the total organic physical foaming agent remaining in the foamed sheet is 90 to 100 mol% after 30 minutes from the start of aging until aging for 90 days, and the following ( 2) A polystyrene-based resin foam sheet for thermoforming, wherein an amount of isobutane satisfying the relationship of the formula remains.
30 (mol / m 3 ) ≦ β × d ≦ 60 (mol / m 3 ) (2)
(Where β is the amount of residual isobutane (mol / kg) in the foamed sheet relative to 1 kg of polystyrene-based resin, and d is the apparent density (kg / m 3 ) of the foamed sheet.)
ポリスチレン系樹脂が、ポリスチレン90〜30重量%と、ポリフェニレンエーテル10〜70重量%とからなる請求項2記載の熱成形用ポリスチレン系樹脂発泡シート。   The polystyrene resin foam sheet for thermoforming according to claim 2, wherein the polystyrene resin comprises 90 to 30% by weight of polystyrene and 10 to 70% by weight of polyphenylene ether. 片面又は両面に熱可塑性樹脂シート又はフィルムが積層されている請求項2又は3記載の熱成形用ポリスチレン系樹脂発泡シート。   The polystyrene-based resin foam sheet for thermoforming according to claim 2 or 3, wherein a thermoplastic resin sheet or film is laminated on one side or both sides.
JP2003272772A 2003-07-10 2003-07-10 Production method of polystyrene resin foam sheet for thermoforming, polystyrene resin foam sheet for thermoforming Expired - Lifetime JP4360609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272772A JP4360609B2 (en) 2003-07-10 2003-07-10 Production method of polystyrene resin foam sheet for thermoforming, polystyrene resin foam sheet for thermoforming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272772A JP4360609B2 (en) 2003-07-10 2003-07-10 Production method of polystyrene resin foam sheet for thermoforming, polystyrene resin foam sheet for thermoforming

Publications (2)

Publication Number Publication Date
JP2005028817A JP2005028817A (en) 2005-02-03
JP4360609B2 true JP4360609B2 (en) 2009-11-11

Family

ID=34210222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272772A Expired - Lifetime JP4360609B2 (en) 2003-07-10 2003-07-10 Production method of polystyrene resin foam sheet for thermoforming, polystyrene resin foam sheet for thermoforming

Country Status (1)

Country Link
JP (1) JP4360609B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919371B2 (en) 2005-04-22 2012-04-18 株式会社ジェイエスピー Co-extrusion laminated foam and molded product thereof
JP5378757B2 (en) * 2007-11-30 2013-12-25 三菱樹脂株式会社 Polystyrene resin foamed biaxially stretched sheet, method for producing the same, and molded article made of this sheet
JP5618403B2 (en) * 2010-01-08 2014-11-05 積水化成品工業株式会社 Method for producing polystyrene resin foam sheet and method for producing foamed molded product
JP5478310B2 (en) * 2010-03-23 2014-04-23 積水化成品工業株式会社 Polystyrene resin heat resistant foam sheet and container
JP2011246588A (en) * 2010-05-26 2011-12-08 Dic Corp Foamable styrenic resin composition, foamed sheet thereof, and foamed container
JP2012006357A (en) * 2010-06-28 2012-01-12 Sekisui Plastics Co Ltd Polystyrenic resin laminate foamed sheet, container, and method for manufacturing the polystyrenic resin laminate foamed sheet
JP4848476B1 (en) * 2010-08-26 2011-12-28 積水化成品工業株式会社 Thermoformed product manufacturing method and food container
JP5624422B2 (en) * 2010-09-30 2014-11-12 積水化成品工業株式会社 Polystyrene resin foam sheet, molded product, and method for producing polystyrene resin foam sheet
JP5649175B2 (en) * 2011-01-31 2015-01-07 株式会社ジェイエスピー Inner fitting container using a container made of polystyrene resin laminated foam sheet as the container body

Also Published As

Publication number Publication date
JP2005028817A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
KR101161599B1 (en) Method of producing composite sheet having polyolefin foam layer
KR102343721B1 (en) Multilayer foam sheet and interleaf for glass plates
JP2007217711A (en) Polystyrene resin foamed sheet for thermoforming, and polystyrene resin foamed sheet roll for thermoforming
JP4360609B2 (en) Production method of polystyrene resin foam sheet for thermoforming, polystyrene resin foam sheet for thermoforming
JP5478310B2 (en) Polystyrene resin heat resistant foam sheet and container
JP4064754B2 (en) Polypropylene resin foam sheet
JP2005290329A (en) Ethylene-based resin foamed sheet, formed product and method for producing the ethylene-based resin foamed sheet
JP4042894B2 (en) Production method of polystyrene resin foam sheet for thermoforming and polystyrene resin foam sheet
JP5298039B2 (en) Production method of polystyrene resin foam board
JP4258769B2 (en) Polystyrene resin laminated foam sheet
US20060022366A1 (en) Method of producing polystyrene-based resin foam street
JP4959396B2 (en) Water-absorbing polystyrene resin foam board
JP2008031236A (en) Foamed sheet made of thermoplastic resin and container made of this foamed sheet
JP7074568B2 (en) Method for manufacturing polystyrene resin foam sheet, polystyrene resin foam sheet, polystyrene resin foam sheet roll, and microwave oven heating container
JP4526051B2 (en) Polystyrene resin multilayer foam sheet for thermoforming
JP2017122184A (en) Styrenic resin foam sheet and method for producing the same, and food packaging container
JP4434382B2 (en) Manufacturing method of polystyrene resin foam sheet
JP2007100016A (en) Method for producing polypropylene-based resin extrusion-foamed sheet
JP4111435B2 (en) Polypropylene resin foam molding
JP7428540B2 (en) Polystyrene resin foam sheet and polystyrene resin laminated foam sheet
JP4188664B2 (en) Polystyrene resin foam sheet and polystyrene resin laminated foam sheet
JP2005307024A (en) Polypropylene resin foamed sheet and molded product
JP6754278B2 (en) Multi-layer foam sheet
JP7128705B2 (en) Multilayer foam sheet and container
JP2007246776A (en) Uncrosslinked polyethylene-based resin foamed sheet for molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4360609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term