JP2009139092A - Capacitance type multipoint thickness measurement method and device - Google Patents

Capacitance type multipoint thickness measurement method and device Download PDF

Info

Publication number
JP2009139092A
JP2009139092A JP2007312318A JP2007312318A JP2009139092A JP 2009139092 A JP2009139092 A JP 2009139092A JP 2007312318 A JP2007312318 A JP 2007312318A JP 2007312318 A JP2007312318 A JP 2007312318A JP 2009139092 A JP2009139092 A JP 2009139092A
Authority
JP
Japan
Prior art keywords
measurement
measured
capacitance type
capacitance
ground electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007312318A
Other languages
Japanese (ja)
Other versions
JP4753121B2 (en
Inventor
Yoshiharu Shinpo
良春 新保
Yoshinari Shinpo
良成 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JUSTEM KK
Original Assignee
JUSTEM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JUSTEM KK filed Critical JUSTEM KK
Priority to JP2007312318A priority Critical patent/JP4753121B2/en
Publication of JP2009139092A publication Critical patent/JP2009139092A/en
Application granted granted Critical
Publication of JP4753121B2 publication Critical patent/JP4753121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To switch on and off the contact state between an earth electrode and a measuring object according to measurement conditions of the measuring object in which, for example, contamination on a surface of a semiconductor wafer etc. due to metal ions or contact damage on the earth electrode should be avoided, or contrarily such a condition should not be taken into much consideration. <P>SOLUTION: The capacitance type multipoint thickness measurement device for performing multipoint measurement of the thickness at a plurality of measured portions P<SB>1</SB>, P<SB>2</SB>, P<SB>3</SB>of a measuring object comprises: a pair of capacitance type distance detecting sensors S<SB>1</SB>/S<SB>2</SB>which are disposed in opposite positions, across the measured portion P of the measuring object W, at a predetermined distance G<SB>S</SB>from each other; and a connection/disconnection mechanism 13 which can switch on and off the contact state between an earth electrode 8 and the measuring object according to measurement conditions of the measuring object. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は静電容量式距離検出センサにより半導体ウエハーなどの被測定体の厚みを被測定体に対して非接触にて測定する静電容量式厚み多点測定方法及びその装置に関するものである。   The present invention relates to an electrostatic capacitance type multi-point measuring method and apparatus for measuring the thickness of an object to be measured such as a semiconductor wafer in a non-contact manner with respect to the object to be measured by an electrostatic capacitance type distance detection sensor.

従来、この種の静電容量式厚み多点測定方法として、図9、図10の如く、例えば、半導体ウエハーである、被測定体Wの測定部位P、この場合、P1、P2、P3を境にして対向する位置に所定の対向距離Gsを置いて一対の静電容量式距離検出センサS1・S2を配置し、被測定体Wに対向して接触状態又は非接触状態でアース電極Qを配置し、一対の静電容量式距離検出センサS1・S2のそれぞれが検出した静電容量C(=センサーの電極面積A×電極と被測定体間の誘電率ε/電極と被測定体との距離G)によるところの被測定体Wと一対の静電容量式距離検出センサS1・S2との距離G1・G2及び一対の静電容量式距離検出センサS1・S2間の対向距離Gsに基づいて被測定体の複数の測定部位Pの厚みt(=Gs−[G1+G2])を被測定体に対して非接触にて多点測定する構造のものが知られている。 Conventionally, as this type of capacitance type thickness multipoint measurement method, as shown in FIGS. 9 and 10, for example, a measurement site P of a measurement object W, which is a semiconductor wafer, in this case, P 1 , P 2 , P A pair of electrostatic capacitance type distance detection sensors S 1 and S 2 is arranged at a position opposed to each other with a predetermined facing distance Gs 3 therebetween, and is in contact with or not in contact with the object W to be measured. An earth electrode Q is arranged and the capacitance C detected by each of the pair of capacitance type distance detection sensors S 1 and S 2 (= electrode area A of the sensor × dielectric constant ε / electrode between the electrode and the measured object) distance G 1 · G 2 and a pair of electrostatic capacitance type distance sensor S and the capacitance type distance sensor S 1 · S 2 of the measurement object W and the pair of the place due to the distance G) between the object to be measured 1 · S 2 between the facing distance Gs thickness of the plurality of the measurement site P of the object to be measured based on the t (= Gs- [G 1 + G 2 ) As a structure that multiple points measured by non-contact with the object to be measured is known.

そして、これら従来構造においては、上記アース電極Qが被測定体Wに対して接触状態である接触式構造のもの、又は、上記アース電極Qが被測定体Wに対して非接触状態である非接触式構造のものが併存している。なぜならば、上記アース電極は被測定物と静電容量式距離検出センサとをほぼ同電位に保持し、被測定体と一対の静電容量式距離検出センサとの距離G1・G2の測定誤差を極力なくして正確な厚み測定を行うという目的で設けられているところ、被測定物がシリコンウエハーのような半導体ウエハーである場合においては、上記接触式構造であると金属イオンによる汚染やアース電極の接触によるキズ等の懸念があって上記非接触式構造のものが採択されることになり、一方、上記接触式構造の場合、上記アース電極が被測定物に常時接触しているので構造の簡素化やセンサーに対する被測定物の取り入れや取り出しなどの各種処理の扱いが容易であることから、表面の汚染やキズ等をそれほど考慮しなくてもよいような被測定物の場合には接触式構造が採択されているからである。
特開2005−172700
In these conventional structures, a contact-type structure in which the ground electrode Q is in contact with the measured object W or a non-contact state in which the ground electrode Q is not in contact with the measured object W. A contact type structure coexists. This is because the ground electrode holds the object to be measured and the capacitance type distance detection sensor at substantially the same potential, and measures the distances G 1 and G 2 between the object to be measured and the pair of capacitance type distance detection sensors. It is provided for the purpose of accurate thickness measurement with as little error as possible. When the object to be measured is a semiconductor wafer such as a silicon wafer, the contact structure described above may cause contamination by metal ions or grounding. The non-contact type structure is selected because of concerns such as scratches due to electrode contact. On the other hand, in the case of the contact type structure, the ground electrode is always in contact with the object to be measured. In the case of an object to be measured, it is easy to handle various types of processing such as simplifying the measurement and taking in / out the object to / from the sensor. This is because the contact type structure is adopted.
JP-A-2005-172700

しかしながら上記のとおり、従来は、上記アース電極Qが被測定体Wに対して接触状態である接触式構造のもの、又は、上記アース電極Qが被測定体Wに対して非接触状態である非接触式構造のものが併存しているため、各種被測定物の測定条件に対する測定の融通性が低下することがあるという不都合を有している。   However, as described above, conventionally, the ground electrode Q is in a contact-type structure in contact with the measured object W or the non-contact state in which the ground electrode Q is not in contact with the measured object W. Since the contact-type structure coexists, there is a disadvantage that the flexibility of measurement with respect to the measurement conditions of various objects to be measured may be lowered.

本発明はこれらの不都合を解決することを目的とするもので、本発明のうちで、請求項1記載の方法の発明にあっては、被測定体の測定部位を境にして対向する位置に所定の対向距離を置いて一対の静電容量式距離検出センサを配置し、該被測定体に対向してアース電極を配置し、該一対の静電容量式距離検出センサのそれぞれが検出した静電容量による該被測定体と該一対の静電容量式距離検出センサとの距離及び該一対の静電容量式距離検出センサ間の対向距離に基づいて被測定体の複数の測定部位の厚みを多点測定する静電容量式厚み多点測定方法において、上記アース電極と上記被測定体とを上記被測定体の測定条件に応じて接触状態又は非接触状態に切り替えることを特徴とする静電容量式厚み多点測定方法にある。   The present invention is intended to solve these disadvantages. Among the present inventions, in the method invention according to claim 1, the measurement object is measured at a position facing the measurement site. A pair of electrostatic capacitance type distance detection sensors are arranged at a predetermined facing distance, an earth electrode is arranged opposite to the object to be measured, and static electricity detected by each of the pair of electrostatic capacitance type distance detection sensors is detected. Based on the distance between the object to be measured and the pair of capacitance type distance detection sensors due to capacitance and the opposing distance between the pair of capacitance type distance detection sensors, the thicknesses of the plurality of measurement parts of the object to be measured are determined. In the capacitance-type thickness multipoint measurement method for multipoint measurement, the ground electrode and the object to be measured are switched to a contact state or a non-contact state according to a measurement condition of the object to be measured. It is in the capacity type multipoint measuring method.

又、請求項2記載の装置の発明にあっては、被測定体の測定部位を境にして対向する位置に所定の対向距離を置いて一対の静電容量式距離検出センサを配置し、該被測定体に対向してアース電極を配置し、該一対の静電容量式距離検出センサのそれぞれが検出した静電容量による該被測定体と該一対の静電容量式距離検出センサとの距離及び該一対の静電容量式距離検出センサ間の対向距離に基づいて被測定体の複数の測定部位の厚みを多点測定する静電容量式厚み多点測定装置において、上記アース電極と上記被測定体とを上記被測定体の測定条件に応じて接触状態又は非接触状態に切替可能な接離機構を設けて構成したことを特徴とする静電容量式厚み多点測定装置にある。   Further, in the invention of the device according to claim 2, a pair of electrostatic capacitance type distance detection sensors are arranged at a predetermined facing distance at positions facing each other with the measurement site of the measurement object as a boundary, A ground electrode is disposed opposite to the measurement object, and the distance between the measurement object and the pair of capacitance distance detection sensors by the capacitance detected by each of the pair of capacitance distance detection sensors And an electrostatic capacitance type multi-point measuring device for measuring the thickness of a plurality of measurement sites of the measurement object based on the opposing distance between the pair of electrostatic capacitance type distance detection sensors. The capacitance type multi-point measuring device is characterized in that a measuring body is provided with a contact / separation mechanism that can be switched between a contact state and a non-contact state according to the measurement conditions of the object to be measured.

又、請求項3記載の発明は、上記アース電極は上記被測定体を載置可能な載置テーブルであることを特徴とするものであり、又、請求項4記載の発明は、上記切離機構は上記アース電極たる載置テーブルに接触状態で載置されている被測定体を該載置テーブル上より浮上させて非接触状態とする構造になっていることを特徴とするものであり、又、請求項5記載の発明は、上記被測定体を割出回転可能な割出機構を設けてなることを特徴とするものであり、又、請求項6記載の発明は、上記被測定体の外周端部を位置決め可能な位置決め部を備えてなることを特徴とするものである。   The invention described in claim 3 is characterized in that the ground electrode is a mounting table on which the object to be measured can be mounted, and the invention described in claim 4 is characterized by the separation. The mechanism is characterized by having a structure in which the object to be measured placed in contact with the placement table as the ground electrode is in a non-contact state by levitating from the placement table, The invention described in claim 5 is characterized in that an indexing mechanism capable of indexing and rotating the measured object is provided, and the invention described in claim 6 is characterized in that the measured object. It is characterized by comprising a positioning portion capable of positioning the outer peripheral end portion of the.

本発明は上述の如く、請求項1又は2記載の発明にあっては、被測定体の測定部位を境にして対向する位置に所定の対向距離を置いて一対の静電容量式距離検出センサを配置し、該被測定体に対向してアース電極を配置し、該一対の静電容量式距離検出センサのそれぞれが検出した静電容量による該被測定体と該一対の静電容量式距離検出センサとの距離及び該一対の静電容量式距離検出センサ間の対向距離に基づいて被測定体の複数の測定部位の厚みを多点測定することになり、この際、上記アース電極と上記被測定体とを上記被測定体の測定条件に応じて接触状態又は非接触状態に切替可能な接離機構を設けて構成しているから、半導体ウエハーなどの表面の金属イオンによる汚染やアース電極の接触によるキズを避けなければならない場合や表面の汚染やアース電極の接触によるキズをそれほど考慮しなくてもよいような場合などの被測定体の測定条件に応じて、上記アース電極と上記被測定体とを接触状態又は非接触状態に切り替えることができ、したがって、各種被測定物の測定条件に対する測定の融通性を向上することができる。   As described above, according to the first or second aspect of the present invention, a pair of capacitance-type distance detection sensors are provided with a predetermined facing distance at a position facing each other with the measurement site of the measurement object as a boundary. And a ground electrode opposite to the object to be measured, and the object to be measured and the pair of capacitance distances by the capacitance detected by each of the pair of capacitance type distance detection sensors. Based on the distance to the detection sensor and the facing distance between the pair of capacitance type distance detection sensors, the thickness of a plurality of measurement parts of the measurement object is measured at multiple points. Since a contact / separation mechanism that can switch the measured object to a contact state or a non-contact state according to the measurement conditions of the measured object is provided, contamination of the surface of a semiconductor wafer or the like by metal ions or a ground electrode Must avoid scratches caused by contact Depending on the measurement conditions of the object to be measured, such as when there is no need to consider so much contamination, surface contamination, or scratches due to contact with the earth electrode, the earth electrode and the object to be measured are in contact or non-contact. Therefore, the flexibility of measurement with respect to the measurement conditions of various objects to be measured can be improved.

又、請求項3記載の発明にあっては、上記アース電極は上記被測定体を載置可能な載置テーブルであるから、兼用により構造を簡素化することができ、又、請求項4記載の発明にあっては、上記切離機構は上記アース電極たる載置テーブルに接触状態で載置されている被測定体を該載置テーブル上より浮上させて非接触状態とする構造になっているから、切離機構の構造を簡素化することができ、又、請求項5記載の発明にあっては、上記被測定体を割出回転可能な割出機構を設けてなるから、被測定体の回転方向の位置決めを容易に行うことができ、又、請求項6記載の発明にあっては、上記被測定体の外周端部を位置決め可能な位置決め部備えてなるから、被測定体の表面への傷付けを防ぐことができる。   In the invention described in claim 3, since the ground electrode is a mounting table on which the object to be measured can be mounted, the structure can be simplified by double use. In the invention, the separation mechanism has a structure in which the measurement object placed in contact with the placement table as the ground electrode is floated from the placement table to be in a non-contact state. Therefore, the structure of the separation mechanism can be simplified, and the invention according to claim 5 is provided with an indexing mechanism capable of indexing and rotating the object to be measured. Positioning of the body in the rotational direction can be easily performed, and the invention according to claim 6 is provided with a positioning portion capable of positioning the outer peripheral end of the body to be measured. The surface can be prevented from being scratched.

図1乃至図8は本発明の実施の形態例を示し、1は機台であって、この場合、機台1上に移動ステージ2がガイドレール3a及び直線軸受部3bからなるガイド機構3により往復移動自在に設けられ、移動ステージ2にハンドル2aが設けられ、移動ステージ2と機台1との間に位置決め機構4が設けられ、かつ、移動ステージ2上に回転ステージ5が主軸6により回転自在に立設され、かつ、回転ステージ5は割出機構7により割出回転可能に設けられ、回転ステージ5上に接地されたアース電極8を兼ねる載置テーブル9を取り付け、これにより被測定体Wに対向してアース電極8を配置して構成している。   1 to 8 show an embodiment of the present invention. Reference numeral 1 denotes a machine base. In this case, a moving stage 2 is mounted on the machine base 1 by a guide mechanism 3 including a guide rail 3a and a linear bearing portion 3b. The moving stage 2 is provided with a handle 2a, a positioning mechanism 4 is provided between the moving stage 2 and the machine base 1, and a rotating stage 5 is rotated on the moving stage 2 by a main shaft 6. The rotating stage 5 is provided so as to be freely indexable by the indexing mechanism 7, and a mounting table 9 serving as a ground electrode 8 is attached to the rotating stage 5 so as to be measured. A ground electrode 8 is arranged opposite to W.

また、この場合、上記機台1上に測定機体10が立設され、測定機体10に挿入溝部11により上アーム部10a及び下アーム部10bが形成され、上アーム部10a及び下アーム部10bの先端部にそれぞれ被測定体Wの測定部位Pを境にして対向する位置に所定の対向距離Gsを置いて一対の静電容量式距離検出センサS1・S2が配置され、かつ、回転ステージ5及びアース電極8を兼ねる載置テーブル9に上アーム部10a及び下アーム部10bが挿入可能な逃げ溝部Mを形成し、機台1に上記被測定体Wの外周端部W1を位置決め可能な位置決め部12を設け、この位置決め部12は位置決め台12a上に測定物Wの外周端部W1を位置決め可能な3個の位置決めピン12bを立設して構成している。 Further, in this case, the measuring machine body 10 is erected on the machine base 1, the upper arm part 10a and the lower arm part 10b are formed in the measuring machine body 10 by the insertion groove part 11, and the upper arm part 10a and the lower arm part 10b are A pair of electrostatic capacitance type distance detection sensors S 1 and S 2 is arranged at a position facing each other with the measurement part P of the measurement object P as a boundary at the distal end, and the rotary stage. 5 and the upper arm portion 10a and the lower arm portion 10b is formed can be inserted relief groove M in the mount table 9 serving as a grounding electrode 8, the machine frame 1 to be positioned to the outer peripheral edge portion W 1 of the object to be measured W the Do positioning unit 12 is provided, the positioning portion 12 is constituted by upright three positioning pins 12b positionable the outer peripheral end portion W 1 of the workpiece W on the positioning base 12a.

この場合、上記位置決め機構4は、上記移動ステージ2の裏面に設けられた弾圧ボール4aと、弾圧ボール4aを押圧可能なバネ4bと、供給取出位置A、測定位置B(P1)、・C(P2)・D(P3)において、弾圧ボール4aの一部が没入係止して移動ステージ2を位置決め可能な没入凹球部4cが形成された位置決め板4dとからなり、位置決め板4dは機台1上に取り付けられ、また、上記割出機構7は上記移動ステージ2の上面に設けられた弾圧ボール7a及び弾圧ボール7aを押圧可能なバネ7bを設け、回転ステージ5の四つの割出位置において、弾圧ボール7aの一部が没入係止して回転ステージ5を位置決め可能な没入凹球部7cを回転ステージ5の底面に形成して構成している。 In this case, the positioning mechanism 4 includes a pressure ball 4a provided on the back surface of the movable stage 2, a spring 4b capable of pressing the pressure ball 4a, a supply take-out position A, a measurement position B (P 1 ),. (P 2 ) · D (P 3 ) includes a positioning plate 4d formed with a recessed concave ball portion 4c in which a part of the elastic ball 4a is immersed and locked to position the movable stage 2, and the positioning plate 4d The indexing mechanism 7 is provided with an elastic ball 7a provided on the upper surface of the movable stage 2 and a spring 7b capable of pressing the elastic ball 7a. At the exit position, a part of the pressure ball 7 a is immersed and locked, and an immersion concave ball portion 7 c that can position the rotation stage 5 is formed on the bottom surface of the rotation stage 5.

13は接離機構であって、上記アース電極8たる載置テーブル9と上記被測定体Wとを上記被測定体Wに応じて接触状態又は非接触状態に切替可能に形成され、この場合、上記切離機構13は上記アース電極8たる載置テーブル9に接触状態で載置されている被測定体Wを載置テーブル9上より浮上させて非接触状態とする構造になっており、すなわち、図4、図5の如く、回転ステージ5に複数個の載置ピン14を螺着立設し、載置ピン14に嵌合可能な嵌合穴15をアース電極8たる載置テーブル9に形成すると共に回転ステージ5の上面を押圧可能な調節ボルト16をアース電極8たる載置テーブル9に螺着し、調節ボルト16の正逆回動操作により上記アース電極8と上記被測定体Wとを接触状態又は非接触状態に切替可能に形成している。   13 is a contact / separation mechanism, which is formed so that the mounting table 9 as the ground electrode 8 and the measured object W can be switched to a contact state or a non-contact state according to the measured object W. In this case, The separation mechanism 13 has a structure in which the object to be measured W placed in contact with the placement table 9 as the ground electrode 8 is lifted from the placement table 9 to be in a non-contact state. 4 and 5, a plurality of mounting pins 14 are screwed up on the rotary stage 5, and fitting holes 15 that can be fitted into the mounting pins 14 are formed in the mounting table 9 that is the ground electrode 8. An adjustment bolt 16 that is formed and capable of pressing the upper surface of the rotary stage 5 is screwed to the mounting table 9 serving as the ground electrode 8, and the ground electrode 8, the object W to be measured, Can be switched to a contact state or a non-contact state. There.

しかして、図4の如く、接離機構13の調節ボルト16を弛緩回動することにより調節ボルト16の先端部は回転ステージ5より離反する方向に移動し、アース電極8は調節ボルト16と嵌合穴15との嵌合摺動により自重降下し、被測定体Wは複数個の載置ピン14の上面に載置され、被測定体Wはアース電極8たる載置テーブル9より浮上し、これにより、上記アース電極8と上記被測定体Wとは僅かな隙間Tを存して非接触状態となり、又、図5の如く、接離機構13の調節ボルト16を締付回動することにより調節ボルト16の先端部は回転ステージ5を押圧し、アース電極8たる載置テーブル9は調節ボルト16と嵌合穴15との嵌合摺動により上昇し、載置ピン14の上端面はアース電極8の上面より没入位置し、被測定体Wはアース電極8たる載置テーブル9の上面に載置され、これにより、上記アース電極8と上記被測定体Wとは接触状態となり、したがって、接離機構13の調節ボルト16の正逆回動により上記アース電極8と上記被測定体Wとを接触状態又は非接触状態に切り替えるように構成している。   As shown in FIG. 4, the adjustment bolt 16 of the contact / separation mechanism 13 is loosely rotated to move the tip of the adjustment bolt 16 away from the rotary stage 5, and the ground electrode 8 is fitted with the adjustment bolt 16. The weight of the object to be measured W is lowered by the fitting and sliding with the joint hole 15, the object to be measured W is placed on the upper surface of the plurality of placement pins 14, and the object to be measured W is levitated from the placement table 9 which is the ground electrode 8. As a result, the ground electrode 8 and the measured object W are not in contact with each other with a slight gap T, and the adjusting bolt 16 of the contact / separation mechanism 13 is tightened and rotated as shown in FIG. Thus, the tip of the adjustment bolt 16 presses the rotary stage 5, the mounting table 9 as the ground electrode 8 is raised by the fitting sliding of the adjustment bolt 16 and the fitting hole 15, and the upper end surface of the mounting pin 14 is The object to be measured W is immersed from the upper surface of the ground electrode 8 and The ground electrode 8 and the object to be measured W are brought into contact with each other, so that the adjustment bolt 16 of the contact / separation mechanism 13 is rotated forward and backward. Thus, the ground electrode 8 and the measurement object W are switched to a contact state or a non-contact state.

また、この場合、被測定体Wの位置固定機構17として、上記載置ピン14に吸引穴17aを形成し、回転ステージ5に吸引穴17に連通して図外の負圧源に接続された吸引路17bを形成して構成している。   Further, in this case, as the position fixing mechanism 17 of the object to be measured W, a suction hole 17a is formed in the mounting pin 14, and the rotary stage 5 communicates with the suction hole 17 and is connected to a negative pressure source (not shown). The suction path 17b is formed and configured.

この実施の形態例は上記構成であるから、図1、図2、図3、図10の如く、取出供給位置Aにおいて、被測定物Wを載置テーブル9たるアース電極8上に載置し、移動ステージ2を前進移動させ、測定位置Bにおいて、被測定物Wの測定部位P1を境にして所定の対向距離を置いて一対の静電容量式距離検出センサS1・S2が位置され、一対の静電容量式距離検出センサS1・S2のそれぞれが検出した静電容量によるところの被測定体Wと一対の静電容量式距離検出センサS1・S2との距離G1・G2及び一対の静電容量式距離検出センサS1・S2間の対向距離Gsに基づいて被測定体の複数の測定部位P1の厚みt(=Gs−[G1+G2])が測定され、この状態で、回転ステージ5を所定角度回転させ、この角度回転位置において、一対の静電容量式距離検出センサS1・S2により厚みを検出し、回転ステージ5を所定角度回転させて多点測定し、その後、移動ステージ2を更に前進移動させ、測定位置Cにおいて、被測定物Wの測定部位P2を境にして所定の対向距離を置いて一対の静電容量式距離検出センサS1・S2が位置され、一対の静電容量式距離検出センサS1・S2により測定部位P2の厚みtを測定し、この状態で、回転ステージ5を所定角度回転させ、この角度回転位置において、一対の静電容量式距離検出センサS1・S2により厚みを検出し、回転ステージ5を所定角度回転させて多点測定し、その後、移動ステージ2を更に前進移動させ、測定位置Dにおいて、被測定体Wの中心位置の測定部位P3の厚みを測定し、これにより被測定体Wの厚みを多点測定することになる。 Since this embodiment is configured as described above, the object to be measured W is placed on the ground electrode 8 serving as the placement table 9 at the take-out supply position A as shown in FIGS. 1, 2, 3, and 10. Then, the movable stage 2 is moved forward, and at the measurement position B, the pair of electrostatic capacitance type distance detection sensors S 1 and S 2 are positioned at a predetermined facing distance with the measurement site P 1 of the workpiece W as a boundary. is the distance between the pair of capacitive distance detection sensor S 1 · object to be measured where by electrostatic capacitance detected by each of S 2 W and a pair of electrostatic capacitance type distance detecting sensor S 1 · S 2 G Thickness t (= Gs− [G 1 + G 2 ]) of a plurality of measurement sites P 1 of the measured object based on 1 · G 2 and the opposing distance Gs between the pair of capacitance type distance detection sensors S 1 and S 2 ) Is measured, and in this state, the rotary stage 5 is rotated by a predetermined angle, and at this angular rotation position, Detecting the thickness by an electrostatic capacitance type distance detecting sensor S 1 · S 2 pairs, the rotation stage 5 rotated by a predetermined angle as measured multi point, then further moved forward movement stage 2, in the measurement position C, is positioned a pair of electrostatic capacitance type distance detecting sensor S 1 · S 2 at a predetermined opposing distance measurement site P 2 in the boundary of the object W, S 1 · pair of capacitive distance sensor The thickness t of the measurement site P 2 is measured by S 2 , and in this state, the rotary stage 5 is rotated by a predetermined angle, and at this angular rotation position, the thickness is measured by the pair of capacitance type distance detection sensors S 1 and S 2. Then, the rotary stage 5 is rotated at a predetermined angle and measured at multiple points. Thereafter, the movable stage 2 is further moved forward, and the thickness of the measurement site P 3 at the center position of the measurement object W is measured at the measurement position D. This makes it possible to measure the thickness of the object to be measured W at multiple points. It will be constant.

この際、上記アース電極8と上記被測定体Wとを上記被測定体Wの測定条件に応じて接触状態又は非接触状態に切替可能な接離機構13を設けて構成しているから、半導体ウエハーなどの表面の金属イオンによる汚染やアース電極の接触によるキズを避けなければならない被測定体Wの測定条件にあっては、図4の如く、上記アース電極8と上記被測定体Wとを上記被測定体Wの測定条件に応じて非接触状態として測定することができ、また、表面の汚染やアース電極の接触によるキズをそれほど考慮しなくてもよいような被測定体Wの測定条件にあっては、図5の如く、上記アース電極8と上記被測定体Wとを上記被測定体Wの測定条件に応じて接触状態として測定することができ、したがって、各種被測定物Wの測定条件に対する測定の融通性を向上することができる。   At this time, since the ground electrode 8 and the object to be measured W are provided with the contact / separation mechanism 13 that can be switched between a contact state and a non-contact state according to the measurement conditions of the object to be measured W. In the measurement conditions of the measurement object W that must avoid contamination by metal ions on the surface of the wafer or the like or contact with the ground electrode, the ground electrode 8 and the measurement object W are connected as shown in FIG. The measurement conditions of the measurement object W can be measured in a non-contact state according to the measurement conditions of the measurement object W, and the surface contamination and scratches due to the contact with the ground electrode need not be considered so much. In this case, as shown in FIG. 5, the ground electrode 8 and the measured object W can be measured in contact with each other according to the measurement conditions of the measured object W. Therefore, various measured objects W can be measured. For measurement conditions It is possible to improve the facultative.

この場合、上記アース電極8は上記被測定体Wを載置可能な載置テーブル9であるから、兼用により構造を簡素化することができ、又、この場合、上記切離機構13は上記アース電極8たる載置テーブル9に接触状態で載置されている被測定体を該載置テーブル9上より浮上させて非接触状態とする構造になっているから、切離機構13の構造を簡素化することができ、又、この場合、上記被測定体Wを割出回転可能な割出機構7を設けてなるから、被測定体Wの回転方向の位置決めを容易に行うことができ、又、この場合、上記被測定体Wの外周端部W1を位置決め可能な位置決め部12備えてなるから、被測定体Wの表面への傷付けを防ぐことができる。 In this case, since the ground electrode 8 is a mounting table 9 on which the object to be measured W can be mounted, the structure can be simplified by double use. In this case, the separation mechanism 13 is connected to the ground. Since the measurement object placed in contact with the placement table 9 as the electrode 8 is lifted from the placement table 9 and brought into a non-contact state, the structure of the separation mechanism 13 is simplified. In this case, since the indexing mechanism 7 capable of indexing and rotating the object to be measured W is provided, positioning of the object to be measured W in the rotation direction can be easily performed. In this case, since the positioning portion 12 capable of positioning the outer peripheral end W 1 of the measurement object W is provided, the surface of the measurement object W can be prevented from being damaged.

尚、本発明は上記実施の形態例に限られるものではなく、載置テーブルをアース電極とせずに載置テーブルとは別途にアース電極を被測定体Wに対向して位置し、この別途に設けたアース電極と上記被測定体とを上記被測定体に応じて接触状態又は非接触状態に切替可能な接離機構を設ける構造とすることもあり、また、上記回転ステージをそのまま残して移動ステージ2を無くし、その代わりに、上記一対の静電容量式距離検出センサS1・S2を被測定体Wの半径方向に移動させて走査可能な走査機構を設ける構造とすることもあり、その他、アース電極8の構造や接離機構13の構造等は適宜変更して設計されるものである。 The present invention is not limited to the above-described embodiment, and the grounding electrode is positioned opposite to the measurement object W separately from the mounting table without using the mounting table as a grounding electrode. There may be a structure to provide a contact / separation mechanism that can switch the ground electrode provided and the object to be measured to a contact state or a non-contact state according to the object to be measured. The stage 2 may be eliminated, and instead of this, a structure may be adopted in which a scanning mechanism capable of scanning by moving the pair of capacitance type distance detection sensors S 1 and S 2 in the radial direction of the measurement target W is provided. In addition, the structure of the ground electrode 8, the structure of the contact / separation mechanism 13 and the like are designed as appropriate.

以上、所期の目的を充分達成することができる。   As described above, the intended purpose can be sufficiently achieved.

本発明の実施の形態例の全体側面図である。1 is an overall side view of an embodiment of the present invention. 本発明の実施の形態例の全体平面図である。1 is an overall plan view of an embodiment of the present invention. 本発明の実施の形態例の全体側面図である。1 is an overall side view of an embodiment of the present invention. 本発明の実施の部分縦断面図である。It is a partial longitudinal cross-sectional view of implementation of this invention. 本発明の実施の部分縦断面図である。It is a partial longitudinal cross-sectional view of implementation of this invention. 本発明の実施の形態例の部分側面図である。It is a partial side view of the embodiment of the present invention. 本発明の実施の形態例の部分平面図である。It is a fragmentary top view of the example of an embodiment of the invention. 本発明の実施の形態例の全体側面図である。1 is an overall side view of an embodiment of the present invention. 測定原理説明図である。It is a measurement principle explanatory drawing. 多点測定説明平面図である。It is a multipoint measurement explanation top view.

符号の説明Explanation of symbols

W 被測定体
P 測定部位
1 静電容量式距離検出センサ
2 静電容量式距離検出センサ
1 外周端部
7 割出機構
8 アース電極
9 載置テーブル
12 位置決め部
13 接離機構
W measurement object P measurement site S 1 capacitance type distance detection sensor S 2 capacitance type distance detection sensor W 1 outer peripheral end 7 indexing mechanism 8 ground electrode 9 mounting table 12 positioning unit 13 contact / separation mechanism

Claims (6)

被測定体の測定部位を境にして対向する位置に所定の対向距離を置いて一対の静電容量式距離検出センサを配置し、該被測定体に対向してアース電極を配置し、該一対の静電容量式距離検出センサのそれぞれが検出した静電容量による該被測定体と該一対の静電容量式距離検出センサとの距離及び該一対の静電容量式距離検出センサ間の対向距離に基づいて被測定体の複数の測定部位の厚みを多点測定する静電容量式厚み多点測定方法において、上記アース電極と上記被測定体とを上記被測定体の測定条件に応じて接触状態又は非接触状態に切り替えることを特徴とする静電容量式厚み多点測定方法。   A pair of capacitance type distance detection sensors are arranged at a predetermined facing distance at a position facing each other with the measurement site of the measurement object as a boundary, and a ground electrode is arranged opposite to the measurement object, The distance between the object to be measured and the pair of capacitance type distance detection sensors by the capacitance detected by each of the capacitance type distance detection sensors and the opposing distance between the pair of capacitance type distance detection sensors In the capacitance-type thickness multipoint measurement method for measuring the thickness of a plurality of measurement sites of a measurement object based on the above, the ground electrode and the measurement object are contacted according to the measurement conditions of the measurement object Capacitance-type thickness multipoint measurement method characterized by switching to a state or a non-contact state. 被測定体の測定部位を境にして対向する位置に所定の対向距離を置いて一対の静電容量式距離検出センサを配置し、該被測定体に対向してアース電極を配置し、該一対の静電容量式距離検出センサのそれぞれが検出した静電容量による該被測定体と該一対の静電容量式距離検出センサとの距離及び該一対の静電容量式距離検出センサ間の対向距離に基づいて被測定体の複数の測定部位の厚みを多点測定する静電容量式厚み多点測定装置において、上記アース電極と上記被測定体とを上記被測定体の測定条件に応じて接触状態又は非接触状態に切替可能な接離機構を設けて構成したことを特徴とする静電容量式厚み多点測定装置。   A pair of capacitance type distance detection sensors are arranged at a predetermined facing distance at a position facing each other with the measurement site of the measurement object as a boundary, and a ground electrode is arranged opposite to the measurement object, The distance between the object to be measured and the pair of capacitance type distance detection sensors by the capacitance detected by each of the capacitance type distance detection sensors and the opposing distance between the pair of capacitance type distance detection sensors In the electrostatic capacitance type thickness multipoint measuring device for measuring the thickness of a plurality of measurement sites of the measurement object based on the above, the ground electrode and the measurement object are contacted according to the measurement conditions of the measurement object An electrostatic capacitance type multi-point measuring device comprising a contact / separation mechanism that can be switched between a state and a non-contact state. 上記アース電極は上記被測定体を載置可能な載置テーブルであることを特徴とする請求項2記載の静電容量式厚み多点測定装置。   3. The capacitance-type thickness multipoint measuring device according to claim 2, wherein the ground electrode is a mounting table on which the object to be measured can be mounted. 上記切離機構は上記アース電極たる載置テーブルに接触状態で載置されている被測定体を該載置テーブル上より浮上させて非接触状態とする構造になっていることを特徴とする請求項3記載の静電容量式厚み多点測定装置。   The separation mechanism has a structure in which a measurement object placed in contact with the placement table as the ground electrode is lifted from the placement table to be in a non-contact state. Item 4. The capacitance-type thickness multipoint measuring device according to Item 3. 上記被測定体を割出回転可能な割出機構を設けてなることを特徴とする請求項2〜4のいずれか1項に記載の静電容量式厚み多点測定装置。   5. The capacitance type multi-point measuring device according to claim 2, further comprising an indexing mechanism capable of indexing and rotating the object to be measured. 上記被測定体の外周端部を位置決め可能な位置決め部を備えてなることを特徴とする請求項2〜5のいずれか1項に記載の静電容量式厚み多点測定装置。
The capacitance-type thickness multipoint measuring device according to claim 2, further comprising a positioning portion that can position an outer peripheral end portion of the measurement object.
JP2007312318A 2007-12-03 2007-12-03 Capacitance type thickness multipoint measuring method and apparatus Expired - Fee Related JP4753121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007312318A JP4753121B2 (en) 2007-12-03 2007-12-03 Capacitance type thickness multipoint measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007312318A JP4753121B2 (en) 2007-12-03 2007-12-03 Capacitance type thickness multipoint measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2009139092A true JP2009139092A (en) 2009-06-25
JP4753121B2 JP4753121B2 (en) 2011-08-24

Family

ID=40869861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007312318A Expired - Fee Related JP4753121B2 (en) 2007-12-03 2007-12-03 Capacitance type thickness multipoint measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4753121B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105060A (en) * 2014-12-01 2016-06-09 国立研究開発法人産業技術総合研究所 Surface shape measuring device of processing substrate
JPWO2022054605A1 (en) * 2020-09-10 2022-03-17
JP7516528B2 (en) 2020-09-10 2024-07-16 東京エレクトロン株式会社 Thickness measuring device and thickness measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447201B (en) * 2013-08-12 2016-03-02 济南大学 Based on battery pole piece surface density measuring method and the system of capacitance sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161104A (en) * 1987-10-15 1989-06-23 Ade Corp Multi-probe measuring apparatus
JP2002181507A (en) * 2000-12-18 2002-06-26 Ulvac Japan Ltd Inductance measuring instrument
JP2005172700A (en) * 2003-12-12 2005-06-30 Kobe Steel Ltd Capacitance thickness measuring method
JP2005308602A (en) * 2004-04-23 2005-11-04 Nettsu:Kk Measuring device for board thickness
JP2007108147A (en) * 2005-10-17 2007-04-26 Justem:Kk Method for measuring capacitive thickness multipoint and its device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161104A (en) * 1987-10-15 1989-06-23 Ade Corp Multi-probe measuring apparatus
JP2002181507A (en) * 2000-12-18 2002-06-26 Ulvac Japan Ltd Inductance measuring instrument
JP2005172700A (en) * 2003-12-12 2005-06-30 Kobe Steel Ltd Capacitance thickness measuring method
JP2005308602A (en) * 2004-04-23 2005-11-04 Nettsu:Kk Measuring device for board thickness
JP2007108147A (en) * 2005-10-17 2007-04-26 Justem:Kk Method for measuring capacitive thickness multipoint and its device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105060A (en) * 2014-12-01 2016-06-09 国立研究開発法人産業技術総合研究所 Surface shape measuring device of processing substrate
JPWO2022054605A1 (en) * 2020-09-10 2022-03-17
JP7516528B2 (en) 2020-09-10 2024-07-16 東京エレクトロン株式会社 Thickness measuring device and thickness measuring method

Also Published As

Publication number Publication date
JP4753121B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
US7500319B2 (en) Measurement probe for use in coordinate measuring machines
US8016541B2 (en) Substrate handling system for aligning and orienting substrates during a transfer operation
TW200606439A (en) Contact load measurement device and inspection device
JP5294949B2 (en) Measuring device for rotating body thickness etc.
US20090229138A1 (en) Measuring instrument
JPH0134746B2 (en)
CN103481384A (en) Cutting device
CN108759620A (en) A kind of difference in height cubing
CN107810382B (en) Adapter element for assembling a rotating device in a measuring space of a coordinate measuring machine
JP4753121B2 (en) Capacitance type thickness multipoint measuring method and apparatus
US5836082A (en) Three-axis probe
JP2007080960A (en) Apparatus and method for adjusting transfer system
CN112665477A (en) Detection tool and method for testing plane positioning accuracy of end effector
JPH11111787A (en) Inspection device for wafer
JP2004151102A (en) Wafer shape measuring instrument
JP2009145152A (en) Measuring device
JP4501137B2 (en) Capacitance type thickness multipoint measuring method and apparatus
CN101604649A (en) Teaching apparatus and teaching method
CN116547112A (en) Robot and hand posture adjustment method
JP2006010466A (en) Method and apparatus for measuring flatness of board
CN208139994U (en) A kind of difference in height cubing
US6473987B1 (en) Method for measuring wafer thickness
JP2017080829A (en) Position detection apparatus and fixture
JPWO2007023605A1 (en) Surface roughness / contour shape measuring device
JP6786244B2 (en) Constant pressure processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees