JP2020142232A - Ultra fine bubble generation method, ultra fine bubble generation device, and ultra fine bubble containing liquid - Google Patents

Ultra fine bubble generation method, ultra fine bubble generation device, and ultra fine bubble containing liquid Download PDF

Info

Publication number
JP2020142232A
JP2020142232A JP2020019019A JP2020019019A JP2020142232A JP 2020142232 A JP2020142232 A JP 2020142232A JP 2020019019 A JP2020019019 A JP 2020019019A JP 2020019019 A JP2020019019 A JP 2020019019A JP 2020142232 A JP2020142232 A JP 2020142232A
Authority
JP
Japan
Prior art keywords
liquid
ufb
ultrafine bubble
treatment
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020019019A
Other languages
Japanese (ja)
Other versions
JP2020142232A5 (en
Inventor
久保田 雅彦
Masahiko Kubota
雅彦 久保田
山田 顕季
Akitoshi Yamada
顕季 山田
今仲 良行
Yoshiyuki Imanaka
良行 今仲
由美 柳内
Yumi Yanagiuchi
由美 柳内
石永 博之
Hiroyuki Ishinaga
博之 石永
照夫 尾崎
Teruo Ozaki
照夫 尾崎
博 有水
Hiroshi Arimizu
博 有水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to EP20159723.4A priority Critical patent/EP3702331A1/en
Priority to KR1020200024018A priority patent/KR20200105427A/en
Priority to CN202010122219.4A priority patent/CN111617651B/en
Priority to RU2020108474A priority patent/RU2748485C1/en
Priority to SG10202001781XA priority patent/SG10202001781XA/en
Priority to AU2020201427A priority patent/AU2020201427A1/en
Priority to US16/802,693 priority patent/US11426996B2/en
Publication of JP2020142232A publication Critical patent/JP2020142232A/en
Publication of JP2020142232A5 publication Critical patent/JP2020142232A5/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/2319Methods of introducing gases into liquid media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/2366Parts; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/80After-treatment of the mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/80After-treatment of the mixture
    • B01F23/808Filtering the mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/181Preventing generation of dust or dirt; Sieves; Filters
    • B01F35/187Preventing generation of dust or dirt; Sieves; Filters using filters in mixers, e.g. during venting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/93Heating or cooling systems arranged inside the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/99Heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Accessories For Mixers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

To provide an ultra fine bubble generation device which can efficiently generate an ultra fine bubble containing liquid having high purity, and to provide an ultra fine bubble generation method.SOLUTION: An ultra fine bubble generation device 1 includes: a generation unit 300 for generating ultra fine bubbles 11 in a liquid; and an after-treatment unit 400 which performs predetermined after-treatment to an ultra fine bubble containing liquid W generated by the generation unit 300. In the generation unit 300, a heating element 10 provided in a liquid W in which preliminary treatment is performed is heated to cause film boiling on an interface between the liquid W and the heating element 100 and thereby generate the ultra fine bubbles 11.SELECTED DRAWING: Figure 1

Description

本発明は、直径が1.0μm未満のウルトラファインバブルを生成するウルトラファインバブル生成方法、ウルトラファインバブル生成装置、及びウルトラファインバブル含有液に関する。 The present invention relates to an ultrafine bubble generation method for generating ultrafine bubbles having a diameter of less than 1.0 μm, an ultrafine bubble generation device, and an ultrafine bubble-containing liquid.

近年、直径がマイクロメートルサイズのマイクロバブル、及び直径がナノメートルサイズのナノバブル等の微細なバブルの特性を応用する技術が開発されてきている。特に、直径が1.0μm未満のウルトラファインバブル(Ultra Fine Bubble;以下、「UFB」ともいう)については、その有用性が様々な分野において確認されている。 In recent years, techniques have been developed that apply the characteristics of fine bubbles such as microbubbles having a diameter of micrometer and nanobubbles having a diameter of nanometer. In particular, the usefulness of Ultra Fine Bubble (hereinafter, also referred to as “UFB”) having a diameter of less than 1.0 μm has been confirmed in various fields.

特許文献1には、気体が加圧溶解された加圧液を減圧ノズルから噴出させることによって、微細なバブルを生成する微細気泡生成装置が開示されている。また、特許文献2には、混合ユニットを用いて気体混合液体の分流と合流を繰り返すことによって、微細なバブルを生成する装置が開示されている。 Patent Document 1 discloses a fine bubble generator that generates fine bubbles by ejecting a pressurized liquid in which a gas is pressurized and dissolved from a pressure reducing nozzle. Further, Patent Document 2 discloses an apparatus for generating fine bubbles by repeatedly dividing and merging gas mixed liquids using a mixing unit.

特許第6118544号公報Japanese Patent No. 6118544 特許第4456176号公報Japanese Patent No. 4456176

特許文献1、2に記載のいずれの装置においても、直径がナノメートルサイズのUFBに加えて、直径がミリメートルサイズのミリバブルや直径がミクロンメートルサイズのマイクロバブルが比較的多量に生成される。但し、ミリバブルやマイクロバブルには浮力が作用するため、長期間の保存においては徐々に液面に浮上し、消滅してしまう傾向がある。 In any of the devices described in Patent Documents 1 and 2, in addition to the UFB having a diameter of nanometer size, a relatively large amount of microbubbles having a diameter of millimeter size and microbubbles having a diameter of micron meter size are generated. However, since buoyancy acts on millibubbles and microbubbles, they tend to gradually rise to the liquid surface and disappear during long-term storage.

一方、直径がナノメートルサイズのUFBについては、浮力の影響を受け難く、ブラウン運動を行いながら液中に浮遊するため、長期間の保存に適している。しかしながら、UFBにおいても、ミリバブルやマイクロバブルとともに生成されたり、気液界面エネルギが小さかったりすると、ミリバブルやマイクロバブルの消滅の影響を受け、時間の経過とともに減少してしまう。すなわち、長期間保存してもUFB濃度の減少が抑制されるUFB含有液を得るためには、UFB含有液の生成時において、高い気液界面エネルギを有するUFBが高純度且つ高濃度に生成されることが求められる。 On the other hand, UFB having a diameter of nanometer size is not easily affected by buoyancy and floats in the liquid while performing Brownian motion, so that it is suitable for long-term storage. However, even in UFB, if it is generated together with microbubbles or microbubbles, or if the gas-liquid interface energy is small, it is affected by the disappearance of the millibubbles and microbubbles and decreases with the passage of time. That is, in order to obtain a UFB-containing liquid in which a decrease in UFB concentration is suppressed even after long-term storage, UFB having a high gas-liquid interface energy is generated with high purity and high concentration at the time of producing the UFB-containing liquid. Is required.

本発明は上記問題点を解消するためになされたものである。よってその目的とするところは、純度の高いUFB含有液を効率的に生成することが可能なUFB生成装置及びUFB生成方法を提供することである。 The present invention has been made to solve the above problems. Therefore, an object of the present invention is to provide a UFB generator and a UFB generation method capable of efficiently producing a highly pure UFB-containing liquid.

そのために本発明は、液体中に設けた発熱素子を発熱させて、前記液体と前記発熱素子の界面に膜沸騰を生じさせることにより、ウルトラファインバブルを生成する生成工程と、前記生成工程によって生成された前記ウルトラファインバブルを含有するウルトラファインバブル含有液に所定の後処理を行う後処理工程と、を有することを特徴とする。 Therefore, the present invention has a generation step of generating an ultrafine bubble by generating heat of a heat generating element provided in the liquid and causing a film to boil at the interface between the liquid and the heat generating element, and a generation step of generating the ultrafine bubble. It is characterized by having a post-treatment step of performing a predetermined post-treatment on the ultra-fine bubble-containing liquid containing the ultra-fine bubbles.

本発明によれば、純度の高いUFB含有液を効率的に生成することが可能となる。 According to the present invention, it is possible to efficiently produce a highly pure UFB-containing liquid.

UFB生成装置の一例を示す図である。It is a figure which shows an example of a UFB generator. 前処理ユニットの概略構成図である。It is a schematic block diagram of a pretreatment unit. 溶解ユニットの概略構成図及び液体の溶解状態を説明するための図である。It is a schematic block diagram of a dissolution unit and the figure for demonstrating the dissolution state of a liquid. T−UFB生成ユニットの概略構成図である。It is a schematic block diagram of the T-UFB generation unit. 発熱素子の詳細を説明するための図である。It is a figure for demonstrating the detail of a heat generating element. 発熱素子における膜沸騰の様子を説明するための図である。It is a figure for demonstrating the state of the film boiling in a heating element. 膜沸騰泡の膨張に伴ってUFBが生成される様子を示す図である。It is a figure which shows the state that UFB is generated with the expansion of a membrane boiling bubble. 膜沸騰泡の収縮に伴ってUFBが生成される様子を示す図である。It is a figure which shows the state that UFB is generated with the contraction of a membrane boiling bubble. 液体の再加熱によってUFBが生成される様子を示す図である。It is a figure which shows a mode that UFB is generated by reheating of a liquid. 膜沸騰泡の消泡時の衝撃波によってUFBが生成される様子を示す図である。It is a figure which shows the state that UFB is generated by the shock wave at the time of defoaming a membrane boiling bubble. 飽和溶解度の変化によってUFBが生成される様子を示す図である。It is a figure which shows the state that UFB is generated by the change of the saturation solubility. 第4の後処理機構を示す図である。It is a figure which shows the 4th post-processing mechanism. 第5の後処理機構を示す図である。It is a figure which shows the 5th post-processing mechanism.

<<UFB生成装置の構成>>
図1は、本発明に適用可能なUFB生成装置の一例を示す図である。本実施形態のUFB生成装置1は、前処理ユニット100、溶解ユニット200、T−UFB生成ユニット300、後処理ユニット400、及び回収ユニット500を含む。前処理ユニット100に供給された水道水などの液体Wは、上記の順番で各ユニット固有の処理が施され、T−UFB含有液として回収ユニット500で回収される。以下、各ユニットの機能及び構成について説明する。詳細は後述するが、本明細書では急激な発熱に伴う膜沸騰を利用して生成したUFBをT−UFB(Thermal−Ultra Fine Bubble)と称す。
<< Configuration of UFB generator >>
FIG. 1 is a diagram showing an example of a UFB generator applicable to the present invention. The UFB generator 1 of this embodiment includes a pretreatment unit 100, a dissolution unit 200, a T-UFB generation unit 300, a posttreatment unit 400, and a recovery unit 500. The liquid W such as tap water supplied to the pretreatment unit 100 is subjected to treatment unique to each unit in the above order, and is recovered as a T-UFB-containing liquid in the recovery unit 500. The functions and configurations of each unit will be described below. Although the details will be described later, in the present specification, the UFB generated by utilizing the film boiling associated with the rapid heat generation is referred to as T-UFB (Thermal-Ultra Fine Bubble).

図2は、前処理ユニット100の概略構成図である。本実施形態の前処理ユニット100は、供給された液体Wに対し脱気処理を行う。前処理ユニット100は、主に、脱気容器101、シャワーヘッド102、減圧ポンプ103、液体導入路104、液体循環路105、液体導出路106を有する。例えば水道水のような液体Wは、バルブ109を介して、液体導入路104から脱気容器101に供給される。この際、脱気容器101に設けられたシャワーヘッド102が、液体Wを霧状にして脱気容器101内に噴霧する。シャワーヘッド102は、液体Wの気化を促すためのものであるが、気化促進効果を生み出す機構としては、遠心分離器なども代替可能である。 FIG. 2 is a schematic configuration diagram of the pretreatment unit 100. The pretreatment unit 100 of the present embodiment degass the supplied liquid W. The pretreatment unit 100 mainly has a degassing container 101, a shower head 102, a decompression pump 103, a liquid introduction path 104, a liquid circulation path 105, and a liquid outlet path 106. For example, the liquid W such as tap water is supplied to the degassing container 101 from the liquid introduction path 104 via the valve 109. At this time, the shower head 102 provided in the degassing container 101 atomizes the liquid W and sprays it into the degassing container 101. The shower head 102 is for promoting the vaporization of the liquid W, but a centrifuge or the like can be substituted as a mechanism for producing the vaporization promoting effect.

ある程度の液体Wが脱気容器101に貯留された後、全てのバルブを閉じた状態で減圧ポンプ103を作動させると、既に気化している気体成分が排出されるとともに、液体Wに溶解している気体成分の気化と排出も促される。この際、脱気容器101の内圧は、圧力計108を確認しながら数百〜数千Pa(1.0Torr〜10.0Torr)程度に減圧されればよい。脱気ユニット100によって脱気される気体としては、例えば窒素、酸素、アルゴン、二酸化炭素などが含まれる。 After a certain amount of liquid W is stored in the degassing container 101, when the decompression pump 103 is operated with all valves closed, the already vaporized gas component is discharged and dissolved in the liquid W. The vaporization and discharge of existing gas components are also promoted. At this time, the internal pressure of the degassing container 101 may be reduced to about several hundred to several thousand Pa (1.0 Torr to 10.0 Torr) while checking the pressure gauge 108. The gas degassed by the degassing unit 100 includes, for example, nitrogen, oxygen, argon, carbon dioxide and the like.

以上説明した脱気処理は、液体循環路105を利用することにより、同じ液体Wに対して繰り返し行うことができる。具体的には、液体導入路104のバルブ109と液体導出路106のバルブ110を閉塞し、液体循環路105のバルブ107を開放した状態で、シャワーヘッド102を作動させる。これにより、脱気容器101に貯留され、脱気処理が一度行われた液体Wは、再びシャワーヘッド102を介して脱気容器101に噴霧される。更に、減圧ポンプ103を作動させることにより、シャワーヘッド102による気化処理と減圧ポンプ103による脱気処理が、同じ液体Wに対し重ねて行われることになる。そして、液体循環路105を利用した上記繰り返し処理を行う度に、液体Wに含まれる気体成分を段階的に減少させていくことができる。所望の純度に脱気された液体Wが得られると、バルブ110を開放することにより、液体Wは液体導出路106を経て溶解ユニット200に送液される。 The degassing treatment described above can be repeated for the same liquid W by using the liquid circulation path 105. Specifically, the shower head 102 is operated with the valve 109 of the liquid introduction path 104 and the valve 110 of the liquid lead-out path 106 closed and the valve 107 of the liquid circulation path 105 open. As a result, the liquid W stored in the degassing container 101 and once degassed is sprayed again on the degassing container 101 via the shower head 102. Further, by operating the decompression pump 103, the vaporization treatment by the shower head 102 and the degassing treatment by the decompression pump 103 are performed repeatedly on the same liquid W. Then, each time the above-mentioned repeated treatment using the liquid circulation path 105 is performed, the gas component contained in the liquid W can be gradually reduced. When the liquid W degassed to a desired purity is obtained, the liquid W is sent to the dissolution unit 200 via the liquid lead-out path 106 by opening the valve 110.

なお、図2では、気体部を低圧にして溶解物を気化させる脱気ユニット100を示したが、溶解した液体を脱気させる方法はこれに限らない。例えば、液体Wを煮沸して溶解物を気化させる加熱煮沸法を採用してもよいし、中空糸を用いて液体と気体の界面を増大させる膜脱気方法を採用してもよい。中空糸を用いた脱気モジュールとしては、SEPARELシリーズ(大日本インキ社製)が市販されている。これは、中空糸膜の原料にポリ4−メチルペンテン−1(PMP)を用いて、主にピエゾヘッド向けに供給するインクなどから気泡を脱気する目的で使用されている。更に、真空脱気法、加熱煮沸法、及び膜脱気方法の2つ以上を併用してもよい。 Although FIG. 2 shows a degassing unit 100 in which the gas portion is made low pressure to vaporize the dissolved liquid, the method for degassing the dissolved liquid is not limited to this. For example, a heating boiling method in which the liquid W is boiled to vaporize the dissolved substance may be adopted, or a membrane degassing method in which a hollow fiber is used to increase the interface between the liquid and the gas may be adopted. As a degassing module using a hollow thread, the SEPAREL series (manufactured by Dainippon Ink Co., Ltd.) is commercially available. This is used for the purpose of using poly4-methylpentene-1 (PMP) as a raw material for the hollow fiber membrane and degassing air bubbles mainly from ink supplied to the piezo head. Further, two or more of the vacuum degassing method, the heating boiling method, and the membrane degassing method may be used in combination.

図3(a)及び(b)は、溶解ユニット200の概略構成図及び液体の溶解状態を説明するための図である。溶解ユニット200は、前処理ユニット100より供給された液体Wに対し所望の気体を溶解させるユニットである。本実施形態の溶解ユニット200は、主に、溶解容器201、回転板202が取り付けられた回転シャフト203、液体導入路204、気体導入路205、液体導出路206、及び加圧ポンプ207を有する。 3A and 3B are a schematic configuration diagram of the dissolution unit 200 and a diagram for explaining the dissolution state of the liquid. The dissolution unit 200 is a unit that dissolves a desired gas in the liquid W supplied from the pretreatment unit 100. The dissolution unit 200 of the present embodiment mainly includes a dissolution container 201, a rotary shaft 203 to which a rotary plate 202 is attached, a liquid introduction path 204, a gas introduction path 205, a liquid lead-out path 206, and a pressurizing pump 207.

前処理ユニット100より供給された液体Wは、液体導入路204より、溶解容器201に供給され貯留される。一方、気体Gは気体導入路205より溶解容器201に供給される。 The liquid W supplied from the pretreatment unit 100 is supplied to and stored in the dissolution container 201 from the liquid introduction path 204. On the other hand, the gas G is supplied to the dissolution container 201 from the gas introduction path 205.

所定量の液体Wと気体Gが溶解容器201に貯留されると、加圧ポンプ207を作動し溶解容器201の内圧を0.5Mpa程度まで上昇させる。加圧ポンプ207と溶解容器201の間には安全弁208が配されている。また、回転シャフト203を介して液中の回転板202を回転させることにより、溶解容器201に供給された気体Gを気泡化し、液体Wとの接触面積を大きくし、液体W中への溶解を促進する。そしてこのような作業を、気体Gの溶解度がほぼ最大飽和溶解度に達するまで継続する。この際、可能な限り多くの気体を溶解させるために、液体の温度を低下させる手段を配してもよい。また、難溶解性の気体の場合は、溶解容器201の内圧を0.5MPa以上に上げる事も可能である。その場合は、安全面から容器の材料などを最適にする必要がある。 When a predetermined amount of the liquid W and the gas G are stored in the dissolution container 201, the pressurizing pump 207 is operated to raise the internal pressure of the dissolution container 201 to about 0.5 Mpa. A safety valve 208 is arranged between the pressurizing pump 207 and the dissolution container 201. Further, by rotating the rotating plate 202 in the liquid via the rotating shaft 203, the gas G supplied to the dissolution container 201 is bubbled, the contact area with the liquid W is increased, and the gas G is dissolved in the liquid W. Facilitate. Then, such an operation is continued until the solubility of the gas G reaches almost the maximum saturated solubility. At this time, in order to dissolve as much gas as possible, means for lowering the temperature of the liquid may be arranged. Further, in the case of a poorly soluble gas, the internal pressure of the dissolution container 201 can be increased to 0.5 MPa or more. In that case, it is necessary to optimize the material of the container from the viewpoint of safety.

気体Gの成分が所望の濃度で溶解された液体Wが得られると、液体Wは液体導出路206を経由して排出され、T−UFB生成ユニット300に供給される。この際、背圧弁209は、供給時の圧力が必要以上に高くならないように液体Wの流圧を調整する。 When the liquid W in which the components of the gas G are dissolved at a desired concentration is obtained, the liquid W is discharged via the liquid lead-out path 206 and supplied to the T-UFB generation unit 300. At this time, the back pressure valve 209 adjusts the flow pressure of the liquid W so that the pressure at the time of supply does not become higher than necessary.

図3(b)は、溶解容器201で混入された気体Gが溶解していく様子を模式的に示す図である。液体W中に混入された気体Gの成分を含む気泡2は、液体Wに接触している部分から溶解する。このため、気泡2は徐々に収縮し、気泡2の周囲には気体溶解液体3が存在する状態となる。気泡2には浮力が作用するため、気泡2は気体溶解液体3の中心から外れた位置に移動したり、気体溶解液体3から分離して残存気泡4となったりする。すなわち、液体導出路206を介してT−UFB生成ユニット300に供給される液体Wには、気体溶解液体3が気泡2を囲った状態のものや、気体溶解液体3と気泡2が互いに分離した状態のものが混在している。 FIG. 3B is a diagram schematically showing how the gas G mixed in the dissolution container 201 is dissolved. The bubble 2 containing the component of the gas G mixed in the liquid W dissolves from the portion in contact with the liquid W. Therefore, the bubble 2 gradually contracts, and the gas-dissolved liquid 3 exists around the bubble 2. Since buoyancy acts on the bubbles 2, the bubbles 2 move to a position deviated from the center of the gas-dissolved liquid 3 or separate from the gas-dissolved liquid 3 to become residual bubbles 4. That is, in the liquid W supplied to the T-UFB generation unit 300 via the liquid lead-out path 206, the gas-dissolved liquid 3 surrounds the bubbles 2, or the gas-dissolved liquid 3 and the bubbles 2 are separated from each other. Some of the states are mixed.

なお、図において気体溶解液体3とは、「液体W中において、混入された気体Gの溶解濃度が比較的高い領域」を意味している。実際に液体Wに溶解している気体成分においては、気泡2の周囲や、気泡2と分離した状態であっても領域の中心で濃度が最も高く、その位置から離れるほど気体成分の濃度は連続的に低くなる。すなわち、図3(b)では説明のために気体溶解液体3の領域を破線で囲っているが、実際にはこのような明確な境界が存在するわけではない。また、本発明においては、完全に溶解しない気体が、気泡の状態で液体中に存在しても許容される。 In the figure, the gas-dissolved liquid 3 means "a region in which the dissolved concentration of the mixed gas G is relatively high in the liquid W". In the gas component actually dissolved in the liquid W, the concentration is highest in the periphery of the bubble 2 or in the center of the region even when separated from the bubble 2, and the concentration of the gas component is continuous as the distance from the position increases. It becomes low. That is, in FIG. 3B, the region of the gas-dissolved liquid 3 is surrounded by a broken line for explanation, but in reality, such a clear boundary does not exist. Further, in the present invention, it is permissible for a gas that is not completely dissolved to exist in the liquid in the form of bubbles.

図4は、T−UFB生成ユニット300の概略構成図である。T−UFB生成ユニット300は、主に、チャンバー301、液体導入路302、液体導出路303を備え、液体導入路302からチャンバー301内を経て液体導出路303に向かう流れが、不図示の流動ポンプによって形成されている。流動ポンプとしては、ダイヤフラムポンプ、ギアポンプ、スクリューポンプなど各種ポンプを採用することができる。液体導入路302から導入される液体Wには、溶解ユニット200によって混入された気体Gの気体溶解液体3が混在している。 FIG. 4 is a schematic configuration diagram of the T-UFB generation unit 300. The T-UFB generation unit 300 mainly includes a chamber 301, a liquid introduction path 302, and a liquid lead-out path 303, and a flow pump from the liquid introduction path 302 through the chamber 301 to the liquid lead-out path 303 is not shown. Is formed by. As the flow pump, various pumps such as a diaphragm pump, a gear pump, and a screw pump can be adopted. In the liquid W introduced from the liquid introduction path 302, the gas-dissolved liquid 3 of the gas G mixed by the dissolution unit 200 is mixed.

チャンバー301の底面には発熱素子10が設けられた素子基板12が配されている。発熱素子10に所定の電圧パルスが印加されることにより、発熱素子10に接触する領域に膜沸騰により生じる泡13(以下、膜沸騰泡13ともいう)が発生する。そして、膜沸騰泡13の膨張や収縮に伴って気体Gを含有するウルトラファインバブル(UFB11)が生成される。その結果、液体導出路303からは多数のUFB11が含まれたUFB含有液Wが導出される。 An element substrate 12 provided with a heat generating element 10 is arranged on the bottom surface of the chamber 301. When a predetermined voltage pulse is applied to the heat generating element 10, bubbles 13 generated by film boiling (hereinafter, also referred to as film boiling bubbles 13) are generated in a region in contact with the heat generating element 10. Then, an ultrafine bubble (UFB11) containing a gas G is generated as the film boiling bubble 13 expands or contracts. As a result, the UFB-containing liquid W containing a large number of UFB 11s is derived from the liquid lead-out path 303.

図5(a)及び図3(b)は、発熱素子10の詳細構造を示す図である。図5(a)は発熱素子10の近傍、図5(b)は発熱素子10を含むより広い領域の素子基板12の断面図をそれぞれ示している。 5 (a) and 3 (b) are views showing the detailed structure of the heat generating element 10. FIG. 5A shows a cross-sectional view of the element substrate 12 in the vicinity of the heat-generating element 10, and FIG. 5B shows a cross-sectional view of the element substrate 12 in a wider area including the heat-generating element 10.

図5(a)に示すように、本実施形態の素子基板12は、シリコン基板304の表面に、蓄熱層としての熱酸化膜305と、蓄熱層を兼ねる層間膜306と、が積層されている。層間膜306としては、SiO2膜、または、SiN膜を用いることができる。層間膜306の表面には抵抗層307が形成され、その抵抗層307の表面に、配線308が部分的に形成されている。配線308としては、Al、Al−Si、またはAl−CuなどのAl合金配線を用いることができる。これらの配線308、抵抗層307、及び、層間膜306の表面には、SiO2膜、またはSi3N4膜から成る保護層309が形成されている。 As shown in FIG. 5A, in the element substrate 12 of the present embodiment, a thermal oxide film 305 as a heat storage layer and an interlayer film 306 also serving as a heat storage layer are laminated on the surface of the silicon substrate 304. .. As the interlayer film 306, a SiO 2 film or a SiN film can be used. A resistance layer 307 is formed on the surface of the interlayer film 306, and a wiring 308 is partially formed on the surface of the resistance layer 307. As the wiring 308, an Al alloy wiring such as Al, Al—Si, or Al—Cu can be used. A protective layer 309 made of a SiO 2 film or a Si3N4 film is formed on the surfaces of the wiring 308, the resistance layer 307, and the interlayer film 306.

保護層309の表面において、結果的に発熱素子10となる熱作用部311に対応する部分、及び、その周囲には、抵抗層307の発熱に伴う化学的、及び物理的な衝撃から保護層309を保護するための耐キャビテーション膜310が形成されている。抵抗層307の表面において、配線308が形成されていない領域は、抵抗層307が発熱する熱作用部311である。配線308が形成されていない抵抗層307の発熱部分は、発熱素子(ヒータ)10として機能する。このように素子基板12における層は、半導体の製造技術によってシリコン基板304の表面に順次に形成され、これにより、シリコン基板304に熱作用部311が備えられる。 On the surface of the protective layer 309, the portion corresponding to the heat acting portion 311 that eventually becomes the heat generating element 10 and its surroundings are protected from the chemical and physical impacts caused by the heat generated by the resistance layer 307. A cavitation resistant film 310 is formed to protect the surface. On the surface of the resistance layer 307, the region where the wiring 308 is not formed is the heat acting portion 311 in which the resistance layer 307 generates heat. The heat generating portion of the resistance layer 307 on which the wiring 308 is not formed functions as a heat generating element (heater) 10. As described above, the layers in the element substrate 12 are sequentially formed on the surface of the silicon substrate 304 by the semiconductor manufacturing technology, whereby the silicon substrate 304 is provided with the heat acting portion 311.

なお、図に示す構成は一例であり、その他の各種構成が適用可能である。例えば、抵抗層307と配線308との積層順が逆の構成、及び抵抗層307の下面に電極を接続させる構成(所謂プラグ電極構成)が適用可能である。つまり、後述するように、熱作用部311により液体を加熱して、液体中に膜沸騰を生じさせることができる構成であればよい。 The configuration shown in the figure is an example, and various other configurations can be applied. For example, a configuration in which the stacking order of the resistance layer 307 and the wiring 308 is reversed, and a configuration in which an electrode is connected to the lower surface of the resistance layer 307 (so-called plug electrode configuration) can be applied. That is, as will be described later, the structure may be such that the liquid can be heated by the heat acting unit 311 to cause film boiling in the liquid.

図5(b)は、素子基板12において、配線308に接続される回路を含む領域の断面図の一例である。P型導電体であるシリコン基板304の表層には、N型ウェル領域322、及び、P型ウェル領域323が部分的に備えられている。一般的なMOSプロセスによるイオンインプランテーションなどの不純物の導入、及び拡散によって、N型ウェル領域322にP−MOS320が形成され、P型ウェル領域323にN−MOS321が形成される。 FIG. 5B is an example of a cross-sectional view of a region of the element substrate 12 including a circuit connected to the wiring 308. The surface layer of the silicon substrate 304, which is a P-type conductor, is partially provided with an N-type well region 322 and a P-type well region 323. By introducing and diffusing impurities such as ion implantation by a general MOS process, P-MOS 320 is formed in the N-type well region 322, and N-MOS 321 is formed in the P-type well region 323.

P−MOS320は、N型ウェル領域322の表層に部分的にN型あるいはP型の不純物を導入してなるソース領域325及びドレイン領域326と、ゲート配線335などから構成されている。ゲート配線335は、ソース領域325及びドレイン領域326を除くN型ウェル領域322の部分の表面に、厚さ数百Åのゲート絶縁膜328を介して堆積されている。 The P-MOS 320 is composed of a source region 325 and a drain region 326 formed by partially introducing N-type or P-type impurities into the surface layer of the N-type well region 322, a gate wiring 335, and the like. The gate wiring 335 is deposited on the surface of the N-type well region 322 excluding the source region 325 and the drain region 326 via a gate insulating film 328 having a thickness of several hundred Å.

N−MOS321は、P型ウェル領域323の表層に部分的にN型あるいはP型の不純物を導入してなるソース領域325及びドレイン領域326と、ゲート配線335などから構成されている。ゲート配線335は、ソース領域325及びドレイン領域326を除くP型ウェル領域323の部分の表面に、厚さ数百Åのゲート絶縁膜328を介して堆積されている。ゲート配線335は、CVD法により堆積された厚さ3000Å〜5000Åのポリシリコンからなる。これらのP−MOS320及びN−MOS321によって、C−MOSロジックが構成される。 The N-MOS 321 is composed of a source region 325 and a drain region 326 formed by partially introducing N-type or P-type impurities into the surface layer of the P-type well region 323, a gate wiring 335, and the like. The gate wiring 335 is deposited on the surface of the P-shaped well region 323 excluding the source region 325 and the drain region 326 via a gate insulating film 328 having a thickness of several hundred Å. The gate wiring 335 is made of polysilicon with a thickness of 3000Å to 5000Å deposited by the CVD method. The C-MOS logic is composed of these P-MOS 320 and N-MOS 321.

P型ウェル領域323において、N−MOS321と異なる部分には、電気熱変換素子(発熱抵抗素子)の駆動用のN−MOSトランジスタ330が形成されている。N−MOSトランジスタ330は、不純物の導入及び拡散などの工程によりP型ウェル領域323の表層に部分的に形成されたソース領域332及びドレイン領域331と、ゲート配線333などから構成されている。ゲート配線333は、P型ウェル領域323におけるソース領域332及びドレイン領域331を除く部分の表面に、ゲート絶縁膜328を介して堆積されている。 In the P-type well region 323, an N-MOS transistor 330 for driving an electric heat conversion element (heat generation resistance element) is formed in a portion different from the N-MOS 321. The N-MOS transistor 330 is composed of a source region 332 and a drain region 331 partially formed on the surface layer of the P-type well region 323 by steps such as introduction and diffusion of impurities, and a gate wiring 333 and the like. The gate wiring 333 is deposited on the surface of the portion of the P-shaped well region 323 excluding the source region 332 and the drain region 331 via the gate insulating film 328.

本例においては、電気熱変換素子の駆動用トランジスタとして、N−MOSトランジスタ330を用いた。しかし、その駆動用トランジスタは、複数の電気熱変換素子を個別に駆動する能力を持ち、かつ、上述したような微細な構造を得ることができるトランジスタであればよく、N−MOSトランジスタ330には限定されない。また本例においては、電気熱変換素子と、その駆動用トランジスタと、が同一基板上に形成されているが、これらは、別々の基板に形成してもよい。 In this example, an N-MOS transistor 330 is used as a driving transistor for the electrothermal conversion element. However, the driving transistor may be any transistor that has the ability to individually drive a plurality of electrothermal conversion elements and can obtain the fine structure as described above, and the N-MOS transistor 330 has Not limited. Further, in this example, the electrothermal conversion element and the driving transistor thereof are formed on the same substrate, but these may be formed on different substrates.

P−MOS320とN−MOS321との間、及びN−MOS321とN−MOSトランジスタ330との間等の各素子間には、5000Å〜10000Åの厚さのフィールド酸化により酸化膜分離領域324が形成されている。この酸化膜分離領域324によって各素子が分離されている。酸化膜分離領域324において、熱作用部311に対応する部分は、シリコン基板304上の一層目の蓄熱層334として機能する。 An oxide membrane separation region 324 is formed by field oxidation with a thickness of 5000Å to 10000Å between each element such as between P-MOS320 and N-MOS321 and between N-MOS321 and N-MOS transistor 330. ing. Each element is separated by the oxide membrane separation region 324. In the oxide film separation region 324, the portion corresponding to the heat acting portion 311 functions as the first heat storage layer 334 on the silicon substrate 304.

P−MOS320、N−MOS321、及びN−MOSトランジスタ330の各素子の表面には、CVD法により、厚さ約7000ÅのPSG膜、またはBPSG膜などから成る層間絶縁膜336が形成されている。層間絶縁膜336を熱処理により平坦にした後に、層間絶縁膜336及びゲート絶縁膜328を貫通するコンタクトホールを介して、第1の配線層となるAl電極337が形成される。層間絶縁膜336及びAl電極337の表面には、プラズマCVD法により、厚さ10000Å〜15000ÅのSiO2膜から成る層間絶縁膜338が形成される。層間絶縁膜338の表面において、熱作用部311及びN−MOSトランジスタ330に対応する部分には、コスパッタ法により、厚さ約500ÅのTaSiN膜から成る抵抗層307が形成される。抵抗層307は、層間絶縁膜338に形成されたスルーホールを介して、ドレイン領域331の近傍のAl電極337と電気的に接続される。抵抗層307の表面には、各電気熱変換素子への配線となる第2の配線層としてのAlの配線308が形成される。配線308、抵抗層307、及び層間絶縁膜338の表面の保護層309は、プラズマCVD法により形成された厚さ3000ÅのSiN膜から成る。保護層309の表面に堆積された耐キャビテーション膜310は、Ta、Fe,Ni,Cr,Ge,Ru,Zr,Ir等から選択される少なくとも1つ以上の金属であり、厚さ約2000Åの薄膜から成る。抵抗層307としては、上述したTaSiN以外のTaN0.8、CrSiN、TaAl、WSiN等、液体中に膜沸騰を生じさせることができるものであれば各種材料が適用可能である。 An interlayer insulating film 336 made of a PSG film or BPSG film having a thickness of about 7,000 Å is formed on the surface of each element of the P-MOS 320, N-MOS 321 and N-MOS transistor 330 by the CVD method. After the interlayer insulating film 336 is flattened by heat treatment, an Al electrode 337 serving as a first wiring layer is formed through a contact hole penetrating the interlayer insulating film 336 and the gate insulating film 328. On the surfaces of the interlayer insulating film 336 and the Al electrode 337, an interlayer insulating film 338 composed of a SiO 2 film having a thickness of 10000 Å to 15000 Å is formed by a plasma CVD method. On the surface of the interlayer insulating film 338, a resistance layer 307 made of a TaSiN film having a thickness of about 500 Å is formed by a co-splat method on a portion corresponding to the heat acting portion 311 and the N-MOS transistor 330. The resistance layer 307 is electrically connected to the Al electrode 337 in the vicinity of the drain region 331 via a through hole formed in the interlayer insulating film 338. On the surface of the resistance layer 307, Al wiring 308 as a second wiring layer serving as wiring to each electric heat conversion element is formed. The wiring 308, the resistance layer 307, and the protective layer 309 on the surface of the interlayer insulating film 338 are made of a SiN film having a thickness of 3000 Å formed by the plasma CVD method. The cavitation-resistant film 310 deposited on the surface of the protective layer 309 is at least one metal selected from Ta, Fe, Ni, Cr, Ge, Ru, Zr, Ir, etc., and is a thin film having a thickness of about 2000Å. Consists of. As the resistance layer 307, various materials other than the above-mentioned TaSiN, such as TaN0.8, CrSiN, TaAl, and WSiN, which can cause film boiling in a liquid, can be applied.

図6(a)及び(b)は、発熱素子10に所定の電圧パルスを印加した場合の膜沸騰の様子を示す図である。ここでは、大気圧のもとでの膜沸騰を生じさせた場合を示している。図6(a)において、横軸は時間を示す。また、下段のグラフの縦軸は発熱素子10に印加される電圧を示し、上段のグラフの縦軸は膜沸騰により発生した膜沸騰泡13の体積と内圧を示す。一方、図6(b)は、膜沸騰泡13の様子を、図6(a)に示すタイミング1〜3に対応づけて示している。以下、時間に沿って各状態を説明する。尚、後述するように膜沸騰によって発生したUFB11は主として膜沸騰泡13の表面近傍に発生する。図6(b)に示す状態は、図1で示したように、生成ユニット300で発生したUFB11から循環経路を介して溶解ユニット200に再度供給され、その液体が生成ユニット300の液路に再度供給された状態を示す。 6 (a) and 6 (b) are views showing a state of film boiling when a predetermined voltage pulse is applied to the heat generating element 10. Here, the case where the film boiling under atmospheric pressure is caused is shown. In FIG. 6A, the horizontal axis represents time. The vertical axis of the lower graph shows the voltage applied to the heat generating element 10, and the vertical axis of the upper graph shows the volume and internal pressure of the film boiling bubbles 13 generated by the film boiling. On the other hand, FIG. 6B shows the state of the film boiling foam 13 in association with the timings 1 to 3 shown in FIG. 6A. Hereinafter, each state will be described over time. As will be described later, the UFB 11 generated by the film boiling is mainly generated near the surface of the film boiling bubble 13. In the state shown in FIG. 6B, as shown in FIG. 1, the UFB 11 generated in the generation unit 300 is re-supplied to the dissolution unit 200 via the circulation path, and the liquid is again supplied to the liquid passage of the generation unit 300. Indicates the supplied state.

発熱素子10に電圧が印加される前、チャンバー301内はほぼ大気圧が保たれている。発熱素子10に電圧が印加されると、発熱素子10に接する液体に膜沸騰が生じ、発生した気泡(以下、膜沸騰泡13と称す)は内側から作用する高い圧力によって膨張する(タイミング1)。このときの発泡圧力は約8〜10MPaとみなされ、これは水の飽和蒸気圧に近い値である。 Before the voltage is applied to the heating element 10, the inside of the chamber 301 is maintained at substantially atmospheric pressure. When a voltage is applied to the heating element 10, the liquid in contact with the heating element 10 undergoes film boiling, and the generated bubbles (hereinafter referred to as film boiling bubbles 13) expand due to the high pressure acting from the inside (timing 1). .. The foaming pressure at this time is considered to be about 8 to 10 MPa, which is a value close to the saturated vapor pressure of water.

電圧の印加時間(パルス幅)は0.5usec〜10.0usec程度であるが、電圧が印加されなくなった後も、膜沸騰泡13はタイミング1で得られた圧力の慣性によって膨張する。但し、膜沸騰泡13の内部では膨張に伴って発生した負圧力が徐々に大きくなり、膜沸騰泡13を収縮する方向に作用する。やがて慣性力と負圧力が釣り合ったタイミング2で膜沸騰泡13の体積は最大となり、その後は負圧力によって急速に収縮する。 The voltage application time (pulse width) is about 0.5 ussec to 10.0 ussec, but even after the voltage is no longer applied, the membrane boiling bubble 13 expands due to the inertia of the pressure obtained at timing 1. However, inside the membrane boiling foam 13, the negative pressure generated by the expansion gradually increases, and acts in the direction of contracting the membrane boiling foam 13. Eventually, the volume of the membrane boiling bubble 13 becomes maximum at the timing 2 when the inertial force and the negative pressure are balanced, and then the volume of the film boiling bubble 13 rapidly contracts due to the negative pressure.

膜沸騰泡13が消滅する際、膜沸騰泡13は発熱素子10の全面ではなく、1箇所以上の極めて小さな領域で消滅する。このため、発熱素子10においては、膜沸騰泡13が消滅する極めて小さな領域に、タイミング1で示す発泡時よりも更に大きな力が発生する(タイミング3)。 When the film boiling bubble 13 disappears, the film boiling bubble 13 disappears not in the entire surface of the heat generating element 10 but in one or more extremely small regions. Therefore, in the heat generating element 10, a larger force is generated in the extremely small region where the film boiling bubbles 13 disappear than at the time of foaming shown in timing 1 (timing 3).

以上説明したような膜沸騰泡13の発生、膨張、収縮及び消滅は、発熱素子10に電圧パルスが印加されるたびに繰り返され、そのたびに新たなUFB11が生成される。 The generation, expansion, contraction, and disappearance of the film boiling bubbles 13 as described above are repeated each time a voltage pulse is applied to the heat generating element 10, and a new UFB 11 is generated each time.

次に図7〜図10を用いて、膜沸騰泡13の発生、膨張、収縮及び消滅の各過程において、UFB11が生成される様子を更に詳しく説明する。 Next, with reference to FIGS. 7 to 10, how UFB11 is generated in each process of generation, expansion, contraction and disappearance of the membrane boiling bubble 13 will be described in more detail.

図7(a)〜7(d)は、膜沸騰泡13の発生及び膨張に伴ってUFB11が生成される様子を模式的に示す図である。図7(a)は、発熱素子10に電圧パルスが印加される前の状態を示している。チャンバー301の内部には、気体溶解液体3が混在した液体Wが流れている。 7 (a) to 7 (d) are diagrams schematically showing how UFB 11 is generated with the generation and expansion of the membrane boiling bubbles 13. FIG. 7A shows a state before the voltage pulse is applied to the heat generating element 10. A liquid W in which the gas-dissolving liquid 3 is mixed flows inside the chamber 301.

図7(b)は、発熱素子10に電圧が印加され、液体Wに接している発熱素子10のほぼ全域で膜沸騰泡13が一様に発生した様子を示している。電圧が印加されたとき、発熱素子10の表面温度は10℃/μsec以上の速度で急激に上昇し、ほぼ300℃に達した時点で膜沸騰が起こり、膜沸騰泡13が生成される。 FIG. 7B shows a state in which a voltage is applied to the heat generating element 10 and the film boiling bubbles 13 are uniformly generated in almost the entire area of the heat generating element 10 in contact with the liquid W. When a voltage is applied, the surface temperature of the heat generating element 10 rapidly rises at a rate of 10 ° C./μsec or more, and when the temperature reaches approximately 300 ° C., film boiling occurs and film boiling bubbles 13 are generated.

発熱素子10の表面温度は、その後もパルスの印加中に600〜800℃程度まで上昇し、膜沸騰泡13の周辺の液体も急激に加熱される。図では、膜沸騰泡13の周辺に位置し、急激に加熱される液体の領域を未発泡高温領域14として示している。未発泡高温領域14に含まれる気体溶解液体3は熱的溶解限界を超えて析出しUFBとなる。析出した気泡の直径は10nm〜100nm程度であり、高い気液界面エネルギを有している。そのため、短時間で消滅することもなく液体W内で独立を保ながら浮遊する。本実施形態では、このように膜沸騰泡13の発生から膨張時に熱的作用によって生成される気泡を第1のUFB11Aと称す。 After that, the surface temperature of the heating element 10 rises to about 600 to 800 ° C. during the application of the pulse, and the liquid around the film boiling bubble 13 is also rapidly heated. In the figure, the region of the liquid that is located around the membrane boiling foam 13 and is rapidly heated is shown as the unfoamed high temperature region 14. The gas-dissolved liquid 3 contained in the unfoamed high-temperature region 14 precipitates beyond the thermal dissolution limit and becomes UFB. The diameter of the precipitated bubbles is about 10 nm to 100 nm, and has a high gas-liquid interface energy. Therefore, it does not disappear in a short time and floats in the liquid W while maintaining its independence. In the present embodiment, the bubbles generated by the thermal action from the generation of the film boiling bubbles 13 to the expansion are referred to as the first UFB11A.

図7(c)は、膜沸騰泡13が膨張する過程を示している。発熱素子10への電圧パルスの印加が終了しても、膜沸騰泡13は発生したときに得た力の慣性によって膨張を続け、未発泡高温領域14も慣性によって移動及び拡散する。すなわち、膜沸騰泡13が膨張する過程において、未発泡高温領域14に含まれた気体溶解液体3が新たに気泡となって析出し、第1のUFB11Aとなる。 FIG. 7C shows the process of expansion of the membrane boiling foam 13. Even after the application of the voltage pulse to the heating element 10 is completed, the film boiling foam 13 continues to expand due to the inertia of the force obtained when it is generated, and the unfoamed high temperature region 14 also moves and diffuses due to the inertia. That is, in the process of expanding the membrane boiling foam 13, the gas-dissolved liquid 3 contained in the unfoamed high-temperature region 14 is newly precipitated as bubbles to become the first UFB 11A.

図7(d)は、膜沸騰泡13が最大体積となった状態を示している。膜沸騰泡13は慣性によって膨張するが、膨張に伴って膜沸騰泡13の内部の負圧は徐々に高まり、膜沸騰泡13を収縮しようとする負圧力として作用する。そして、この負圧力が慣性力と釣り合った時点で、膜沸騰泡13の体積は最大となり、以後収縮に転じる。 FIG. 7D shows a state in which the membrane boiling foam 13 has the maximum volume. The membrane boiling foam 13 expands due to inertia, but the negative pressure inside the membrane boiling foam 13 gradually increases with the expansion, and acts as a negative pressure for contracting the membrane boiling foam 13. Then, when this negative pressure is balanced with the inertial force, the volume of the membrane boiling bubble 13 becomes maximum, and then it starts to contract.

膜沸騰泡13の収縮段階においては、図8(a)〜(c)に示す過程により発生するUFB(第2のUFB11B)と、図9(a)〜(c)に示す過程により発生するUFB(第3のUFB)とがある。これら2つの過程は併存しておきていると考えられる。 In the contraction stage of the membrane boiling foam 13, UFB (second UFB11B) generated by the processes shown in FIGS. 8 (a) to 8 (c) and UFB generated by the processes shown in FIGS. 9 (a) to 9 (c). There is (third UFB). It is considered that these two processes coexist.

図8(a)〜(c)は、膜沸騰泡13の収縮に伴ってUFB11が生成される様子を示す図である。図8(a)は、膜沸騰泡13が収縮を開始した状態を示している。膜沸騰泡13が収縮を開始しても、周囲の液体Wには膨張する方向の慣性力が残っている。よって、膜沸騰泡13の極周囲には、発熱素子10から離れる方向に作用する慣性力と、膜沸騰泡13の収縮に伴って発熱素子10に向かう力とが作用し、減圧された領域となる。図では、そのような領域を未発泡負圧領域15として示している。 8 (a) to 8 (c) are views showing how UFB 11 is generated as the membrane boiling bubbles 13 contract. FIG. 8A shows a state in which the membrane boiling foam 13 has started contraction. Even if the membrane boiling bubble 13 starts contracting, the surrounding liquid W still has an inertial force in the expanding direction. Therefore, an inertial force acting in a direction away from the heat generating element 10 and a force acting toward the heat generating element 10 as the film boiling bubble shrinks act on the polar periphery of the film boiling bubble 13, and the pressure is reduced. Become. In the figure, such a region is shown as an unfoamed negative pressure region 15.

未発泡負圧領域15に含まれる気体溶解液体3は、圧的溶解限界を超え、気泡として析出する。析出した気泡の直径は100nm程度であり、その後短時間で消滅することもなく液体W内で独立を保ながら浮遊する。本実施形態では、このように膜沸騰泡13が収縮する際の圧力的作用によって析出する気泡を、第2のUFB11Bと称す。 The gas-dissolved liquid 3 contained in the unfoamed negative pressure region 15 exceeds the pressure dissolution limit and precipitates as bubbles. The diameter of the precipitated bubbles is about 100 nm, and then the precipitated bubbles float in the liquid W while maintaining their independence without disappearing in a short time. In the present embodiment, the bubbles precipitated by the pressure action when the membrane boiling bubbles 13 contract in this way are referred to as the second UFB 11B.

図8(b)は、膜沸騰泡13が収縮する過程を示している。膜沸騰泡13が収縮する速度は負圧力によって加速し、未発泡負圧領域15も膜沸騰泡13の収縮に伴って移動する。すなわち、膜沸騰泡13が収縮する過程において、未発泡負圧領域15が通過する箇所の気体溶解液体3が次々に析出し、第2のUFB11Bとなる。 FIG. 8B shows the process of contraction of the membrane boiling foam 13. The speed at which the membrane boiling foam 13 contracts is accelerated by the negative pressure, and the unfoamed negative pressure region 15 also moves with the contraction of the membrane boiling foam 13. That is, in the process of contraction of the membrane boiling foam 13, the gas-dissolved liquid 3 at the portion where the unfoamed negative pressure region 15 passes is deposited one after another to become the second UFB 11B.

図8(c)は、膜沸騰泡13が消滅する直前の様子を示している。膜沸騰泡13の加速度的な収縮により、周囲の液体Wの移動速度も増大するが、チャンバー301内の流路抵抗によって圧力損失が生じる。その結果、未発泡負圧領域15が占める領域は更に大きくなり、多数の第2のUFB11Bが生成される。 FIG. 8C shows a state immediately before the film boiling bubble 13 disappears. The accelerated contraction of the membrane boiling foam 13 also increases the moving speed of the surrounding liquid W, but pressure loss occurs due to the flow path resistance in the chamber 301. As a result, the region occupied by the unfoamed negative pressure region 15 becomes larger, and a large number of second UFB 11Bs are generated.

図9(a)〜(c)は、膜沸騰泡13の収縮時において、液体Wの再加熱によってUFBが生成される様子を示す図である。図9(a)は、発熱素子10の表面が収縮する膜沸騰泡13に被覆されている状態を示している。 9 (a) to 9 (c) are views showing how UFB is generated by reheating the liquid W when the membrane boiling foam 13 is contracted. FIG. 9A shows a state in which the surface of the heat generating element 10 is covered with the shrinking film boiling bubbles 13.

図9(b)は、膜沸騰泡13の収縮が進み、発熱素子10の表面の一部が液体Wに接触した状態を示している。このとき発熱素子10の表面には、液体Wが接しても膜沸騰には到らないほどの熱が残っている。図では、発熱素子10の表面に接することにより加熱される液体の領域を未発泡再加熱領域16として示している。膜沸騰には到らないものの、未発泡再加熱領域16に含まれる気体溶解液体3は、熱的溶解限界を超えて析出する。本実施形態では、このように膜沸騰泡13が収縮する際の液体Wの再加熱によって生成される気泡を第3のUFB11Cと称す。 FIG. 9B shows a state in which the film boiling bubbles 13 are contracted and a part of the surface of the heat generating element 10 is in contact with the liquid W. At this time, heat remains on the surface of the heat generating element 10 so that the film does not boil even if the liquid W comes into contact with the surface. In the figure, the region of the liquid that is heated by coming into contact with the surface of the heat generating element 10 is shown as the unfoamed reheating region 16. Although the film does not boil, the gas-dissolved liquid 3 contained in the unfoamed reheating region 16 precipitates beyond the thermal dissolution limit. In the present embodiment, the bubbles generated by reheating the liquid W when the membrane boiling bubbles 13 contract in this way are referred to as a third UFB 11C.

図9(c)は、膜沸騰泡13の収縮が更に進んだ状態を示している。膜沸騰泡13が小さくなるほど、液体Wに接する発熱素子10の領域が大きくなるため、第3のUFB11Cは、膜沸騰泡13が消滅するまで生成される。 FIG. 9C shows a state in which the film boiling bubbles 13 are further contracted. As the film boiling bubble 13 becomes smaller, the region of the heat generating element 10 in contact with the liquid W becomes larger, so that the third UFB 11C is generated until the film boiling bubble 13 disappears.

図10(a)および(b)は、膜沸騰で生成された膜沸騰泡13の消泡時の衝撃(所謂、キャビテーションの一種)によって、UFBが生成される様子を示す図である。図10(a)は、膜沸騰泡13が消滅する直前の様子を示している。膜沸騰泡13は内部の負圧力によって急激に収縮し、その周囲を未発泡負圧領域15が覆う状態となっている。 10 (a) and 10 (b) are diagrams showing how UFB is generated by the impact (a kind of so-called cavitation) at the time of defoaming the membrane boiling foam 13 generated by the membrane boiling. FIG. 10A shows a state immediately before the film boiling bubble 13 disappears. The membrane boiling foam 13 rapidly contracts due to the internal negative pressure, and the unfoamed negative pressure region 15 covers the periphery thereof.

図10(b)は、膜沸騰泡13が点Pで消滅した直後の様子を示している。膜沸騰泡13が消泡するとき、その衝撃により音響波が点Pを起点として同心円状に広がる。音響波とは、気体、液体、固体を問わず伝播する弾性波の総称であり、本実施形態においては、液体Wの粗密、すなわち液体Wの高圧面17Aと低圧面17B、とが交互に伝播される。 FIG. 10B shows a state immediately after the film boiling bubble 13 disappears at the point P. When the membrane boiling bubble 13 is defoamed, the acoustic wave spreads concentrically starting from the point P due to the impact. Acoustic waves are a general term for elastic waves that propagate regardless of whether they are gas, liquid, or solid. In this embodiment, the density of liquid W, that is, the high-pressure surface 17A and low-pressure surface 17B of the liquid W propagate alternately. Will be done.

この場合、未発泡負圧領域15に含まれる気体溶解液体3は、膜沸騰泡13の消泡時の衝撃波によって共振され、低圧面17Bが通過するタイミングで圧的溶解限界を超えて相転移する。すなわち、膜沸騰泡13の消滅と同時に、未発泡負圧領域15内には多数の気泡が析出する。本実施形態ではこのような膜沸騰泡13が消泡する時の衝撃波によって生成される気泡を第4のUFB11Dと称す。 In this case, the gas-dissolved liquid 3 contained in the unfoamed negative pressure region 15 is resonated by the shock wave at the time of defoaming of the film boiling foam 13, and undergoes a phase transition beyond the pressure dissolution limit at the timing when the low pressure surface 17B passes. .. That is, at the same time as the film boiling bubbles 13 disappear, a large number of bubbles are precipitated in the unfoamed negative pressure region 15. In the present embodiment, the bubbles generated by the shock wave when the film boiling bubbles 13 are defoamed are referred to as the fourth UFB11D.

膜沸騰泡13の消泡時の衝撃波よって生成される第4のUFB11Bは、極めて狭い薄膜的領域に極めて短時間(1μS以下)で突発的に出現する。直径は第1〜第3のUFBよりも十分小さく、第1〜第3のUFBよりも気液界面エネルギが高い。このため、第4のUFB11Dは、第1〜第3のUFB11A〜11Cとは異なる性質を有し異なる効果を生み出すものと考えられる。 The fourth UFB11B generated by the shock wave at the time of defoaming the membrane boiling bubble 13 suddenly appears in an extremely narrow thin film region in an extremely short time (1 μS or less). The diameter is sufficiently smaller than the first to third UFBs, and the gas-liquid interface energy is higher than that of the first to third UFBs. Therefore, it is considered that the fourth UFB 11D has different properties from the first to third UFB 11A to 11C and produces different effects.

また、第4のUFB11Dは、衝撃波が伝播する同心球状の領域のいたる所で一様に発生するため、生成された時点からチャンバー301内に一様に存在することになる。第4のUFB11Dが生成されるタイミングでは、第1〜第3のUFBが既に多数存在しているが、これら第1〜第3のUFBの存在が第4のUFB11Dの生成に大きく影響することはない。また、第4のUFB11Dの発生によって第1〜第3のUFBが消滅することもないと考えられる。 Further, since the fourth UFB11D is uniformly generated everywhere in the concentric spherical region where the shock wave propagates, it will be uniformly present in the chamber 301 from the time when it is generated. At the timing when the fourth UFB11D is generated, a large number of the first to third UFBs already exist, but the existence of these first to third UFBs has a great influence on the generation of the fourth UFB11D. Absent. Further, it is considered that the first to third UFBs will not disappear due to the generation of the fourth UFB11D.

以上説明したように発熱素子10の発熱により膜沸騰泡13が発生し消泡するまでの複数の段階においてUFB11が発生すると想定される。第1のUFB11A、第2のUFB11B及び第3のUFB11Cは、膜沸騰により発生する膜沸騰泡の表面の近傍に発生する。ここで近傍とは膜沸騰泡の表面から約20μm以内の領域である。第4のUFB11Dは、気泡が消泡(消滅)する際に発生する衝撃波が伝搬する領域に発生する。上述した例では膜沸騰泡13が消泡するまでの例を示したがUFBを発生させるためにはこれに限られない。例えば、発生した膜沸騰泡13が消泡する前に大気と連通することで、膜沸騰泡13が消耗まで至らない場合においてもUFBの生成が可能である。 As described above, it is assumed that the UFB 11 is generated at a plurality of stages until the film boiling bubbles 13 are generated and defoamed by the heat generated by the heat generating element 10. The first UFB11A, the second UFB11B and the third UFB11C are generated in the vicinity of the surface of the film boiling foam generated by the film boiling. Here, the vicinity is a region within about 20 μm from the surface of the membrane boiling foam. The fourth UFB11D is generated in the region where the shock wave generated when the bubbles are defoamed (disappeared) propagates. In the above-mentioned example, an example until the membrane boiling bubble 13 is defoamed is shown, but the method is not limited to this in order to generate UFB. For example, by communicating with the atmosphere before the generated membrane boiling bubbles 13 are defoamed, UFB can be generated even when the membrane boiling bubbles 13 are not exhausted.

次にUFBの残存特性について説明する。液体の温度が高いほど気体成分の溶解特性は低くなり、温度が低いほど気体成分の溶解特性は高くなる。すなわち、液体の温度が高いほど、溶解している気体成分の相転移が促され、UFBが生成されやすくなる。液体の温度と気体の溶解度は反比例の関係にあり、液体の温度上昇により、飽和溶解度を超えた気体が気泡になって液体中に析出される。 Next, the residual characteristics of UFB will be described. The higher the temperature of the liquid, the lower the dissolution characteristics of the gas component, and the lower the temperature, the higher the dissolution characteristics of the gas component. That is, the higher the temperature of the liquid, the more the phase transition of the dissolved gas component is promoted, and the more easily UFB is generated. The temperature of the liquid and the solubility of the gas are in inverse proportion to each other, and as the temperature of the liquid rises, the gas exceeding the saturated solubility becomes bubbles and is deposited in the liquid.

このため、液体の温度が常温から急激に上昇すると溶解特性が一気に下がり、UFBが生成され始める。そして、温度が上がるほど熱的溶解特性は下がり、多くのUFBが生成される状況となる。 Therefore, when the temperature of the liquid rises sharply from room temperature, the dissolution characteristics drop at once, and UFB begins to be generated. Then, as the temperature rises, the thermal melting characteristics decrease, and a large amount of UFB is generated.

反対に液体の温度が常温から下降すると、気体の溶解特性は上昇し、生成されたUFBは液化しやすくなる。しかしながら、このような温度は、常温よりも十分に低い。更に、液体の温度が下がっても、一度発生したUFBは高い内圧と高い気液界面エネルギを有するため、この気液界面を破壊するほどの高い圧力が作用する可能性は極めて低い。すなわち、一度生成されたUFBは、液体を常温常圧で保存する限り、簡単に消滅することはない。 On the contrary, when the temperature of the liquid drops from room temperature, the dissolution characteristics of the gas increase, and the produced UFB becomes easy to liquefy. However, such temperatures are well below room temperature. Further, even if the temperature of the liquid is lowered, since the UFB once generated has a high internal pressure and a high gas-liquid interface energy, it is extremely unlikely that a pressure high enough to destroy the gas-liquid interface acts. That is, the UFB once generated does not easily disappear as long as the liquid is stored at normal temperature and pressure.

本実施形態において、図7(a)〜(c)で説明した第1のUFB11A、及び図9(a)〜(c)で説明した第3のUFB11Cは、このような気体の熱的溶解特性を利用して生成されたUFBと言える。 In the present embodiment, the first UFB11A described with reference to FIGS. 7 (a) to 7 (c) and the third UFB11C described with reference to FIGS. 9 (a) to 9 (c) have thermal dissolution characteristics of such a gas. It can be said that it is a UFB generated by using.

一方、液体の圧力と溶解特性の関係においては、液体の圧力が高いほど気体の溶解特性は高くなり、圧力が低いほど溶解特性は低くなる。すなわち液体の圧力が低いほど、液体に溶解している気体溶解液体の気体への相転移が促され、UFBが生成されやすくなる。液体の圧力が常圧から下がると、溶解特性が一気に下がり、UFBが生成され始める。そして、圧力が下がるほど圧的溶解特性は下がり、多くのUFBが生成される状況となる。 On the other hand, regarding the relationship between the pressure of the liquid and the dissolution characteristics, the higher the pressure of the liquid, the higher the dissolution characteristics of the gas, and the lower the pressure, the lower the dissolution characteristics. That is, the lower the pressure of the liquid, the more the phase transition of the gas-dissolved liquid dissolved in the liquid to the gas is promoted, and the UFB is easily generated. When the pressure of the liquid drops from normal pressure, the dissolution characteristics drop at once and UFB begins to be generated. Then, as the pressure decreases, the pressure dissolution characteristics decrease, and a large amount of UFB is generated.

反対に液体の圧力が常圧から上昇すると、気体の溶解特性は上昇し、生成されたUFBは液化しやすくなる。しかしながら、このような圧力は、大気圧よりも十分に高く、更に、液体の圧力が上がっても、一度発生したUFBは高い内圧と高い気液界面エネルギを有するため、この気液界面を破壊するほどの高い圧力が作用する可能性は極めて低い。すなわち、一度生成されたUFBは、液体を常温常圧で保存する限り、簡単に消滅することはない。 On the contrary, when the pressure of the liquid rises from the normal pressure, the dissolution property of the gas rises, and the produced UFB becomes easy to liquefy. However, such a pressure is sufficiently higher than the atmospheric pressure, and even if the pressure of the liquid rises, the UFB once generated has a high internal pressure and a high gas-liquid interface energy, so that the gas-liquid interface is destroyed. It is extremely unlikely that moderately high pressure will act. That is, the UFB once generated does not easily disappear as long as the liquid is stored at normal temperature and pressure.

本実施形態において、図8(a)〜(c)で説明した第2のUFB11B、及び図10(a)〜(c)で説明した第4のUFB11Dは、このような気体の圧力的溶解特性を利用して生成されたUFBと言える。 In the present embodiment, the second UFB11B described with reference to FIGS. 8 (a) to 8 (c) and the fourth UFB11D described with reference to FIGS. 10 (a) to 10 (c) have such gas pressure dissolution characteristics. It can be said that it is a UFB generated by using.

以上では、生成される要因の異なる第1〜第4のUFBを個別に説明してきたが、上述した生成要因は、膜沸騰という事象に伴って同時多発的に起こるものである。このため、第1〜第4のUFBのうち少なくとも2種類以上のUFBが同時に生成されることもあり、これら生成要因が互いに協働してUFBを生成することもある。但し、いずれの生成要因も、膜沸騰現象によって招致されることは共通している。本明細書では、このように急激な発熱に伴う膜沸騰を利用してUFBを生成する方法を、T−UFB(Thermal−Ultra Fine Bubble)生成方法と称す。また、T−UFB生成方法によって生成したUFBをT−UFB、T−UFB生成方法によって生成されたT−UFBを含有する液体をT−UFB含有液と称す。 In the above, the first to fourth UFBs having different generation factors have been described individually, but the above-mentioned generation factors occur simultaneously and frequently with the event of film boiling. Therefore, at least two or more types of UFBs among the first to fourth UFBs may be generated at the same time, and these generation factors may cooperate with each other to generate UFBs. However, it is common that all the generation factors are induced by the film boiling phenomenon. In the present specification, the method of producing UFB by utilizing the film boiling accompanying the rapid heat generation is referred to as a T-UFB (Thermal-Ultra Fine Bubble) production method. Further, the UFB produced by the T-UFB production method is referred to as T-UFB, and the liquid containing T-UFB produced by the T-UFB production method is referred to as a T-UFB-containing liquid.

T−UFB生成方法によって生成される気泡はその殆どが1.0um以下であり、ミリバブルやマイクロバブルは生成され難い。すなわち、T−UFB生成方法によれば、UFBが支配的に、かつ、効率的に生成されることになる。また、T−UFB生成方法によって生成されたT−UFBは、従来法によって生成されたUFBよりも高い気液界面エネルギを有し、常温常圧で保存する限り簡単に消滅することはない。更に、新たな膜沸騰によって新たなT−UFBが生成されても、先行して生成されていたT−UFBがその衝撃によって消滅することも抑制される。つまり、T−UFB含有液に含まれるT−UFBの数や濃度は、T−UFB含有液における膜沸騰の発生回数に対しヒステリシス特性を有すると言える。言い替えると、T−UFB生成ユニット300に配する発熱素子の数や発熱素子に対する電圧パルスの印加回数を制御することにより、T−UFB含有液に含まれるT−UFBの濃度を調整することができる。 Most of the bubbles generated by the T-UFB generation method are 1.0 um or less, and it is difficult to generate millibubbles and microbubbles. That is, according to the T-UFB generation method, UFB is produced dominantly and efficiently. Further, the T-UFB produced by the T-UFB production method has a higher gas-liquid interface energy than the UFB produced by the conventional method, and does not easily disappear as long as it is stored at normal temperature and pressure. Further, even if a new T-UFB is generated by the new film boiling, it is suppressed that the previously generated T-UFB disappears due to the impact. That is, it can be said that the number and concentration of T-UFB contained in the T-UFB-containing liquid have a hysteresis characteristic with respect to the number of times of film boiling in the T-UFB-containing liquid. In other words, the concentration of T-UFB contained in the T-UFB-containing liquid can be adjusted by controlling the number of heat-generating elements arranged in the T-UFB generation unit 300 and the number of times voltage pulses are applied to the heat-generating elements. ..

再び図1を参照する。T−UFB生成ユニット300において、所望のUFB濃度を有するT−UFB含有液Wが生成されると、当該UFB含有液Wは、後処理ユニット400に供給される。 See FIG. 1 again. When the T-UFB-containing liquid W having a desired UFB concentration is generated in the T-UFB generation unit 300, the UFB-containing liquid W is supplied to the post-treatment unit 400.

図11(a)〜(c)は、本実施形態の後処理ユニット400の構成例を示す図である。本実施形態の後処理ユニット400は、UFB含有液Wに含まれる不純物を、無機物イオン、有機物、不溶固形物、の順に段階に除去する。 11 (a) to 11 (c) are diagrams showing a configuration example of the post-processing unit 400 of the present embodiment. The post-treatment unit 400 of the present embodiment removes impurities contained in the UFB-containing liquid W in the order of inorganic ions, organic substances, and insoluble solid substances.

図11(a)は、無機物イオンを除去するための第1の後処理機構410を示す。第1の後処理機構410は、交換容器411、陽イオン交換樹脂412、液体導入路413、集水管414及び液体導出路415を備えている。交換容器411には、陽イオン交換樹脂412が収容されている。T−UFB生成ユニット300で生成されたUFB含有液Wは、液体導入路413を経由して交換容器411に注入され、陽イオン交換樹脂412に吸収され、ここで不純物としての陽イオンが除去される。このような不純物には、T−UFB生成ユニット300の素子基板12より剥離した金属材料などが含まれる。例えばSiO2、SiN、SiC、Ta、Al23、Ta25のような化合物のほかSi、AL、W、Pt、Pd、Ta、Fe、CrおよびNiなどから成るアモルファス合金、Ir、Ru等の白金族が挙げられる。 FIG. 11A shows a first post-treatment mechanism 410 for removing inorganic ions. The first post-treatment mechanism 410 includes an exchange container 411, a cation exchange resin 412, a liquid introduction path 413, a water collection pipe 414, and a liquid outlet path 415. The exchange container 411 contains the cation exchange resin 412. The UFB-containing liquid W generated by the T-UFB generation unit 300 is injected into the exchange container 411 via the liquid introduction path 413 and absorbed by the cation exchange resin 412, where cations as impurities are removed. To. Such impurities include a metal material peeled off from the element substrate 12 of the T-UFB generation unit 300 and the like. For example, in addition to compounds such as SiO 2 , SiN, SiC, Ta, Al 2 O 3 , Ta 2 O 5 , amorphous alloys composed of Si, AL, W, Pt, Pd, Ta, Fe, Cr and Ni, Ir, Platinum group such as Ru can be mentioned.

陽イオン交換樹脂412は、三次元的な網目構造を持った高分子母体に官能基(イオン交換基)を導入した合成樹脂であり、合成樹脂は0.4〜0.7mm程度の球状粒子を呈している。高分子母体としては、スチレン−ジビニルベンゼンの共重合体が一般的であり、官能基としては例えばメタクリル酸系とアクリル酸系のものを用いることができる。但し、上記材料は一例である。所望の無機イオンを効果的に除去することができれば、上記材料は様々に変更可能である。陽イオン交換樹脂412に吸収され、無機イオンが除去されたUFB含有液Wは、集水管414によって集水され、液体導出路415を介して次の工程に送液される。尚、本実施形態における本工程おいて、液体導入路413から供給されるUFB含有液W内に含まれる全ての無機イオンが除去される必要はなく、少なくとも一部の無機イオンが除去されれば良い。 The cation exchange resin 412 is a synthetic resin in which a functional group (ion exchange group) is introduced into a polymer base having a three-dimensional network structure, and the synthetic resin contains spherical particles of about 0.4 to 0.7 mm. Presented. As the polymer base, a copolymer of styrene-divinylbenzene is generally used, and as the functional group, for example, methacrylic acid type and acrylic acid type can be used. However, the above material is an example. The materials can be changed in various ways as long as the desired inorganic ions can be effectively removed. The UFB-containing liquid W absorbed by the cation exchange resin 412 and from which the inorganic ions have been removed is collected by the water collecting pipe 414 and sent to the next step via the liquid outlet path 415. In this step in the present embodiment, it is not necessary to remove all the inorganic ions contained in the UFB-containing liquid W supplied from the liquid introduction path 413, and if at least some of the inorganic ions are removed. good.

図11(b)は、有機物を除去するための第2の後処理機構420を示す。第2の後処理機構420は、収容容器421、ろ過フィルタ422、真空ポンプ423、バルブ424、液体導入路425、液体導出路426、及びエア吸引路427を備えている。収容容器421の内部は、ろ過フィルタ422によって上下2つの領域に分割されている。液体導入路425は、上下2つの領域のうち上方の領域に接続し、エア吸引路427及び液体導出路426は下方の領域に接続する。バルブ424を閉じた状態で真空ポンプ423を駆動すると、収容容器421内の空気がエア吸引路427を介して排出され、収容容器421の内部が負圧になり、液体導入路425よりUFB含有液Wが導入される。そして、ろ過フィルタ422によって不純物が除去された状態のUFB含有液Wが収容容器421に貯留される。 FIG. 11B shows a second post-treatment mechanism 420 for removing organic matter. The second post-treatment mechanism 420 includes a storage container 421, a filtration filter 422, a vacuum pump 423, a valve 424, a liquid introduction path 425, a liquid outlet path 426, and an air suction path 427. The inside of the storage container 421 is divided into two upper and lower regions by a filtration filter 422. The liquid introduction path 425 is connected to the upper region of the upper and lower regions, and the air suction passage 427 and the liquid outlet passage 426 are connected to the lower region. When the vacuum pump 423 is driven with the valve 424 closed, the air in the storage container 421 is discharged through the air suction path 427, the inside of the storage container 421 becomes negative pressure, and the UFB-containing liquid is discharged from the liquid introduction path 425. W is introduced. Then, the UFB-containing liquid W in a state where impurities have been removed by the filtration filter 422 is stored in the storage container 421.

ろ過フィルタ422によって除去される不純物には、チューブや各ユニットで混合され得る有機材料が含まれ、例えばシリコンを含む有機化合物、シロキサン、エポキシなどが挙げられる。ろ過フィルタ422に使用可能なフィルタ膜としては、細菌系まで除去できるサブμmメッシュのフィルタ(1μm以下のメッシュ径を備えるフィルタ)や、ウィルスまで除去できるnmメッシュのフィルタが挙げられる。このような微細な開口径を備えるろ過フィルタにおいては、フィルタの開口径よりも大きな気泡も除去対象となり得る。特に微細な気泡はフィルタの開口(メッシュ)に吸着するとフィルタの目詰まりとなり、ろ過速度が低減する場合がある。しかしながら上述したように、本実施形態発明で説明したT−UFB生成方法によって生成される気泡はその殆どが1.0um以下の径を備える大きさであり、1.0μmより大きい、ミリバブルやマイクロバブルは生成され難い。つまりミリバブルやマイクロバブルの生成率が非常に小さいため、フィルタに気泡が吸着することによるろ過速度の低下を抑制できる。よって、T−UFB生成方法を備えるシステムに、1μm以下のメッシュ径を備えるフィルタを備えるろ過フィルタ422を好適に適用することができる。 Impurities removed by the filtration filter 422 include organic materials that can be mixed in tubes and units, such as organic compounds containing silicon, siloxanes, epoxies and the like. Examples of the filter membrane that can be used for the filtration filter 422 include a sub μm mesh filter that can remove even bacterial systems (a filter having a mesh diameter of 1 μm or less) and an nm mesh filter that can remove even viruses. In a filtration filter having such a fine opening diameter, bubbles larger than the opening diameter of the filter can also be removed. In particular, when fine bubbles are adsorbed on the opening (mesh) of the filter, the filter may be clogged and the filtration rate may be reduced. However, as described above, most of the bubbles generated by the T-UFB generation method described in the present invention have a diameter of 1.0 um or less, and are larger than 1.0 μm, such as millibubbles and microbubbles. Is hard to generate. That is, since the generation rate of millibubbles and microbubbles is very small, it is possible to suppress a decrease in the filtration rate due to the adsorption of bubbles on the filter. Therefore, a filtration filter 422 including a filter having a mesh diameter of 1 μm or less can be preferably applied to a system including a T-UFB generation method.

本実施形態に適用可能なろ過方式の一例として、所謂、デッドエンドろ過方式と、クロスフローろ過方式がある。デッドエンドろ過方式は、供給液の流れ方向とフィルタ開口を通過するろ過液の流れ方向とが同じ方向、つまり互い沿った方向に流れるものである。それに対してクロスフローろ過方式は、供給液の流れがフィルタ面に沿った方向に流れる、つまり供給液の流れとフィルタ開口を通過するろ過液の流れが交差する方向に流れる。フィルタ開口に対する気泡の吸着を抑制するためにはクロスフローろ過方式の適用が好ましい。 As an example of the filtration method applicable to this embodiment, there are a so-called dead-end filtration method and a cross-flow filtration method. In the dead-end filtration method, the flow direction of the supply liquid and the flow direction of the filter liquid passing through the filter opening flow in the same direction, that is, in directions along each other. On the other hand, in the cross-flow filtration method, the flow of the feed liquid flows in the direction along the filter surface, that is, the flow of the feed liquid and the flow of the filter liquid passing through the filter opening intersect. In order to suppress the adsorption of air bubbles to the filter opening, it is preferable to apply a cross-flow filtration method.

収容容器421にUFB含有液Wがある程度貯留された後、真空ポンプ423を停止してバルブ424を開放すると、収容容器421のT−UFB含有液は液体導出路426を介して次の工程に送液される。なお、ここでは、有機物の不純物を除去する方法として真空ろ過法を採用したが、フィルタを用いたろ過方法としては、例えば重力ろ過法や加圧ろ過を採用することもできる。 When the vacuum pump 423 is stopped and the valve 424 is opened after the UFB-containing liquid W is stored in the storage container 421 to some extent, the T-UFB-containing liquid in the storage container 421 is sent to the next step via the liquid outlet path 426. Be liquid. Here, the vacuum filtration method is adopted as a method for removing impurities of organic substances, but as a filtration method using a filter, for example, a gravity filtration method or a pressure filtration method can also be adopted.

図11(c)は、不溶の固形物を除去するための第3の後処理機構430を示す。第3の後処理機構430は、沈殿容器431、液体導入路432、バルブ433及び液体導出路434を備えている。 FIG. 11C shows a third post-treatment mechanism 430 for removing insoluble solids. The third post-treatment mechanism 430 includes a settling container 431, a liquid introduction path 432, a valve 433, and a liquid outlet path 434.

まず、バルブ433を閉じた状態で沈殿容器431に所定量のUFB含有液Wを液体導入路432より貯留し、しばらく放置する。この間、UFB含有液Wに含まれている固形物は、重力によって沈殿容器431の底部に沈降する。また、UFB含有液に含まれるバブルのうち、マイクロバブルのような比較的大きなサイズのバブルも浮力によって液面に浮上し、UFB含有液から除去される。十分な時間が経過した後バルブ433を開放すると、固形物や大きなサイズのバブルが除去されたUFB含有液Wが液体導出路434を介して、回収ユニット500に送液される。本実施形態では3つの後処理機構を順に適用する例を示したが、これに限られず、3つの後処理機構の順序を変更してもよく、また必要に応じた後処理機構を少なくとも1つ採用しても良い。 First, with the valve 433 closed, a predetermined amount of UFB-containing liquid W is stored in the settling container 431 from the liquid introduction path 432 and left for a while. During this time, the solid matter contained in the UFB-containing liquid W is settled on the bottom of the settling container 431 by gravity. Further, among the bubbles contained in the UFB-containing liquid, bubbles having a relatively large size such as microbubbles also float on the liquid surface by buoyancy and are removed from the UFB-containing liquid. When the valve 433 is opened after a sufficient time has elapsed, the UFB-containing liquid W from which solid matter and large-sized bubbles have been removed is sent to the recovery unit 500 via the liquid outlet path 434. In the present embodiment, an example in which the three post-processing mechanisms are applied in order is shown, but the present invention is not limited to this, and the order of the three post-processing mechanisms may be changed, and at least one post-processing mechanism is provided as required. You may adopt it.

以上のような不純物を除去するための除去処理を後処理に含めることにより、生成されたT−UFB含有液においては、T−UFBの含有純度を高めることができる。 By including the removal treatment for removing impurities as described above in the post-treatment, the T-UFB-containing purity can be increased in the produced T-UFB-containing liquid.

再度図1を参照する。後処理ユニット400で不純物が除去されたT−UFB含有液Wは、そのまま回収ユニット500に送液してもよいが、再び溶解ユニット200に戻し、循環システムとすることもできる。後者の場合、後処理ユニット400は溶解ユニット200に供給する液体に対し前処理を行うユニットとなる。また、T−UFBを生成した後のUFB含有液を再び溶解ユニット200に戻す場合、T−UFBの生成によって低下したT−UFB含有液Wの気体溶解濃度を高めることができる。好ましくは、溶解ユニット200において再び飽和状態まで補填することができる。その上で新たなT−UFBをT−UFB生成ユニット300で生成すれば、上述した特性のもと、T−UFB含有液のUFB含有濃度を更に上昇させることができる。すなわち、溶解ユニット200、T−UFB生成ユニット300、後処理ユニット400を巡る循環回数の分だけ、UFB含有濃度を高めることができ、所望のUFB含有濃度が得られた後に、当該UFB含有液Wを回収ユニット500に送液することができる。本実施形態においては後処理ユニット400で処理したUFB含有液を溶解ユニット200に戻して循環する形態を示した。しかし、これに限られず、例えばT−UFB生成ユニットを経由した後に後処理ユニット400に供給する前に、再度溶解ユニット200に液体を戻し複数回の循環を行いT−UFB濃度を高めた後に、後処理ユニット400で後処理を行ってもよい。 See FIG. 1 again. The T-UFB-containing liquid W from which impurities have been removed by the post-treatment unit 400 may be sent to the recovery unit 500 as it is, or may be returned to the dissolution unit 200 again to form a circulation system. In the latter case, the post-treatment unit 400 is a unit that pre-treats the liquid supplied to the dissolution unit 200. Further, when the UFB-containing liquid after producing T-UFB is returned to the dissolution unit 200 again, the gas dissolution concentration of the T-UFB-containing liquid W lowered by the production of T-UFB can be increased. Preferably, the dissolution unit 200 can be replenished to the saturated state again. If a new T-UFB is then generated by the T-UFB generation unit 300, the UFB-containing concentration of the T-UFB-containing liquid can be further increased under the above-mentioned characteristics. That is, the UFB-containing concentration can be increased by the number of circulations around the dissolution unit 200, the T-UFB generation unit 300, and the post-treatment unit 400, and after the desired UFB-containing concentration is obtained, the UFB-containing liquid W Can be sent to the recovery unit 500. In this embodiment, the UFB-containing liquid treated by the post-treatment unit 400 is returned to the dissolution unit 200 and circulated. However, the present invention is not limited to this, for example, after the liquid is returned to the dissolution unit 200 and circulated a plurality of times to increase the T-UFB concentration before being supplied to the post-treatment unit 400 after passing through the T-UFB generation unit. Post-processing may be performed by the post-processing unit 400.

ここで、生成されたT−UFB含有液Wを再び溶解ユニット200に戻すことの効果について、本発明者らが具体的に検証した検証内容に従って簡単に説明する。まず、T−UFB生成ユニット300においては、素子基板12に10000個の発熱素子10を配した。液体Wとしては工業用純水を用い、T−UFB生成ユニット300のチャンバー301の中を、1.0リットル/時の流速で流動させた。この状態で、個々の発熱素子に対し、電圧24V、パルス幅1.0μsの電圧パルスを、10KHzの駆動周波数で印加した。 Here, the effect of returning the generated T-UFB-containing liquid W to the dissolution unit 200 again will be briefly described according to the verification contents specifically verified by the present inventors. First, in the T-UFB generation unit 300, 10,000 heat generating elements 10 are arranged on the element substrate 12. Industrial pure water was used as the liquid W, and the liquid W was allowed to flow in the chamber 301 of the T-UFB generation unit 300 at a flow velocity of 1.0 liter / hour. In this state, a voltage pulse having a voltage of 24 V and a pulse width of 1.0 μs was applied to each heat generating element at a drive frequency of 10 KHz.

生成されたT−UFB含有液Wを溶解ユニット200に戻さず回収ユニット500で回収した場合、すなわち循環回数を1回とした場合、回収ユニット500で回収されたT−UFB含有液Wには、1.0mLあたり36億個のUFBが確認された。一方、T−UFB含有液Wを溶解ユニット200に戻す操作を10回行った場合、すなわち循環回数を10回とした場合、回収ユニット500で回収されたT−UFB含有液Wには、1.0mLあたりおよそ360億個のUFBが確認された。すなわち、UFB含有濃度は、循環回数に略比例して高くなることが確認された。なお、上記のようなUFBの数密度については、島津製作所製の測定器(型番SALD−7500)を用い、所定体積のUFB含有液Wに含まれる直径1.0μm未満のUFB11をカウントすることによって取得した。 When the generated T-UFB-containing liquid W is recovered by the recovery unit 500 without returning to the dissolution unit 200, that is, when the number of circulations is one, the T-UFB-containing liquid W recovered by the recovery unit 500 may be charged. 3.6 billion UFBs were identified per 1.0 mL. On the other hand, when the operation of returning the T-UFB-containing liquid W to the dissolution unit 200 is performed 10 times, that is, when the number of circulations is 10, the T-UFB-containing liquid W recovered by the recovery unit 500 has 1. Approximately 36 billion UFBs were identified per 0 mL. That is, it was confirmed that the UFB content concentration increased substantially in proportion to the number of circulations. Regarding the number density of UFB as described above, a measuring instrument (model number SALD-7500) manufactured by Shimadzu Corporation is used to count UFB11 having a diameter of less than 1.0 μm contained in a predetermined volume of UFB-containing liquid W. Obtained.

このように、液体を、循環経路を経由して、溶解ユニット200とT−UFB生成ユニット300と後処理ユニット400をこの順に循環させることで所望のUFB濃度の液体を生成することが可能となる。 In this way, it is possible to generate a liquid having a desired UFB concentration by circulating the liquid in this order through the dissolution unit 200, the T-UFB generation unit 300, and the post-treatment unit 400 via the circulation path. ..

回収ユニット500は、後処理ユニット400より送液されて来たUFB含有液Wを回収及び保存する。回収ユニット500で回収されたT−UFB含有液は、様々な不純物が除去された純度の高いUFB含有液となる。 The recovery unit 500 collects and stores the UFB-containing liquid W that has been sent from the post-treatment unit 400. The T-UFB-containing liquid recovered by the recovery unit 500 becomes a highly pure UFB-containing liquid from which various impurities have been removed.

回収ユニット500においては、何段階かのフィルタリング処理を行い、UFB含有液WをT−UFBのサイズごと分類してもよい。また、T−UFB方式により得られるT−UFB含有液Wは、常温よりも高温であることが予想されるため、回収ユニット500には冷却手段を設けてもよい。なお、このような冷却手段は、後処理ユニット400の一部に設けられていてもよい。 In the recovery unit 500, the UFB-containing liquid W may be classified according to the size of T-UFB by performing a filtering process in several steps. Further, since the T-UFB-containing liquid W obtained by the T-UFB method is expected to have a temperature higher than room temperature, the recovery unit 500 may be provided with a cooling means. In addition, such a cooling means may be provided in a part of the post-processing unit 400.

以上が、UFB生成装置1の概略であるが、図示したような複数のユニットは無論変更可能であり、全てを用意する必要は無い。使用する液体Wや気体Gの種類、また生成するT−UFB含有液の使用目的に応じて、上述したユニットの一部を省略してもよいし、上述したユニット以外に更に別のユニットを追加してもよい。 The above is the outline of the UFB generator 1, but of course, a plurality of units as shown in the figure can be changed, and it is not necessary to prepare all of them. Depending on the type of liquid W or gas G to be used and the purpose of use of the T-UFB-containing liquid to be generated, a part of the above-mentioned units may be omitted, or another unit may be added in addition to the above-mentioned units. You may.

例えば、UFBに含有させる気体が大気である場合は、脱気ユニット100や溶解ユニット200を省略することができる。UFBに複数種類の気体を含ませたい場合は、溶解ユニット200を更に追加してもよい。また、図1に示した幾つかのユニットの機能は、1つのユニットに統合させることもできる。例えば、図3(a)および(b)に示した溶解容器201の中に発熱素子10を配することにより、溶解ユニット200とT−UFB生成ユニット300とを統合させることができる。この場合、一つのユニットの中で気体を溶解させながらその気体を含有するT−UFBを生成することになる。 For example, when the gas contained in the UFB is the atmosphere, the degassing unit 100 and the dissolution unit 200 can be omitted. If the UFB is to contain a plurality of types of gases, a dissolution unit 200 may be further added. In addition, the functions of several units shown in FIG. 1 can be integrated into one unit. For example, by arranging the heat generating element 10 in the melting container 201 shown in FIGS. 3A and 3B, the melting unit 200 and the T-UFB generation unit 300 can be integrated. In this case, T-UFB containing the gas is generated while dissolving the gas in one unit.

また、図11(a)〜(c)で示すような不純物を除去するための除去ユニットは、T−UFB生成ユニット300よりも上流に前処理ユニットの一部として設けてもよいし、上流と下流の両方に設けてもよい。UFB生成装置に供給される液体が水道水や雨水、また汚染水などの場合は、液体中に有機系や無機系の不純物が含まれている事がある。そのような不純物を含んだ液体WをT−UFB生成ユニット300に供給すると、発熱素子10を変質させたり、塩析現象を招致したりするおそれが生じる。図11(a)〜(c)で示すような機構をT−UFB生成ユニット300よりも上流に設けておくことにより、上記のような不純物を事前に除去し、より純度の高いUFB含有液をより効率的に生成することが可能となる。 Further, the removal unit for removing impurities as shown in FIGS. 11A to 11C may be provided as a part of the pretreatment unit upstream of the T-UFB generation unit 300, or may be provided upstream. It may be provided both downstream. When the liquid supplied to the UFB generator is tap water, rainwater, contaminated water, or the like, the liquid may contain organic or inorganic impurities. If the liquid W containing such impurities is supplied to the T-UFB generation unit 300, the heat generating element 10 may be altered or a salting out phenomenon may occur. By providing a mechanism as shown in FIGS. 11 (a) to 11 (c) upstream of the T-UFB generation unit 300, the above impurities are removed in advance, and a more pure UFB-containing liquid can be obtained. It becomes possible to generate more efficiently.

<<後処理ユニットの変形例>>
図12は、上述した各後処理ユニット400に追加または置換可能な第4の後処理機構450を示す。第4の後処理機構450は、超音波振動を利用して、T−UFB含有液WのT−UFB含有量を更に増幅させるための増幅処理ユニットである。
<< Modification example of post-processing unit >>
FIG. 12 shows a fourth post-processing mechanism 450 that can be added or replaced with each of the post-processing units 400 described above. The fourth post-treatment mechanism 450 is an amplification processing unit for further amplifying the T-UFB content of the T-UFB-containing liquid W by utilizing ultrasonic vibration.

第4の後処理機構450は、収容容器451、振動発生部455、液体導入路452、バルブ453、液体導出路454を備えている。振動発生部455は、ケーブル456、トランスデューサ457、ブースタ458、ホーン459を有し、ケーブル456から供給された電力は、トランスデューサ457で機械的振動振幅に変換された後、ブースタ458で増幅され、ホーン459を振動する。 The fourth post-treatment mechanism 450 includes a storage container 451, a vibration generating unit 455, a liquid introduction path 452, a valve 453, and a liquid outlet path 454. The vibration generating unit 455 includes a cable 456, a transducer 457, a booster 458, and a horn 459. The electric power supplied from the cable 456 is converted into a mechanical vibration amplitude by the transducer 457, and then amplified by the booster 458 and horned. Vibrate 459.

第4の後処理機構450を動作させる際、まず、バルブ454を閉じた状態で、液体導入路452を介して収容容器451にT−UFB含有液Wを貯留する。貯留するT−UFB含有液Wの量は、少なくともホーン459の先端がT−UFB含有液Wに浸る程度とする。そして、T−UFB含有液Wが貯留され、また収容容器内が大気に開放された状態で、振動発生部455を駆動しT−UFB含有液Wに浸っているホーン459を振動させる。この結果、ホーン459の先端が浸っているT−UFB含有液W中に超音波振動が起こり、T−UFBの数が増大する。 When operating the fourth post-treatment mechanism 450, first, the T-UFB-containing liquid W is stored in the storage container 451 via the liquid introduction path 452 with the valve 454 closed. The amount of the T-UFB-containing liquid W to be stored is such that at least the tip of the horn 459 is immersed in the T-UFB-containing liquid W. Then, in a state where the T-UFB-containing liquid W is stored and the inside of the storage container is open to the atmosphere, the vibration generating unit 455 is driven to vibrate the horn 459 immersed in the T-UFB-containing liquid W. As a result, ultrasonic vibration occurs in the T-UFB-containing liquid W in which the tip of the horn 459 is immersed, and the number of T-UFBs increases.

このとき、効率化のために、振動発生部455は、所定の間隔をおいて所定時間ずつ繰り返して駆動されることが好ましい。ホーン459の振動数や振動時間および振動の回数を変化させることにより、T−UFBの含有濃度を調整することができる。 At this time, in order to improve efficiency, it is preferable that the vibration generating unit 455 is repeatedly driven for a predetermined time at a predetermined interval. The T-UFB content can be adjusted by changing the frequency, vibration time, and number of vibrations of the horn 459.

所定時間の振動を所定回数繰り返した後、振動発生部455を停止してバルブ453を開放すると、所望の含有濃度に調整されたT−UFB含有液Wは、液体導出路454を介して回収ユニット500に送液される。 After repeating the vibration for a predetermined time a predetermined number of times, when the vibration generating unit 455 is stopped and the valve 453 is opened, the T-UFB-containing liquid W adjusted to a desired content concentration is recovered via the liquid lead-out path 454. The liquid is sent to 500.

以下、T−UFB生成ユニット300と第4の後処理機構450を備えた後処理ユニット400を用い、本発明者らが具体的に検証した内容について説明する。まず、T−UFB生成ユニット300においては、素子基板12に10000個の発熱素子10を配した。液体Wとしては工業用純水を用い、T−UFB生成ユニット300のチャンバー301の中を、1.0リットル/時の流速で流動させた。この状態で、個々の発熱素子に対し、電圧24V、パルス幅1.0μsの電圧パルスを、10KHzの駆動周波数で印加した。 Hereinafter, the contents specifically verified by the present inventors will be described using the T-UFB generation unit 300 and the post-processing unit 400 provided with the fourth post-processing mechanism 450. First, in the T-UFB generation unit 300, 10,000 heat generating elements 10 are arranged on the element substrate 12. Industrial pure water was used as the liquid W, and the liquid W was allowed to flow in the chamber 301 of the T-UFB generation unit 300 at a flow velocity of 1.0 liter / hour. In this state, a voltage pulse having a voltage of 24 V and a pulse width of 1.0 μs was applied to each heat generating element at a drive frequency of 10 KHz.

生成されたT−UFB含有液Wをそのまま回収ユニット500で回収し、UFBの含有濃度を確認したところ、回収されたT−UFB含有液Wには、1.0mLあたり36億個のUFBが確認された。一方、生成されたT−UFB含有液Wを第4の後処理機構450に供給し、100KHz、80Wでホーン459を振動させる動作を1秒間ずつ10回行ったところ、回収されたT−UFB含有液Wでは、1.0mLあたりおよそ72億個のUFBが確認された。すなわち、第4の後処理機構450で超音波振動を付与することにより、UFB含有濃度を高めることができた。上記のようなUFBの数密度については、島津製作所製の測定器(型番SALD−7500)を用い、所定体積のUFB含有液Wに含まれる直径1.0μm未満のUFB11をカウントすることによって取得した。 When the generated T-UFB-containing liquid W was recovered as it was by the recovery unit 500 and the UFB content concentration was confirmed, 3.6 billion UFBs per 1.0 mL were confirmed in the recovered T-UFB-containing liquid W. Was done. On the other hand, when the generated T-UFB-containing liquid W was supplied to the fourth post-treatment mechanism 450 and the operation of vibrating the horn 459 at 100 KHz and 80 W was performed 10 times for 1 second each, the recovered T-UFB was contained. In liquid W, about 7.2 billion UFBs were confirmed per 1.0 mL. That is, the UFB content concentration could be increased by applying ultrasonic vibration with the fourth post-treatment mechanism 450. The number density of UFB as described above was obtained by counting UFB11 having a diameter of less than 1.0 μm contained in a predetermined volume of UFB-containing liquid W using a measuring instrument (model number SALD-7500) manufactured by Shimadzu Corporation. ..

本実施形態のようにT−UFB含有液Wに超音波振動を与えてUFBを増加させるための好ましい条件の一例としては下記の通りである。容器内が大気に連通した状態のT−UFB含有水に対して超音波ホーンを挿入し50〜500KHz、50〜100Wでホーンを振動させる動作を1〜5秒行う。より好ましくはこの動作を2〜10回程度繰り返す。また、T−UFB含有液の収容容器の外から容器越しに超音波を印加する場合には、容器内を大気と連通した状態で、1〜10MHz、10〜50Wでホーンを振動させる動作を20〜50秒印加する。もしくは5〜10秒の印加を2〜10回程度繰り返す。 An example of preferable conditions for increasing UFB by applying ultrasonic vibration to the T-UFB-containing liquid W as in the present embodiment is as follows. The ultrasonic horn is inserted into the T-UFB-containing water in which the inside of the container is in communication with the atmosphere, and the horn is vibrated at 50 to 500 KHz and 50 to 100 W for 1 to 5 seconds. More preferably, this operation is repeated about 2 to 10 times. Further, when ultrasonic waves are applied through the container from the outside of the container containing the T-UFB-containing liquid, the operation of vibrating the horn at 1 to 10 MHz and 10 to 50 W while communicating with the atmosphere inside the container is performed. Apply for ~ 50 seconds. Alternatively, application for 5 to 10 seconds is repeated about 2 to 10 times.

なお、比較のために、工業用純水をそのまま第4の後処理機構450に供給し、上記と同じ超音波振動を付与した場合、回収された液体においてUFBは殆ど確認されなかった。すなわち、超音波振動を付与する第4の後処理機構450は、UFBを含有しない液体中に新たなUFBを生成するものではなく、既にUFBを含有する液体においてUFBの数を増幅させる機能を有するものである。 For comparison, when industrial pure water was directly supplied to the fourth post-treatment mechanism 450 and the same ultrasonic vibration as described above was applied, UFB was hardly confirmed in the recovered liquid. That is, the fourth post-treatment mechanism 450 that applies ultrasonic vibration does not generate a new UFB in the liquid that does not contain UFB, but has a function of amplifying the number of UFB in the liquid that already contains UFB. It is a thing.

図13は、後処理ユニット400に追加または置換可能な第5の後処理機構460を示す。第5の後処理機構460は、集束超音波振動(HIFU:High Intensity Focused Ultrasound)を利用してT−UFB含有液WのT−UFB含有量を更に増幅させるための増幅処理ユニットである。 FIG. 13 shows a fifth post-processing mechanism 460 that can be added or replaced with the post-processing unit 400. The fifth post-treatment mechanism 460 is an amplification processing unit for further amplifying the T-UFB content of the T-UFB-containing liquid W by utilizing focused ultrasonic vibration (HIFU: High Intensity Focused Ultrasound).

第5の後処理機構460は、収容容器461、振動発生部465、液体導入路462、バルブ463、液体導出路464を備えている。また、振動発生部465は、ケーブル466、トランスデューサ467、超音波プローブ468を有する。ケーブル466から電力が供給されると、トランスデューサ467はこの電力を機械的振動振幅に変換し、超音波プローブ468はMHz帯の超音波を発振する。発振された超音波は、超音波プローブ468より数mm〜数十mm程度離れた位置で集束し、集束箇所では急激な発熱とキャビテーションが招致される。 The fifth post-treatment mechanism 460 includes a storage container 461, a vibration generating unit 465, a liquid introduction path 462, a valve 463, and a liquid outlet path 464. Further, the vibration generating unit 465 includes a cable 466, a transducer 467, and an ultrasonic probe 468. When power is supplied from the cable 466, the transducer 467 converts this power into mechanical vibration amplitude, and the ultrasonic probe 468 oscillates ultrasonic waves in the MHz band. The oscillated ultrasonic wave is focused at a position several mm to several tens of mm away from the ultrasonic probe 468, and sudden heat generation and cavitation are invited at the focused point.

このような急激な発熱やキャビテーションによって、集束箇所付近に存在するUFBは揺らぎ、条件によっては分裂する。さらに、超音波プローブ468からの超音波の発振を継続すると、集束箇所付近に存在するUFBは破裂し、結果として更に多数のUFBが生成される。 Due to such sudden heat generation and cavitation, the UFB existing near the focusing point fluctuates and splits depending on the conditions. Further, when the oscillation of the ultrasonic wave from the ultrasonic probe 468 is continued, the UFB existing near the focusing point bursts, and as a result, a larger number of UFBs are generated.

超音波を発振してから所定時間が経過した後、振動発生部465を停止してバルブ463を開放すると、所望の含有濃度に調整されたT−UFB含有液Wは、液体導出路464を介して回収ユニット500に送液される。 After a predetermined time has elapsed after oscillating the ultrasonic wave, when the vibration generating unit 465 is stopped and the valve 463 is opened, the T-UFB-containing liquid W adjusted to the desired content concentration is routed through the liquid outlet path 464. Is sent to the recovery unit 500.

以下、T−UFB生成ユニット300と第5の後処理機構460を備えた後処理ユニット400を用い、本発明者らが具体的に検証した内容について説明する。まず、T−UFB生成ユニット300においては、素子基板12に10000個の発熱素子10を配した。液体Wとしては工業用純水を用い、T−UFB生成ユニット300のチャンバー301の中を、1.0リットル/時の流速で流動させた。この状態で、個々の発熱素子に対し、電圧24V、パルス幅1.0μsの電圧パルスを、10KHzの駆動周波数で印加した。 Hereinafter, the contents specifically verified by the present inventors will be described using the post-processing unit 400 provided with the T-UFB generation unit 300 and the fifth post-processing mechanism 460. First, in the T-UFB generation unit 300, 10,000 heat generating elements 10 are arranged on the element substrate 12. Industrial pure water was used as the liquid W, and the liquid W was allowed to flow in the chamber 301 of the T-UFB generation unit 300 at a flow velocity of 1.0 liter / hour. In this state, a voltage pulse having a voltage of 24 V and a pulse width of 1.0 μs was applied to each heat generating element at a drive frequency of 10 KHz.

生成されたT−UFB含有液Wをそのまま回収ユニット500で回収し、UFBの含有濃度を確認したところ、回収されたT−UFB含有液Wには、1.0mLあたり36億個のUFBが確認された。一方、生成されたT−UFB含有液Wを第5の後処理機構460に供給し、3.0MHz、36Wで超音波プローブ468より超音波を20秒間発振させたところ、回収されたT−UFB含有液Wでは、1.0mLあたりおよそ108億個のUFBが確認された。すなわち、第5の後処理機構460によって集束超音波を付与することにより、UFB含有濃度を高めることができた。上記のようなUFBの数密度については、島津製作所製の測定器(型番SALD−7500)を用い、所定体積のUFB含有液Wに含まれる直径1.0μm未満のUFB11をカウントすることによって取得した。 When the generated T-UFB-containing liquid W was recovered as it was by the recovery unit 500 and the UFB content concentration was confirmed, 3.6 billion UFBs per 1.0 mL were confirmed in the recovered T-UFB-containing liquid W. Was done. On the other hand, when the generated T-UFB-containing liquid W was supplied to the fifth post-treatment mechanism 460 and ultrasonic waves were oscillated from the ultrasonic probe 468 at 3.0 MHz and 36 W for 20 seconds, the recovered T-UFB was recovered. In the containing liquid W, about 10.8 billion UFBs were confirmed per 1.0 mL. That is, the UFB content concentration could be increased by applying focused ultrasonic waves by the fifth post-treatment mechanism 460. The number density of UFB as described above was obtained by counting UFB11 having a diameter of less than 1.0 μm contained in a predetermined volume of UFB-containing liquid W using a measuring instrument (model number SALD-7500) manufactured by Shimadzu Corporation. ..

なお、比較のために、工業用純水をそのまま第5の後処理機構460に供給し、上記と同じ集束超音波を付与した場合、回収された液体においてUFBは殆ど確認されなかった。すなわち、集束超音波を付与する第5の後処理機構460は、UFBを含有しない液体中に新たなUFBを生成するものではなく、既にUFBを含有する液体においてUFBの数を増幅させる機能を有するものである。 For comparison, when industrial pure water was directly supplied to the fifth post-treatment mechanism 460 and the same focused ultrasonic waves as described above were applied, UFB was hardly confirmed in the recovered liquid. That is, the fifth post-treatment mechanism 460 that applies focused ultrasonic waves does not generate new UFB in the liquid that does not contain UFB, but has a function of amplifying the number of UFB in the liquid that already contains UFB. It is a thing.

<<T−UFB含有液に使用可能な液体および気体>>
ここで、T−UFB含有液を生成するために使用可能な液体Wについて説明する。本実施形態で使用可能な液体Wとしては、例えば、純水、イオン交換水、蒸留水、生理活性水、磁気活性水、化粧水、水道水、海水、川水、上下水、湖水、地下水、雨水などが挙げられる。また、これらの液体等を含む混合液体も使用可能である。また、水と水溶性有機溶剤との混合溶媒も使用できる。水と混合して使用される水溶性有機溶剤としては特に限定されないが、具体例として、以下のものを挙げることができる。メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコールなどの炭素数1乃至4のアルキルアルコール類。N−メチル−2−ピロリドン、2−ピロリドン、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類。アセトン、ジアセトンアルコールなどのケトン又はケトアルコール類。テトラヒドロフラン、ジオキサンなどの環状エーテル類。エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール。1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,2−ヘキサンジオール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、ジエチレングリコール、トリエチレングリコール、チオジグリコールなどのグリコール類。エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテルなどの多価アルコールの低級アルキルエーテル類。ポリエチレングリコール、ポリプロピレングリコールなどのポリアルキレングリコール類。グリセリン、1,2,6−ヘキサントリオール、トリメチロールプロパンなどのトリオール類。これらの水溶性有機溶剤は、単独で用いてもよく、または2種以上を併用してもよい。
<< Liquids and gases that can be used in T-UFB-containing liquids >>
Here, the liquid W that can be used to generate the T-UFB-containing liquid will be described. Examples of the liquid W that can be used in the present embodiment include pure water, ion-exchanged water, distilled water, physiologically active water, magnetically activated water, cosmetic water, tap water, seawater, river water, water and sewage, lake water, and groundwater. Rainwater and the like can be mentioned. Further, a mixed liquid containing these liquids and the like can also be used. Further, a mixed solvent of water and a water-soluble organic solvent can also be used. The water-soluble organic solvent used in combination with water is not particularly limited, and specific examples thereof include the following. Alcohols having 1 to 4 carbon atoms such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, and tert-butyl alcohol. Amides such as N-methyl-2-pyrrolidone, 2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N, N-dimethylformamide, N, N-dimethylacetamide. Ketone or keto alcohols such as acetone and diacetone alcohol. Cyclic ethers such as tetrahydrofuran and dioxane. Ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol. 1,2-Butanediol, 1,3-Butanediol, 1,4-Butanediol, 1,5-Pentanediol, 1,2-Hexanediol, 1,6-Hexanediol, 3-Methyl-1,5- Glycos such as pentandiol, diethylene glycol, triethylene glycol, and thiodiglycol. Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, etc. Lower alkyl ethers of valence alcohols. Polyalkylene glycols such as polyethylene glycol and polypropylene glycol. Triols such as glycerin, 1,2,6-hexanetriol, trimethylolpropane. These water-soluble organic solvents may be used alone or in combination of two or more.

溶解ユニット200で導入可能な気体成分としては、例えば、水素、ヘリウム、酸素、窒素、メタン、フッ素、ネオン、二酸化炭素、オゾン、アルゴン、塩素、エタン、プロパン、空気、などが挙げられる。また、上記のいくつかを含む混合気体であってもよい。さらに、溶解ユニット200では必ずしも気体状態にある物質を溶解させなくてもよく、所望の成分で構成される液体や固を液体Wに融解させてもよい。この場合の溶解としては、自然溶解のほか、圧力付与による溶解であってもよいし、電離による水和、イオン化、化学反応を伴う溶解であってもよい。 Examples of the gas component that can be introduced in the dissolution unit 200 include hydrogen, helium, oxygen, nitrogen, methane, fluorine, neon, carbon dioxide, ozone, argon, chlorine, ethane, propane, and air. Further, it may be a mixed gas containing some of the above. Further, the dissolution unit 200 does not necessarily have to dissolve a substance in a gaseous state, and a liquid or a solid composed of a desired component may be dissolved in the liquid W. In this case, the dissolution may be natural dissolution, dissolution by applying pressure, hydration by ionization, ionization, or dissolution accompanied by a chemical reaction.

<<T−UFB生成方法の効果>>
次に、以上説明したT−UFB生成方法の特徴と効果を、従来のUFB生成方法と比較して説明する。例えばベンチュリー方式に代表される従来の気泡生成装置においては、流路の一部に減圧ノズルのようなメカ的な減圧構造を設け、この減圧構造を通過するように所定の圧力で液体を流すことにより、減圧構造の下流の領域に様々なサイズの気泡を生成している。
<< Effect of T-UFB generation method >>
Next, the features and effects of the T-UFB generation method described above will be described in comparison with the conventional UFB generation method. For example, in a conventional bubble generator represented by the Venturi method, a mechanical decompression structure such as a decompression nozzle is provided in a part of the flow path, and a liquid is flowed at a predetermined pressure so as to pass through the decompression structure. As a result, bubbles of various sizes are generated in the area downstream of the decompression structure.

この場合、生成された気泡のうち、ミリバブルやマイクロバブルのような比較的大きなサイズのバブルには浮力が作用するため、やがて液面に浮上して消滅してしまう場合もある。また、浮力が作用しないUFBについても、然程大きな気液界面エネルギを有していないので、ミリバブルやマイクロバブルとともに消滅してしまう。加えて、上記減圧構造を直列に配置し、同じ液体を繰り返し減圧構造に流したとしても、その繰り返し回数に応じた数のUFBを、長期間保存することはできない。すなわち、従来のUFB生成方法によって生成されたUFB含有液では、UFB含有濃度を所定の値で長期間維持することは困難であった。 In this case, among the generated bubbles, buoyancy acts on bubbles having a relatively large size such as millibubbles and microbubbles, so that they may eventually rise to the liquid surface and disappear. Further, UFB on which buoyancy does not act does not have such a large gas-liquid interface energy, so that it disappears together with millibubbles and microbubbles. In addition, even if the decompression structure is arranged in series and the same liquid is repeatedly flowed through the decompression structure, the number of UFBs corresponding to the number of repetitions cannot be stored for a long period of time. That is, in the UFB-containing liquid produced by the conventional UFB production method, it was difficult to maintain the UFB-containing concentration at a predetermined value for a long period of time.

これに対し、膜沸騰を利用する本実施形態のT−UFB生成方法では、常温から300℃程度への急激な温度変化や、常圧から数メガパスカル程度への急激な圧力変化を、発熱素子の極近傍に局所的に生じさせている。当該発熱素子は、一辺が数十μm〜数百μm程度の四辺形をしている。従来のUFB発生器の大きさに比べると、1/10〜1/1000程度である。且つ、膜沸騰泡表面の極薄い膜領域に存在する気体溶解液体が、熱的溶解限界または圧力的溶解限界を瞬間的に(マイクロ秒以下の超短時間で)超えることにより、相転移が起こりUFBとなって析出する。この場合、ミリバブルやマイクロバブルのような比較的大きなサイズのバブルは殆ど発生せず、液体には直径が100nm程度のUFBが極めて高い純度で含有される。更に、このように生成されたT−UFBは、十分に高い気液界面エネルギを有しているため、通常の環境下において破壊されにくく、長期間の保存が可能である。 On the other hand, in the T-UFB generation method of the present embodiment using film boiling, a sudden temperature change from normal temperature to about 300 ° C. and a sudden pressure change from normal pressure to about several megapascals are generated by the heat generating element. It is generated locally in the very vicinity of. The heat generating element has a quadrilateral shape having a side of several tens of μm to several hundreds of μm. Compared to the size of a conventional UFB generator, it is about 1/1 to 1/1000. Moreover, a phase transition occurs when the gas-dissolved liquid existing in the extremely thin film region on the surface of the boiling foam momentarily exceeds the thermal dissolution limit or the pressure dissolution limit (in an ultra-short time of microseconds or less). It becomes UFB and precipitates. In this case, bubbles having a relatively large size such as millibubbles and microbubbles are hardly generated, and the liquid contains UFB having a diameter of about 100 nm with extremely high purity. Further, since the T-UFB thus produced has a sufficiently high gas-liquid interface energy, it is not easily destroyed under a normal environment and can be stored for a long period of time.

特に、液体に対し局所的に気体界面を形成できる膜沸騰現象を用いた本発明であれば、液体領域全体に影響を与えることなく発熱素子の近傍に存在する液体の一部に界面形成し、それに伴う熱的、圧力的に作用する領域を極めて局所的な範囲とすることができる。その結果、安定的に所望のUFBを生成することができる。また、液体を循環して生成液体に対し更にUFBの生成条件を付与することで、既存のUFBへの影響を少なく新たなUFBを追加生成することができる。その結果、比較的容易に、所望のサイズ、濃度のUFB液体を製造することができる。 In particular, in the present invention using the film boiling phenomenon in which a gas interface can be locally formed with respect to the liquid, the interface is formed on a part of the liquid existing in the vicinity of the heat generating element without affecting the entire liquid region. The region that acts thermally and pressure can be an extremely local range. As a result, the desired UFB can be stably produced. Further, by circulating the liquid and further imparting the UFB generation condition to the generated liquid, it is possible to additionally generate a new UFB with less influence on the existing UFB. As a result, a UFB liquid of a desired size and concentration can be produced relatively easily.

更に、T−UFB生成方法においては、上述したヒステリシス特性を有するため、高い純度のまま所望の濃度まで含有濃度を高めていくことができる。すなわち、T−UFB生成方法よれば、高純度、高濃度で且つ長期間保存可能なUFB含有液を、効率的に生成することができる。 Furthermore, since the T-UFB production method has the above-mentioned hysteresis characteristics, the content concentration can be increased to a desired concentration while maintaining high purity. That is, according to the T-UFB production method, a UFB-containing liquid having high purity, high concentration and long-term storage can be efficiently produced.

<<T−UFB含有液の具体的用途>>
一般に、ウルトラファインバブル含有液は、内包される気体の種類によって用途が区別される。なお、液体にPPM〜BPM程度の量を液体中に溶解できる気体であれば、いずれの気体においてもUFB化させることが可能である。1例としては、下記のような用途に応用する事ができる。
<< Specific use of T-UFB-containing liquid >>
In general, ultrafine bubble-containing liquids have different uses depending on the type of gas contained therein. Any gas that can dissolve an amount of PPM to BPM in the liquid can be converted to UFB. As an example, it can be applied to the following applications.

・空気を内包させたUFB含有液は、工業的・農水産業・医療用などの洗浄や、植物・農水産物の育成にも好適に用いることができる。 -The UFB-containing liquid containing air can be suitably used for cleaning industrial, agricultural and fishery industries, medical use, etc., and for growing plants and agricultural and marine products.

・オゾンを内包したUFB含有液は、工業的・農水産業・医療用などの洗浄用途に加え、殺菌、滅菌及び除菌を目的とした用途や、排水や汚染土壌の環境浄化などにも好適に用いることができる。 -The ozone-containing UFB-containing liquid is suitable for cleaning applications such as industrial, agricultural and fishery industries, and medical applications, as well as for sterilization, sterilization, and sterilization, and for environmental purification of wastewater and contaminated soil. Can be used.

・窒素を内包したUFB含有液は、工業的・農水産業・医療用など洗浄用途に加え、殺菌、滅菌及び除菌を目的とした用途や、排水や汚染土壌の環境浄化などにも好適に用いることができる。 -The UFB-containing liquid containing nitrogen is suitable for cleaning applications such as industrial, agricultural and fishery industries, and medical applications, as well as for sterilization, sterilization, and sterilization, and for environmental purification of wastewater and contaminated soil. be able to.

・酸素を内包したUFB含有液は、工業的・農水産業・医療用など洗浄用途に加え、植物・農水産物の育成にも好適に用いることができる。 -The UFB-containing liquid containing oxygen can be suitably used for growing plants and agricultural and marine products in addition to cleaning applications such as industrial, agricultural and fishery industries, and medical uses.

・二酸化炭素を内包したUFB含有液は、工業的・農水産業・医療用などの洗浄用途に加え、殺菌、滅菌及び除菌を目的とした用途などに好適に用いることができる。 -The UFB-containing liquid containing carbon dioxide can be suitably used for purposes such as sterilization, sterilization, and sterilization, in addition to cleaning applications such as industrial, agriculture, fishery, and medical applications.

・医療用ガスであるパーフロロカーボンを内包したUFB含有液は、超音波診断や治療に好適に用いることができる。このように、UFB含有液は、医療・薬品・歯科・食品・工業・農水産業などの多岐に亘って、効果を発揮することができる。 -A UFB-containing liquid containing perfluorocarbon, which is a medical gas, can be suitably used for ultrasonic diagnosis and treatment. In this way, the UFB-containing liquid can exert its effects in a wide range of fields such as medical care, pharmaceuticals, dentistry, food, industry, agriculture and fisheries.

そして、それぞれの用途において、UFB含有液の効果を迅速に且つ確実に発揮するためには、UFB含有液に含まれるUFBの純度と濃度が重要となる。すなわち、高純度で所望の濃度のUFB含有液を生成することが可能な本実施形態のT−UFB生成方法を利用すれば、様々な分野でこれまで以上の効果を期待することができる。以下、T−UFB生成方法及びT−UFB含有液を好適に適用可能と想定される用途を列挙する。 In each application, the purity and concentration of UFB contained in the UFB-containing liquid are important in order to quickly and surely exert the effect of the UFB-containing liquid. That is, if the T-UFB production method of the present embodiment capable of producing a UFB-containing liquid having a desired concentration with high purity is used, more effects than ever can be expected in various fields. The following is a list of T-UFB production methods and applications where the T-UFB-containing liquid is expected to be suitably applicable.

(A)液体の精製的用途
・浄水器に対し、T−UFB生成ユニットを配することにより、浄水効果やPH調製液の精製効果を高めることが期待できる。また、炭酸水サーバなどにT−UFB生成ユニットを配することもできる。
(A) Use for purification of liquid-By arranging a T-UFB generation unit in a water purifier, it can be expected to enhance the water purification effect and the purification effect of the PH preparation liquid. Further, the T-UFB generation unit can be arranged in a carbonated water server or the like.

・加湿器、アロマディヒューザー、コーヒーメーカー等にT−UFB生成ユニットを配することにより、室内の加湿効果や消臭効果及び香りの拡散効果を向上させることが期待できる。 -By arranging the T-UFB generation unit in a humidifier, an aroma diffuser, a coffee maker, etc., it can be expected to improve the indoor humidifying effect, deodorizing effect, and scent diffusion effect.

・溶解ユニットにおいてオゾンガスを溶解させたUFB含有液を生成し、これを歯科治療、火傷の治療、内視鏡使用時の傷の手当てなどで用いることにより、医療的な洗浄効果や消毒効果を向上させることが期待できる。 ・ The dissolution unit produces a UFB-containing solution in which ozone gas is dissolved, and by using this for dental treatment, burn treatment, wound care when using an endoscope, etc., medical cleaning effect and disinfection effect are improved. You can expect it to happen.

・集合住宅の貯水槽にT−UFB生成ユニットを配することにより、長期間保存される飲料水の浄水効果や塩素の除去効果を向上させることが期待できる。 -By arranging the T-UFB generation unit in the water tank of an apartment house, it can be expected to improve the water purification effect and chlorine removal effect of drinking water stored for a long period of time.

・日本酒、焼酎、ワインなど、高温の殺菌処理を行うことができない酒造工程において、オゾンや二酸化炭素を含有するT−UFB含有液を用いることにより、従来よりも効率的に低温殺菌処理を行うことが期待できる。 -In the sake brewing process where high-temperature sterilization cannot be performed, such as sake, shochu, and wine, pasteurization can be performed more efficiently than before by using a T-UFB-containing liquid containing ozone and carbon dioxide. Can be expected.

・特定保健食品や機能表示食品の製造過程で、原料にUFB含有液を混合させることで低温殺菌処理が可能になり、風味を落とさずに、安心かつ機能性を有する食品を提供することができる。 -In the manufacturing process of specified health foods and foods with functional claims, by mixing UFB-containing liquids with raw materials, pasteurization treatment becomes possible, and it is possible to provide safe and functional foods without degrading the flavor. ..

・魚や真珠などの魚介類の養殖場所において、養殖用の海水や淡水の供給経路にT−UFB生成ユニットを配することにより、魚介類の産卵や発育を促進させることが期待できる。 -At aquaculture sites for fish and pearls, it can be expected that spawning and growth of seafood will be promoted by arranging the T-UFB production unit in the supply route of seawater and freshwater for aquaculture.

・食材保存水の精製工程にT−UFB生成ユニットを配することにより、食材の保存状態を向上させることが期待できる。 -By arranging the T-UFB generation unit in the purification process of the food storage water, it can be expected to improve the food storage state.

・プール用水や地下水などを脱色するための脱色器にT−UFB生成ユニットを配することにより、より高い脱色効果を期待することができる。 -By arranging the T-UFB generation unit in the decolorizer for decolorizing pool water, groundwater, etc., a higher decolorization effect can be expected.

・コンクリート部材のひび割れ修復のためにT−UFB含有液を用いることにより、ひび割れ修復の効果向上を期待することができる。 -By using the T-UFB-containing liquid for repairing cracks in concrete members, it can be expected that the effect of repairing cracks will be improved.

・液体燃料を用いる機器(自動車、船舶、飛行機)等の液体燃料に、T−UFBを含有させることにより、燃料のエネルギ効率を向上させることが期待できる。 -By adding T-UFB to liquid fuel of equipment (automobiles, ships, airplanes) that use liquid fuel, it can be expected to improve the energy efficiency of the fuel.

(B)洗浄的用途
近年、衣類に付着した汚れなどを除去するための洗浄水として、UFB含有液が注目されている。上記実施形態で説明したT−UFB生成ユニットを洗濯機に配し、従来よりも純度が高く浸透性に優れたUFB含有液を洗濯層に供給することにより、更に洗浄力を向上させることが期待できる。
(B) Cleaning Applications In recent years, UFB-containing liquids have attracted attention as cleaning water for removing stains and the like adhering to clothing. It is expected that the detergency will be further improved by arranging the T-UFB generation unit described in the above embodiment in the washing machine and supplying the UFB-containing liquid having higher purity and excellent permeability than before to the washing layer. it can.

・浴用シャワーや便器洗浄機にT−UFB生成ユニットを配することにより、人体等、生物全般の洗浄効果のほか、浴室又は便器の水垢やカビなどの汚染除去を促す効果を期待できる。 -By arranging the T-UFB generation unit in the bath shower or toilet bowl washing machine, it can be expected to have the effect of cleaning the human body and other organisms in general, as well as the effect of promoting the removal of stains and mold on the bathroom or toilet bowl.

・自動車などのウィンドウォッシャー、壁材などを洗浄するための高圧洗浄機、洗車機、食器洗浄機、食材洗浄機等においてT−UFB生成ユニットを配することにより、それぞれの洗浄効果を更に向上させることが期待できる。 -By arranging T-UFB generation units in window washers of automobiles, high-pressure washing machines for washing wall materials, car washing machines, dishwashers, food washing machines, etc., the cleaning effect of each is further improved. Can be expected.

・プレス加工後のバリ取り工程など工場で製造した部品を洗浄・整備する際に、T−UFB含有液を用いることにより、洗浄効果を向上させることが期待できる。 -It can be expected that the cleaning effect will be improved by using the T-UFB-containing liquid when cleaning and servicing parts manufactured in the factory such as the deburring process after press working.

・半導体素子製造時、ウェハの研磨水としてT−UFB含有液を用いることにより、研磨効果を向上させることが期待できる。また、レジスト除去工程においては、T−UFB含有液を用いることにより、剥離が困難なレジストの剥離を促すことが期待できる。 -It can be expected that the polishing effect can be improved by using the T-UFB-containing liquid as the polishing water for the wafer at the time of manufacturing the semiconductor element. Further, in the resist removing step, by using the T-UFB-containing liquid, it can be expected to promote the peeling of the resist which is difficult to peel.

・医療ロボット、歯科治療器、臓器の保存容器などの医療機器の、洗浄や消毒を行うための器機に、T−UFB生成ユニットを配することにより、これら器機の洗浄効果や消毒効果の向上を期待することができる。また、生物の治療などにも適用可能である。 -By arranging the T-UFB generation unit in the equipment for cleaning and disinfecting medical equipment such as medical robots, dental treatment equipment, and organ storage containers, the cleaning effect and disinfection effect of these equipment can be improved. You can expect it. It can also be applied to the treatment of living things.

(C)医薬品用途
・化粧品などにT−UFB含有液を含有させることで、皮下細胞への浸透を促進するとともに防腐剤や界面活性剤などの皮膚に悪影響を与える添加剤を大幅に低下させることができる。その結果、より安心で、且つ、機能性のある化粧品を提供する事ができる。
(C) Pharmaceutical applications-By containing a T-UFB-containing solution in cosmetics, etc., it promotes penetration into subcutaneous cells and significantly reduces additives such as preservatives and surfactants that adversely affect the skin. Can be done. As a result, it is possible to provide cosmetics that are more secure and have functionality.

・CTやMRIなどの医療検査装置の造影剤に、T−UFBを含有する高濃度ナノバブル製剤を活用することで、X線や超音波による反射光を効率的に活用でき、より詳細な撮影画像を得る事ができ、悪性腫瘍の初期診断などに活用できる。 -By utilizing a high-concentration nanobubble preparation containing T-UFB as a contrast medium for medical examination equipment such as CT and MRI, it is possible to efficiently utilize the reflected light from X-rays and ultrasonic waves, and more detailed captured images. Can be used for initial diagnosis of malignant tumors.

・HIFU(High Intensity Focused Ultrasound)と呼ばれている超音波治療器で、T−UFBを含有する高濃度ナノバブル水を用いることで、超音波の照射パワーを低下でき、より非侵襲的に治療をすることができる。特に、正常な組織へのダメージを低減することが可能になる。 ・ It is an ultrasonic therapy device called HIFU (High Intensity Focused Ultrasound). By using high-concentration nanobubble water containing T-UFB, the irradiation power of ultrasonic waves can be reduced, and treatment can be performed more non-invasively. can do. In particular, it is possible to reduce damage to normal tissues.

・T−UFBを含有する高濃度ナノバブルを種にして、気泡周囲のマイナス電荷領域にリポソームを形成するリン脂質を修飾させ、そのリン脂質を介して、各種医療性物質(DNAや、RNAなど)を付与したナノバブル製剤を作成することができる。 -Using high-concentration nanobubbles containing T-UFB as seeds, phospholipids that form liposomes are modified in the negatively charged region around the bubbles, and various medical substances (DNA, RNA, etc.) are passed through the phospholipids. Can be prepared as a nanobubble preparation.

・歯髄や象牙質再生治療として、T−UFB生成による高濃度ナノバブル水を含む薬剤を歯管内に送液すると、ナノバブル水の浸透作用により薬剤が象牙細管内に深く入り込み除菌効果を促進し、歯髄の感染根管治療を短時間かつ安全に行う事が可能である。 -As a treatment for pulp and dentin regeneration, when a drug containing high-concentration nanobubble water produced by T-UFB is sent into the dental canal, the drug penetrates deeply into the dentin canal due to the penetrating action of the nanobubble water and promotes the sterilization effect. Infected root canal treatment of dental pulp can be performed quickly and safely.

以上説明したように、本発明のウルトラファインバブル生成方法によれば、T−UFB生成ユニットの後に後処理ユニットを設けることにより、純度の高いUFB含有液を効率的に生成することが可能となる。 As described above, according to the ultrafine bubble generation method of the present invention, by providing a post-treatment unit after the T-UFB generation unit, it is possible to efficiently generate a high-purity UFB-containing liquid. ..

1 UFB生成装置
10 発熱素子
11 UFB(ウルトラファインバブル)
300 T−UFB生成ユニット
400 後処理ユニット
1 UFB generator 10 Heat generating element 11 UFB (ultra fine bubble)
300 T-UFB generation unit 400 Post-processing unit

Claims (30)

液体中に設けた発熱素子を発熱させて、前記液体と前記発熱素子の界面に膜沸騰を生じさせることにより、ウルトラファインバブルを生成する生成工程と、
前記生成工程によって生成された前記ウルトラファインバブルを含有するウルトラファインバブル含有液に所定の後処理を行う後処理工程と、
を有することを特徴とするウルトラファインバブル生成方法。
A generation step of generating an ultrafine bubble by generating heat from a heat generating element provided in the liquid and causing a film to boil at the interface between the liquid and the heat generating element.
A post-treatment step of performing a predetermined post-treatment on the ultra-fine bubble-containing liquid containing the ultra-fine bubbles generated by the production step, and
An ultrafine bubble generation method characterized by having.
前記後処理工程は、前記ウルトラファインバブル含有液より不純物を除去する除去処理を含むことを特徴とする請求項1に記載のウルトラファインバブル生成方法。 The ultrafine bubble generation method according to claim 1, wherein the post-treatment step includes a removal treatment for removing impurities from the ultrafine bubble-containing liquid. 前記除去処理は、陽イオン交換樹脂を用いて無機物イオンを除去する第1の処理を含むことを特徴とする請求項2に記載のウルトラファインバブル生成方法。 The ultrafine bubble generation method according to claim 2, wherein the removal treatment includes a first treatment for removing inorganic ions using a cation exchange resin. 前記第1の処理によって除去される前記無機物イオンには、前記発熱素子を構成する金属が含まれることを特徴とする請求項3に記載のウルトラファインバブル生成方法。 The ultrafine bubble generation method according to claim 3, wherein the inorganic ion removed by the first treatment contains a metal constituting the heat generating element. 前記第1の処理によって除去される前記無機物イオンには、Si、AL、W、Pt、Pd、Ta、Fe、Cr、Ni、Ir、Ruのうち少なくとも1つが含まれることを特徴とする請求項4に記載のウルトラファインバブル生成方法。 The claim is characterized in that the inorganic ion removed by the first treatment contains at least one of Si, AL, W, Pt, Pd, Ta, Fe, Cr, Ni, Ir, and Ru. The ultrafine bubble generation method according to 4. 前記除去処理は、ろ過フィルタを用いて有機物を除去する第2の処理を含むことを特徴とする請求項2から5のいずれか1項に記載のウルトラファインバブル生成方法。 The ultrafine bubble generation method according to any one of claims 2 to 5, wherein the removal treatment includes a second treatment for removing organic substances using a filtration filter. 前記第2の処理によって除去される前記有機物には、シリコンを含む有機化合物、シロキサン、エポキシ、細菌のうち少なくとも1つが含まれることを特徴とする請求項6に記載のウルトラファインバブル生成方法。 The ultrafine bubble generation method according to claim 6, wherein the organic substance removed by the second treatment contains at least one of an organic compound containing silicon, siloxane, epoxy, and bacteria. 前記除去処理は、不溶の固形物が沈降する性質を利用して前記固形物を除去する第3の処理を含むことを特徴とする請求項2から7のいずれか1項に記載のウルトラファインバブル生成方法。 The ultrafine bubble according to any one of claims 2 to 7, wherein the removal treatment includes a third treatment for removing the solid matter by utilizing the property of insoluble solid matter to settle. Generation method. 前記後処理工程は、前記ウルトラファインバブル含有液の前記ウルトラファインバブルの含有濃度を増幅する増幅処理を含むことを特徴とする請求項1から8のいずれか1項に記載のウルトラファインバブル生成方法。 The ultrafine bubble generation method according to any one of claims 1 to 8, wherein the post-treatment step includes an amplification treatment for amplifying the concentration of the ultrafine bubbles in the ultrafine bubble-containing liquid. .. 前記増幅処理は、前記ウルトラファインバブル含有液に超音波を発振させることにより、前記ウルトラファインバブルの含有濃度を増幅することを特徴とする請求項9に記載のウルトラファインバブル生成方法。 The ultrafine bubble generation method according to claim 9, wherein the amplification process amplifies the content concentration of the ultrafine bubbles by oscillating ultrasonic waves in the ultrafine bubble-containing liquid. 前記増幅処理は、前記ウルトラファインバブル含有液に集束超音波を付与することにより、前記ウルトラファインバブルの含有濃度を増幅することを特徴とする請求項9に記載のウルトラファインバブル生成方法。 The ultrafine bubble generation method according to claim 9, wherein the amplification treatment amplifies the concentration of the ultrafine bubbles by applying focused ultrasonic waves to the ultrafine bubble-containing liquid. 前記生成工程に供給するための前記液体に、水素、ヘリウム、酸素、窒素、メタン、フッ素、ネオン、二酸化炭素、オゾン、アルゴン、塩素、エタン、プロパン、空気、および、それらを含む混合気体のいずれかを溶解させる溶解工程を更に有し、
前記生成工程では、前記溶解工程で溶解された気体を内部に含むウルトラファインバブルが生成されることを特徴とする請求項1から11のいずれか1項に記載のウルトラファインバブル生成方法。
The liquid to be supplied to the production step can be hydrogen, helium, oxygen, nitrogen, methane, fluorine, neon, carbon dioxide, ozone, argon, chlorine, ethane, propane, air, or a mixed gas containing them. It also has a dissolution step to dissolve the gas,
The ultrafine bubble generation method according to any one of claims 1 to 11, wherein in the generation step, an ultrafine bubble containing a gas dissolved in the dissolution step is generated.
前記後処理工程を行った後に再度前記生成工程を行うことを特徴とする請求項1から12のいずれか1項に記載のウルトラファインバブル生成方法。 The ultrafine bubble generation method according to any one of claims 1 to 12, wherein the generation step is performed again after the post-treatment step is performed. 前記後処理工程で処理された前記ウルトラファインバブル含有液を回収する工程を更に有することを特徴とする請求項1から13のいずれか1項に記載のウルトラファインバブル生成方法。 The ultrafine bubble generation method according to any one of claims 1 to 13, further comprising a step of recovering the ultrafine bubble-containing liquid treated in the post-treatment step. 液体中に設けた発熱素子を発熱させて、前記液体と前記発熱素子の界面に膜沸騰を生じさせることにより、ウルトラファインバブルを生成する生成手段と、
前記生成手段によって生成された前記ウルトラファインバブルを含有するウルトラファインバブル含有液に所定の後処理を行う後処理手段と、
を備えることを特徴とするウルトラファインバブル生成装置。
A generation means for generating ultrafine bubbles by generating heat from a heat generating element provided in a liquid to cause film boiling at the interface between the liquid and the heat generating element.
A post-treatment means for performing a predetermined post-treatment on the ultra-fine bubble-containing liquid containing the ultra-fine bubbles generated by the generation means,
An ultrafine bubble generator characterized by being equipped with.
前記後処理手段は、前記ウルトラファインバブル含有液から不純物を除去する除去ユニットを含むことを特徴とする請求項15に記載のウルトラファインバブル生成装置。 The ultrafine bubble generating apparatus according to claim 15, wherein the post-treatment means includes a removing unit for removing impurities from the ultrafine bubble-containing liquid. 前記除去ユニットは、陽イオン交換樹脂を用いて無機物イオンを除去する第1のユニットを含むことを特徴とする請求項16に記載のウルトラファインバブル生成装置。 The ultrafine bubble generator according to claim 16, wherein the removing unit includes a first unit that removes inorganic ions using a cation exchange resin. 前記第1のユニットによって除去される前記無機物イオンには、前記発熱素子を構成する金属が含まれることを特徴とする請求項17に記載のウルトラファインバブル生成装置。 The ultrafine bubble generator according to claim 17, wherein the inorganic ion removed by the first unit contains a metal constituting the heat generating element. 前記第1のユニットによって除去される前記無機物イオンには、Si、AL、W、Pt、Pd、Ta、Fe、Cr、Ni、Ir、Ruのうち少なくとも1つが含まれることを特徴とする請求項18に記載のウルトラファインバブル生成装置。 The claim is characterized in that the inorganic ion removed by the first unit contains at least one of Si, AL, W, Pt, Pd, Ta, Fe, Cr, Ni, Ir, and Ru. 18. The ultrafine bubble generator according to 18. 前記除去ユニットは、ろ過フィルタを用いて有機物を除去する第2のユニットを含むことを特徴とする請求項16から19のいずれか1項に記載のウルトラファインバブル生成装置。 The ultrafine bubble generator according to any one of claims 16 to 19, wherein the removing unit includes a second unit that removes organic substances using a filtration filter. 前記第2のユニットによって除去される前記有機物には、シリコンを含む有機化合物、シロキサン、エポキシ、細菌のうち少なくとも1つが含まれることを特徴とする請求項20に記載のウルトラファインバブル生成装置。 The ultrafine bubble generator according to claim 20, wherein the organic substance removed by the second unit contains at least one of an organic compound containing silicon, a siloxane, an epoxy, and a bacterium. 前記ろ過フィルタは1μm以下のメッシュ径を備えることを特徴とする請求項20に記載のウルトラファインバブル生成装置。 The ultrafine bubble generator according to claim 20, wherein the filtration filter has a mesh diameter of 1 μm or less. 前記除去ユニットは、不溶の固形物が沈降する性質を利用して前記固形物を除去する第3のユニットを含むことを特徴とする請求項16から22のいずれか1項に記載のウルトラファインバブル生成装置。 The ultrafine bubble according to any one of claims 16 to 22, wherein the removal unit includes a third unit that removes the solid matter by utilizing the property of insoluble solid matter to settle. Generator. 前記後処理手段は、前記ウルトラファインバブル含有液の前記ウルトラファインバブルの含有濃度を増幅する増幅処理ユニットを含むことを特徴とする請求項15から23のいずれか1項に記載のウルトラファインバブル生成装置。 The ultrafine bubble generation according to any one of claims 15 to 23, wherein the posttreatment means includes an amplification processing unit that amplifies the concentration of the ultrafine bubbles in the ultrafine bubble-containing liquid. apparatus. 前記増幅処理ユニットは、前記ウルトラファインバブル含有液に超音波を発振させることにより、前記ウルトラファインバブルの含有濃度を増幅することを特徴とする請求項24に記載のウルトラファインバブル生成装置。 The ultrafine bubble generation device according to claim 24, wherein the amplification processing unit amplifies the content concentration of the ultrafine bubbles by oscillating ultrasonic waves in the ultrafine bubble-containing liquid. 前記増幅処理ユニットは、前記ウルトラファインバブル含有液に集束超音波を付与することにより、前記ウルトラファインバブルの含有濃度を増幅することを特徴とする請求項24に記載のウルトラファインバブル生成装置。 The ultrafine bubble generation device according to claim 24, wherein the amplification processing unit amplifies the content concentration of the ultrafine bubbles by applying focused ultrasonic waves to the ultrafine bubble-containing liquid. 前記生成手段に供給するための前記液体に、水素、ヘリウム、酸素、窒素、メタン、フッ素、ネオン、二酸化炭素、オゾン、アルゴン、塩素、エタン、プロパン、空気、および、それらを含む混合気体のいずれかを溶解させる溶解手段を更に備え、
前記生成手段は、前記溶解手段が溶解した気体を内部に含むウルトラファインバブルを生成することを特徴とする請求項15から26のいずれか1項に記載のウルトラファインバブル生成装置。
The liquid to be supplied to the production means may be hydrogen, helium, oxygen, nitrogen, methane, fluorine, neon, carbon dioxide, ozone, argon, chlorine, ethane, propane, air, or a mixed gas containing them. Further equipped with a dissolving means for dissolving the gas,
The ultrafine bubble generating apparatus according to any one of claims 15 to 26, wherein the generating means generates an ultrafine bubble containing a dissolved gas inside.
前記後処理手段で処理された液体を前記生成手段へ供給する循環経路を備えることを特徴とする請求項15から27のいずれか1項に記載のウルトラファインバブル生成装置。 The ultrafine bubble generator according to any one of claims 15 to 27, further comprising a circulation path for supplying the liquid treated by the post-treatment means to the generation means. 前記後処理手段で処理された前記ウルトラファインバブル含有液を回収する手段を更に備えることを特徴とする請求項15から28のいずれか1項に記載のウルトラファインバブル生成装置。 The ultrafine bubble generator according to any one of claims 15 to 28, further comprising means for recovering the ultrafine bubble-containing liquid treated by the post-treatment means. 請求項1から14のいずれか1項に記載のウルトラファインバブル生成方法によって生成されたウルトラファインバブルを含有するウルトラファインバブル含有液。 An ultrafine bubble-containing liquid containing ultrafine bubbles produced by the ultrafine bubble generation method according to any one of claims 1 to 14.
JP2020019019A 2019-02-28 2020-02-06 Ultra fine bubble generation method, ultra fine bubble generation device, and ultra fine bubble containing liquid Pending JP2020142232A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20159723.4A EP3702331A1 (en) 2019-02-28 2020-02-27 Ultrafine bubble generating method, ultrafine bubble generating apparatus, and ultrafine bubble-containing liquid
KR1020200024018A KR20200105427A (en) 2019-02-28 2020-02-27 Ultrafine bubble generating method, ultrafine bubble generating apparatus, and ultrafine bubble-containing liquid
CN202010122219.4A CN111617651B (en) 2019-02-28 2020-02-27 Ultra-fine bubble generation method, ultra-fine bubble generation device, and liquid containing ultra-fine bubbles
RU2020108474A RU2748485C1 (en) 2019-02-28 2020-02-27 Ultrafine bubble generation method, ultrafine bubble generation device, and ultrafine bubble-containing liquid
SG10202001781XA SG10202001781XA (en) 2019-02-28 2020-02-27 Ultrafine bubble generating method, ultrafine bubble generating apparatus, and ultrafine bubble-containing liquid
AU2020201427A AU2020201427A1 (en) 2019-02-28 2020-02-27 Ultrafine bubble generating method, ultrafine bubble generating apparatus, and ultrafine bubble-containing liquid
US16/802,693 US11426996B2 (en) 2019-02-28 2020-02-27 Ultrafine bubble generating method, ultrafine bubble generating apparatus, and ultrafine bubble-containing liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019035776 2019-02-28
JP2019035776 2019-02-28

Publications (2)

Publication Number Publication Date
JP2020142232A true JP2020142232A (en) 2020-09-10
JP2020142232A5 JP2020142232A5 (en) 2023-02-09

Family

ID=72355284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020019019A Pending JP2020142232A (en) 2019-02-28 2020-02-06 Ultra fine bubble generation method, ultra fine bubble generation device, and ultra fine bubble containing liquid

Country Status (5)

Country Link
JP (1) JP2020142232A (en)
KR (1) KR20200105427A (en)
AU (1) AU2020201427A1 (en)
RU (1) RU2748485C1 (en)
SG (1) SG10202001781XA (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978805B1 (en) * 2020-11-24 2021-12-08 良夫 上辻 Electric water heater
WO2023089904A1 (en) * 2021-11-17 2023-05-25 キヤノン株式会社 Method for manufacturing ozone solution and method for utilizing ozone solution

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743263A (en) * 1971-12-27 1973-07-03 Union Carbide Corp Apparatus for refining molten aluminum
US6443561B1 (en) * 1999-08-24 2002-09-03 Canon Kabushiki Kaisha Liquid discharge head, driving method therefor, and cartridge, and image forming apparatus
JP4016099B2 (en) * 2002-05-20 2007-12-05 独立行政法人産業技術総合研究所 How to create nanobubbles
US9327251B2 (en) * 2013-01-29 2016-05-03 Lanzatech New Zealand Limited System and method for improved gas dissolution
US9932252B2 (en) * 2013-05-01 2018-04-03 Nch Corporation System and method for treating water systems with high voltage discharge and ozone
GB2529629B (en) * 2014-08-26 2021-05-12 Nicoventures Trading Ltd Electronic aerosol provision system
US20160368785A1 (en) * 2015-06-16 2016-12-22 Ilan ZAMIR Methods and systems to reduce air pollution combined with water desalination of power station's marine waste water
CN106186474B (en) * 2016-08-15 2020-06-26 云南夏之春环保科技有限公司 Micro-critical multiphase reaction flow sewage treatment method
CN109052712A (en) * 2018-08-17 2018-12-21 广东溢达纺织有限公司 A kind of system and method handling simultaneously reuse textile industry qualified discharge water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978805B1 (en) * 2020-11-24 2021-12-08 良夫 上辻 Electric water heater
WO2023089904A1 (en) * 2021-11-17 2023-05-25 キヤノン株式会社 Method for manufacturing ozone solution and method for utilizing ozone solution

Also Published As

Publication number Publication date
SG10202001781XA (en) 2020-09-29
KR20200105427A (en) 2020-09-07
RU2748485C1 (en) 2021-05-26
AU2020201427A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP7277176B2 (en) Ultra-fine bubble generation method and ultra-fine bubble generation device
JP7282548B2 (en) Ultra-fine bubble generation method and ultra-fine bubble generation device
JP7278801B2 (en) Ultra-fine bubble generator and method for producing ultra-fine bubbles
CN111617651B (en) Ultra-fine bubble generation method, ultra-fine bubble generation device, and liquid containing ultra-fine bubbles
JP7277178B2 (en) Ultra fine bubble generator
JP2020138153A (en) Ultrafine bubble generation device, ultrafine bubble generation method and ultrafine bubble-containing liquid
JP7317521B2 (en) ULTRA FINE BUBBLE GENERATOR AND ULTRA FINE BUBBLE GENERATION METHOD
JP7277177B2 (en) ULTRA FINE BUBBLE GENERATOR AND ULTRA FINE BUBBLE GENERATION METHOD
JP2020138152A (en) Ultrafine bubble generation device
JP7277180B2 (en) ULTRA FINE BUBBLE GENERATOR AND ULTRA FINE BUBBLE GENERATION METHOD
JP7446844B2 (en) Ultra fine bubble generator
JP2020142232A (en) Ultra fine bubble generation method, ultra fine bubble generation device, and ultra fine bubble containing liquid
JP2021126601A (en) Ufb-containing liquid production device and ufb-containing liquid production method
JP2021069984A (en) Ultrafine bubble generation device and method for manufacturing element substrate
JP2021069997A (en) Ufb containing liquid manufacturing apparatus and ufb containing liquid manufacturing method
JP2021137796A (en) Ultrafine bubble-containing liquid manufacturing device, manufacturing method, and ultrafine bubble-containing liquid
JP2021074709A (en) Production device for ultra fine bubble-containing liquid and production method for ultra fine bubble-containing liquid
JP2021126647A (en) Ultrafine bubble generation device and ultrafine bubble generation head
JP2021126648A (en) Ultrafine bubble generation device and ultrafine bubble generation method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240326