JP2009138573A - 蠕動型ポンプ - Google Patents

蠕動型ポンプ Download PDF

Info

Publication number
JP2009138573A
JP2009138573A JP2007313970A JP2007313970A JP2009138573A JP 2009138573 A JP2009138573 A JP 2009138573A JP 2007313970 A JP2007313970 A JP 2007313970A JP 2007313970 A JP2007313970 A JP 2007313970A JP 2009138573 A JP2009138573 A JP 2009138573A
Authority
JP
Japan
Prior art keywords
transfer tube
peristaltic pump
transfer
actuators
voltage state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007313970A
Other languages
English (en)
Other versions
JP4945417B2 (ja
Inventor
Hiroshi Isobe
宏 磯部
Shiketsu Kaku
士傑 郭
Hiroaki Ito
弘昭 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2007313970A priority Critical patent/JP4945417B2/ja
Publication of JP2009138573A publication Critical patent/JP2009138573A/ja
Application granted granted Critical
Publication of JP4945417B2 publication Critical patent/JP4945417B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

【課題】移送チューブの圧縮量が大きい蠕動型ポンプを提供することを課題とする。
【解決手段】蠕動型ポンプ1は、電極層201a、211aと誘電層202a、212aとを持つ積層体200a、210aを有し移送チューブ90の移送方向に沿って配置される複数のアクチュエーター20a、21aと、アクチュエーター20a、21aが移送チューブ90外周面の周方向において部分的に当接するようにアクチュエーター20a、21aを径方向外側から固定する固定部材3aと、を備える。低電圧状態においては、誘電層202a、212aの弾性復元力によりアクチュエーター20a、21aが径方向内側に伸張し、移送チューブ90を径方向外側から圧縮する。高電圧状態においては、静電引力により誘電層202a、212aが径方向外側に収縮し、移送チューブ90の弾性復元力により移送チューブ90が径方向外側に伸張する。
【選択図】図2

Description

本発明は、移送チューブを蠕動させることにより被移送流体を圧送する蠕動型ポンプに関する。
蠕動型ポンプは、可撓性の移送チューブを移送方向に沿って順次圧縮することにより、被移送流体を上流側から下流側に圧送するポンプである。蠕動型ポンプとして、例えば、特許文献1には、ピエゾ素子製のアクチュエーターを備える蠕動型ポンプが開示されている。アクチュエーターは、移送チューブの移送方向に沿って、五つ連設されている。五つのピエゾ素子を順次駆動することにより、移送チューブ内の液体を、上流側から下流側に圧送することができる。
また、特許文献2には、導電性ポリマー製のアクチュエーターを備える蠕動型ポンプが開示されている。アクチュエーターは、リング状を呈している。アクチュエーターは、移送チューブに環装されており、移送チューブの外周面に全周的に当接している。アクチュエーターを駆動すると、アクチュエーターの内周面が径方向内側に収縮する。このため、移送チューブが径方向内側に圧縮される。アクチュエーターを停止すると、アクチュエーターおよび移送チューブは、各々の弾性復元力により、復動する。このため、移送チューブが径方向外側に伸張する。
アクチュエーターは、移送チューブの移送方向に沿って、五つ連設されている。五つのアクチュエーターを順次駆動することにより、移送チューブ内の流体を、上流側から下流側に圧送することができる。
特開平5−202857号公報 特開2007−32572号公報 特開2005−522162号公報
特許文献1に開示の蠕動型ポンプのアクチュエーターは、ピエゾ素子を用いている。このため、印加電圧の周波数が高くなる。並びに、移送チューブの圧縮量、言い換えると駆動時のアクチュエーターの変位量が小さくなる。
すなわち、ピエゾ素子を効率良く駆動するためには、ピエゾ素子の共振周波数と、印加電圧の周波数と、を正確に合わせる必要がある。ここで、物質の共振周波数は、ヤング率が高いほど高くなる。また、ピエゾ素子には、例えばPZT(チタン酸ジルコン酸鉛)やニオブ酸リチウムやタンタル酸リチウムなど、圧電セラミックスが用いられている。このため、ピエゾ素子のヤング率は高い。したがって、特許文献1に開示の蠕動型ポンプによると、不可避的に、印加電圧の周波数が高くなってしまう。並びに、ピエゾ素子のヤング率が高いため、アクチュエーター駆動時の振幅が小さくなってしまう。このように、特許文献1の蠕動型ポンプは、小さな振幅(つまり変位量)を、高い周波数(つまり振動数)で補うことにより、液体の移送量を確保している。
しかしながら、アクチュエーターの変位量が小さいと、移送チューブの圧縮量が小さくなる。このため、移送チューブ内の被移送流体が、例えばオイルのような高粘性の液体や、あるいは液体中に固形物が分散された流体などの場合、移送が困難になる。
また、特許文献2に開示の蠕動型ポンプのアクチュエーターは、移送チューブの外周面に全周的に当接している。すなわち、移送チューブの外周面は、アクチュエーターにより、全周的に包囲されている。このため、アクチュエーター駆動時に、移送チューブは、径方向内側にしか変形(収縮)できない。一方、移送チューブ内には、勿論、被移送流体が入っている。
したがって、移送チューブを全周的に径方向内側に圧縮するには、大きな荷重が必要になる。すなわち、特許文献2の蠕動型ポンプの場合も、やはり移送チューブの圧縮量が小さくなりがちである。また、移送チューブの圧縮量、つまりアクチュエーターの変位量を大きくするためには、アクチュエーター駆動時の電圧を大きくする必要がある。
本発明の蠕動型ポンプは、上記課題に鑑みて完成されたものである。したがって、本発明は、移送チューブの圧縮量が大きい蠕動型ポンプを提供することを目的とする。
(1)上記課題を解決するため、本発明の蠕動型ポンプは、一対の電極層と、一対の該電極層間に介在し一対の該電極層間に印加する電圧を変化させることにより伸縮可能な誘電体エラストマー製の誘電層と、を持つ積層体を有し、径方向に弾性変形可能な移送チューブの移送方向に沿って配置される複数のアクチュエーターと、該アクチュエーターが、該移送チューブの径方向外側に配置され、該移送チューブ外周面の周方向において部分的に当接するように、該アクチュエーターを径方向外側から固定する固定部材と、を備えてなり、低電圧状態においては、該誘電層の弾性復元力により該アクチュエーターが径方向内側に伸張し、該移送チューブを径方向外側から圧縮し、該低電圧状態と比較して該電圧が高い高電圧状態においては、一対の該電極層間の静電引力により該誘電層が径方向外側に収縮し、該移送チューブの弾性復元力により該移送チューブが径方向外側に伸張し、該移送方向に沿って配置される複数の該アクチュエーターに、所定の順番で該電圧を印加することにより、該移送チューブを蠕動させ、該移送チューブ内の被移送流体を、上流側から下流側に圧送することを特徴とする(請求項1に対応)。
本発明の蠕動型ポンプのアクチュエーターは、誘電体エラストマー製の誘電層を備えている。誘電体エラストマーは、ピエゾ素子と比較して、軟らかく、ヤング率が小さい。このため、アクチュエーター駆動時の変位量が大きい。したがって、本発明の蠕動型ポンプは、移送チューブの圧縮量が大きい。
また、本発明の蠕動型ポンプのアクチュエーターは、移送チューブの外周面に全周的に当接していない。すなわち、アクチュエーターは、移送チューブ外周面の周方向において、部分的に当接している。このため、低電圧状態において、移送チューブには、アクチュエーターに圧縮されない部分(以下、適宜「非圧縮部分」と称する。)が存在する。非圧縮部分の変形方向は、アクチュエーターに規制されていない。したがって、非圧縮部分は、径方向内側のみならず、径方向外側や周方向にも変形可能である。
このように、本発明の蠕動型ポンプのアクチュエーターは、移送チューブを部分的に圧縮する。このため、アクチュエーターが移送チューブを全周的に圧縮する場合と比較して、移送チューブを圧縮しやすい。つまり、この点においても、本発明の蠕動型ポンプは、移送チューブの圧縮量が大きい。
また、誘電体エラストマーは、軟らかい。このため、移送チューブが湾曲している場合であっても、当該湾曲形状に沿って、アクチュエーターを配置することができる。このように、本発明の蠕動型ポンプによると、硬いアクチュエーターを有する蠕動型ポンプと比較して、移送チューブの配索経路選択の自由度が高い。
(1−1)好ましくは、上記(1)の構成において、前記被移送流体は、高粘性流体とする方がよい。高粘性流体とは、例えばオイル、血液、ER(電気粘性流体)、MR(磁気粘性流体)のような機能性流体などのように、粘性が高い流体をいう。本発明の蠕動型ポンプは、移送チューブの圧縮量が大きいため、高粘性流体であっても、簡単に移送することができる。
(1−2)好ましくは、上記(1)の構成において、前記被移送流体は、液体と、該液体中に分散する固形物と、を有している構成とする方がよい。本発明の蠕動型ポンプは、移送チューブの圧縮量が大きいため、被移送流体が固形物を含む場合であっても、簡単に移送することができる。
(2)好ましくは、上記(1)の構成において、前記アクチュエーターは、前記移送チューブを中心に、周方向に所定角度だけ離間して、複数配置されている構成とする方がよい(請求項2に対応)。
つまり、本構成は、移送チューブの移送方向における同位置に、複数のアクチュエーターを配置するものである。本構成によると、移送チューブの周方向における所望の部位を、アクチュエーターにより、圧縮することができる。
(3)好ましくは、上記(2)の構成において、前記アクチュエーターは、前記移送チューブを中心に、周方向に略180°離間して、一対配置されている構成とする方がよい(請求項3に対応)。
本構成によると、アクチュエーターに圧縮されない部分つまり非圧縮部分が、一対のアクチュエーターの配置方向に対して、略90°交差する方向に、一対配置されることになる。すなわち、移送チューブがアクチュエーターに圧縮される際に、最も膨出しやすい位置に非圧縮部分が配置されることになる。したがって、さらに移送チューブの圧縮量が大きくなる。
(4)好ましくは、上記(1)ないし(3)のいずれかの構成において、前記電圧の周波数は、100Hz以下である構成とする方がよい(請求項4に対応)。一対の電極層間に印加する電圧の周波数が低くなると、誘電層の変位量、延いてはアクチュエーターの変位量が大きくなる。このため、本構成によると、さらに移送チューブの圧縮量が大きくなる。
ここで、周波数を100Hz以下としたのは、100Hz超過の場合、被移送流体が、例えばオイルのような高粘性流体や、固形物を含有する液体である場合、移送チューブの圧縮量が不足するおそれがあるからである。すなわち、被移送流体を、円滑に移送できないおそれがあるからである。
(4−1)好ましくは、上記(4)の構成において、前記電圧の周波数は、20Hz以下とする方がよい。本構成によると、さらに移送チューブの圧縮量が大きくなる。このため、被移送流体が高粘性流体や固形物を含有する液体であっても、より確実に移送することができる。
(4−2)好ましくは、上記(4−1)の構成において、前記電圧の周波数は、15Hz以下とする方がよい。本構成によると、さらに移送チューブの圧縮量が大きくなる。このため、被移送流体が高粘性流体や固形物を含有する液体であっても、より確実に移送することができる。
(5)好ましくは、上記(1)ないし(4)のいずれかの構成において、前記積層体は、n(nは2以上の自然数)層の前記電極層と、n−1層の前記誘電層と、が交互に積層されて成る構成とする方がよい(請求項5に対応)。本構成によると、積層数を変えることにより、移送チューブの圧縮量を調整することができる。例えば、積層数を多くすることにより、移送チューブの圧縮量を大きくすることができる。
本発明によると、移送チューブの圧縮量が大きい蠕動型ポンプを提供することができる。
以下、本発明の蠕動型ポンプの実施の形態について説明する。
<第一実施形態>
[蠕動型ポンプの配置]
まず、本実施形態の蠕動型ポンプの配置について説明する。図1に、本実施形態の蠕動型ポンプの高電圧状態における斜視図を示す。図1に示すように、蠕動型ポンプ1は、ポンプユニット4a〜4eを備えている。ポンプユニット4a〜4eは、ゴム製の移送チューブ90の長手方向(移送方向)に沿って、所定間隔ずつ離間して配置されている。ポンプユニット4a〜4eは、移送方向の上流側から下流側に向かって、ポンプユニット4a→4b→4c→4d→4eの順番で並んでいる。
[ポンプユニットの構成]
次に、本実施形態の蠕動型ポンプのポンプユニットの構成について説明する。ポンプユニット4a〜4eの構成は、全て同じである。よって、以下、最上流側に配置されたポンプユニット4aについてのみ説明し、ポンプユニット4b〜4eについての説明を兼ねるものとする。
図2に、図1のII−II断面図を示す。図2に示すように、ポンプユニット4aは、一対のアクチュエーター20a、21aと、固定部材3aと、を備えている。
固定部材3aは、アクリル製であって、U字状を呈している。すなわち、固定部材3aは、矩形板状の一対の側壁30a、31aと、同じく矩形板状の底壁32aと、を備えている。一対の側壁30a、31aは、底壁32aの対向する両縁から、底壁32aの面展開方向に対して略垂直方向に、突設されている。すなわち、一対の側壁30a、31aは、底壁32aの幅分だけ離間して、対向している。
アクチュエーター20aは、矩形板状の積層体200aである。積層体200aは、四層の電極層201aと、三層の誘電層202aと、が交互に積層されて構成されている。積層体200a(具体的には最も側壁30aに近接した電極層201a)は、側壁30aの内面に固定されている。
電極層201aは、ACM(アクリルゴム)エラストマーに導電カーボンを配合したものである。四層の電極層201aのうち、ポンプユニット4aの内側から数えて、一層目と三層目の合計二層の電極層201aは電源Aの一方の端子に、二層目と四層目の合計二層の電極層201aは電源Aの他方の端子に、それぞれ接続されている。電源Aからは、周波数15Hzの正弦波電圧が印加されている。
誘電層202aは、H−NBR(水素添加ニトリルゴム)製である。誘電層202aの積層方向両側には、一対の電極層201aが配置されている。一対の電極層201aは、上述したように、各々、電源Aの異なる端子に接続されている。
アクチュエーター21aの構成は、上記アクチュエーター20aの構成と同様である。すなわち、アクチュエーター21aは、矩形板状の積層体210aである。積層体210aは、四層の電極層211aと、三層の誘電層212aと、が交互に積層されて構成されている。積層体210a(具体的には最も側壁31aに近接した電極層211a)は、側壁31aの内面に固定されている。
電極層211aは、ACMエラストマーに導電カーボンを配合したものである。四層の電極層211aのうち、ポンプユニット4aの内側から数えて、一層目と三層目の合計二層の電極層211aは電源Aの一方の端子に、二層目と四層目の合計二層の電極層211aは電源Aの他方の端子に、それぞれ接続されている。
誘電層212aは、H−NBR製である。誘電層212aの積層方向両側には、一対の電極層211aが配置されている。一対の電極層211aは、上述したように、各々、電源Aの異なる端子に接続されている。
アクチュエーター20aとアクチュエーター21aとの間には、移送チューブ90が介装されている。アクチュエーター20a、21aは、移送チューブ90を中心に、周方向に180°離間して配置されている。アクチュエーター20aは、移送チューブ90の圧縮部分900aに当接している。一方、アクチュエーター21aは、移送チューブ90の圧縮部分901aに当接している。一対の圧縮部分900a、901aの配置方向に対して、90°交差する方向には、一対の非圧縮部分902a、903aが配置されている。一対の非圧縮部分902a、903aの径方向外側には、アクチュエーター20a、21aが配置されていない。このため、一対の非圧縮部分902a、903aは、径方向外側や周方向に変形可能である。移送チューブ90の内部には、粘性の高いシリコンオイルLが入っている。シリコンオイルLは、本発明の被移送流体に含まれる。
[ポンプユニットの動き]
次に、本実施形態の蠕動型ポンプのポンプユニット4aの動きについて説明する。ポンプユニット4a〜4eの動きは、全て同じである。よって、以下、最上流側に配置されたポンプユニット4aについてのみ説明し、ポンプユニット4b〜4eについての説明を兼ねるものとする。
まず、高電圧状態について説明する。高電圧状態においては、図2に示すように、誘電層202aを介して積層方向に隣り合う一対の電極層201a間には、大きな静電引力が発生している。当該静電引力により、誘電層202aつまり積層体200aは、積層方向に収縮している。ここで、積層体200aは、側壁30aの内面に固定されている。このため、積層体200aは、側壁30aの内面側に、偏って収縮している。言い換えると、積層体200aは、移送チューブ90を中心として、径方向外側に収縮している。積層体200aには、誘電層202aの収縮に起因する弾性復元力が蓄積されている。
同様に、高電圧状態においては、一対の電極層211a間の静電引力により、誘電層212aつまり積層体210aは、積層方向に収縮している。ここで、積層体210aは側壁31aの内面に固定されているため、積層体210aは、側壁31aの内面側に、偏って収縮している。言い換えると、積層体210aは、移送チューブ90を中心として、径方向外側に収縮している。積層体210aには、誘電層212aの収縮に起因する弾性復元力が蓄積されている。
このように、高電圧状態においては、積層体200a、210aは、弾性復元力を蓄積しながら、各々径方向外側に収縮している。このため、移送チューブ90は、アクチュエーター20a、21aに当接しているだけである。すなわち、アクチュエーター20a、21aは、移送チューブ90を、径方向外側から圧縮していない。したがって、移送チューブ90の径方向断面は、真円状を呈している。
次に、低電圧状態について説明する。図3に、本実施形態の蠕動型ポンプの低電圧状態における径方向断面図を示す。なお、図3は、図2と対応している。高電圧状態から低電圧状態に切り替える間に、誘電層202aを挟んで隣り合う一対の電極層201a間の電位差、および誘電層212aを挟んで隣り合う一対の電極層211a間の電位差(以下、これらの電位差をまとめて「電極層間電位差」と総称する。)は、徐々に小さくなる。低電圧状態においては、電極層間電位差は、各々0になる。
電極層間電位差が0になると、誘電層202aに加わる静電引力が0になる。このため、積層体200aは、自身に蓄積された弾性復元力により、径方向内側に伸張する。同様に、電極層間電位差が0になると、誘電層212aに加わる静電引力が0になる。このため、積層体210aは、自身に蓄積された弾性復元力により、径方向内側に伸張する。したがって、移送チューブ90の圧縮部分900aは積層体200aにより、移送チューブ90の圧縮部分901aは積層体210aにより、それぞれ径方向外側から押圧される。そして、当該押圧力により、移送チューブ90の一対の非圧縮部分902a、903aは、それぞれ径方向外側に膨出する。移送チューブ90には、当該変形に起因する弾性復元力が蓄積される。
このように、低電圧状態においては、積層体200a、210aは、各々径方向内側に伸張している。このため、移送チューブ90は、弾性復元力を蓄積しながら、アクチュエーター20a、21aにより圧縮されている。したがって、移送チューブ90の径方向断面は、楕円状を呈している。
再び、低電圧状態から高電圧状態に切り替える場合には、積層体200a、210aは、静電引力により、径方向外側に収縮する。並びに、移送チューブ90の径方向断面は、自身に蓄積された弾性復元力により、楕円状から真円状に復動する。
[蠕動型ポンプの動き]
次に、本実施形態の蠕動型ポンプの動きについて説明する。図4に、移送第一段階の蠕動型ポンプの側面図を示す。図5に、移送第二段階の蠕動型ポンプの側面図を示す。図6に、移送第三段階の蠕動型ポンプの側面図を示す。図7に、移送第四段階の蠕動型ポンプの側面図を示す。図8に、移送第五段階の蠕動型ポンプの側面図を示す。図9に、移送第六段階の蠕動型ポンプの側面図を示す。図10に、移送第七段階の蠕動型ポンプの側面図を示す。図11に、移送第八段階の蠕動型ポンプの側面図を示す。図12に、移送第九段階の蠕動型ポンプの側面図を示す。図13に、移送第十段階の蠕動型ポンプの側面図を示す。
移送第一段階においては、図4に示すように、全てのポンプユニット4a〜4eは、低電圧状態である。すなわち、全てのアクチュエーター20a〜20e、21a〜21eは、径方向内側に伸張している。移送第一段階においては、移送チューブ90内部のシリコンオイルは不動である。
移送第二段階においては、図5に示すように、全てのポンプユニット4a〜4eを、低電圧状態から高電圧状態に切り替える。このため、全てのアクチュエーター20a〜20e、21a〜21eは、弾性復元力を蓄積しながら、径方向外側に収縮する。移送チューブ90の径方向断面は、移送方向全域に亘って、真円状を呈している(前出図2参照)。移送第二段階においては、移送第一段階と同様に、移送チューブ90内部のシリコンオイルは不動である。
移送第三段階においては、図6に示すように、ポンプユニット4aのみを高電圧状態から低電圧状態に切り替える。アクチュエーター20a、21aは、自身に蓄積された弾性復元力により、径方向内側に伸張する。アクチュエーター20a、21aは、移送チューブ90を、径方向内側に圧縮する(前出図3参照)。当該移送チューブ90の圧縮により、移送チューブ90におけるポンプユニット4a対応部分のシリコンオイルは、図6に白抜き矢印で示すように、下流側に圧送される。
移送第四段階においては、図7に示すように、ポンプユニット4bを高電圧状態から低電圧状態に切り替える。アクチュエーター20b、21bは、自身に蓄積された弾性復元力により、径方向内側に伸張する。アクチュエーター20b、21bは、移送チューブ90を、径方向内側に圧縮する(前出図3参照)。当該移送チューブ90の圧縮により、移送チューブ90におけるポンプユニット4b対応部分のシリコンオイルは、図7に白抜き矢印で示すように、下流側に圧送される。
なお、ポンプユニット4aは、引き続き低電圧状態のままである。このため、アクチュエーター20a、21aは、移送チューブ90を、径方向内側に圧縮したままである。したがって、アクチュエーター20b、21bにより移送チューブ90を圧縮する際、シリコンオイルが上流側に逆流しにくい。
移送第五段階においては、図8に示すように、ポンプユニット4aを低電圧状態から高電圧状態に切り替える。アクチュエーター20a、21aは、静電引力により、径方向外側に収縮する。移送チューブ90は、自身に蓄積された弾性復元力により、径方向外側に伸張する(前出図2参照)。
移送第六段階においては、図9に示すように、ポンプユニット4cを高電圧状態から低電圧状態に切り替える。アクチュエーター20c、21cは、自身に蓄積された弾性復元力により、径方向内側に伸張する。アクチュエーター20c、21cは、移送チューブ90を、径方向内側に圧縮する(前出図3参照)。当該移送チューブ90の圧縮により、移送チューブ90におけるポンプユニット4c対応部分のシリコンオイルは、図9に白抜き矢印で示すように、下流側に圧送される。
なお、ポンプユニット4bは、引き続き低電圧状態のままである。このため、アクチュエーター20b、21bは、移送チューブ90を、径方向内側に圧縮したままである。したがって、アクチュエーター20c、21cにより移送チューブ90を圧縮する際、シリコンオイルが上流側に逆流しにくい。
移送第七段階においては、図10に示すように、ポンプユニット4bを低電圧状態から高電圧状態に切り替える。移送第八段階においては、図11に示すように、ポンプユニット4dを高電圧状態から低電圧状態に切り替える。移送第九段階においては、図12に示すように、ポンプユニット4cを低電圧状態から高電圧状態に切り替える。移送第十段階においては、図13に示すように、ポンプユニット4eを高電圧状態から低電圧状態に切り替える。
このように、ポンプユニット4a〜4eを、一旦、全て低電圧状態から高電圧状態に切り替えた後、上流側から下流側に向かって、順次、高電圧状態から低電圧状態に切り替え、再び低電圧状態から高電圧状態に切り替えることにより、移送チューブ90内のシリコンオイルを、上流側から下流側に移送する。
[作用効果]
次に、本実施形態の蠕動型ポンプの作用効果について説明する。本実施形態の蠕動型ポンプ1のアクチュエーター20a〜20e、21a〜21eは、H−NBR製の誘電層202a、212aを備えている。H−NBRは、軟らかく、ヤング率が0.8MPaと小さい。このため、アクチュエーター20a〜20e、21a〜21e駆動時の変位量が大きい。したがって、本実施形態の蠕動型ポンプ1は、移送チューブ90の圧縮量が大きい。
また、本実施形態の蠕動型ポンプ1のアクチュエーター20a〜20e、21a〜21eは、移送チューブ90の圧縮部分900a、900bにだけ当接している。すなわち、移送チューブ90には、非圧縮部分902a、903aが存在する。低電圧状態において、非圧縮部分902a、903aは、径方向外側に膨出する。このため、移送チューブ90は、アクチュエーター20a、21aの配置方向に潰れやすい。この点においても、本実施形態の蠕動型ポンプ1は、移送チューブ90の圧縮量が大きい。
また、誘電層202a、212aつまりアクチュエーター20a〜20e、21a〜21eは、軟らかい。このため、移送チューブ90が湾曲している場合であっても、当該湾曲形状に沿って、アクチュエーター20a〜20e、21a〜21eを配置することができる。このように、本実施形態の蠕動型ポンプ1によると、移送チューブ90の配索経路選択の自由度が高い。また、本実施形態の蠕動型ポンプ1によると、移送チューブ90の圧縮量が大きいため、被移送流体が粘性の高いシリコンオイルLであっても、簡単に移送することができる。
また、本実施形態の蠕動型ポンプ1によると、アクチュエーター20a、21aは、移送チューブ90を中心に、周方向に180°離間して、一対配置されている。また、非圧縮部分902a、903aが、一対のアクチュエーター20a、21aの配置方向に対して、90°交差する方向に、一対配置されている。すなわち、移送チューブ90がアクチュエーター20a、21aに圧縮される際に、最も膨出しやすい位置に非圧縮部分902a、903aが配置されている。したがって、さらに移送チューブ90の圧縮量が大きくなる。
また、本実施形態の蠕動型ポンプ1によると、電源Aから電極層201a、211aに、周波数15Hzの正弦波電圧が印加されている。このため、誘電層202a、212aの変位量、延いてはアクチュエーター20a、21aの変位量が大きくなる。したがって、さらに移送チューブ90の圧縮量が大きくなる。
また、本実施形態の蠕動型ポンプ1によると、積層体200aは、四層の電極層201aと、三層の誘電層202aと、が交互に積層されて形成されている。並びに、積層体210aは、四層の電極層211aと、三層の誘電層212aと、が交互に積層されて形成されている。このため、誘電層202a、212aが各々単層の場合と比較して、移送チューブ90の圧縮量が大きくなる。また、誘電層202a、212aの積層数を変えることにより、自在に移送チューブ90の圧縮量を調整することができる。
また、本実施形態の蠕動型ポンプ1によると、前出図4の移送第一段階および前出図5の移送第二段階終了後に、前出図6〜図13の移送第三段階〜移送第十段階を逆順に実行することにより、前出図6〜図13における上流側から下流側のみならず、下流側から上流側にシリコンオイルLを移送することができる。すなわち、双方向にシリコンオイルLを移送することができる。
<第二実施形態>
本実施形態の蠕動型ポンプと、第一実施形態の蠕動型ポンプと、の相違点は、固定部材の形状のみである。したがって、ここでは相違点についてのみ説明する。図14に、本実施形態の蠕動型ポンプの高電圧状態における径方向断面図を示す。なお、図2と対応する部位については、同じ符号で示す。
図14に示すように、固定部材50a、51aは、各々矩形板状を呈している。固定部材50a、51aは、移送チューブ90を中心に、周方向に180°離間して、一対配置されている。固定部材50aの内面には、アクチュエーター20aが配置されている。固定部材51aの内面には、アクチュエーター21aが配置されている。固定部材50a、51aは、両部材間の間隔が変化しないように、隣接部材(図略)に取り付けられている。
本実施形態の蠕動型ポンプ1は、第一実施形態の蠕動型ポンプと、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の蠕動型ポンプ1によると、固定部材50a、51aが完全に分離している。このため、固定部材がU字状の一体物である場合と比較して、移送チューブ90への装着が簡単である。
<第三実施形態>
本実施形態の蠕動型ポンプと、第一実施形態の蠕動型ポンプと、の相違点は、固定部材の形状のみである。したがって、ここでは相違点についてのみ説明する。図15に、本実施形態の蠕動型ポンプの高電圧状態における径方向断面図を示す。なお、図2と対応する部位については、同じ符号で示す。
図15に示すように、固定部材52aは、矩形環状を呈している。固定部材52aの径方向内側には、移送チューブ90が収容されている。固定部材52aは、一対の側壁520a、521aを備えている。側壁520aと側壁521aとは、移送チューブ90を挟んで対向している。側壁520aの内面には、アクチュエーター20aが配置されている。側壁521aの内面には、アクチュエーター21aが配置されている。
本実施形態の蠕動型ポンプ1は、第一実施形態の蠕動型ポンプと、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の蠕動型ポンプ1によると、固定部材52aが環状を呈している。このため、固定部材がU字状を呈している場合と比較して、移送チューブ90がポンプユニット4aから脱落しにくい。
<第四実施形態>
本実施形態の蠕動型ポンプと、第一実施形態の蠕動型ポンプと、の相違点は、固定部材の材質が金属製である点である。また、それに伴い、アクチュエーターが絶縁膜を備えている点である。したがって、ここでは相違点についてのみ説明する。図16に、本実施形態の蠕動型ポンプの高電圧状態における径方向断面図を示す。なお、図2と対応する部位については、同じ符号で示す。
図16に示すように、固定部材53aは、金属製である。固定部材53aは、一対の側壁530a、531aを備えている。側壁530aと側壁531aとは、移送チューブ90を挟んで対向している。
側壁530aの内面には、アクチュエーター20aが配置されている。アクチュエーター20aは、積層体200aと絶縁膜203aとを備えている。絶縁膜203aは、ACM製である。絶縁膜203aは、積層体200aと固定部材53aとの界面に、介装されている。
同様に、側壁531aの内面には、アクチュエーター21aが配置されている。アクチュエーター21aは、積層体210aと絶縁膜213aとを備えている。絶縁膜213aは、ACM製である。絶縁膜213aは、積層体210aと固定部材53aとの界面に、介装されている。
本実施形態の蠕動型ポンプ1は、第一実施形態の蠕動型ポンプと、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の蠕動型ポンプ1によると、固定部材53aが金属製であるにもかかわらず、電極層201a同士、電極層211a同士、電極層201aと電極層211aとが、固定部材53aを介して、導通するおそれが小さい。
<第五実施形態>
本実施形態の蠕動型ポンプと、第一実施形態の蠕動型ポンプと、の相違点は、固定部材がC字状を呈している点である。また、一つのポンプユニットに、アクチュエーターが一つだけ配置されている点である。したがって、ここでは相違点についてのみ説明する。図17に、本実施形態の蠕動型ポンプの高電圧状態における径方向断面図を示す。なお、図2と対応する部位については、同じ符号で示す。
図17に示すように、固定部材54aは、C字状を呈している。固定部材54aの内周面には、同じくC字状のアクチュエーター22aが配置されている。アクチュエーター22aは、積層体220aである。積層体220aは、四層の電極層221aと、三層の誘電層222aと、が交互に積層されて構成されている。積層体220a(具体的には最も径方向外側の電極層221a)は、固定部材54aの内周面に固定されている。
四層の電極層221aのうち、径方向内側から数えて、一層目と三層目の合計二層の電極層221aは電源Aの一方の端子に、二層目と四層目の合計二層の電極層221aは電源Aの他方の端子に、それぞれ接続されている。
アクチュエーター22aは、移送チューブ90の圧縮部分904aに当接している。一方、移送チューブ90の非圧縮部分905aの径方向外側には、ポンプユニット4aのC字開口が配置されている。
本実施形態の蠕動型ポンプ1は、第一実施形態の蠕動型ポンプと、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の蠕動型ポンプ1によると、固定部材52aがC字状を呈している。このため、積層体220aおよび移送チューブ90の弾性を利用して、C字開口から、移送チューブ90をポンプユニット4aに挿入しやすい。並びに、ポンプユニット4aから移送チューブ90が脱落しにくい。
また、本実施形態の蠕動型ポンプ1によると、低電圧状態において、移送チューブ90の圧縮部分904aが径方向内側に圧縮され、非圧縮部分905aが径方向外側に膨出する。このため、移送チューブ90の圧縮量が大きくなる。
<第六実施形態>
本実施形態の蠕動型ポンプと、第一実施形態の蠕動型ポンプと、の相違点は、固定部材が一つだけ配置されている点である。したがって、ここでは相違点についてのみ説明する。図18に、本実施形態の蠕動型ポンプの高電圧状態における斜視図を示す。なお、図1と対応する部位については、同じ符号で示す。図18に示すように、アクチュエーター20a〜20e、21a〜21eは、所定間隔ずつ離間して、全て単一の固定部材55に配置されている。
本実施形態の蠕動型ポンプ1は、第一実施形態の蠕動型ポンプと、構成が共通する部分に関しては、同様の作用効果を有する。また、本実施形態の蠕動型ポンプ1によると、固定部材55が一つだけ配置されている。このため、蠕動型ポンプを複数のポンプユニットで構成する場合と比較して、蠕動型ポンプ1の部品点数が少なくなる。また、蠕動型ポンプを複数のポンプユニットで構成する場合と比較して、移送方向に並ぶアクチュエーター20a〜20e、21a〜21eの間隔が固定されている。このため、蠕動型ポンプ1の移送チューブ90に対する装着が簡単である。
<その他>
以上、本発明の蠕動型ポンプの実施の形態について説明した。しかしながら、実施の形態は上記形態に特に限定されるものではない。当業者が行いうる種々の変形的形態、改良的形態で実施することも可能である。
例えば、上記実施形態においては、電源Aから正弦波電圧を印加したが、矩形波電圧を印加してもよい。また、直流電圧を印加してもよい。この場合、高電圧状態と低電圧状態とを、スイッチをオン、オフすることにより、切り替えてもよい。
また、上記実施形態においては、電極層201a、211aをACMエラストマーに導電カーボンを配合したものとしたが、バインダーとしてNBR(ニトリルゴム)、H−NBR、EPDM(エチレンプロピレンゴム)、IIR(ブチルゴム)、ECO(エピクロルヒドリンゴム)、SBR(スチレンブタジエンゴム)などのエラストマーやゲルを、また導電剤として金属を、配合したものとしてもよい。
また、上記実施形態においては、誘電層202a、212aをH−NBR製としたが、NBR、EPDM、NR(天然ゴム)、ACM、シリコーン製としてもよい。
また、上記実施形態においては、絶縁膜203a、213aをACM製としたが、EPDM、NR、シリコーン、IIR、Cl−IIR(ハロゲン化ブチルゴム)、ECO、SBR製としてもよい。
また、上記実施形態においては、被移送流体をシリコンオイルLとしたが、被移送流体の種類も特に限定しない。例えば、薬品、血液、ERやMRなどの機能性流体であってもよい。また、被移送流体が、液体と、該液体中に分散する固形物と、を有していてもよい。蠕動型ポンプ1は、移送チューブ90の圧縮量が大きいため、被移送流体が固形物を含む場合であっても、また固形物が移送チューブ90の内径に対して比較的大きい場合であっても、簡単に移送することができる。
また、上記第一実施形態〜第四実施形態、第六実施形態においては、アクチュエーター20a〜20e、21a〜21eを、移送チューブ90を中心に、周方向に略180°離間して、一対配置したが、略120°ごとに三つ、略90°ごとに四つ、略60°ごとに六つ配置してもよい。すなわち、アクチュエーター20a〜20e、21a〜21eの配置数は特に限定しない。
また、上記実施形態においては、誘電層202a、212aの積層数を三層としたが、誘電層202a、212aの積層数も特に限定しない。所望の変位量を確保できるように、適宜調整すればよい。
また、本発明の蠕動型ポンプは、医療用(例えば、人工血管、人工大腸、人工小腸、人工食道など)、食料品移送用、化学実験用(例えば、異なる液の入った一対のタンクを連結する二液反応用チューブなど)などに用いることができる。
以下、第一実施形態の蠕動型ポンプ1の周波数特性の測定実験について、図2、図3を参照しながら説明する。印加電圧の波形は、正弦波とした。印加電圧の周波数は、2Hz、4Hz、7Hz、10Hz、15Hzとした。また、誘電層202a、212aの積層数は、10層とした。
図19に、第一実施形態の蠕動型ポンプの周波数特性の測定グラフを示す。横軸は、印加電圧の周波数である。縦軸は、変位率(=(低電圧状態のアクチュエーターの積層方向長さ−高電圧状態のアクチュエーターの積層方向長さ)/低電圧状態のアクチュエーターの積層方向長さ×100)である。
測定の結果、周波数2Hzの際の変位率は7.47%であった。また、周波数4Hzの際の変位率は6.02%であった。また、周波数7Hzの際の変位率は4.83%であった。また、周波数10Hzの際の変位率は4.39%であった。また、周波数15Hzの際の変位率は3.60%であった。
測定結果から、周波数が低くなると、変位率が大きくなることが判った。つまり、移送チューブ90の圧縮量が大きくなることが判った。また、周波数を15Hz以下にすると、3%以上の変位率が確保できることが判った。また、周波数を10Hz以下にすると、4%以上の変位率が確保できることが判った。また、周波数を5Hz以下にすると、5%以上の変位率が確保できることが判った。また、周波数を4Hz以下にすると、6%以上の変位率が確保できることが判った。また、周波数を2Hz以下にすると、7%以上の変位率が確保できることが判った。
第一実施形態の蠕動型ポンプの高電圧状態における斜視図である。 図1のII−II断面図である。 同蠕動型ポンプの低電圧状態における径方向断面図である。 移送第一段階の同蠕動型ポンプの側面図である。 移送第二段階の同蠕動型ポンプの側面図である。 移送第三段階の同蠕動型ポンプの側面図である。 移送第四段階の同蠕動型ポンプの側面図である。 移送第五段階の同蠕動型ポンプの側面図である。 移送第六段階の同蠕動型ポンプの側面図である。 移送第七段階の同蠕動型ポンプの側面図である。 移送第八段階の同蠕動型ポンプの側面図である。 移送第九段階の同蠕動型ポンプの側面図である。 移送第十段階の同蠕動型ポンプの側面図である。 第二実施形態の蠕動型ポンプの高電圧状態における径方向断面図である。 第三実施形態の蠕動型ポンプの高電圧状態における径方向断面図である。 第四実施形態の蠕動型ポンプの高電圧状態における径方向断面図である。 第五実施形態の蠕動型ポンプの高電圧状態における径方向断面図である。 第六実施形態の蠕動型ポンプの高電圧状態における斜視図である。 第一実施形態の蠕動型ポンプの周波数特性の測定グラフである。
符号の説明
1:蠕動型ポンプ。
20a〜20e:アクチュエーター、21a〜21e:アクチュエーター、22a:アクチュエーター、200a:積層体、201a:電極層、202a:誘電層、203a:絶縁膜、210a:積層体、211a:電極層、212a:誘電層、213a:絶縁膜、220a:積層体、221a:電極層、222a:誘電層。
3a:固定部材、30a:側壁、31a:側壁、32a:底壁。
4a〜4e:ポンプユニット。
50a:固定部材、51a:固定部材、52a:固定部材、53a:固定部材、54a:固定部材、55:固定部材、520a:側壁、521a:側壁、530a:側壁、531a:側壁。
90:移送チューブ、900a:圧縮部分、901a:圧縮部分、902a:非圧縮部分、903a:非圧縮部分、904a:圧縮部分、905a:非圧縮部分。
A:電源、L:シリコンオイル(被移送流体)。

Claims (5)

  1. 一対の電極層と、一対の該電極層間に介在し一対の該電極層間に印加する電圧を変化させることにより伸縮可能な誘電体エラストマー製の誘電層と、を持つ積層体を有し、径方向に弾性変形可能な移送チューブの移送方向に沿って配置される複数のアクチュエーターと、
    該アクチュエーターが、該移送チューブの径方向外側に配置され、該移送チューブ外周面の周方向において部分的に当接するように、該アクチュエーターを径方向外側から固定する固定部材と、
    を備えてなり、
    低電圧状態においては、該誘電層の弾性復元力により該アクチュエーターが径方向内側に伸張し、該移送チューブを径方向外側から圧縮し、
    該低電圧状態と比較して該電圧が高い高電圧状態においては、一対の該電極層間の静電引力により該誘電層が径方向外側に収縮し、該移送チューブの弾性復元力により該移送チューブが径方向外側に伸張し、
    該移送方向に沿って配置される複数の該アクチュエーターに、所定の順番で該電圧を印加することにより、該移送チューブを蠕動させ、該移送チューブ内の被移送流体を、上流側から下流側に圧送することを特徴とする蠕動型ポンプ。
  2. 前記アクチュエーターは、前記移送チューブを中心に、周方向に所定角度だけ離間して、複数配置されている請求項1に記載の蠕動型ポンプ。
  3. 前記アクチュエーターは、前記移送チューブを中心に、周方向に略180°離間して、一対配置されている請求項2に記載の蠕動型ポンプ。
  4. 前記電圧の周波数は、100Hz以下である請求項1ないし請求項3のいずれかに記載の蠕動型ポンプ。
  5. 前記積層体は、n(nは2以上の自然数)層の前記電極層と、n−1層の前記誘電層と、が交互に積層されて成る請求項1ないし請求項4のいずれかに記載の蠕動型ポンプ。
JP2007313970A 2007-12-04 2007-12-04 蠕動型ポンプ Expired - Fee Related JP4945417B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007313970A JP4945417B2 (ja) 2007-12-04 2007-12-04 蠕動型ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007313970A JP4945417B2 (ja) 2007-12-04 2007-12-04 蠕動型ポンプ

Publications (2)

Publication Number Publication Date
JP2009138573A true JP2009138573A (ja) 2009-06-25
JP4945417B2 JP4945417B2 (ja) 2012-06-06

Family

ID=40869449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007313970A Expired - Fee Related JP4945417B2 (ja) 2007-12-04 2007-12-04 蠕動型ポンプ

Country Status (1)

Country Link
JP (1) JP4945417B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099528A (ja) * 2010-10-29 2012-05-24 Fujitsu Ltd 電子デバイス
WO2014148017A1 (ja) * 2013-03-18 2014-09-25 国立大学法人広島大学 ポリマーアクチュエータ及びそれを備えた人工肺装置
KR20200051206A (ko) * 2018-11-05 2020-05-13 한국과학기술연구원 유압 그리퍼 및 유압 그리퍼 시스템

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727056A (ja) * 1993-07-06 1995-01-27 Hitachi Ltd ポンプ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727056A (ja) * 1993-07-06 1995-01-27 Hitachi Ltd ポンプ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099528A (ja) * 2010-10-29 2012-05-24 Fujitsu Ltd 電子デバイス
WO2014148017A1 (ja) * 2013-03-18 2014-09-25 国立大学法人広島大学 ポリマーアクチュエータ及びそれを備えた人工肺装置
KR20200051206A (ko) * 2018-11-05 2020-05-13 한국과학기술연구원 유압 그리퍼 및 유압 그리퍼 시스템
KR102151653B1 (ko) 2018-11-05 2020-09-03 한국과학기술연구원 유압 그리퍼 및 유압 그리퍼 시스템

Also Published As

Publication number Publication date
JP4945417B2 (ja) 2012-06-06

Similar Documents

Publication Publication Date Title
JP4922879B2 (ja) アクチュエータ
CN107431121B (zh) 基于电活性聚合物的致动器或传感器设备
JP5186160B2 (ja) 柔軟電極およびそれを用いたアクチュエータ
US20080238258A1 (en) Actuator
JP3832338B2 (ja) 電歪ポリマーアクチュエータ
US6545391B1 (en) Polymer-polymer bilayer actuator
JP5479659B2 (ja) 生体によって動力を供給される電気活性ポリマジェネレータ
JP4945417B2 (ja) 蠕動型ポンプ
JPWO2007023625A1 (ja) 高分子アクチュエータ
US20080093954A1 (en) Elastomer actuator and a method of making an actuator
CN104769236B (zh) 致动器
JP2007202293A (ja) 発電装置
CN107924989A (zh) 基于电活性聚合物或光活性聚合物的致动器设备
WO2020180982A1 (en) Composite layering of hydraulically amplified self-healing electrostatic transducers
JP5464808B2 (ja) 誘電材料およびそれを用いたアクチュエータ
JP5129998B2 (ja) 電歪素子
JP6904356B2 (ja) アクチュエータ、アクチュエータモジュール、内視鏡、内視鏡モジュールおよび制御方法
JP2014217238A (ja) アクチュエータ
JP2012248670A (ja) 電歪アクチュエータおよびその使用方法
JP5243818B2 (ja) アクチュエータ
JP2015149368A (ja) 振動子及び圧電ポンプ
WO2017165535A1 (en) Integrated dielectric elastomeric actuators
KR102135089B1 (ko) 전기 활성 섬유
JP2011176962A (ja) 駆動装置
US20200161532A1 (en) Transducer device, joint device, and actuator device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

R150 Certificate of patent or registration of utility model

Ref document number: 4945417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees