JP2009139279A - 検査装置 - Google Patents

検査装置 Download PDF

Info

Publication number
JP2009139279A
JP2009139279A JP2007317278A JP2007317278A JP2009139279A JP 2009139279 A JP2009139279 A JP 2009139279A JP 2007317278 A JP2007317278 A JP 2007317278A JP 2007317278 A JP2007317278 A JP 2007317278A JP 2009139279 A JP2009139279 A JP 2009139279A
Authority
JP
Japan
Prior art keywords
light
detection element
detection
plasmon
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007317278A
Other languages
English (en)
Inventor
Norihiko Utsunomiya
紀彦 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007317278A priority Critical patent/JP2009139279A/ja
Publication of JP2009139279A publication Critical patent/JP2009139279A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】 一つ一つの素子の位置合わせをすることなく複数の素子のプラズモン共鳴を検出する。
【解決手段】 プラズモン検出素子と光偏向手段を回転機構の上に複数搭載し、円筒面内で回転移動させ、さらに回転機構上の光偏向手段にレーザビームを照射することによって、プラズモン検出素子に入射する検出光角度をスキャンさせ、素子の反射光を受光手段により取得する。
【選択図】 図1

Description

本発明は、検体中の標的物質の量、相互作用を検出するためのプラズモン共鳴を用いた検査装置に関連する。
化学物質(とりわけ生体関連物質)を検出するセンサとして、表面プラズモン共鳴を原理とするセンサが実用化されている。表面プラズモン共鳴は、検出に際して、標識を付与することが不要であるため、反応過程を逐次モニタリングすることができ、物質の含有量だけではなく、複数の物質の相互作用の強弱を同時に計測可能という利点を有している。
しかしながら、表面プラズモン共鳴法を用いた検出手法は、図2に示したクレッチマン配置に代表されるように一般的には検出機構が複雑になるという不利益が存在する。具体的には、入射光の偏向とともに、出射光も偏向されるため、入射、出射光学系それぞれに独立した、駆動機構をもつ必要がある。
この課題を解決するために、特許文献1に示されるような、検出機構を単純化し装置コストを低減する試みが提案されている。
特開平9−292335号公報
しかしながら、この表面プラズモン共鳴法を用いた検出手法を広く、医療現場で用いる検出手法として用いるため、すなわち臨床検査に応用するためには、医療現場で発生する大量の検体を効率的に処理することが求められる。現状提案されている手法では、装置の簡便化には寄与するものの、検出毎に正確な位置合せが必要となり、複数検体検査あるいは複数対象物質検査の連続処理は困難であった。
そこで、本発明は、複数検体検査あるいは複数対象物質検査を迅速に行うことを可能とするプラズモン共鳴検出装置を提供することを目的とする。
そこで、本発明は、プラズモン共鳴を用いた、検体を検査する検査装置において、
プラズモン検出素子を保持するための複数の検出素子ホルダーと、
前記プラズモン検出素子に光を照射するための光源と、
前記検出素子ホルダーと同数の光偏向手段と、
前記プラズモン検出素子より反射した光の強度を検出する受光素子と、
前記検出素子ホルダーと前記光偏向手段とを一体として回転させるための回転機構とを持ち、
前記光源は、前記検出素子ホルダーと前記光の偏向手段よりも前記回転機構の回転中心に近い位置に存在し、回転機構の回転半径方向に光を出射することを特徴とする、検査装置である。
前記光偏向手段は、前記回転機構の回転中心とプラズモン検出素子の検出部位との中間点に位置することが好ましい。
上記構成を用いることにより、装置の光学構成の簡易性は保ったまま、連続して複数のプラズモン検出素子を計測することが可能となる。また、反応過程の経時的な変化を捉えることができるようになる。
以下、本発明に係る、最良の実施形態について添付図面を参照し説明する。なお、本発明は特許請求の範囲によって定まるものであって、本明細書の記載は本発明を限定するものではない。
(検査装置)
本発明のプラズモン共鳴を用いた検査装置の一例について、図1を用いて説明する。
図1は、本発明の検査装置の概要図である。図中、101はプラズモン検出素子である。ここではプラズモン検出素子の一例としてプリズムおよび反応用のキュベット(反応槽)が一体になっている形態を示しているが、これに限定されるものではない。なお、プラズモン検出素子は、検査装置の構成要素ではない。102は検出素子ホルダーである。ここに101のプラズモン検出素子を固定する。検出素子ホルダー102は、プラズモン検出素子を脱着可能に、かつ機械的に安定に保持するのものである。その構造には、特に制約はない。ここでは図示していないが、検出素子ホルダー102は、101のプラズモン検出素子毎の機械的な作製誤差分(機械加工精度に起因する誤差分)を修正するための位置合せ機構を有していることがより好ましい。上述したようにプラズモン検出素子101が一体成型されたプリズムを有している場合は、本図のように検出素子ホルダー102にはプリズムを搭載しないが、プラズモン検出素子にプリズムが一体成型されていない場合は、本素子ホルダーにプリズムを搭載しておく。103は光偏向手段である。光偏向手段103は複数のプラズモン検出素子ホルダー102のそれぞれに対応する位置に複数設けられている。本図では、光偏向手段として単レンズを記載しているが、単レンズでなく複数毎のレンズなどなるものを光偏向手段としても構わない。この光偏向手段103は、後述する回転機構の回転軸109とプラズモン検出素子101の検出部位が共役な配置になるように設計されている。光偏向手段103は、レンズもしくはレンズ群の軸上で球面収差が補正されているものであることがより望ましい。
104は回転機構であるサンプルロータであり、109はサンプルロータ104の回転軸である。サンプルロータ104は、回転軸109を中心として回転運動を行う。その際、サンプルロータ104は、プラズモン検出素子101を固定するための複数の検出素子ホルダー102と複数の光偏向手段103を搭載した状態で回転する。すなわち、すべての検出素子ホルダーとすべての光偏向手段とは同時に回転することになる。サンプルロータ104と回転軸109とを含む回転運動に関わる部分は、サンプルロータ104が回転する際に偏芯がないような機械精度を有している。また、プラズモン検出素子101が一部のホルダー102のみに搭載された場合であっても回転運動時に偏った力が発生しないようにするために、移動可能なバランサ(不図示)が設けられていることが好ましい。複数の検出素子ホルダー102は、このサンプルロータ上のサンプルロータの回転軸109を中心とした円周上に配置される。より詳細には、本実施形態の検出装置は、検出素子ホルダー102それぞれに保持されるプラズモン検出素子101のプラズモン検出領域のすべてがサンプルロータの回転軸109を中心とする一つの円周上に位置するように設計されている。
光偏向手段103も同様にサンプルロータの回転軸109を中心とした円周上に配置される。光偏向手段103はそれぞれの検出素子ホルダー102ごとに(すなわち検出素子ホルダーと同数)設けられており、検出素子ホルダーと同時に回転する。
回転させるための動力は、安定した回転を可能にするものであれば特に制約はないが、回転数制御の容易性の観点からは、直流モータあるいはインバータ制御が可能な誘導モータを用いることが望ましい。また、常に角度位置および回転角速度をモニターする機構をもつことが望ましい。角度位置の取得と回転角速度のモニター機構としては、アブソリュートロータリーエンコーダーを用いることが望ましく、高分解能のインクリメントタイプのロータリーエンコーダを併用することがさらに望ましい。105は光源である。光源105は、回転機構の回転半径方向に光を出射する。光源105としては、単一波長光源で平行光が出射できる光源であれば制約はないが、レーザ光源を用いることが望ましい。
106は偏光素子である。偏光素子106は、プラズモン検出素子101に入射する光をP偏光に限定するために設けられている。107は受光素子である。受光素子107としては、使用光源105の出射波長で十分な感度有しており、各プラズモン検出素子の角度走査(すなわち、サンプルロータの回転)に伴ってプラズモン検出素子の反射光の出力位置が変化しても反射光を受光しうるだけの面積を有しているものが用いられる。反射光の出力位置変化に対応し、出力ビームスポットの強度を感度よくとらえるという観点からは、受光素子107としてリニアフォトダイオードアレイを好適に用いることができる。108は光源105から受光素子107に至る検出光の通過領域に外乱光の入射を防ぐための遮光部位を示している。ここは、検出値に影響を与えるような外乱光を防げればとくに素材等含めて制約はない。110は遮光部材であり、光源レーザの光を遮るものである。より具体的には、遮光部材110は光偏向手段103を通らない光がプラズモン検出素子101や受光素子107に入射しないようにするという機能を有している。遮光部材110としては、散乱や反射の少ないもの、具体的には、光吸収率が90%以上のものが好ましい。遮光部材110の機能としては、検出光偏向手段103に光が照射されている時以外に必要外の光が検出素子に入射することを防止するとともに、装置の外部に検出光が漏れ出ることを防ぐことが挙げられる。
(プラズモン検出素子)
プラズモン検出素子は本発明の構成要素ではないが、本発明の装置の使用時には重要な位置を占めるためここで説明しておく。
本発明の検査装置で使用可能なプラズモン検出素子は、基板上に設けられた金属構造体に起因したプラズモン共鳴による吸収が光の入射角度に応じて変化するものである。以下に代表的な構成例を示す。
プラズモン検出素子の基板としては、光学的に透明な誘電体基板が好適に用いられる。検出する際に水を用いることが多いので、吸水性が小さいことが望ましい。プラズモン検出素子の基板の具体例としては、各種光学ガラス、光学樹脂を挙げることができる。なお、後述するような薄膜形状の表面プラズモン共鳴を用いる場合、入射角が浅い角度に共鳴ピークを持つ構成が採りやすい高屈折率(高誘電率)の基板を選択することが設計自由度の点でより好ましい。この場合、屈折率としては、1.7以上の材料を用いるとより好ましい。
また、後述するが、プリズム一体型の素子を用いる場合で光学ガラス材料を用いる場合、ガラス転移点の低い光学ガラスを用いることが、モールド成型が容易になるためより好ましい。プリズムの形状としては、円筒面型、球面型のいずれかが好ましい。円筒面型の場合その中心軸が、球面型の場合その中心が、プラズモン検出素子表面にくるように設計する。
本検出素子の金属構造体に用いられる金属は、プラズモン共鳴現象を示す金属である。このような金属としては、金、銀、銅、アルミニウム、白金、亜鉛やこれら金属を含む合金を挙げることができる。中では、プラズモン共鳴を顕著に示す金や銀またこれを含む合金が好ましく、耐食性の観点からは金がより好ましい。
本検出素子の金属構造体の形状としては、金属薄膜、金属薄膜に孔を多数もったホールパターン、金属薄膜の微小なドットパターンを挙げることができる。
このような金属構造体を誘電体基板上に形成する際に、基板と金属構造体との間に、バインディング層として、Ti、Cr、ITO(インジウム錫酸化物)などの薄膜を設けてもよい。また本発明の本質とは関係がないが、図5に示すような反応キュベット一体型の素子を用いてもよい。図5の反応キュベット一体型の素子では、206に示される反応キュベットが、素子上の検出部位202に検出溶液を保持できるように固定されている。
検出素子部は、前述したように金属構造体を用いているが、この金属構造体の表面あるいは近傍に液体中の標的物質を捕捉する捕捉体を固定しておくと好適である。この捕捉体と標的物質の組み合わせとしては、以下に挙げられるものがある。
捕捉体としては、標的物質と特異的な結合対を形成するものであれば、特に制約はない。検出対象物質と特異的に結合する結合対の組合せには、抗原/抗体、相補的DNA、リセプター/リガンド、酵素/基質が挙げられる。
検体中に含まれる標的物質は、非生体物質と生体物質に大別される。非生体物質として産業上利用価値の大きいものとしては、環境汚染物質としての塩素置換数/位置の異なるPCB類、同じく塩素置換数/位置の異なるダイオキシン類、いわゆる環境ホルモンと呼ばれる内分泌撹乱物質等が挙げられる。生体物質としては、核酸、タンパク質、糖鎖、脂質及びそれらの複合体から選択される生体物質が含まれ、更に詳しくは、核酸、タンパク質、糖鎖、脂質から選択される生体分子を含んでなるものであり、具体的には、DNA、RNA、アプタマー、遺伝子、染色体、細胞膜、ウイルス、抗原、抗体、レクチン、ハプテン、ホルモン、レセプター、酵素、ペプチド、スフィンゴ糖、スフィンゴ脂質の何れかから選択された物質を含むものであれば、如何なる物質にも本発明を適用することができる。更には、前記の「生体物質」を産生する細菌や細胞そのものも、本発明が対象とする「生体物質」として標的物質となり得る。
(実施例1)
まず、実施例1の構成を図を用いて説明する。
<装置構成>
本実施形態の計測装置構成を図1に示す。それぞれの部材の概要は前述したとおりである。
本例では、光源105として、レーザーダイオードを用いたレーザーヘッドとコリメートレンズとが一体となったものを用いている。この光源からは、平行光が出射されるようになっている。本例で用いているレーザーダイオードは、波長670nmのものである。偏光素子106は、プラズモン検出素子101にP偏光のみを照射するように配置された偏光フィルターである。光偏向手段103としては凸レンズを用いている。なお、凸レンズに限らず、正の屈折パワーを持った光学素子であれば、光偏向手段103として用いることができる。受光素子107として、ここではシリコンのリニアフォトダイオードアレイを用いている。遮光部位108の周囲は、ここでは黒色塗装した金属部材によって囲んでいる。遮光部材110としては、黒色塗装した金属部材を用いている。
ここで、図6を用いてプラズモン検出素子101と凸レンズ(光偏向手段)103との位置関係を詳細に示す。図6中、401は回転中心軸、402は凸レンズである。403はプラズモン検出素子の検出部位である。ここでは、回転中心軸401と検出部位403が共役の位置になるように構成している。ここでレンズの焦点距離をfとし、回転中心とレンズの主点(回転中心側)の距離をsとし、センサ面とレンズの主点(センサ側)との距離をs’とすると、
Figure 2009139279
となるように構成すればよい(図6(1))。この場合に、サンプルロータが一定角度(α)回転した場合の素子入射角度の変化をα‘とすると、
Figure 2009139279
となる(図6(2))。
<検出素子の作製>
本実施例では、図3に示す形態の検出素子を用いる。
本実施例では、フリントガラスからなる基板201を用いている。図3に示されるように、基板201はプリズムを有している。このプリズムは、略半円筒形状のプリズムとなっている。また、基板の平板状の部分とプリズム部分とは一体成型されている。一体成型方法としては、略半円筒形状のフリントガラス製ロッドレンズを研磨し一体成型後にプリズムの曲率の中心が基板面になるように設計したプリズム部材と、平板状のフリントガラス板とを、屈折率がフリントガラスと略等しいUV硬化接着剤で接合する方法を採用することができる。
本実施例における検出部位202は、金の薄膜を用いた表面プラズモンを原理としたものである。本実施例においては、以下のようにして検出部位202を形成する。まず、スパッタリング装置を用いて、基板201の検出部位を設けるべき面上にチタンを2nm程度成膜し、その上に、金を50nm成膜する。その際、成膜が必要な部位以外は、あらかじめマスクしておくことにより不要なチタンや金の付着を防止する。続いて、反応領域として溶液を保持するために、反応キュベットを固定する。この場合の構成図は、図5である。反応キュベットは、PMMA等の樹脂で作製し、UV硬化作用を持った接着剤で接着することにより基板201に固定することができる。
以下の工程を、図7を用いてさらに説明する。なお、図7は検出時の反応が完了した場合の検出領域を示している。図7中、501は基板の一部であり、502は基板上に形成した金薄膜である。
標的物質を検出するために、金薄膜502上に標的物質捕捉体503を設ける。
金薄膜502上に標的物質捕捉体503を設ける。本実施例では、標的物質捕捉体として抗体を固定している。本実施例での抗体の固定方法は以下のとおりである。まず、金薄膜に、金と親和性の高いチオール基を持つ11−Mercaptoundecanoic acidのエタノール溶液を滴下し、金薄膜を表面修飾する。その状態で、N−Hydroxysulfosuccinimide(同仁化学研究所社製)水溶液と1−Ethyl−3−[3−dimethylaminopropyl]carbodiimide hydrochloride(同仁化学研究所社製)水溶液を加え、室温で15分間インキュベートする。これにより、金薄膜表面にスクシンイミド基が露出される。この状態で、ヒトC反応性蛋白と結合する抗ヒトCRP−マウスモノクローナル抗体(Biogenesis社製)溶液を金薄膜上に滴下し、インキュベーションする。それにより、金薄膜上に抗ヒトCRP−マウスモノクローナル抗体が固定される。固定後必要に応じて、牛血清アルブミンなどの非特異的吸着の抑制作用を持った試薬を用いて非特異的吸着反応を抑制するための処理を行ってもよい。以上の作業で検出素子を作製することができる。
<測定時動作の説明>
以下に、図9の本発明装置のブロック図を用いて、本実施例の検査装置を用いた測定時の動作について説明する。301は全体動作を司る中央演算装置(CPU)である。302は主記憶メモリであり、動作プログラムを固定ディスク303より読み込み動作させる。また、主記憶メモリ302は、必要な計測データ、制御データを一時的に保持する。304は表示手段(ディスプレイ)であり、計測結果の表示や、ユーザ入力の要求情報の表示などを行う。305は、ユーザが測定装置に動作指示等を行うための入力手段であり、ここではキーボードを用いている。306は、光源(ここではレーザを用いている)307の点灯制御回路である。308は、サンプルロータ(不図示)の回転制御機構である。回転制御機構308は、ロータリーエンコーダ310の出力する、角度情報、角速度情報を基にモータ309の回転量を制御することによってサンプルロータの回転を制御する。311は、受光素子(ここではフォトダイオードアレイを用いている)312から出力された信号を処理する、データIF(インターフェース)である。データIFは、ロータリーエンコーダ310の出力角度情報、角速度情報を基に、フォトダイオードアレイの必要画素の情報(素子反射光が照射されている画素)を抽出し、ロータリーエンコーダの出力角度から求められる、検出対象となっている、サンプルホルダーの番号と角度情報とAD変換した各画素の光量値を中央演算装置301に送出する機能を持っている。313は、光偏向手段であり、ここではレンズを用いている。314は、検出素子である。なお、図9では検出素子314と照射光との空間的な位置関係は示していない。検出素子と照射光との空間的な位置関係は、おおよそ図1や図3に示されたようになっている。
具体的な測定手順を以下に示す。
サンプルロータが回転している場合には、まず、ユーザが入力手段(キーボード)305を操作することにより、サンプルセットが指示される。サンプルセットの指示を受けた中央演算装置301は、回転制御機構308にサンプルロータの停止信号を送信する。停止信号を受けた回転制御機構308は、ユーザが検出素子をセットすることが可能な位置に空き検出素子ホルダーが停止するタイミングでモータ309を停止させる。
サンプルロータの回転が停止した状態で、キュベット内に検体(一般的には液状検体)を保持したプラズモン検出素子を手作業で検出素子ホルダーにセットする。
セットが終了した後に、ユーザが入力手段305を操作し、再始動指示を与える。それにより、サンプルロータを一定速度で回転させるように回転制御機構308が制御される。サンプルがセットされた検出素子ホルダーがサンプルセット後に初めて検出部位を通過する際に、ロータリーエンコーダ310の出力角度と、フォトダイオードアレイ312の出力する画素情報より、検出素子314の固定時の角度ずれを中央演算装置301で演算し求めておく。データIF311は、この位置ずれを検出素子ホルダー毎に管理し、保持しておく。引き続きサンプルロータを回転させ、2周目以降、各サンプルホルダー毎に、角度とシグナル値の組み合わせによる角度プロファイルデータを中央演算装置301に送信する。中央演算装置301は、各検出素子ホルダー毎に取得した角度プロファイルデータをそれぞれのデータの受信時刻とセットにして、固定ディスク303に保存する。これにより、検出素子ホルダー毎に、時系列化した角度プロファイルデータが得られる。あらかじめ決められた時間の計測を終えた検出素子について、中央演算装置は、固定ディスク303に保存されている当該検出素子がセットされた検出素子ホルダーの時系列化した角度プロファイルデータより、共鳴による吸収ピーク角度を分析し、あらかじめ求めておいた検量線データと照らし合わせて、当該検出素子の検体中の標的物質量(たとえば、ヒトCRP量)を算出し、表示手段304に表示する。表示後、ユーザが入力手段305を操作することにより発生した終了サンプルの除去信号を受信すると、CPU301は回転制御機構308を制御してサンプルロータの回転を停止させ、ユーザにサンプルの除去を促す。
以上の動作を繰り返すことにより、複数サンプルを同時並行計測することが可能となる。
(実施例2)
本実施例の計測装置の光学構成を図8を用いて説明する。おおよその構成は、実施例1と同様であるため、実施例1と同様の点については説明を省略する。
本例では、図6に示す実施例1とレンズ402の配置が異なっている。具体的には、402のレンズの配置をs=s’となる位置、すなわち、回転中心軸401とレンズ402の回転中心側主点との間の距離と、検出部位とレンズの検出部位側主点との間の距離と、が等距離となるように構成する点である。このような構成とすることにより、サンプルロータが一定角度回転した際のプラズモン検出素子への検出光の入射角度がサンプルロータの回転角度と同じだけ変化するようになる。すなわち、図中ではα=α’となる。
すなわち、本例では、光偏向手段が、回転機構の回転中心とプラズモン検出素子の検出部位との中間点に存在することになる。
このような配置にした場合について、図8の(1)から(2)に至る変化について述べると、サンプルロータが時計回りにαだけ回転することによって、検出部位403の膜表面の法線に対する反射光の出射角も変化し、(1)の場合θsensor、(2)の場合 θsensor+α’となる。ここで、サンプルロータの回転に伴い、(1)から(2)に至るまでにセンサの法線自体が反時計周り(CCW)にαだけ回転しているため、α=α’の条件の場合、反射光の向きは同一となる。
このことにより、集光レンズ404を用いることにより、受光素子405を移動させること無く、またフォトダイオードアレイのような大型の受光素子を用いること無く、受光素子(たとえば、フォトダイオード)405で反射光を受光することができる。集光レンズ404は、サンプルロータの角度変移によって生じる反射光の平行移動分をフォトダイオードに導くように配置する。そのような配置としては、集光レンズ404の焦点距離位置にフォトダイオードの受光面がくるように構成すればよいこととなる。
<検出素子の作製>
本実施例では、図11に示す形態の検出素子を用いる。
図11の601は基板であり、本実施例では、石英基板を用いている。プリズムは一体成型されてはいない。そのため、使用時には、屈折率マッチングオイルを介して、前述の装置のプリズムに固定される。具体的には、図4に示すように、基板201を屈折率マッチングオイルを介してプリズム205に固定する。
602は、金のドットパターンである。ここでは、縦横の長さが150nm、厚さが40nmの金の薄膜パターンとなっている。石英基板との接着性を確保するため、石英基板と金の薄膜パターンとの間には厚さ2nmのTi薄膜が設けられている。
ここでの製法は、以下のとおりである。まず、石英基板上にレジスト膜を設け、電子ビーム露光装置にて、そのレジスト膜に一辺の長さ150nmの正方形の抜きパターンを作製する。たその後、スパッタリング装置を用いて、基板面上およびレジスト膜上にチタンを厚さ2nm程度成膜し、その上に、金を厚さ40nm成膜し、成膜後、レジスト剥離剤に浸漬することにより、リフトオフする。このようにして、金のドットパターンを生成する。
反応キュベットは、実施例1同様に構成する。捕捉分子の固定法も実施例1と同様である。
<測定時動作の説明>
以下に、図10の本発明装置のブロック図を用いて、測定時の動作について説明する。
実施例1と同様の点については説明を省略する。
図9に示す実施例1との相違点は、集光レンズ315を用いている点である。前述したように、反射光は平行光となるので、集光レンズ315を利用することで受光素子としてフォトダイオードアレイではなくフォトダイオードを用いることができるようになっている。
316は、検出素子ホルダーのθステージをコントロールするステージコントローラである。317は、検出素子ホルダーの角度を制御する、θステージである。
測定手順は、以下の点を除いて実施例1と同様である。すなわち、実施例1同様の手順を経て再始動指示が与えられると、セットした検出素子ホルダーが検出領域の中心にくるように駆動される。その位置で、フォトダイオード312が正しく反射光を受光できるように、316のステージコントローラにより、317のθステージが制御され、検出素子ホルダーの角度ずれが補正される。補正後に、中央演算装置301は、回転制御機構308に定回転の指示をだす。以降、各検出素子ホルダー毎に、角度とシグナル値の組み合わせによる角度プロファイルデータが中央演算装置301に送信される。中央演算装置では、各検出素子ホルダー毎に取得した角度プロファイルデータをそれぞれの受信時刻とセットにして、固定ディスク303に保存する。以下は、実施例1と同様である。
(実施例3)
実施例3は、実施例2と光学構成が異なるのみであるため、構成のみ説明し、計測処理他は省略する。
図12を用いて、光学構成を説明する。701はレーザ光源である。レーザ光源701から出たレーザビームは、ビームスプリッタ702を透過し、偏向レンズ703により偏向され、プリズム一体となった検出素子704を通り、検出部位705に至る。検出部位705で反射した光は、プリズム面に形成された反射膜(たとえばアルミニウムコーティング)706で反射され、再度検出部位705に戻る。ここで反射膜は、検出素子の検出部位を通る法線を境にプリズム表面の半分のみを覆う形でコーティングされている。
戻ってきたレーザビームは、再度検出部位705で反射し、ビームスプリッタ702で受光素子707に導かれ、計測される。計測処理に関しては、実施例と同様であるため省略する。
なお、本例において、レーザビーム以外の光を用いることも可能である。
本実施例構成は、サンプルロータ内側に光学系が纏められるため、装置外形寸法が小型化できる等のメリットがある。また、検出光が検出素子部で2回反射されるため、素子の吸光データが高感度で計測できるというメリットがある。
本発明実施例1の装置概要図 表面プラズモンクレッチマン配置の例 本発明実施例1の検出素子概要図 本発明実施例2の検出素子概要図 本発明実施例1の検出素子全体図 本発明実施例1の光学構成図 検出素子表面の反応模式図 本発明実施例2の光学構成図 本発明実施例1の検出装置ブロック図 本発明実施例2の検出装置ブロック図 本発明実施例2の検出素子概要図 本発明実施例3の検出装置光学構成図
符号の説明
101 プラズモン検出素子(サンプルキュベット一体型)
102 検出素子ホルダー
103 検出光偏向手段
104 サンプルロータ
105 光源
106 偏光素子
107 受光素子
108 検出領域遮光部位
109 回転軸
110 遮光部材
201 基板
202 検出部位
203 入射光
204 素子法線
205 プリズム
206 キュベット部
301 中央演算装置
302 主記憶メモリ
303 固定ディスク
304 表示手段
305 入力手段
306 点灯制御回路
307 光源
308 回転制御機構
309 モータ
310 ロータリーエンコーダ
311 データIF
312 受光素子
313 光偏向手段(レンズ)
314 検出素子
315 集光レンズ
316 ステージコントローラ
317 θステージ
401 回転中心
402 偏向レンズ
403 検出部位
501 検出素子基板
502 金薄膜
503 標的物質捕捉体
504 標的物質
601 センサ素子基板
602 金ドット
701 レーザ光源
702 ビームスプリッタ
703 偏向レンズ
704 検出素子(プリズム一体)
705 検出部位
706 反射膜(アルミニウムコーティング)
707 受光素子

Claims (2)

  1. プラズモン共鳴を用いた、検体を検査する検査装置において、
    プラズモン検出素子を保持するための複数の検出素子ホルダーと、
    前記プラズモン検出素子に光を照射するための光源と、
    前記検出素子ホルダーと同数の光偏向手段と、
    前記プラズモン検出素子より反射した光の強度を検出する受光素子と、
    前記検出素子ホルダーと前記光偏向手段とを一体として回転させるための回転機構とを持ち、
    前記光源は、前記検出素子ホルダーと前記光の偏向手段よりも前記回転機構の回転中心に近い位置に存在し、回転機構の回転半径方向に光を出射することを特徴とする、検査装置。
  2. 請求項1記載の検査装置において、
    前記光偏向手段が、前記回転機構の回転中心とプラズモン検出素子の検出部位との中間点に位置することを特徴とする検査装置。
JP2007317278A 2007-12-07 2007-12-07 検査装置 Pending JP2009139279A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007317278A JP2009139279A (ja) 2007-12-07 2007-12-07 検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007317278A JP2009139279A (ja) 2007-12-07 2007-12-07 検査装置

Publications (1)

Publication Number Publication Date
JP2009139279A true JP2009139279A (ja) 2009-06-25

Family

ID=40870021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007317278A Pending JP2009139279A (ja) 2007-12-07 2007-12-07 検査装置

Country Status (1)

Country Link
JP (1) JP2009139279A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108378A1 (ja) * 2011-02-08 2012-08-16 株式会社神戸製鋼所 表面プラズモン共鳴測定用チップ
WO2016120951A1 (ja) * 2015-01-26 2016-08-04 株式会社 日立ハイテクノロジーズ 光学的分析装置
KR20220016000A (ko) * 2020-07-31 2022-02-08 연세대학교 산학협력단 현장 중심형 핵산 검출 장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108378A1 (ja) * 2011-02-08 2012-08-16 株式会社神戸製鋼所 表面プラズモン共鳴測定用チップ
WO2016120951A1 (ja) * 2015-01-26 2016-08-04 株式会社 日立ハイテクノロジーズ 光学的分析装置
US10739260B2 (en) 2015-01-26 2020-08-11 Hitachi High-Tech Corporation Optical analyzing device
KR20220016000A (ko) * 2020-07-31 2022-02-08 연세대학교 산학협력단 현장 중심형 핵산 검출 장치
KR102426968B1 (ko) * 2020-07-31 2022-07-29 연세대학교 산학협력단 현장 중심형 핵산 검출 장치

Similar Documents

Publication Publication Date Title
JP3579321B2 (ja) 2次元イメージング表面プラズモン共鳴測定装置および測定方法
FI76432B (fi) Foerfarande och anordning foer bestaemning av element i loesning med en ljusledare.
US7064837B2 (en) Measuring sensor utilizing attenuated total reflection and measuring chip assembly
EP2487481A1 (en) Surface plasmon-enhanced fluorescence measurement device
JP6991972B2 (ja) 検出チップ、検出システムおよび検出方法
WO2012036075A1 (ja) 屈折率測定装置、及び屈折率測定方法
JP6888548B2 (ja) 測定方法
JP2009139279A (ja) 検査装置
WO2017057136A1 (ja) 表面プラズモン励起増強蛍光分光測定方法、および測定用キット
JP2002372490A (ja) 全反射減衰を利用したセンサーおよび測定チップアセンブリ
EP3584561B1 (en) Inspection chip and inspection system
EP4036555A1 (en) Detection method and detection device
US20230021366A1 (en) System comprising an apparatus and a cartridge for assay measurement
WO2006022277A1 (ja) 表面プラズモン共鳴分析における解離定数の算出方法
WO1984000609A1 (en) Improved fluorometer assembly and method
JP2007017310A (ja) 分析装置
JP2005098788A (ja) 表面プラズモン共鳴測定装置およびセンサユニット
US10976250B2 (en) Position detection method and position detection device for sensor chip in optical sample detection system
JP2008267959A (ja) 検査装置
JP6481371B2 (ja) 検出方法および検出キット
EP1538436A1 (en) Method for measuring surface plasmon resonance
JP6717201B2 (ja) 検出方法および検出装置
JP2007147314A (ja) 表面プラズモンセンサーおよび表面プラズモンセンサーを用いた標的物質の検出方法
JP2007047004A (ja) 反応容器とこの反応容器を用いた分析装置
US20060068424A1 (en) Biosensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Effective date: 20100630

Free format text: JAPANESE INTERMEDIATE CODE: A7421