JP2009136852A - Deodorizing and cleaning method for production apparatus for foods or beverages - Google Patents

Deodorizing and cleaning method for production apparatus for foods or beverages Download PDF

Info

Publication number
JP2009136852A
JP2009136852A JP2007319223A JP2007319223A JP2009136852A JP 2009136852 A JP2009136852 A JP 2009136852A JP 2007319223 A JP2007319223 A JP 2007319223A JP 2007319223 A JP2007319223 A JP 2007319223A JP 2009136852 A JP2009136852 A JP 2009136852A
Authority
JP
Japan
Prior art keywords
cleaning
deodorizing
nanobubbles
liquid
microbubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007319223A
Other languages
Japanese (ja)
Inventor
Tadao Abe
忠夫 阿部
Kiyoteru Osawa
清輝 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007319223A priority Critical patent/JP2009136852A/en
Publication of JP2009136852A publication Critical patent/JP2009136852A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In General (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deodorizing and cleaning method by which flavors attached to production apparatuses for foods or beverages can be efficiently removed. <P>SOLUTION: The method for deodorizing and cleaning production apparatuses for foods or beverages includes generating nanobubbles by providing ultrasonic vibration between 1 to 3.5 MHz to a liquid containing microbubbles and then circulating the liquid containing nanobubbles within the production apparatuses, so as to perform deodorizing and cleaning. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、食品又は飲料の製造装置の脱臭洗浄方法に関する。   The present invention relates to a deodorizing and cleaning method for a food or beverage production apparatus.

食品工場、飲料工場等では、生産品種切り替え時や操業終了時等に製造装置の洗浄が行われるが、配管、タンク等の取り外し洗浄が困難な箇所に関しては、装置を分解することなく洗浄剤を流すことにより洗浄するCIP洗浄(定置洗浄)が採用されている。洗浄剤として、アルカリ性洗浄剤、酸性洗浄剤が使用されているが、各種フレーバーを配合した食品や飲料の場合、フレーバー臭が製造装置、特に配管連結部等のパッキン、O−リングといったシール部材に強固に付着しやすく、これら洗浄剤を使用してもフレーバー臭を除去することが難しい。そのため、フレーバー臭の除去に多大の労力が費やされているのが実情である。   In food factories, beverage factories, etc., manufacturing equipment is cleaned when production varieties are switched or when operations are completed.For places where it is difficult to remove and clean piping, tanks, etc., use detergent without disassembling the equipment. CIP cleaning (fixed cleaning) is used for cleaning by flowing. Alkaline detergents and acidic detergents are used as detergents, but in the case of foods and beverages containing various flavors, flavor odors are produced in manufacturing equipment, especially in packings such as pipe connections, and seal members such as O-rings. It is easy to adhere firmly and it is difficult to remove the flavor odor even if these detergents are used. For this reason, a great deal of effort is spent on removing the flavor odor.

また、洗浄効率を高めるために、次亜塩素酸塩、イソシアヌール酸塩、過炭酸塩、過ホウ酸塩等の酸化剤や界面活性剤等を用いるケースもあるが、スケール等の異物の除去に効果的であるもののフレーバー臭の除去効果は十分でなく、使用状況によっては製造装置の損傷が発生する場合もある。更に、製造工程における生産効率の向上や飲料品種の増加により生産品種の切り替え頻度が高まり、その結果CIP工程の時間ロスが生産性を著しく低下させる原因となっている。そのため、フレーバー臭を効率よく除去可能な脱臭洗浄方法の創製が求められている。   In addition, there are cases where oxidizing agents and surfactants such as hypochlorite, isocyanurate, percarbonate, and perborate are used to improve cleaning efficiency, but removal of foreign substances such as scales is also possible. However, the effect of removing the flavor odor is not sufficient, and the production apparatus may be damaged depending on the state of use. Furthermore, the frequency of switching between production varieties increases due to the improvement in production efficiency and the increase in beverage varieties in the production process, and as a result, the time loss in the CIP process causes the productivity to decrease significantly. Therefore, creation of the deodorizing washing method which can remove a flavor odor efficiently is calculated | required.

このような問題を解決すべく、液体と気体との気液二相流を用いるCIPによる脱臭洗浄方法として、洗浄液中に数mm程度の気泡を介在させ、パッキン表面に気泡が接触した際に洗浄液の流れによって気泡をパッキンに押し付け、パッキン内部のフレーバー成分を気泡へ移行させてフレーバー成分を含んだ気泡を大気中に除去する方法が提案されている(特許文献1参照)。この方法によれば、従来の脱臭洗浄方法に比べて、パッキンに付着したフレーバー臭の除去効果が向上しているが、場合によって僅かにフレーバー臭が残留してしまうため改善の余地がある。   In order to solve such a problem, as a deodorizing cleaning method by CIP using a gas-liquid two-phase flow of liquid and gas, a cleaning liquid is used when bubbles of about several millimeters are interposed in the cleaning liquid and the bubbles come into contact with the packing surface. A method has been proposed in which bubbles are pressed against the packing by the flow of the gas, the flavor component inside the packing is transferred to the bubbles, and the bubbles containing the flavor component are removed into the atmosphere (see Patent Document 1). According to this method, the effect of removing the flavor odor adhering to the packing is improved as compared with the conventional deodorizing cleaning method, but there is room for improvement because the flavor odor remains slightly in some cases.

ところで、近年、マイクロバブル、ナノバブルといった微小気泡に関する研究が盛んに行われており、例えば、水を電気分解し、生成した酸素に超音波を印加して直径50〜500nm程度のナノバブルを生成させる方法が知られている(特許文献2〜4参照)。これら方法においては、周波数28kHzの超音波を使用するが、これよりも高周波領域の超音波を使用した具体例は実質的に記載されていない。また、ナノバブルの利用法として、例えば、ナノバブルを汚れ成分の界面に吸着させて汚れを除去することや、ナノバブルを物体表面に衝突破壊させて強い圧力波を生じさせることにより物体表面の汚れを剥離させること等が提案されているが、ナノバブルを製造装置の洗浄に適用した具体例はなく、またフレーバー臭の除去効果についても検討されていない。更に、プラント内に流す液体に微小気泡を混入させてプラントの洗浄対象部分に微小気泡を衝突させ、微小気泡が崩壊する際に発生する高圧のマイクロジェットを利用して洗浄対象部分に付着しているスケール、錆等の異物を除去するプラントの洗浄方法が提案されている(特許文献5参照)。この方法においては、上記した文献と同様に電気分解と超音波振動とを組み合わせてナノバブルを発生させるが、超音波振動手段が明記されておらず、またフレーバー臭の除去効果についての記載もない。   By the way, research on microbubbles such as microbubbles and nanobubbles has been actively conducted in recent years. For example, a method of electrolyzing water and applying ultrasonic waves to the generated oxygen to generate nanobubbles having a diameter of about 50 to 500 nm. Is known (see Patent Documents 2 to 4). In these methods, ultrasonic waves having a frequency of 28 kHz are used, but specific examples using ultrasonic waves in a higher frequency region than this are not substantially described. Also, as a method of using nanobubbles, for example, nanobubbles are adsorbed on the interface of dirt components to remove dirt, or nanobubbles are collided with the object surface to cause strong pressure waves to remove dirt on the object surface. However, there is no specific example in which nanobubbles are applied to cleaning of a manufacturing apparatus, and the effect of removing flavor odors has not been studied. Furthermore, microbubbles are mixed into the liquid flowing in the plant, the microbubbles collide with the cleaning target part of the plant, and the high pressure microjet generated when the microbubbles collapse is attached to the cleaning target part. A cleaning method for a plant that removes foreign matters such as scale and rust has been proposed (see Patent Document 5). In this method, nanobubbles are generated by combining electrolysis and ultrasonic vibration in the same manner as in the above-mentioned literature, but the ultrasonic vibration means is not specified and there is no description about the effect of removing flavor odor.

特開2006−181450号公報JP 2006-181450 A 特開2003−334548号公報JP 2003-334548 A 特開2004−121962号公報JP 2004-121962 A 特開2005−245817号公報JP 2005-245817 A 特開2007−105667号公報JP 2007-105667 A

したがって、本発明は、食品又は飲料の製造装置に付着したフレーバー臭を効率よく除去することのできる脱臭洗浄方法、並びに脱臭洗浄機構及びそれを具備する食品又は飲料の製造装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a deodorization cleaning method capable of efficiently removing a flavor odor adhering to a food or beverage production apparatus, a deodorization cleaning mechanism, and a food or beverage production apparatus including the same. And

本発明者は、ナノバブルの装置洗浄への適用を詳細に検討したところ、マイクロバブルを含む液体に特定の高周波領域の超音波振動を付与して得られたナノバブルを含む液体を食品等の製造装置に循環させると、製造装置の配管連結部に使用されているパッキン等のシール部材に付着したフレーバー臭が効率よく除去されることを見出し、本発明を完成するに至った。   The present inventor has examined in detail the application of nanobubbles to apparatus cleaning. As a result, the liquid containing nanobubbles obtained by applying ultrasonic vibrations in a specific high frequency region to the liquid containing microbubbles is used as a manufacturing apparatus for foods or the like. It was found that the flavor odor adhering to the seal member such as packing used in the pipe connecting part of the manufacturing apparatus can be efficiently removed, and the present invention has been completed.

本発明は、マイクロバブルを含む液体に1〜3.5MHzの超音波振動を付与して、生成したナノバブルを含む液体を製造装置の配管内に循環させて脱臭洗浄する、食品又は飲料の製造装置の脱臭洗浄方法を提供するものである。   The present invention provides a food or beverage production apparatus that applies ultrasonic vibration of 1 to 3.5 MHz to a liquid containing microbubbles and circulates the produced liquid containing nanobubbles in a pipe of the production apparatus to perform deodorization cleaning. A deodorizing cleaning method is provided.

本発明はまた、液体中にマイクロバブルを生成させるマイクロバブル生成手段と、マイクロバブルを含む液体に超音波振動を与える超音波発振手段と、超音波振動により生成したナノバブルを含む液体を被脱臭洗浄物に供給する供給手段とを備え、超音波振動を与える振動子が圧電素子である、脱臭洗浄機構を提供するものである。
本発明は更に、上記した脱臭洗浄機構を具備する、食品又は飲料の製造装置を提供するものである。
The present invention also provides a microbubble generating means for generating microbubbles in the liquid, an ultrasonic oscillating means for applying ultrasonic vibration to the liquid containing the microbubble, and a liquid containing nanobubbles generated by the ultrasonic vibration for deodorizing and cleaning. A deodorizing and cleaning mechanism is provided, in which a vibrator for supplying ultrasonic vibration is a piezoelectric element.
The present invention further provides a food or beverage production apparatus comprising the deodorizing and washing mechanism described above.

本発明の脱臭洗浄方法においては、マイクロバブルを含む液体に特定の高周波領域の超音波振動を付与するために、従来よりも簡便にナノバブルを生成させることができる。このナノバブルは被脱臭洗浄物と接触しやすく、しかもキャビテーションが発生し難いため、生成したナノバブルを洗浄のみに有効に利用することが可能になる。その結果、従来脱臭することが困難であったフレーバー臭を容易に除去することができ、更に被脱臭洗浄物が複雑な形状でも、シール部材が嵌挿された配管のような狭間部であってもその箇所にナノバブルが到達して脱臭洗浄することが可能になる。
また、本発明によれば、このようなナノバブルを容易に生成し得る脱臭洗浄機構及びそれを具備する食品又は飲料の製造装置が提供される。
In the deodorizing and cleaning method of the present invention, nanobubbles can be generated more easily than in the past in order to impart ultrasonic vibration in a specific high-frequency region to a liquid containing microbubbles. Since the nanobubbles easily come into contact with the object to be deodorized and cavitation hardly occurs, the generated nanobubbles can be effectively used only for cleaning. As a result, it is possible to easily remove the flavor odor that has been difficult to deodorize in the past, and even if the object to be deodorized has a complicated shape, it is a narrow part like a pipe into which a seal member is inserted. However, nanobubbles can reach the spot and deodorizing and cleaning can be performed.
Moreover, according to this invention, the deodorizing washing | cleaning mechanism which can produce | generate such a nano bubble easily, and the manufacturing apparatus of a foodstuff or a drink provided with the same are provided.

以下、添付図面を参照しながら本発明の好適な実施形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付した。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are assigned to the same elements.

本発明の食品又は飲料の製造装置の脱臭洗浄方法は、マイクロバブルを含む液体に1〜3.5MHzの超音波振動を付与してナノバブルを含む液体を製造装置内に循環させて脱臭洗浄することを特徴とする。ここで、本明細書において、マイクロバブルとはマイクロメートルオーダーの微細気泡をいい、ナノバブルとはナノメートルオーダーの超微細気泡をいう。   The deodorization cleaning method of the food or beverage manufacturing apparatus of the present invention is to deodorize and clean the liquid containing microbubbles by applying ultrasonic vibration of 1 to 3.5 MHz to circulate the liquid containing nanobubbles in the manufacturing apparatus. It is characterized by. Here, in the present specification, microbubbles refer to microbubbles in the micrometer order, and nanobubbles refer to ultrafine bubbles in the nanometer order.

図1は、上記した脱臭洗浄方法に適用可能な脱臭洗浄機構の一実施形態を示す模式図である。脱臭洗浄機構10は、マイクロバブル生成手段1と、超音波発振手段2と、配管L2(供給手段)とから構成されている。マイクロバブル生成手段1は、マイクロバブルを含む液体を生成する。その後、マイクロバブルを含む液体は、マイクロバブル生成手段1に連結した配管L1により超音波発振手段2へ移送される。超音波発振手段2には超音波振動子3が装着されており、超音波発振手段2はマイクロバブルを含む液体に特定の高周波領域の超音波振動を付与してナノバブルを生成させる。そして、ナノバブルを含む液体は配管L2(供給手段)により食品又は飲料の製造装置等の被脱臭洗浄物に供給される。   FIG. 1 is a schematic view showing an embodiment of a deodorization cleaning mechanism applicable to the above-described deodorization cleaning method. The deodorizing and cleaning mechanism 10 includes a microbubble generation unit 1, an ultrasonic oscillation unit 2, and a pipe L2 (supply unit). The microbubble generating means 1 generates a liquid containing microbubbles. Thereafter, the liquid containing the microbubbles is transferred to the ultrasonic wave oscillating means 2 through the pipe L1 connected to the microbubble generating means 1. An ultrasonic oscillator 3 is attached to the ultrasonic oscillating means 2, and the ultrasonic oscillating means 2 imparts ultrasonic vibrations in a specific high frequency region to a liquid containing microbubbles to generate nanobubbles. And the liquid containing a nano bubble is supplied to the to-be-deodorized washing | cleaning objects, such as a manufacturing apparatus of a foodstuff or a drink, by the piping L2 (supply means).

マイクロバブル生成手段1としては、例えば、液体の流動を伴う場合には、旋回液流方式、スタティックミキサー方式、エジェクター方式、キャビテーション方式、ベンチュリー方式、加圧溶解方式等が例示され、液の流動を伴わない場合には、細孔方式、回転方式、蒸気凝縮方式、電気分解方式等が例示される。これらの中で、キャビテーション方式、加圧溶解方式が、所望の大きさのマイクロバブルを簡便に生成できる点で好ましい。例えば、加圧溶解方式を採用する場合には、貯留槽に収容された液体にミキシングポンプにより気体を圧送して加圧溶解させることで、液体中にマイクロバブルを生成することができる。気体としては、例えば、窒素、アルゴン等の不活性ガス、除菌エアー、オゾン又はこれらの混合気体を使用することができる。   Examples of the microbubble generating means 1 include a swirling liquid flow method, a static mixer method, an ejector method, a cavitation method, a venturi method, a pressure dissolution method, and the like when liquid flow is involved. When not accompanied, a pore system, a rotation system, a vapor condensation system, an electrolysis system, etc. are illustrated. Among these, the cavitation method and the pressure dissolution method are preferable in that a microbubble having a desired size can be easily generated. For example, when the pressure dissolution method is adopted, microbubbles can be generated in the liquid by pressure-dissolving the gas contained in the storage tank by pumping a gas with a mixing pump. As the gas, for example, an inert gas such as nitrogen or argon, sterilizing air, ozone, or a mixed gas thereof can be used.

生成したマイクロバブルの粒径分布は、10〜80μmが好ましく、更には10〜60μm、特に10〜50μmが好ましい。マイクロバブルの粒径をこのような範囲内とすることで、微細な粒径のナノバブルを容易に生成することができる。なお、マイクロバブルの粒径は、動的光散乱法により測定することができる。   The particle size distribution of the generated microbubbles is preferably 10 to 80 μm, more preferably 10 to 60 μm, and particularly preferably 10 to 50 μm. By setting the particle size of the microbubbles within such a range, it is possible to easily generate nanobubbles having a fine particle size. The particle size of the microbubbles can be measured by a dynamic light scattering method.

次いで、超音波発振手段2によりマイクロバブルを含む液体に1〜3.5MHzの超音波振動を付与し、マイクロバブルを圧壊して液体中にナノバブルを生成させる。なお、ナノバブルが生成した液体中には、マイクロバブルが含まれていてもよい。
超音波発振手段2としては、特定の高周波領域の超音波を発振できれば特に限定されるものではないが、超音波振動子として圧電素子を使用するのが好ましい。圧電素子としては、例えば、クオーツ等の単結晶、圧電セラミック、ポリフッ化ビニリデン等の高分子が知られているが、本発明においては圧電セラミックを用いるのが、特定の高周波領域の超音波を簡便に発振できる点で好ましい。圧電セラミックとしては、チタン酸ジルコン酸鉛(PZT、Pb(Zi,Ti)O3)、チタン酸バリウム(BaTiO3)が好ましく、特にチタン酸ジルコン酸鉛が好ましい。
Next, ultrasonic vibration of 1 to 3.5 MHz is applied to the liquid containing microbubbles by the ultrasonic oscillating means 2, and the microbubbles are crushed to generate nanobubbles in the liquid. Note that the liquid in which the nanobubbles are generated may contain microbubbles.
The ultrasonic oscillating means 2 is not particularly limited as long as it can oscillate ultrasonic waves in a specific high frequency region, but it is preferable to use a piezoelectric element as an ultrasonic vibrator. As piezoelectric elements, for example, single crystals such as quartz, polymers such as piezoelectric ceramics and polyvinylidene fluoride are known, but in the present invention, piezoelectric ceramics are used to simplify ultrasonic waves in a specific high frequency region. It is preferable in that it can oscillate. As the piezoelectric ceramic, lead zirconate titanate (PZT, Pb (Zi, Ti) O 3 ) and barium titanate (BaTiO 3 ) are preferable, and lead zirconate titanate is particularly preferable.

図2に超音波振動子を駆動する駆動回路の一例を示すが、この駆動回路は、電力増幅器4と、トランスTと、整合部5と、超音波振動子3と、電圧制御発振器6とから構成されている。   FIG. 2 shows an example of a drive circuit that drives an ultrasonic transducer. This drive circuit includes a power amplifier 4, a transformer T, a matching unit 5, an ultrasonic transducer 3, and a voltage controlled oscillator 6. It is configured.

電力増幅部4は、トランスTの一次巻線を介して直列に接続された電力用トランジスタQ1,Q2を有している。電力用トランジスタQ1,Q2は、電圧制御発振器6からの信号の振幅を増幅して増幅された信号を、トランスTを介して整合部5に供給する。整合部5は、整合用インピーダンス素子であるコイルLmとコンデンサCmとから構成され、トランスTからの信号を超音波振動子3に供給する。抵抗Rは、超音波振動子3に直列に挿入され、低抵抗となっている。抵抗Rを流れる電流は、電流信号として検出される。また、超音波振動子3の一端の電圧は、電圧信号として検出される。電圧制御発振器6は、検出された電圧に応じて電圧制御発振器6の信号の周波数を制御し、所望の高周波数の超音波を発振する。   The power amplifying unit 4 includes power transistors Q1 and Q2 connected in series via the primary winding of the transformer T. The power transistors Q <b> 1 and Q <b> 2 amplify the amplitude of the signal from the voltage controlled oscillator 6 and supply the amplified signal to the matching unit 5 through the transformer T. The matching unit 5 includes a coil Lm, which is a matching impedance element, and a capacitor Cm, and supplies a signal from the transformer T to the ultrasonic transducer 3. The resistor R is inserted in series with the ultrasonic transducer 3 and has a low resistance. The current flowing through the resistor R is detected as a current signal. The voltage at one end of the ultrasonic transducer 3 is detected as a voltage signal. The voltage controlled oscillator 6 controls the frequency of the signal of the voltage controlled oscillator 6 according to the detected voltage, and oscillates a desired high frequency ultrasonic wave.

超音波振動の周波数は1〜3.5MHzであるが、1.0超〜3MHzが好ましく、特に1.0超〜2.5MHzが好ましい。1MHz以上の周波数とすることで、フレーバー臭の除去効果が十分に得られ、またキャビテーション発生により製造装置に侵食等の悪影響を及ぼすことを防止しやすい。他方、3.5MHz以下とすることで、洗浄装置の耐熱性、耐圧性や、超音波振動子の耐久性を確保しやすい。
振動周波数は、例えば、超音波振動子の厚みを変更することで調整することができ、具体的には、PZTの場合、2〜0.5mm程度の厚みで周波数1〜3.5MHzを発振させることができる。なお、周波数が高い程、振動子の厚みは薄くなる。
The frequency of the ultrasonic vibration is 1 to 3.5 MHz, preferably more than 1.0 to 3 MHz, and more preferably more than 1.0 to 2.5 MHz. By setting the frequency to 1 MHz or more, a sufficient flavor odor removal effect can be obtained, and it is easy to prevent adverse effects such as erosion on the manufacturing apparatus due to the occurrence of cavitation. On the other hand, by setting the frequency to 3.5 MHz or less, it is easy to ensure the heat resistance and pressure resistance of the cleaning device and the durability of the ultrasonic vibrator.
The vibration frequency can be adjusted, for example, by changing the thickness of the ultrasonic vibrator. Specifically, in the case of PZT, a frequency of 1 to 3.5 MHz is oscillated with a thickness of about 2 to 0.5 mm. be able to. Note that the higher the frequency, the thinner the vibrator.

超音波振動子の出力は、5〜50Wが好ましく、特に15〜25Wが好ましい。出力が低すぎると、必要な振幅が得難くなる傾向にあり、他方高すぎると、圧電素子を破損しやすくなる傾向にある。   The output of the ultrasonic transducer is preferably 5 to 50 W, and particularly preferably 15 to 25 W. If the output is too low, the required amplitude tends to be difficult to obtain, and if it is too high, the piezoelectric element tends to be damaged.

生成したナノバブルの粒径分布は、3〜3000nmが好ましく、更には10〜500nm、特に10〜200nmが好ましい。この状態になると、外観上、透明な液体となる。なお、ナノバブルの粒径は、動的光散乱法により測定することができる。   The particle size distribution of the generated nanobubbles is preferably 3 to 3000 nm, more preferably 10 to 500 nm, and particularly preferably 10 to 200 nm. In this state, it becomes a transparent liquid in appearance. Note that the particle size of the nanobubbles can be measured by a dynamic light scattering method.

液体としては、脱臭洗浄の対象が食品又は飲料の製造装置であることから、イオン交換水、水道水、井水等の水が好適に使用される。また、液体は、酸性洗浄剤及びアルカリ性洗浄剤のうちの少なくとも1種を含有していてもよい。これら洗浄剤の添加時期は適宜決定することができるが、均一な分散状態を得る観点から、ナノバブル生成後に添加するのが好ましい。酸性洗浄剤はスケール等の異物の除去に効果的であり、他方アルカリ性洗浄剤はフレーバー臭の除去に効果的である。本発明においては、アルカリ性洗浄剤と酸性洗浄剤とを併用するのが特に好ましい。この場合、ナノバブルを含む液体に酸性洗浄剤を添加して脱臭洗浄した後に、ナノバブルを含む液体を新たに調製し、これにアルカリ性洗浄剤を添加して脱臭洗浄するのが好ましい。また、アルカリ洗浄剤に、低発泡性塩素系添加剤を添加すると、より脱臭洗浄効果が向上する。   Since the object of deodorizing and washing is a food or beverage production apparatus, water such as ion exchange water, tap water, and well water is preferably used as the liquid. Further, the liquid may contain at least one of an acidic cleaning agent and an alkaline cleaning agent. Although the addition time of these cleaning agents can be determined as appropriate, it is preferably added after the generation of nanobubbles from the viewpoint of obtaining a uniform dispersion state. Acidic cleaning agents are effective in removing foreign matters such as scales, while alkaline cleaning agents are effective in removing flavor odors. In the present invention, it is particularly preferable to use an alkaline detergent and an acidic detergent in combination. In this case, it is preferable to add an acidic cleaning agent to the liquid containing nanobubbles and deodorize and wash it, then newly prepare a liquid containing nanobubbles, add an alkaline cleaning agent thereto, and deodorize and wash. Moreover, when a low foaming chlorine additive is added to the alkaline cleaner, the deodorizing and cleaning effect is further improved.

各洗浄剤の濃度は適宜決定することができるが、液体の全質量を基準として、0.1〜5質量%が好ましく、特に0.5〜2.0質量%が好ましい。濃度が低くすぎると脱臭洗浄効果が不十分となる傾向にあり、他方高すぎると腐食等により製造装置の損傷が発生する虞がある。また、酸性洗浄剤を添加した液体のpH(25℃)は1.0〜4.0が好ましく、アルカリ性洗浄剤を添加した液体のpH(25℃)は10〜13.5が好ましい。
酸性洗浄剤としては、硝酸系、リン酸系のもの等が挙げられ、アルカリ性洗浄剤としては次亜塩素系のもの等が挙げられる。これら洗浄剤は、商業的に入手することができ、酸性洗浄剤としては、例えば、エクリンAWA、エクリン11号、エクリン12号LL、エクリン60号、エクリン61号、アジット10(以上、商品名、理工協産(株)製)が挙げられ、アルカリ性洗浄剤としては、エクリンCP−2・8、エクリンCP−9、エクリン110号F、エクリン120号、エクリン130号MP、エクリン180号(以上、商品名、理工協産(株)製)が挙げられる。
Although the density | concentration of each cleaning agent can be determined suitably, 0.1-5 mass% is preferable on the basis of the total mass of a liquid, and 0.5-2.0 mass% is especially preferable. If the concentration is too low, the deodorizing and cleaning effect tends to be insufficient. On the other hand, if the concentration is too high, the production apparatus may be damaged due to corrosion or the like. The pH (25 ° C.) of the liquid to which the acidic detergent is added is preferably 1.0 to 4.0, and the pH (25 ° C.) of the liquid to which the alkaline detergent is added is preferably 10 to 13.5.
Examples of the acidic cleaning agent include nitric acid and phosphoric acid, and examples of the alkaline cleaning agent include hypochlorous acid. These detergents can be obtained commercially. Examples of acidic detergents include Ecline AWA, Ecrine 11, Ecline 12 LL, Ecrine 60, Ecrine 61, Agit 10 (above, trade names, Rikkyo Kyosan Co., Ltd.), and alkaline detergents include eccrine CP-2,8, eccrine CP-9, eccrine 110 F, eccrine 120, eccrine 130 MP, eccrine 180 (or more, Product name, manufactured by Riko Co., Ltd.).

更に、液体には、低発泡性塩素系添加剤等の添加剤を配合してもよく、例えば、TA−100、TA−82(以上、商品名、理工協産(株)製)が挙げられる。   Furthermore, additives such as a low foaming chlorine-based additive may be added to the liquid, and examples thereof include TA-100 and TA-82 (above, trade names, manufactured by Riko Co., Ltd.). .

次いで、ナノバブルを含む液体は、脱臭洗浄機構の配管L2(供給手段)を介して食品又は飲料の製造装置(被脱臭洗浄物)に送給される。
図3は、上記した脱臭洗浄機構を具備する、本発明の食品又は飲料の製造装置の一実施形態を示す模式図である。食品又は飲料の製造装置100(図3)は、配管L2を介して脱臭洗浄機構10と連結されている。製造装置100は、回収された液体を再び製造装置内に循環させるための配管L3と、回収されたナノバブルを有する液体を系外に排出するための配管L4とを備えている。
製造装置100としては、例えば、食品又は飲料を製造するための攪拌槽と、この攪拌槽と配管を介して連結された、食品又は飲料を容器詰するための充填機を備えるものが例示される。また、製造装置100は、攪拌槽と配管、充填機と配管及び配管同士の各連結部に、パッキン、O−リング等のシール部材が嵌挿されている。
Next, the liquid containing nanobubbles is supplied to a food or beverage manufacturing apparatus (deodorized cleaning object) via the pipe L2 (supplying unit) of the deodorizing cleaning mechanism.
FIG. 3 is a schematic view showing an embodiment of the food or beverage production apparatus of the present invention having the above-described deodorizing and cleaning mechanism. The food or beverage manufacturing apparatus 100 (FIG. 3) is connected to the deodorizing and cleaning mechanism 10 via a pipe L2. The manufacturing apparatus 100 includes a pipe L3 for circulating the recovered liquid again into the manufacturing apparatus, and a pipe L4 for discharging the recovered liquid having nanobubbles out of the system.
Examples of the manufacturing apparatus 100 include a stirring tank for manufacturing a food or beverage and a filling machine connected to the stirring tank through a pipe for packing a food or beverage. . Further, in the manufacturing apparatus 100, seal members such as packing and O-rings are fitted and inserted into the connecting portions between the stirring tank and the pipe, the filling machine, the pipe, and the pipes.

ナノバブルを含む液体は、配管L3を介して製造装置100内を繰り返し循環させるのが好ましい。また、回収したナノバブルを含む液体をマイクロバブル生成手段1に送給し液体中にマイクロバブルを再度生成させ、配管L1を介して超音波発振手段2に送給しナノバブルを再度生成させた後、ナノバブルを含む液体を配管L2を介して製造装置100へ供給してもよい。更に、回収したナノバブルを含む液体を配管L4を介して系外に排出し、マイクロバブル生成手段1及び超音波発振手段2(脱臭洗浄機構10)によりナノバブルを含む液体を新たに調製し配管L2を介して製造装置100へ供給してもよい。   It is preferable that the liquid containing nanobubbles is repeatedly circulated in the manufacturing apparatus 100 through the pipe L3. In addition, after the liquid containing the collected nanobubbles is supplied to the microbubble generating unit 1 to generate the microbubbles again in the liquid, the microbubbles are supplied to the ultrasonic oscillation unit 2 via the pipe L1 to generate the nanobubbles again. You may supply the liquid containing a nano bubble to the manufacturing apparatus 100 via the piping L2. Further, the collected liquid containing nanobubbles is discharged out of the system through the pipe L4, and a liquid containing nanobubbles is newly prepared by the microbubble generating means 1 and the ultrasonic wave oscillating means 2 (deodorizing and cleaning mechanism 10). It may be supplied to the manufacturing apparatus 100 via

ナノバブルを含む液体の循環時間は、製造装置や配管の容量により一様ではないが、30〜180分が好ましく、特に40〜60分が好ましい。また、ナノバブルを含む液体の循環温度は、使用する液体の沸点以下が好ましく、特に常温〜80℃が好ましい。
ナノバブルを含む液体の循環流量は、製造装置や配管の容量により適宜決定することができるが、例えば、被脱臭洗浄物の容量が10Lである場合、8〜20L/minが好ましく、10〜15L/minが好ましい。
The circulation time of the liquid containing nanobubbles is not uniform depending on the capacity of the production apparatus and piping, but is preferably 30 to 180 minutes, and particularly preferably 40 to 60 minutes. Further, the circulation temperature of the liquid containing nanobubbles is preferably not higher than the boiling point of the liquid to be used, particularly preferably from room temperature to 80 ° C.
The circulation flow rate of the liquid containing nanobubbles can be determined as appropriate depending on the capacity of the manufacturing apparatus and piping. For example, when the capacity of the deodorized cleaning product is 10 L, 8 to 20 L / min is preferable, and 10 to 15 L / min. min is preferred.

また、製造装置100の脱臭洗浄に酸性洗浄剤及び/又はアルカリ性洗浄剤を使用した場合には、各洗浄剤による脱臭洗浄後、系内を中和するのが好ましい。中和方法としては、例えば、酸性洗浄剤による脱臭洗浄後、当該酸性洗浄剤と当量のアルカリ洗浄剤を含み、かつナノバブルを含む液体を製造装置内に循環させる方法が挙げられる。なお、アルカリ性洗浄剤による脱臭洗浄後においては当該アルカリ性洗浄剤と当量の酸洗浄剤を使用する。
次いで、マイクロバブル生成手段1及び超音波発振手段2(脱臭洗浄機構10)によりナノバブルを含む水を調製し、この水を配管L2を介して製造装置100へ循環洗浄するのが好ましい。そして、更に必要により系内を水で洗浄した後、エアブローするのが好ましい。
Moreover, when an acidic cleaning agent and / or an alkaline cleaning agent is used for the deodorizing cleaning of the manufacturing apparatus 100, it is preferable to neutralize the system after the deodorizing cleaning with each cleaning agent. Examples of the neutralization method include a method of circulating a liquid containing nanobubbles in the production apparatus that contains an alkaline cleaner equivalent to the acidic cleaner after deodorizing and cleaning with the acidic cleaner. In addition, after deodorizing and cleaning with an alkaline cleaner, an acid cleaner equivalent to the alkaline cleaner is used.
Next, it is preferable that water containing nanobubbles is prepared by the microbubble generating means 1 and the ultrasonic oscillating means 2 (deodorizing and cleaning mechanism 10), and this water is circulated and washed to the manufacturing apparatus 100 via the pipe L2. Further, it is preferable to air blow after washing the system with water if necessary.

このような工程により本発明の脱臭洗浄が実施されるが、500kHz未満の低周波領域よりも1.0〜3.5MHzの高周波領域で生成した超微細気泡を用いる洗浄方法の方が高い脱臭効果が得られる。これは、高周波領域では定在波が密になる部分が低周波領域よりも多く、その結果液体中に分散したマイクロバブルを素早くナノバブル化することが可能であり、しかも低周波領域よりも微細な気泡を生成できることによるものと推察される。そのため、被脱臭洗浄物が複雑な形状を有していても、またシール部材が嵌挿された配管のような狭間部であっても超微細気泡が到達して脱臭洗浄することが可能になる。   Although the deodorization cleaning of the present invention is carried out by such a process, the cleaning method using the ultrafine bubbles generated in the high frequency region of 1.0 to 3.5 MHz is higher in the deodorizing effect than the low frequency region of less than 500 kHz. Is obtained. This is because in the high frequency region, the standing waves are denser than in the low frequency region, and as a result, the microbubbles dispersed in the liquid can be rapidly converted into nanobubbles, and more minute than the low frequency region. This is presumably due to the ability to generate bubbles. Therefore, even if the object to be deodorized has a complicated shape, or even in a narrow space such as a pipe into which a seal member is inserted, ultrafine bubbles can reach and be deodorized and cleaned. .

本発明において製造に供される食品としては、例えば、液体食品、レトルト食品のようなゲル状食品が挙げられる。また、飲料としては、紅茶等の茶系飲料、スポーツ飲料、アイソトニック飲料、ニアウォーター等の非茶系飲料等が例示される。本発明においては、マスカット、グレープフルーツ等の柑橘類のフレーバーが配合された食品又は飲料が好適に使用され、これらのフレーバー臭を効果的に除去することができる。   Examples of the food provided for production in the present invention include gel foods such as liquid foods and retort foods. Examples of the beverage include tea-based beverages such as black tea, sports beverages, isotonic beverages, and non-tea-based beverages such as near water. In the present invention, foods or beverages containing citrus flavors such as muscat and grapefruit are preferably used, and these flavor odors can be effectively removed.

(実施例1)
図3と同様の装置構成を有する飲料の製造装置100の配管を被試験体とし、これに着香して以下の手順により脱臭洗浄を実施した。
Example 1
A pipe of a beverage production apparatus 100 having the same apparatus configuration as that shown in FIG. 3 was used as a test object, and this was flavored and deodorized and washed according to the following procedure.

1)着香
マスカットフレーバー入り飲料(商品名;ヘルシアウオータマスカット風味、花王(株)製)14kgを容量20Lのバッファータンクに投入し、これを製造装置の配管(総容量10L)に室温下8L/minの流速で供給して、配管内を充液した。その後45分間、飲料を36回循環させて回収した。次いで、純水43Lを配管に供給し、回収した。
1) Flavoring A muscat flavored beverage (trade name; Helcia Water Muscat Flavor, manufactured by Kao Co., Ltd.) 14 kg was put into a 20 L buffer tank, and this was put into a pipe (total capacity 10 L) of the manufacturing apparatus at room temperature at 8 L / The pipe was filled at a flow rate of min. Thereafter, the beverage was collected by circulating 36 times for 45 minutes. Subsequently, 43 L of pure water was supplied to the pipe and recovered.

2)酸洗浄(pH(25℃)1.0)
純水20Lをバッファータンクに投入し、これを8L/minの流速で配管に供給して配管内を充液した。次いで、配管内に純水を循環させた状態で、加圧溶解方式によりマイクロバブルを生成させた後、マイクロバブルを含む純水に、周波数2.4MHz、出力20Wの条件で圧電素子(PZT、厚み0.88mm)より超音波振動を付与してナノバブルを生成させた。次いで、ナノバブルを含む純水に酸性洗浄剤(エクリン60号硝酸系、理工協産社製)2質量%を投入した後、45分間36回循環させて回収した。
2) Acid cleaning (pH (25 ° C) 1.0)
20 L of pure water was put into the buffer tank, and this was supplied to the pipe at a flow rate of 8 L / min to fill the pipe. Next, microbubbles are generated by a pressure dissolution method in a state where pure water is circulated in the pipe, and then the piezoelectric element (PZT, PZT, Nanobubbles were generated by applying ultrasonic vibration from a thickness of 0.88 mm. Next, after adding 2% by mass of an acidic detergent (Ecrine No. 60 nitric acid, manufactured by Riko Kyosan Co., Ltd.) to pure water containing nanobubbles, it was collected by circulating 36 times for 45 minutes.

3)中和・リンス
酸洗浄後、酸性洗浄剤と当量の中和用アルカリ剤(商品名;エクリン110号FF、理工協産社製)0.4Lをバッファータンクに投入し、配管に供給して配管内を充液し循環させた。次いで、中和状況を確認後、回収した。次いで、純水43Lを配管に供給し、回収した。
3) Neutralization / Rinse After acid washing, 0.4L of neutralizing alkaline agent (trade name; Ecclin 110 FF, manufactured by Riko Kyosan Co., Ltd.) equivalent to the acidic detergent is put into the buffer tank and supplied to the piping. The pipe was filled and circulated. Then, after the neutralization status was confirmed, it was collected. Subsequently, 43 L of pure water was supplied to the pipe and recovered.

4)アルカリ洗浄(pH(25℃) 13.0)
純水20Lをバッファータンクに投入し、これを8L/minの流速で配管に供給して配管内を充液した。次いで、配管内に純水を循環させた状態で、加圧溶解方式によりマイクロバブルを生成させた後、マイクロバブルを含む純水に、周波数2.4MHz、出力20Wの条件で圧電素子(PZT、厚み0.88mm)より超音波振動を付与してナノバブルを生成させた。次いで、ナノバブルを含む純水にアルカリ性洗浄剤(エクリン110号FF、理工協産社製)2質量%と、添加剤として塩素化アルカリ剤(TA−100、理工協産社製)0.7質量%を投入した後、45分間36回循環させて回収した。
4) Alkaline washing (pH (25 ° C) 13.0)
20 L of pure water was put into the buffer tank, and this was supplied to the pipe at a flow rate of 8 L / min to fill the pipe. Next, microbubbles are generated by a pressure dissolution method in a state where pure water is circulated in the pipe, and then the piezoelectric element (PZT, PZT, Nanobubbles were generated by applying ultrasonic vibration from a thickness of 0.88 mm. Next, 2% by mass of alkaline detergent (Ecline 110 FF, manufactured by Riko Kyosan Co., Ltd.) in pure water containing nanobubbles and 0.7 mass of chlorinated alkaline agent (TA-100, manufactured by Riko Kyosan Co., Ltd.) as additives % Was added and then recovered by circulating 36 times for 45 minutes.

5)中和・リンス
アルカリ洗浄後、アルカリ性洗浄剤と当量の中和用酸剤(商品名;エクリン12号LL、理工協産社製)0.4Lをバッファータンクに投入し、配管に供給して配管内を充液し循環させた。次いで、中和状況を確認後、回収した。次いで、純水43Lを配管に供給し、回収した。
5) Neutralization / Rinse After alkaline cleaning, 0.4L of neutralizing acid agent equivalent to the alkaline cleaning agent (trade name; Eclin 12 No. LL, manufactured by Riko Kyosan Co., Ltd.) is charged into the buffer tank and supplied to the piping. The pipe was filled and circulated. Then, after the neutralization status was confirmed, it was collected. Subsequently, 43 L of pure water was supplied to the pipe and recovered.

6)純水循環洗浄
25℃で純水20Lをバッファータンクに投入し、これを8L/minの流速で配管に供給して配管内を充液した。次いで、配管内に純水を循環させた状態で、加圧溶解方式によりマイクロバブルを生成させた後、周波数2.4MHz、出力20Wの条件で圧電素子(PZT、厚み0.88mm)より超音波振動を付与してナノバブルを生成させた。次いで、ナノバブルを含む純水を45分間36回循環させて回収した。
6) Pure water circulation cleaning At 25 ° C., 20 L of pure water was put into the buffer tank, and this was supplied to the pipe at a flow rate of 8 L / min to fill the inside of the pipe. Next, after pure water is circulated in the pipe, microbubbles are generated by a pressure dissolution method, and then ultrasonic waves are generated from a piezoelectric element (PZT, thickness 0.88 mm) under conditions of a frequency of 2.4 MHz and an output of 20 W. Vibration was applied to generate nanobubbles. Subsequently, the pure water containing nanobubbles was collected by circulating 36 times for 45 minutes.

7)純水ワンウェイ洗浄
純水20Lをバッファータンクに投入し、これを8L/minの流速で配管に供給して配管内を充液した。次いで、配管内に純水を循環させた状態で、加圧溶解方式によりマイクロバブルを生成させた後、マイクロバブルを含む純水に、周波数2.4MHz、出力20Wの条件で圧電素子(PZT、厚み0.88mm)より超音波振動を付与してナノバブルを生成させた。次いで、ナノバブルを含む純水を1回循環させて回収した。
7) Pure water one-way cleaning 20 L of pure water was put into a buffer tank, and this was supplied to the pipe at a flow rate of 8 L / min to charge the inside of the pipe. Next, microbubbles are generated by a pressure dissolution method in a state where pure water is circulated in the pipe, and then the piezoelectric element (PZT, PZT, Nanobubbles were generated by applying ultrasonic vibration from a thickness of 0.88 mm. Subsequently, the pure water containing nanobubbles was circulated once and collected.

8)ブロー
配管内を15分エアブローし、洗浄水をサンプリングした。
8) Blow The inside of the pipe was air blown for 15 minutes, and the cleaning water was sampled.

(実施例2)
マスカットフレーバー20倍希釈液品20mLで100mLガラスビーカを着香した。次いで、マイクロナノバブルを含む純水洗浄液に周波数1.0MHzの超音波振動を圧電素子(PZT、厚み2.04mm)より付与してナノバブルを生成させ、ナノバブルを含む純水100mLでガラスビーカを2回置換洗浄した後、洗浄水をサンプリングした。
(Example 2)
A 100 mL glass beaker was flavored with 20 mL of a 20-fold diluted product of Muscat flavor. Next, ultrasonic vibration with a frequency of 1.0 MHz is applied from a piezoelectric element (PZT, thickness 2.04 mm) to a pure water cleaning liquid containing micro-nano bubbles to generate nano bubbles, and a glass beaker is made twice with 100 mL of pure water containing nano bubbles. After the replacement cleaning, the cleaning water was sampled.

(実施例3)
周波数3.0MHzの超音波振動を圧電素子(PZT、厚み0.7mm)より付与したこと以外は、実施例2と同様の方法により洗浄を行い、洗浄水をサンプリングした。
(Example 3)
Cleaning was performed by the same method as in Example 2 except that ultrasonic vibration with a frequency of 3.0 MHz was applied from a piezoelectric element (PZT, thickness 0.7 mm), and the cleaning water was sampled.

(実施例4)
周波数3.5MHzの超音波振動を圧電素子(PZT、厚み0.57mm)より付与したこと以外は、実施例2と同様の方法により洗浄を行い、洗浄水をサンプリングした。
Example 4
Cleaning was performed by the same method as in Example 2 except that ultrasonic vibration with a frequency of 3.5 MHz was applied from a piezoelectric element (PZT, thickness 0.57 mm), and the cleaning water was sampled.

(実施例5)
純水循環洗浄を80℃の純水を用いて行ったこと以外は、実施例1と同様の方法により脱臭洗浄を行い、洗浄水をサンプリングした。
(Example 5)
Deodorizing cleaning was performed in the same manner as in Example 1 except that pure water circulation cleaning was performed using 80 ° C. pure water, and the cleaning water was sampled.

(実施例6)
酸洗浄及びアルカリ洗浄を行わなかったこと以外は、実施例1と同様の方法により脱臭洗浄を行い、洗浄水をサンプリングした。
(Example 6)
Deodorization cleaning was performed in the same manner as in Example 1 except that acid cleaning and alkali cleaning were not performed, and cleaning water was sampled.

(比較例1)
実施例1における工程2)、4)、6)及び7)において、マイクロバブルを含む純水に周波数2.4MHz、出力20Wの条件で圧電素子(PZT、厚み0.88mm)より超音波振動を付与しなかったこと以外は、実施例1と同様の方法により脱臭洗浄を行い、洗浄水をサンプリングした。
(Comparative Example 1)
In steps 2), 4), 6) and 7) in Example 1, ultrasonic vibration was applied to pure water containing microbubbles from a piezoelectric element (PZT, thickness 0.88 mm) under the conditions of a frequency of 2.4 MHz and an output of 20 W. Deodorization cleaning was performed in the same manner as in Example 1 except that no cleaning was performed, and cleaning water was sampled.

(比較例2)
周波数50kHzの超音波振動を圧電素子(厚み2.0mmのPZTを金属で挟み周波数調整したもの)を用いたこと以外は、実施例2と同様の方法により洗浄を行い、洗浄水をサンプリングした。
(Comparative Example 2)
Cleaning was carried out in the same manner as in Example 2 except that a piezoelectric element (frequency adjusted by sandwiching PZT having a thickness of 2.0 mm with metal) was used for ultrasonic vibration with a frequency of 50 kHz, and cleaning water was sampled.

(比較例3)
周波数500kHzの超音波振動を圧電素子(PZT、厚み4.2mm)を用いたこと以外は、実施例2と同様の方法により洗浄を行い、洗浄水をサンプリングした。
(Comparative Example 3)
Cleaning was performed in the same manner as in Example 2 except that a piezoelectric element (PZT, thickness 4.2 mm) was used for ultrasonic vibration with a frequency of 500 kHz, and cleaning water was sampled.

(官能評価)
各実施例及び比較例でサンプリングした洗浄水について、3名のパネラーによりフレーバー臭の有無を下記の基準で評価した。実施例1、5、6及び比較例1の結果を表1に示し、実施例2〜4及び比較例2〜3の結果を表2に示す。
(sensory evaluation)
About the wash water sampled in each Example and the comparative example, the presence or absence of the flavor odor was evaluated on the following reference | standard by three panelists. The results of Examples 1, 5, 6 and Comparative Example 1 are shown in Table 1, and the results of Examples 2 to 4 and Comparative Examples 2 to 3 are shown in Table 2.

(評価基準)
A:フレーバー臭を感じない。
B:かすかにフレーバー臭を感じる。
C:ややフレーバー臭を感じる。
D:かなりフレーバー臭を感じる。
E:強くフレーバー臭を感じる。
(Evaluation criteria)
A: A flavor odor is not felt.
B: A slight flavor odor is felt.
C: A slight flavor odor is felt.
D: A flavor odor is considerably felt.
E: A strong flavor odor is felt.

Figure 2009136852
Figure 2009136852

Figure 2009136852
Figure 2009136852

表1及び2の結果から明らかなように、特定の高周波領域の超音波振動を付与して生成させたナノバブルを含む液体を用いることで、高い脱臭洗浄効果が実現されることが確認された。   As is clear from the results in Tables 1 and 2, it was confirmed that a high deodorizing cleaning effect was realized by using a liquid containing nanobubbles generated by applying ultrasonic vibrations in a specific high frequency region.

本発明に係る脱臭洗浄機構の一実施形態を示す模式図である。It is a mimetic diagram showing one embodiment of a deodorizing washing mechanism concerning the present invention. 本発明に係る超音波振動子を駆動する駆動回路の一例を示す模式図である。It is a schematic diagram which shows an example of the drive circuit which drives the ultrasonic transducer | vibrator which concerns on this invention. 本発明に係る脱臭洗浄機構を具備する、食品又は飲料の製造装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the manufacturing apparatus of a foodstuff or a drink which comprises the deodorizing washing | cleaning mechanism which concerns on this invention.

符号の説明Explanation of symbols

1 マイクロバブル生成手段
2 超音波発振手段
3 超音波振動子
4 電力増幅部
5 整合部
6 電圧制御発振
10 脱臭洗浄機構
100 製造装置
Cm コイル
Lm コンデンサ
L1〜L4 配管
Q1、Q2 電力用トランジスタ
R 抵抗
T トランス
DESCRIPTION OF SYMBOLS 1 Microbubble production | generation means 2 Ultrasonic oscillation means 3 Ultrasonic vibrator 4 Power amplification part 5 Matching part 6 Voltage control oscillation 10 Deodorizing washing mechanism 100 Manufacturing apparatus Cm Coil Lm Capacitor L1-L4 Piping Q1, Q2 Power transistor R Resistance T Trance

Claims (9)

マイクロバブルを含む液体に1〜3.5MHzの超音波振動を付与して、生成したナノバブルを含む液体を製造装置内に循環させて脱臭洗浄する、食品又は飲料の製造装置の脱臭洗浄方法。   A deodorizing and cleaning method for a food or beverage manufacturing apparatus, which applies ultrasonic vibration of 1 to 3.5 MHz to a liquid including microbubbles and circulates the generated liquid containing nanobubbles in the manufacturing apparatus to perform deodorization cleaning. 超音波振動を圧電素子の発振により与える、請求項1記載の脱臭洗浄方法。   The deodorizing and cleaning method according to claim 1, wherein ultrasonic vibration is applied by oscillation of a piezoelectric element. 圧電素子が圧電セラミックである、請求項2記載の脱臭洗浄方法。   The deodorizing cleaning method according to claim 2, wherein the piezoelectric element is a piezoelectric ceramic. 圧電セラミックがチタン酸ジルコン酸鉛である、請求項3記載の脱臭洗浄方法。   The deodorizing and cleaning method according to claim 3, wherein the piezoelectric ceramic is lead zirconate titanate. 液体が酸性洗浄剤及びアルカリ性洗浄剤のうちの少なくとも1種を含む、請求項1〜4のいずれか一項に記載の脱臭洗浄方法。   The deodorizing cleaning method according to any one of claims 1 to 4, wherein the liquid contains at least one of an acidic cleaning agent and an alkaline cleaning agent. 酸性洗浄剤とナノバブルを含む液体で脱臭洗浄後、アルカリ性洗浄液とナノバブルを含む液体で脱臭洗浄する、請求項5記載の脱臭洗浄方法。   The deodorizing and cleaning method according to claim 5, wherein the deodorizing and cleaning is performed with a liquid containing an acidic cleaning agent and nanobubbles, and then deodorized and cleaned with a liquid including an alkaline cleaning liquid and nanobubbles. 食品又は飲料が柑橘類を含む、請求項1〜6のいずれか一項に記載の脱臭洗浄方法。   The deodorizing cleaning method according to any one of claims 1 to 6, wherein the food or beverage contains citrus fruits. 液体中にマイクロバブルを生成させるマイクロバブル生成手段と、
マイクロバブルを含む液体に超音波振動を与える超音波発振手段と、
超音波振動により生成したナノバブルを含む液体を被脱臭洗浄物に供給する供給手段と
を備え、超音波振動を与える振動子が圧電素子である、脱臭洗浄機構。
Microbubble generating means for generating microbubbles in the liquid;
An ultrasonic oscillation means for applying ultrasonic vibration to a liquid containing microbubbles;
A deodorizing and cleaning mechanism, comprising: a supply unit that supplies a liquid containing nanobubbles generated by ultrasonic vibration to a deodorized cleaning object, and the vibrator that applies the ultrasonic vibration is a piezoelectric element.
請求項8記載の脱臭洗浄機構を具備する、食品又は飲料の製造装置。   A food or beverage production apparatus comprising the deodorizing and cleaning mechanism according to claim 8.
JP2007319223A 2007-12-11 2007-12-11 Deodorizing and cleaning method for production apparatus for foods or beverages Pending JP2009136852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007319223A JP2009136852A (en) 2007-12-11 2007-12-11 Deodorizing and cleaning method for production apparatus for foods or beverages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007319223A JP2009136852A (en) 2007-12-11 2007-12-11 Deodorizing and cleaning method for production apparatus for foods or beverages

Publications (1)

Publication Number Publication Date
JP2009136852A true JP2009136852A (en) 2009-06-25

Family

ID=40868060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007319223A Pending JP2009136852A (en) 2007-12-11 2007-12-11 Deodorizing and cleaning method for production apparatus for foods or beverages

Country Status (1)

Country Link
JP (1) JP2009136852A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016529A1 (en) * 2009-08-06 2011-02-10 株式会社協和機設 Composition and process for production thereof
CN102139950A (en) * 2010-02-02 2011-08-03 中国科学院生态环境研究中心 Method for eliminating large-area lake-flooding peculiar smell substances in situ
JP2011230106A (en) * 2010-04-30 2011-11-17 Yoshihiro Mano Method of cleaning conduit line
JP2012045528A (en) * 2010-08-30 2012-03-08 Mitsubishi Heavy Industries Food & Packaging Machinery Co Ltd Method of cleaning equipment using immersion of nano bubble water
JP2012115730A (en) * 2010-11-29 2012-06-21 Mitsubishi Heavy Ind Ltd Method of cleaning piping
JP2014522288A (en) * 2011-06-14 2014-09-04 エコラボ ユーエスエー インコーポレイティド Non-bleaching removal method for tea and coffee stains
EP3412623B1 (en) * 2016-02-05 2024-01-03 Suntory Holdings Limited Purification method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320124A (en) * 1993-03-15 1994-11-22 Hitachi Ltd Ultrasonic washing method and apparatus
JP2006167586A (en) * 2004-12-15 2006-06-29 Sharp Corp Vibration plate for ultrasonic cleaner and ultrasonic cleaner equipped with the same
JP2006181450A (en) * 2004-12-27 2006-07-13 Kao Corp Cip-based deodorization cleaning method
JP2007083142A (en) * 2005-09-21 2007-04-05 Mitsubishi Electric Corp Washing method and washing apparatus
JP2007236706A (en) * 2006-03-09 2007-09-20 Hiroshima Univ Washing apparatus for washing object to be washed of food manufacturing facility, and washing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320124A (en) * 1993-03-15 1994-11-22 Hitachi Ltd Ultrasonic washing method and apparatus
JP2006167586A (en) * 2004-12-15 2006-06-29 Sharp Corp Vibration plate for ultrasonic cleaner and ultrasonic cleaner equipped with the same
JP2006181450A (en) * 2004-12-27 2006-07-13 Kao Corp Cip-based deodorization cleaning method
JP2007083142A (en) * 2005-09-21 2007-04-05 Mitsubishi Electric Corp Washing method and washing apparatus
JP2007236706A (en) * 2006-03-09 2007-09-20 Hiroshima Univ Washing apparatus for washing object to be washed of food manufacturing facility, and washing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016529A1 (en) * 2009-08-06 2011-02-10 株式会社協和機設 Composition and process for production thereof
JP2016013547A (en) * 2009-08-06 2016-01-28 株式会社Ligaric Composition and production method thereof
JPWO2011016529A1 (en) * 2009-08-06 2013-01-17 株式会社Ligaric Composition and method for producing the same
CN102139950A (en) * 2010-02-02 2011-08-03 中国科学院生态环境研究中心 Method for eliminating large-area lake-flooding peculiar smell substances in situ
JP2011230106A (en) * 2010-04-30 2011-11-17 Yoshihiro Mano Method of cleaning conduit line
CN102821879A (en) * 2010-08-30 2012-12-12 三菱重工食品包装机械株式会社 Instrument-cleaning method that uses soaking with nanobubble water
WO2012029552A1 (en) * 2010-08-30 2012-03-08 三菱重工食品包装機械株式会社 Instrument-cleaning method that uses soaking with nanobubble water
EP2612714A1 (en) * 2010-08-30 2013-07-10 Mitsubishi Heavy Industries Food & Packaging Machinery Co., Ltd. Instrument-cleaning method that uses soaking with nanobubble water
KR101442372B1 (en) * 2010-08-30 2014-09-17 미쯔비시 쥬우꼬오 쇼구힌호오소오기까이 가부시키가이샤 Instrument-cleaning method that uses soaking with nanobubble water
EP2612714A4 (en) * 2010-08-30 2014-09-17 Mitsubishi Heavy Ind Food & Pa Instrument-cleaning method that uses soaking with nanobubble water
JP2012045528A (en) * 2010-08-30 2012-03-08 Mitsubishi Heavy Industries Food & Packaging Machinery Co Ltd Method of cleaning equipment using immersion of nano bubble water
US9919349B2 (en) 2010-08-30 2018-03-20 Mitsubishi Heavy Industries Machinery Systems, Ltd. Instrument-cleaning method that uses soaking with nanobubble water
JP2012115730A (en) * 2010-11-29 2012-06-21 Mitsubishi Heavy Ind Ltd Method of cleaning piping
JP2014522288A (en) * 2011-06-14 2014-09-04 エコラボ ユーエスエー インコーポレイティド Non-bleaching removal method for tea and coffee stains
EP3412623B1 (en) * 2016-02-05 2024-01-03 Suntory Holdings Limited Purification method

Similar Documents

Publication Publication Date Title
JP2009136852A (en) Deodorizing and cleaning method for production apparatus for foods or beverages
JP4880427B2 (en) Cleaning method and cleaning apparatus
JP2011088979A (en) Cleaning liquid, cleaning method, and cleaning liquid production device
JP5529680B2 (en) Equipment cleaning method by immersion of nanobubble water
Popović et al. Application of an ultrasound field in chemical cleaning of ceramic tubular membrane fouled with whey proteins
JP2018526200A (en) In-situ cleaning method and system and composition therefor
JP2013516758A (en) Improved ultrasonic cleaning fluid, method and apparatus
WO2012070293A1 (en) Method for cleaning medical instrument and apparatus for same
JP5575863B2 (en) Portable washer
WO2020174867A1 (en) Ultrafine bubble generation device, ultrafine bubble generation method, ultrafine-bubble-containing solution, and program
WO2018021562A1 (en) Microbubble cleaning device and microbubble cleaning method
JP4064977B2 (en) Manufacturing method of cleaning agent
JP2008253373A (en) Ultrasonic washer, dishwasher using the same, and ultrasonic washing method
JPWO2007004274A1 (en) Cleaning method for objects to be cleaned
JP4163749B2 (en) Equipment used during food production, especially how to clean filters
JP2007145961A (en) Sterilizing cleanser and method for removing stains therewith
JP6252926B1 (en) Fine bubble cleaning apparatus and fine bubble cleaning method
JP2020142232A (en) Ultra fine bubble generation method, ultra fine bubble generation device, and ultra fine bubble containing liquid
JP2005150768A (en) Cleaning method and cleaning method of electronic component
JP2016107165A (en) Cleaning method and cleaning apparatus
JP2001254096A (en) Cleaning fluid and washing apparatus using the same
JPH0238278B2 (en) KATSUSEISANSOSUI
JP6020626B2 (en) Device Ge substrate cleaning method, cleaning water supply device and cleaning device
KR20190036031A (en) Micro-Bubble Sonic Dental Cleaning Device for Washing, Disinfection and Drying
JP2010057846A (en) Irrigation method and detergent of endoscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710