JPH0134746B2 - - Google Patents

Info

Publication number
JPH0134746B2
JPH0134746B2 JP113383A JP113383A JPH0134746B2 JP H0134746 B2 JPH0134746 B2 JP H0134746B2 JP 113383 A JP113383 A JP 113383A JP 113383 A JP113383 A JP 113383A JP H0134746 B2 JPH0134746 B2 JP H0134746B2
Authority
JP
Japan
Prior art keywords
stage
feeding
wafer
freedom
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP113383A
Other languages
Japanese (ja)
Other versions
JPS59129636A (en
Inventor
Naoto Nakajima
Minoru Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP113383A priority Critical patent/JPS59129636A/en
Publication of JPS59129636A publication Critical patent/JPS59129636A/en
Publication of JPH0134746B2 publication Critical patent/JPH0134746B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/18Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for positioning only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/50Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism
    • B23Q1/54Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only
    • B23Q1/545Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only comprising spherical surfaces
    • B23Q1/5462Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism two rotating pairs only comprising spherical surfaces with one supplementary sliding pair

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、精密な位置制御および姿勢制御を行
なうステージの制御装置に関するもので、立体的
に設定した3軸方向の平行移動と、該3軸回りの
回動と6自由度を有する制御装置に関するもので
ある。この発明は、特に投光式ウエハ露光装置の
ウエハ塔載位置ぎめ機構として好適であるが、そ
の他に広く精密加工、精密測定等に適用し得る。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a stage control device that performs precise position control and posture control, and includes parallel movement in three-dimensionally set three-axis directions, and The present invention relates to a control device having rotation around and six degrees of freedom. The present invention is particularly suitable as a wafer mounting positioning mechanism for a floodlight type wafer exposure apparatus, but can also be widely applied to precision processing, precision measurement, etc.

〔従来技術〕[Prior art]

上に述べた6自由度を有する制御装置は、ウエ
ハ表面にマスクパターンを焼付ける投影式露光装
置にも用いられる。同装置の操作手順において
は、まず、マスクパターンを投影光学系によつて
被加工物たるウエハ表面に投影結像させる必要が
ある。投影光学系に要求される高解像度のマスク
パターンを結像する範囲は投影光学系が焦点面近
傍の範囲で、焦点面から離れるに従い急速に結像
状態は劣化する。実用上、ウエハ表面の投影光学
系の焦点面からのずれ量の許容値は±6μmであ
り、安定した解像度を得るには、ウエハ表面を投
影光学系の焦点面に高精度に位置決めすることが
要求される。上記の位置ぎめ(焦点合わせ)の
後、マスクパータンとウエハ表面に形成されてい
るパターンとを、ウエハを移動して高精度(±
0.25μm)に重ね合せることが要求される。した
がつて、ウエハ塔載装置には総計して6自由度と
なる位置制御機能が必要である。
The above-mentioned control device having six degrees of freedom is also used in a projection exposure device that prints a mask pattern on a wafer surface. In the operating procedure of the apparatus, first, it is necessary to project and image a mask pattern onto the surface of a wafer, which is a workpiece, using a projection optical system. The range in which the projection optical system images a high-resolution mask pattern required for the projection optical system is the range near the focal plane of the projection optical system, and the imaging condition deteriorates rapidly as the distance from the focal plane increases. In practice, the tolerance for deviation of the wafer surface from the focal plane of the projection optical system is ±6 μm, and in order to obtain stable resolution, it is necessary to position the wafer surface with high precision on the focal plane of the projection optical system. required. After the above positioning (focusing), the mask pattern and the pattern formed on the wafer surface are moved with high precision (±
0.25 μm) is required. Therefore, the wafer loading device requires a position control function that provides six degrees of freedom in total.

上記の6自由度の制御は、通常の場合、水平な
直交2軸X、Yと、垂直軸Zとを設定し、これら
3軸方向の平行動と3軸回りの回動とについて行
なわれ、これによつて3次元空間内における剛体
の位置と姿勢とが確定される。しかし、上記の3
軸は水平、垂直な直交3軸に限定されるものでは
なく、斜交する3軸を設定して6自由度制御を行
なうことも可能である。
The above six degrees of freedom control is usually performed by setting two horizontal orthogonal axes X, Y and a vertical axis Z, and performing parallel movements in these three axes directions and rotations around the three axes. As a result, the position and orientation of the rigid body in the three-dimensional space are determined. However, the above 3
The axes are not limited to three orthogonal axes, horizontal and vertical, but it is also possible to set three oblique axes to perform six degrees of freedom control.

第1図に、従来の1:1反射投影式露光装置の
概要的な正面図を示す。
FIG. 1 shows a schematic front view of a conventional 1:1 reflection projection exposure apparatus.

石定盤1は高精度に仕上げられていて、スレツ
ド2は石定盤1上を左右に高精度(±0.08μm)
の直線運動を行う。スレツド2上にはウエハ塔載
装置3およびマスク塔載装置5が設けられ、それ
ぞれウエハ4およびマスク6を塔載できるように
なつている。石定盤1上には、さらに、反射投影
光学系7およびアライメントスコープ8が固定さ
れ、反射投影光学系7下部には高さ基準板9が固
定されている。石定盤1下方に位置している照明
光学系(図省略)により円弧スリツト状に照明さ
れるマスク6のマスクパターンは、反射投影光学
系7によつてウエハ4表面に投影結像され、スレ
ツド2を左右に走行させることで、ウエハ4表面
全面にマスクパターンを走査露光できるようにな
つている。アライメントスコープ8はウエハ4上
の合せマークとマスクパターン内の合せマークの
重ね合せ状態を検出できる機能がある。
The stone surface plate 1 is finished with high precision, and the thread 2 moves left and right on the stone surface plate 1 with high precision (±0.08μm).
perform a linear motion. A wafer loading device 3 and a mask loading device 5 are provided on the sled 2, and are capable of loading a wafer 4 and a mask 6, respectively. Further, a reflection projection optical system 7 and an alignment scope 8 are fixed on the stone surface plate 1, and a height reference plate 9 is fixed below the reflection projection optical system 7. The mask pattern of the mask 6, which is illuminated in the shape of an arcuate slit by an illumination optical system (not shown) located below the stone surface plate 1, is projected onto the surface of the wafer 4 by the reflection projection optical system 7. By moving the mask pattern 2 left and right, it is possible to scan and expose the entire surface of the wafer 4 with a mask pattern. The alignment scope 8 has a function of detecting the overlapping state of the alignment mark on the wafer 4 and the alignment mark in the mask pattern.

上に述べたウエハ塔載装置3の拡大断面図を第
2図に示す。ウエハ塔載装置のベース11は前述
のスレツド2に固定されていて、このウエハ塔載
装置ベース11の上に鋼球16を介してXYステ
ージ12が置かれている。上記のXYステージ1
2はベース11の上面に沿つた水平面内で自由に
動くことができ、2自由度を有している。そして
このXYステージ12は送り機構(図示省略)に
より±3mmの範囲でその位置をスレツド走行方向
(Y方向)と、水平面内でこれと直交する方向
(X方向)に制御されるようになつている。この
XYステージ12には玉軸受17を介してθステ
ージ13が回転可能に設けられ、さらにこのθス
テージBに上下軸14が設けられている。この上
下軸14は、ナツト19、送りネジ18、及びパ
ルスモータ20により上下に駆動される構造で、
Zステージとして作用する部材である。このZス
テージである上下軸14はθステージ13に対し
て回動しないように係止され、上下摺動自在に支
承されている。
FIG. 2 shows an enlarged sectional view of the wafer loading device 3 described above. A base 11 of the wafer mounting device is fixed to the aforementioned sled 2, and an XY stage 12 is placed on the wafer mounting device base 11 via a steel ball 16. XY stage 1 above
2 can move freely within a horizontal plane along the upper surface of the base 11 and has two degrees of freedom. The position of this XY stage 12 is controlled within a range of ±3 mm by a feeding mechanism (not shown) in the thread running direction (Y direction) and in the direction perpendicular to this in the horizontal plane (X direction). There is. this
A θ stage 13 is rotatably provided on the XY stage 12 via a ball bearing 17, and a vertical shaft 14 is further provided on this θ stage B. This vertical shaft 14 has a structure in which it is driven vertically by a nut 19, a feed screw 18, and a pulse motor 20.
This is a member that acts as a Z stage. The vertical shaft 14, which is the Z stage, is fixed to the θ stage 13 so as not to rotate, and is supported so as to be vertically slidable.

この上下軸14の上部には、ウエハ塔載台15
が置かれ、上下軸14上端の円錐状のくぼみと、
ウエハ塔載台15の下部球面座とをかん号させ、
ウエハ塔載台15の傾斜が自由に行なえるように
なつている。
At the top of this vertical shaft 14, a wafer mounting table 15 is provided.
is placed, and a conical recess at the upper end of the vertical shaft 14,
and the lower spherical seat of the wafer mounting table 15,
The wafer mounting table 15 can be tilted freely.

このように従来のウエハ塔載装置は、スレツド
上に固定されたウエハ塔載装置ベース11上に、
XYステージ12を設け、このXYステージ12
によつてθステージ13が支持され、θステージ
13によつて上下軸14およびウエハ塔載台15
ならびにウエハ4が支持された三重構造となつて
いた。
In this way, the conventional wafer loading device has a wafer loading device base 11 fixed on the sled.
An XY stage 12 is provided, and this XY stage 12
The θ stage 13 is supported by the θ stage 13, which supports the vertical axis 14 and the wafer mounting table 15.
In addition, the wafer 4 was supported in a triple structure.

つづいて、この従来のウエハ塔載装置の動作に
ついて説明する。まず、第2図の状態において、
ウエハ4をウエハ塔載台15に吸着孔22を用い
て真空吸着する。つづいて上下軸14を上昇さ
せ、高さ基準板9のパツド10にウエハ4表面を
押し当てる。すると、ウエハ塔載台15はパツド
10からの反力で傾斜を修正されて水平姿勢にな
る。上記のパツド10はウエハ4の中心を重心と
する正三角形の頂点に配置され、反射投影式光学
系7の焦点面に対して規定高さ(0.5mm)だけ正
確に高い位置に設けられているので、ウエハ4表
面は反射投影光学系7の焦点面よりも上記の規定
高さだけ高い位置に高さと傾きが位置決めされ
る。この状態で真空室21を真空としてウエハ塔
載台15を上下軸14に吸着固定し、さらに上下
軸14をウエハ4およびウエハ塔載台15ととも
に上記の規定高さだけ下降させ、ウエハ表面を反
射投影光学系7の焦点深度内に平行移動させてい
た。
Next, the operation of this conventional wafer loading apparatus will be explained. First, in the state shown in Figure 2,
The wafer 4 is vacuum suctioned onto the wafer mounting table 15 using the suction hole 22 . Subsequently, the vertical shaft 14 is raised, and the surface of the wafer 4 is pressed against the pad 10 of the height reference plate 9. Then, the inclination of the wafer mounting table 15 is corrected by the reaction force from the pad 10, and it assumes a horizontal position. The above-mentioned pad 10 is placed at the vertex of an equilateral triangle whose center of gravity is the center of the wafer 4, and is placed at a position exactly a specified height (0.5 mm) higher than the focal plane of the catoptric projection optical system 7. Therefore, the surface of the wafer 4 is positioned in height and inclination at a position higher than the focal plane of the reflection projection optical system 7 by the above specified height. In this state, the vacuum chamber 21 is evacuated and the wafer mounting table 15 is suctioned and fixed to the vertical shaft 14, and then the vertical shaft 14 is lowered together with the wafer 4 and the wafer mounting table 15 by the above specified height, so that the wafer surface is reflected. It was moved in parallel to within the depth of focus of the projection optical system 7.

上述の操作の後、XYステージ12を移動させ
たりθステージ13を回動させたりして、ウエハ
4上に設けた合わせマークとマスクパターンの合
わせマークとを一致させる。この状態で、スレツ
ド2を一旦往き側に移動させ、その後復路を一定
速度で戻る間にウエハ4の表面全体にマスクパタ
ーンを露光させ、マスクパターンをウエハ4表面
上に焼付けていた。このため以下に示す欠点が有
つた。
After the above-described operation, the XY stage 12 is moved and the θ stage 13 is rotated to align the alignment mark provided on the wafer 4 with the alignment mark of the mask pattern. In this state, the sled 2 was once moved to the forward side, and then the entire surface of the wafer 4 was exposed with a mask pattern while returning at a constant speed on the return path, and the mask pattern was printed onto the surface of the wafer 4. This resulted in the following drawbacks.

1 ウエハ4の表面をパツド10に押し当てて反
射投影光学系7の焦点面に対して平行度を出し
た後、上下軸14(Zステージ)、θステージ
13およびXYステージ12の3ケ所において
移動もしくは回転が行なわれるため、この3ケ
所のステージの機械的な狂いによる上下動なら
びに傾きが重畳してウエハ4表面の、反射投影
光学系7の焦点面に対する平行度および高さの
位置決め精度を損ねやすい。
1. After pressing the surface of the wafer 4 against the pad 10 to make it parallel to the focal plane of the reflection projection optical system 7, move it at three locations: the vertical axis 14 (Z stage), the θ stage 13, and the XY stage 12. Or, since the stage is rotated, the vertical movement and inclination due to mechanical errors in these three stages are superimposed, impairing the positioning accuracy of the parallelism and height of the wafer 4 surface with respect to the focal plane of the catoptric projection optical system 7. Cheap.

2 ウエハ塔載装置ベース11上に、XYステー
ジ12、θステージ13およびZステージ14
を設け、その上にウエハ塔載台15を置いてい
るため、ウエハ塔載装置ベース11からウエハ
塔載台15に対する総合的な位置決め剛性が低
く、ウエハ塔載台15の位置安定性が悪い。
2 An XY stage 12, a θ stage 13, and a Z stage 14 are mounted on the wafer mounting device base 11.
Since the wafer mounting table 15 is placed on the wafer mounting table 15, the overall positioning rigidity from the wafer mounting device base 11 to the wafer mounting table 15 is low, and the positional stability of the wafer mounting table 15 is poor.

3 XYステージ12はθステージ13、上下軸
14、及びこれらの駆動手段を塔載しているの
で、このXYステージ12の全体重量が大き
い。従つてXYステージの送り機構はこれらの
全体重量を担持したXYステージ12を駆動制
御しなければならず、微動送りの制御性を低下
させている。
3. Since the XY stage 12 includes the θ stage 13, the vertical shaft 14, and driving means for these, the overall weight of the XY stage 12 is large. Therefore, the XY stage feeding mechanism must drive and control the XY stage 12 that carries the entire weight of the XY stage, reducing the controllability of fine movement feeding.

また、ウエハの位置決め用ステージに関しては
特開昭57−144636に記載の技術が公知である。こ
の公知技術は、可動部分の重量削減を狙つて、1
平面内の3自由度(x、y、θ)を1個のテーブ
ルに集約して設ける機構である。
Furthermore, regarding a stage for positioning a wafer, a technique described in Japanese Patent Application Laid-Open No. 144636/1983 is known. This known technology aims to reduce the weight of moving parts.
This is a mechanism that consolidates three degrees of freedom (x, y, θ) in a plane into one table.

このような構成では、前述のウエハの焦点合わ
せを行おうとすると、明らかに、z方向平行移動
およびx軸、y軸回りの回転の計3個の自由度を
追加する必要がある。このため、該機構の上もし
くは下にz方向平行移動およびx軸、y軸回りの
回転の自由度を有する送り機構を設けたのでは、
ウエハの焦点合わせは行えるものの、依然として
異なる自由度を備えるテーブルを積み重ねること
になり、目的とする可動部重量の低減は達成され
得ない。また、該機構のテーブルを直接、z方向
平行移動およびx軸、y軸回りの回転の3方向に
可動しようとすると、該機構のテーブルの簡略な
送り機構には、これら追加しようとする3方向の
自由度が備えられていないことから、これら3自
由度の送り機構を追加することは困難であり、ウ
エハの焦点合せを行い得ない。
In such a configuration, in order to perform the above-mentioned focusing of the wafer, it is clearly necessary to add a total of three degrees of freedom: translation in the z direction and rotation around the x and y axes. For this reason, if a feeding mechanism is provided above or below the mechanism that has a degree of freedom for translation in the z direction and rotation around the x and y axes,
Although the wafer can be focused, tables with different degrees of freedom are still stacked, and the desired reduction in the weight of the moving parts cannot be achieved. In addition, if you try to directly move the table of this mechanism in three directions: parallel translation in the z direction and rotation around the x and y axes, the simple feeding mechanism of the table of the mechanism cannot move in these three directions. Since these three degrees of freedom are not provided, it is difficult to add a feeding mechanism with these three degrees of freedom, and the wafer cannot be focused.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ステージの6自由度をそれぞ
れ高精度で制御することができ、位置ぎめ剛性が
高く、しかも制御性のよいステージ制御装置を提
供するにある。
An object of the present invention is to provide a stage control device that can control each of the six degrees of freedom of the stage with high precision, has high positioning rigidity, and has good controllability.

〔発明の概要〕[Summary of the invention]

本発明においては、前述した従来装置の不具合
及びその原因解析に基づき、ステージを駆動制御
する6組の送り装置を設け、これら6組の送り装
置がそれぞれ互いに干渉することなく、直接的に
ステージを制御し得る構成を創作したものであ
る。
In the present invention, based on the above-mentioned problems with the conventional device and analysis of their causes, six sets of feeders are provided to drive and control the stage, and these six sets of feeders directly drive the stage without interfering with each other. This is a creation of a configuration that can be controlled.

本発明は上記の原理に基づいて前記の目的を達
成するため、X方向に設けた1組の送り機構と、
Y方向に設けた2組の送り機構と、Z方向に設け
た3組の送り機構とを有し、かつ、上記6組の送
り機構のそれぞれとステージとの間に、当該送り
機構の変位を伝達しステージに当接する箇所で該
送り方向と直交する2方向の変位と該送り方向を
軸とする回転と該送り方向と直交する2方向を軸
とする回転とを許容する伝達機構を介装し、前記
6組の送り機構がそれぞれ独立してステージを直
接的に駆動し得るように構成したことを特徴とす
る。
In order to achieve the above object based on the above principle, the present invention includes a set of feeding mechanisms provided in the X direction;
It has two sets of feed mechanisms provided in the Y direction and three sets of feed mechanisms provided in the Z direction, and a displacement of the feed mechanism is provided between each of the six sets of feed mechanisms and the stage. A transmission mechanism that allows displacement in two directions perpendicular to the feed direction, rotation around the feed direction, and rotation around the two directions perpendicular to the feed direction is installed at the point where the transfer occurs and comes into contact with the stage. The present invention is characterized in that each of the six sets of feeding mechanisms is configured to be able to directly drive the stage independently.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の一実施例の概要を第3図及び第
4図について説明する。
Next, an outline of an embodiment of the present invention will be explained with reference to FIGS. 3 and 4.

第3図は本発明のステージ制御装置の垂直断面
図、第4図は同平面図である。
FIG. 3 is a vertical sectional view of the stage control device of the present invention, and FIG. 4 is a plan view thereof.

本実施例では、ウエハ4を吸着保持したステー
ジ42について水平な直交2軸X、Yおよび垂直
軸Z方向の位置制御、並びに上記3軸回りの回動
姿勢制御を行なうように構成したものであるが、
本発明を実施する場合、直交3軸に限らず任意方
向の3軸に関する制御を行なうように構成するこ
ともできる。
In this embodiment, the stage 42 holding the wafer 4 by suction is configured to perform position control in two horizontal orthogonal axes X, Y and vertical axis Z directions, as well as rotational posture control around the above three axes. but,
When implementing the present invention, it is also possible to control not only three orthogonal axes but also three axes in arbitrary directions.

41はウエハ塔載装置のベースである。このベ
ース41に1組のX方向送り機構を構成するため
の1個のパルスモータ46、2組のY方向送り機
構を構成するための2個のパルスモータ60(第
4図)、及び3組のZ方向送り機構を構成するた
めの3個のパルスモータ52(第3図)を固定す
る。これらのパルスモータ46,60,52の軸
に、それぞれ送りネジ45,59,51を固着す
る。上記の送りネジ45,59,51にそれぞれ
螺合するナツト部材44,58,50を、ウエハ
塔載装置ベース41に対する回動を係止して軸方
向摺動自在に嵌合する。
41 is the base of the wafer mounting device. This base 41 is equipped with one pulse motor 46 for configuring one set of X-direction feeding mechanisms, two pulse motors 60 (Fig. 4) for configuring two sets of Y-direction feeding mechanisms, and three sets. Three pulse motors 52 (FIG. 3) for configuring the Z direction feeding mechanism are fixed. Feed screws 45, 59, 51 are fixed to the shafts of these pulse motors 46, 60, 52, respectively. Nut members 44, 58, and 50, which are screwed onto the feed screws 45, 59, and 51, respectively, are fitted so as to be slidable in the axial direction while locking their rotation relative to the wafer mounting device base 41.

本実施例は以上のようにしてX方向に設けた1
組の送り機構と、Y方向に設けた2組の送り機構
と、Z方向に設けた3組の送り機構とを構成して
ある。
In this embodiment, the 1
Two sets of sending mechanisms are provided in the Y direction, and three sets of sending mechanisms are provided in the Z direction.

ステージ42の上面に真空吸着用の空洞部55
を設けてウエハ塔載機能を持たせる。このステー
ジ42の自重は、第5図について後述する浮遊パ
ツド49及び鋼球48を介して3個のナツト部材
50で支承する。53は上記の自重を付勢してい
るバネである。
A cavity 55 for vacuum suction is provided on the upper surface of the stage 42.
is installed to provide a wafer loading function. The weight of the stage 42 is supported by three nut members 50 via a floating pad 49 and a steel ball 48, which will be described later with reference to FIG. 53 is a spring that biases the above-mentioned own weight.

上記のステージ42を、X方向に設けたバネ4
7により、第5図について後に詳述する浮遊パツ
ド43を介してナツト部材44に押しつけて、X
方向の位置ぎめがなされる。同様に、Y方向に設
けたバネ61により後述の浮遊パツド57を介し
てナツト部材58に押しつけてY方向の位置ぎめ
がなされる。
The above-mentioned stage 42 is installed in the spring 4 in the X direction.
7, press against the nut member 44 via the floating pad 43, which will be described in detail later with reference to FIG.
A directional positioning is made. Similarly, a spring 61 provided in the Y direction presses against the nut member 58 via a floating pad 57, which will be described later, to position the nut member 58 in the Y direction.

反射投影式光学系7の底面に9個の静電容量型
近接センサ54を固定してウエハ4の表面位置を
検出し、該ウエハ4の上面と上記光学系7の焦点
面との偏差を高精度(±0.2μm)で非接触的に検
出できるように構成する。第4図においてウエハ
4の面上に示した9個のX印56は上記センサ5
4の検出点を表わしている。
Nine capacitive proximity sensors 54 are fixed to the bottom surface of the reflective projection optical system 7 to detect the surface position of the wafer 4 and increase the deviation between the top surface of the wafer 4 and the focal plane of the optical system 7. It is configured to enable non-contact detection with accuracy (±0.2 μm). The nine X marks 56 shown on the surface of the wafer 4 in FIG.
4 detection points are shown.

前述の浮遊パツド49,43の詳細を第5図に
ついて説明する。この断面にはY方向の送り装置
に設けた浮遊パツド57が現われていないが、本
図に示したX方向の送り装置の浮遊パツド43と
同様の構成部材である。この浮遊パツド43は、
その左端の球面をナツト44の球面座に保持さ
れ、右端の平面をスラージ42の側面に当接せし
めて送り機構の送り量をステージ42に伝達して
いる。さらに、浮動パツド43の両端の球面と平
面は空気軸受となつているので、ステージ42の
上下動、前後進、X、Y、Z軸回りの傾きの抵抗
とならない。したがつて、浮動パツド43は、他
の送り機構によるステージの移動の抵抗とはなら
ない自由度を有すると同時に、対応するx軸方向
の送り量を伝達することができる。
Details of the aforementioned floating pads 49, 43 will be explained with reference to FIG. Although the floating pad 57 provided in the Y-direction feeding device is not shown in this cross section, it is a component similar to the floating pad 43 of the X-direction feeding device shown in this figure. This floating pad 43 is
The spherical surface at the left end is held by the spherical seat of the nut 44, and the flat surface at the right end is brought into contact with the side surface of the sludge 42 to transmit the feed amount of the feed mechanism to the stage 42. Furthermore, since the spherical and flat surfaces at both ends of the floating pad 43 act as air bearings, they do not create resistance to the vertical movement, forward/backward movement, or inclination of the stage 42 around the X, Y, and Z axes. Therefore, the floating pad 43 has a degree of freedom that does not resist movement of the stage by other feed mechanisms, and at the same time can transmit a corresponding feed amount in the x-axis direction.

Z方向送り機構のナツト部材50の上面は反射
投影光学系7の焦点面に対し精密に平行となるよ
うに作られている。このナツト部材50の上面に
当接する浮遊パツド49の下面は空気軸受となつ
ていて、該浮遊パツド49はナツト50上面上を
ほとんど抵抗なく水平運動できる上に、鋼球48
の径は十分に小さく、鋼球48とステージ42あ
るいは浮遊パツド49の円すい面との摩擦力はほ
とんど無視できる。したがつて、鋼球48と浮遊
パツド49は、Z方向の送り量をステージ42に
伝達すると同時に、他の送り機構によるステージ
42の水平面内の動きおよび傾斜の抵抗とならな
い。62は浮遊パツド43,49に空気を供給す
るチユーブである。
The upper surface of the nut member 50 of the Z direction feeding mechanism is made to be precisely parallel to the focal plane of the reflection projection optical system 7. The lower surface of the floating pad 49 that comes into contact with the upper surface of the nut member 50 is an air bearing, and the floating pad 49 can horizontally move on the upper surface of the nut 50 with almost no resistance.
has a sufficiently small diameter, and the frictional force between the steel ball 48 and the conical surface of the stage 42 or the floating pad 49 can be almost ignored. Therefore, the steel ball 48 and the floating pad 49 transmit the feed amount in the Z direction to the stage 42, and at the same time do not act as resistance to the movement and tilting of the stage 42 in the horizontal plane by other feeding mechanisms. A tube 62 supplies air to the floating pads 43 and 49.

本実施例は以上のようにして、6組の送り機構
のナツト部材のそれぞれと、ステージ42との間
に、各送り機構の送り方向の力のみを伝達し、送
り方向以外の動きを許容する伝達機構を介装し
て、前記6組の送り機構がそれぞれ独立してステ
ージ42を駆動し得るように構成してある。
In this embodiment, as described above, only the force in the feeding direction of each feeding mechanism is transmitted between each of the nut members of the six sets of feeding mechanisms and the stage 42, and movement in directions other than the feeding direction is permitted. A transmission mechanism is interposed so that each of the six sets of feeding mechanisms can drive the stage 42 independently.

次に、上述のように構成したステージ制御装置
の使用方法について説明する。本実施例は自動制
御装置(図示せず)を設けてセンサや作動機器を
電気的に自動操作して次のように作動せしめる。
Next, a method of using the stage control device configured as described above will be explained. In this embodiment, an automatic control device (not shown) is provided to electrically and automatically operate the sensors and actuating devices as follows.

まず、ウエハ4はステージ42上面に真空吸着
される。つづいて、静電容量型近接センサー54
によりウエハ4表面に非接触で該表面の、反射投
影光学系7の焦点面からのずれ量が、格子状に配
された9点の検出点56について検出される。そ
の後、この9点のずれ量から、ウエハ4の表面の
近似平面と、反射投影光学系7の焦点面との間の
ずれと傾きを求める。つづいて、3個のパルスモ
ータ52を回転させてナツト部材50を適宜上下
させ、ステージ42を上下動および傾斜させて前
記のずれと傾きを補正する。このとき、浮動パツ
ド43,57は前述のように、その両端の球面お
よび平面を空気軸受面としているので、ステージ
42の上下動および傾きの抵抗とならず、また、
鋼球48も径が十分小さいため、ステージ42の
傾きの抵抗とはならない。その後、再度センサー
54によりウエハ4表面の、焦点面からのずれ量
が検出され、ウエハ4表面の近似平面が十分高精
度に該焦点面に一致していることを確認する動作
が行なわれる。ここで、もしウエハ4表面の近似
平面が該焦点面に一致していない場合、再度ステ
ージ42の高さおよび傾きの補正ならびにずれ量
検出が繰返される。以上のように、ウエハ4は、
その近似平面が反射投影式光学系7の焦点面に一
致するように、高さ及び傾きを位置ぎめされる。
即ち、Z軸方向の平行移動の位置と、X、Y軸回
りの回動姿勢との3自由度が位置ぎめされる。こ
のとき、3個の鋼球48の中心点によつて決めら
れる平面はウエハ4表面の傾きを補正する補正平
面となる。
First, the wafer 4 is vacuum-adsorbed onto the upper surface of the stage 42. Next, the capacitive proximity sensor 54
The amount of deviation of the surface of the wafer 4 from the focal plane of the reflection projection optical system 7 is detected without contacting the surface of the wafer 4 at nine detection points 56 arranged in a grid pattern. Thereafter, the deviation and inclination between the approximate plane of the surface of the wafer 4 and the focal plane of the reflection projection optical system 7 are determined from the deviation amounts of these nine points. Subsequently, the three pulse motors 52 are rotated to move the nut member 50 up and down as appropriate, and the stage 42 is moved up and down and tilted to correct the above-mentioned deviation and inclination. At this time, since the floating pads 43 and 57 have the spherical and flat surfaces at both ends as air bearing surfaces, as described above, they do not provide resistance to the vertical movement and tilting of the stage 42, and
Since the steel ball 48 also has a sufficiently small diameter, it does not act as resistance to the tilting of the stage 42. Thereafter, the sensor 54 again detects the amount of deviation of the surface of the wafer 4 from the focal plane, and an operation is performed to confirm that the approximate plane of the surface of the wafer 4 coincides with the focal plane with sufficiently high accuracy. Here, if the approximate plane of the surface of the wafer 4 does not match the focal plane, the correction of the height and inclination of the stage 42 and the detection of the amount of deviation are repeated again. As mentioned above, the wafer 4 is
The height and inclination are positioned so that the approximate plane coincides with the focal plane of the reflective projection optical system 7.
That is, the three degrees of freedom of the position of parallel movement in the Z-axis direction and the rotational posture around the X and Y axes are determined. At this time, the plane determined by the center points of the three steel balls 48 becomes a correction plane for correcting the inclination of the surface of the wafer 4.

つづいて、ウエハ4上に設けた合せマークとマ
スクパターン内の合せマークを、パルスモータ4
6,60によりナツト部材44,58を適宜送つ
て一致させる動作が行なわれる。このとき、浮動
パツド49はその下面を空気軸受面としているの
でステージ42移動の抵抗とはならず、浮遊パツ
ド43,57も両端の球面および平面を空気軸受
面としているためステージ42の移動、回転の抵
抗とはならない。また、ステージ42を支えてい
る鋼球48は、浮遊パツド49あるいはステージ
42の円錐面と揺動、或いは回転することなく、
固定の状態でステージ42と共に浮遊パツド49
に支持されて、反射投影光学系7の焦点面と精密
に平行なナツト部材50上面を移動する。この場
合、厳密に言えばナツト部材50の上面と焦点面
との平行度の狂いによつて上下方向の狂いを生じ
るが、本実施例のようにナツト部材50の上面を
高精度で焦点面と平行に仕上げておくと、サブミ
クロンオーダーの位置ぎめについても上記の上下
方向の狂いは無視することができる程度に微小で
ある。
Next, the pulse motor 4 moves the alignment mark provided on the wafer 4 and the alignment mark in the mask pattern.
6 and 60, the nut members 44 and 58 are appropriately fed and brought into alignment. At this time, the floating pad 49 has its lower surface as an air bearing surface, so it does not act as a resistance to the movement of the stage 42, and the floating pads 43 and 57 also have spherical and flat surfaces on both ends as air bearing surfaces, so the movement and rotation of the stage 42 It is not a resistance. Further, the steel ball 48 supporting the stage 42 does not swing or rotate with the floating pad 49 or the conical surface of the stage 42.
Floating pad 49 with stage 42 in fixed state
The nut member 50 moves on the upper surface of the nut member 50, which is precisely parallel to the focal plane of the reflection projection optical system 7. In this case, strictly speaking, the vertical deviation occurs due to the deviation in parallelism between the top surface of the nut member 50 and the focal plane, but as in this embodiment, the top surface of the nut member 50 can be aligned with the focal plane with high precision. If they are finished in parallel, the above-mentioned deviation in the vertical direction is so small that it can be ignored even in submicron order positioning.

このようにして、1組の送り機構を構成してい
るパルスモータ46によるステージ42のX方向
の位置ぎめと、2組の送り機構を構成している2
個のパルスモータ60の同期回転によるステージ
42のY方向位置ぎめとが行なわれる。そして、
この操作と併行して上記2個のパルスモータ60
の差動によりステージ42のZ軸回りの回動が行
なわれる。
In this way, the stage 42 is positioned in the X direction by the pulse motor 46 that constitutes one set of feed mechanisms, and the
The stage 42 is positioned in the Y direction by the synchronous rotation of the two pulse motors 60. and,
In parallel with this operation, the two pulse motors 60
The stage 42 is rotated about the Z axis by the differential movement.

以上説明したように、6組の送り機構がそれぞ
れ独立に、かつ直接的にステージ42を押動して
6自由度の制御を行なうので位置ぎめ剛性が高
い。また、ステージ42は送り機構を担持してい
ないので軽量であり、従つて制御性を妨げない。
As explained above, the six sets of feed mechanisms independently and directly push the stage 42 to control the six degrees of freedom, so positioning rigidity is high. Furthermore, since the stage 42 does not carry a feeding mechanism, it is lightweight and therefore does not hinder controllability.

その上、本実施例はウエハ表面に対して非接触
的に位置検出を行なうので、ウエハ表面を傷つけ
たり汚損したりする虞れが無い。
Furthermore, since this embodiment performs position detection on the wafer surface in a non-contact manner, there is no risk of damaging or staining the wafer surface.

第5図の実施例において、水平方向の位置決め
に鋼球48と浮遊パツド49から成る伝達機構を
用い、垂直方向に浮遊パツド43から成る伝達機
構を用いても前述の効果と全く同じ効果が得られ
る。
In the embodiment shown in FIG. 5, using a transmission mechanism consisting of steel balls 48 and floating pads 49 for positioning in the horizontal direction, and using a transmission mechanism consisting of floating pads 43 in the vertical direction, the same effect as described above can be obtained. It will be done.

第6図は上記と異なる実施例を示す垂直断面図
で、ステージ42に固定された軸63をガイドと
して、ボールブツシユ64は該軸方向に転動可能
となつている。さらに、ボールブツシユ64には
外周を球面としたフオロアー65が組合され、ナ
ツト部材66からの送り量を伝達すると共に、上
下動、前後進、回動、傾斜(2方向)の5つのス
テージ42の動きの抵抗とならない自由度を有す
る伝達機構を構成している。
FIG. 6 is a vertical cross-sectional view showing a different embodiment from the above, in which a ball bush 64 is able to roll in the direction of the shaft 63 fixed to the stage 42 as a guide. Furthermore, a follower 65 with a spherical outer periphery is combined with the ball bush 64, which transmits the amount of feed from the nut member 66, and also moves the five stages 42: vertical movement, forward/backward movement, rotation, and tilting (in two directions). This constitutes a transmission mechanism that has a degree of freedom that does not create resistance.

また、ボールブツシユ64とフオロアー65の
組合せを用いる代りに、軸方向の直接運動と軸の
回りの回転運動が可能な軸受構成のフオロアーを
用いても同一の効果が得られる。
Further, instead of using the combination of the ball bush 64 and the follower 65, the same effect can be obtained by using a follower having a bearing structure that allows direct movement in the axial direction and rotational movement around the axis.

またパツド67および環状のボール列68なら
びに傾斜パツド69は、前記実施例における空気
軸受付きの浮遊パツド49を環状のボール列手段
68で置き換えたもので、上記の空気軸受付浮遊
パツドと同様の自由度を有する伝達機構を構成す
るのは明白であり、前列と同様の作用、効果があ
る。
The pad 67, the annular ball row 68, and the inclined pad 69 are constructed by replacing the floating pad 49 with an air bearing in the previous embodiment with an annular ball row means 68, and have the same freedom as the air bearing floating pad described above. It is obvious that the transmission mechanism has the same function and effect as the front row.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明のステージ制御装置
は、X方向に設けた1組の送り機構と、Y方向に
設けた2組の送り機構と、Z方向に設けた3組の
送り機構とを有し、かつ、上記6組の送り機構の
それぞれとステージとの間に、当該送り機構の変
位を伝達しステージに当接する箇所で該送り方向
と直交する2方向の変位と該送り方向を軸とする
回転と該送り方向と直交する2方向を軸とする回
転とを許容する伝達機構を介装し、前記6組の送
り機構がそれぞれ独立してステージを直接的に駆
動し得るように構成することにより、ステージの
6自由度をそれぞれ高精度で制御することがで
き、位置ぎめの剛性が高く、しかも制御性が良い
という優れた実用的効果を奏する。
As detailed above, the stage control device of the present invention includes one set of feeding mechanisms provided in the X direction, two sets of feeding mechanisms provided in the Y direction, and three sets of feeding mechanisms provided in the Z direction. The displacement of the feed mechanism is transmitted between each of the six sets of feed mechanisms and the stage, and the displacement in two directions perpendicular to the feed direction and the axis of the feed direction are transmitted at the point where the feed mechanism contacts the stage. A transmission mechanism is interposed that allows rotation around the axis and rotation about two directions perpendicular to the feeding direction, and each of the six sets of feeding mechanisms is configured to be able to directly drive the stage independently. By doing so, each of the six degrees of freedom of the stage can be controlled with high precision, and excellent practical effects such as high positioning rigidity and good controllability are achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は反射投影式ウエハ露光装置の概要的な
正面図、第2図は従来のウエハ塔載装置の垂直断
面図、第3図乃至第5図は本発明のステージ制御
装置の一実施例を示し、第3図は垂直断面図、第
4図は平面図、第5図は部分拡大断面図である。
第6図は上記と異なる実施例の部分拡大断面図で
ある。 4……ウエハ、7……反射投影式光学系、41
……ウエハ塔載装置ベース、42……ステージ、
43……浮遊パツド、44……ナツト部材、45
……送りネジ、46……パルスモータ、47……
バネ、48……鋼球、49……浮遊パツド、50
……ナツト部材、51……送りネジ、52……パ
ルスモータ、53……バネ、54……静電容量型
近接センサー、55……空洞部、56……検出
点、57……浮遊パツド、58……ナツト部材、
59……送りネジ、60パルスモータ、61……
バネ、62……チユーブ、63……軸、64……
ボールブツシユ、65……フオロアー、66……
ナツト、67……パツド、68……ボール列手
段、69……傾斜パツド、70……鋼球、71…
…ナツト。
FIG. 1 is a schematic front view of a reflection projection type wafer exposure apparatus, FIG. 2 is a vertical sectional view of a conventional wafer mounting apparatus, and FIGS. 3 to 5 are an embodiment of the stage control apparatus of the present invention. 3 is a vertical sectional view, FIG. 4 is a plan view, and FIG. 5 is a partially enlarged sectional view.
FIG. 6 is a partially enlarged sectional view of an embodiment different from the above. 4...Wafer, 7...Reflection projection optical system, 41
...Wafer mounting equipment base, 42...Stage,
43...Floating pad, 44...Nut member, 45
...Feed screw, 46...Pulse motor, 47...
Spring, 48...Steel ball, 49...Floating pad, 50
... Nut member, 51 ... Feed screw, 52 ... Pulse motor, 53 ... Spring, 54 ... Capacitive proximity sensor, 55 ... Cavity, 56 ... Detection point, 57 ... Floating pad, 58... Nut member,
59...Feed screw, 60 pulse motor, 61...
Spring, 62...Tube, 63...Shaft, 64...
Ball bushing, 65... Follower, 66...
Nut, 67... Pad, 68... Ball row means, 69... Inclined pad, 70... Steel ball, 71...
...Natsuto.

Claims (1)

【特許請求の範囲】 1 回路基板等の被加工物を積載する1個の可動
要素たるステージと、1個の固定要素と、上記固
定要素側に配置した被加工物の面に沿うある方向
に送る1組の送り機構と、被加工物の面に沿い前
記送り機構とほぼ直交する方向に送る2組の送り
機構と、被加工物の厚み方向に送る3組の送り機
構とを有し、かつ、個々の送り機構と上記ステー
ジとの間に、該送り機構の変位を伝達しステージ
に当接する箇所で該送り方向と直交する2方向の
変位と該送り方向を軸とする回転と該送り方向と
直交する2方向を軸とする回転とを許容する伝達
機構を介装し、前記6組の送り機構がステージを
独立して位置制御し得る様に構成したことを特徴
とする6自由度を有するステージの制御装置。 2 第1項記載の6自由度を有するステージの制
御装置において、少なくとも1個の伝達機構を球
対偶機構と平面摺動機構より構成したことを特徴
とする6自由度を有するステージの制御装置。 3 第1項記載の6自由度を有するステージの制
御装置において、少なくとも1個の伝達機構を球
対偶機構を複数の球状の転動体を平面で挿む構造
の平面転動機構より構成したことを特徴とする6
自由度を有するステージの制御装置。 4 第1項記載の6自由度を有するステージの制
御装置において、少なくとも1個の伝達機構を外
周を球面状とした回転機構65と該回転機構の回
転軸の方向に可動な機構64より構成したことを
特徴とする6自由度を有するステージの制御装
置。
[Scope of Claims] 1. A stage that is one movable element on which a workpiece such as a circuit board is loaded, one fixed element, and a stage arranged on the fixed element side in a certain direction along the surface of the workpiece. It has one set of feeding mechanisms, two sets of feeding mechanisms that send along the surface of the workpiece in a direction substantially orthogonal to the feeding mechanism, and three sets of feeding mechanisms that send in the thickness direction of the workpiece, The displacement of the feeding mechanism is transmitted between each feeding mechanism and the stage, and at the point where the feeding mechanism contacts the stage, displacement in two directions perpendicular to the feeding direction, rotation about the feeding direction, and feeding are performed. 6 degrees of freedom, characterized in that a transmission mechanism that allows rotation about two directions orthogonal to the direction is interposed, and the six sets of feeding mechanisms are configured to independently control the position of the stage. A stage control device having a. 2. The control device for a stage having six degrees of freedom as described in item 1, wherein at least one transmission mechanism is comprised of a ball pair mechanism and a plane sliding mechanism. 3. In the control device for a stage having six degrees of freedom as described in paragraph 1, at least one transmission mechanism is constituted by a planar rolling mechanism having a structure in which a plurality of spherical rolling elements are inserted in a plane. Features 6
A stage control device with degrees of freedom. 4. In the stage control device having six degrees of freedom as described in item 1, at least one transmission mechanism is composed of a rotation mechanism 65 having a spherical outer periphery and a mechanism 64 movable in the direction of the rotation axis of the rotation mechanism. A stage control device having six degrees of freedom, characterized in that:
JP113383A 1983-01-10 1983-01-10 Controller of stage with freedom of six Granted JPS59129636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP113383A JPS59129636A (en) 1983-01-10 1983-01-10 Controller of stage with freedom of six

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP113383A JPS59129636A (en) 1983-01-10 1983-01-10 Controller of stage with freedom of six

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63320646A Division JPH029550A (en) 1988-12-21 1988-12-21 Driving device for six-degree-freedom fine moving stage

Publications (2)

Publication Number Publication Date
JPS59129636A JPS59129636A (en) 1984-07-26
JPH0134746B2 true JPH0134746B2 (en) 1989-07-20

Family

ID=11492940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP113383A Granted JPS59129636A (en) 1983-01-10 1983-01-10 Controller of stage with freedom of six

Country Status (1)

Country Link
JP (1) JPS59129636A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466895A (en) * 1990-07-06 1992-03-03 Sumitomo Heavy Ind Ltd Fine adjustment stage with six degrees of freedom
JP2005028202A (en) * 2003-07-07 2005-02-03 Hitachi Industries Co Ltd Table parallelism adjusting device and dispenser using the same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299038A (en) * 1985-10-25 1987-05-08 Hitachi Ltd Stage for positioning
JPS62288311A (en) * 1986-06-05 1987-12-15 Isuzu Motors Ltd Pent roof type direct injection type internal combustion engine
JPH0616364Y2 (en) * 1986-08-25 1994-04-27 東芝機械株式会社 High precision movement stage device
JPH0769443B2 (en) * 1987-02-06 1995-07-31 株式会社日立製作所 6 degree of freedom fine movement device
JPH0754140Y2 (en) * 1987-04-18 1995-12-13 光正 古矢 Insulation container
FR2614225B1 (en) * 1987-04-27 1989-07-28 Framatome Sa DEVICE FOR ADJUSTING THE WORKING POSITION OF A MACHINE FOR MACHINING A CHAMFER AND USE OF THIS DEVICE.
JPS6471640A (en) * 1987-09-14 1989-03-16 Matsushita Electric Ind Co Ltd One-stage six-degree of freedom accurate positioning table
JP3003863B2 (en) * 1988-03-31 2000-01-31 株式会社東芝 Planar positioning device and method
JPH02139146A (en) * 1988-11-15 1990-05-29 Matsushita Electric Ind Co Ltd Positioning table of one step six degrees of freedom
GB8923947D0 (en) * 1989-10-24 1989-12-13 Lk Ltd Determination of spacial relationships
JPH03224006A (en) * 1990-01-30 1991-10-03 Matsushita Electric Ind Co Ltd Numerical controller
JP2557316Y2 (en) * 1990-02-28 1997-12-10 エヌティエヌ 株式会社 Moving table
JPH05506959A (en) * 1990-10-22 1993-10-07 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Dual mode Z stage
JPH09317767A (en) * 1996-05-28 1997-12-09 Nippon Seiko Kk Positioning device
JP3409298B2 (en) * 1997-10-07 2003-05-26 日立建機株式会社 Moving stage device and scanning probe microscope equipped with the moving stage device
JP4298046B2 (en) * 1999-03-25 2009-07-15 平田機工株式会社 Article conveyance assembly apparatus and article conveyance assembly method
JP2003062733A (en) * 2001-08-27 2003-03-05 Sumitomo Heavy Ind Ltd Stage apparatus
JP4740605B2 (en) * 2005-01-28 2011-08-03 ピー・エス・シー株式会社 Gas control rotary movement device and gas control actuator
JP4794900B2 (en) * 2005-05-02 2011-10-19 ピー・エス・シー株式会社 Gas control rotary movement device and gas control actuator
JP4574453B2 (en) * 2005-06-02 2010-11-04 株式会社安川電機 Substrate adsorption device, substrate support and substrate transfer device
JP2007054953A (en) * 2006-11-21 2007-03-08 Nsk Ltd Positioning device
JP6842161B2 (en) * 2017-01-17 2021-03-17 株式会社エヌエステイー Resolver characteristic measurement method and measuring device
US11407136B2 (en) * 2017-09-06 2022-08-09 Horizon International Inc. Trimmer
CN108127452B (en) * 2017-12-04 2023-12-12 广东开放大学(广东理工职业学院) Clamp for machining inclined surface part
JP7214489B2 (en) * 2019-02-04 2023-01-30 キヤノン株式会社 Stage device and micromanipulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466895A (en) * 1990-07-06 1992-03-03 Sumitomo Heavy Ind Ltd Fine adjustment stage with six degrees of freedom
JP2005028202A (en) * 2003-07-07 2005-02-03 Hitachi Industries Co Ltd Table parallelism adjusting device and dispenser using the same

Also Published As

Publication number Publication date
JPS59129636A (en) 1984-07-26

Similar Documents

Publication Publication Date Title
JPH0134746B2 (en)
EP0327949B1 (en) Alignment stage device
JPH029550A (en) Driving device for six-degree-freedom fine moving stage
US5323712A (en) Table moving apparatus
JP2631485B2 (en) Positioning device
US4764791A (en) Work alignment apparatus for double-sided exposure of a work
KR100469987B1 (en) Substrate positioning apparatus and exposure apparatus
WO2011055826A1 (en) Mask holding mechanism
US5277539A (en) Substrate conveying apparatus
JP5994084B2 (en) Split sequential proximity exposure apparatus and split sequential proximity exposure method
JPS62152632A (en) Table device
JPH04270151A (en) Laminator
US6342944B1 (en) Vertical alignment table mechanism
JP2006100590A (en) Proximity aligner
JP2006093604A (en) Proximity exposure apparatus
JPH0669322A (en) Probe device
CN219417830U (en) Leveling device for light source layer and optical system layer
JPH09275064A (en) Alignment method/device for substrate
JP2703345B2 (en) Positioning device
JPH10163300A (en) Stage device
JP4487700B2 (en) Proximity exposure equipment
JPH01202687A (en) Positioning apparatus
JPH0353195Y2 (en)
JPS58222526A (en) Holder for semiconductor wafer
CN116936433A (en) Wafer stacking alignment device and alignment method