WO2023089904A1 - Method for manufacturing ozone solution and method for utilizing ozone solution - Google Patents

Method for manufacturing ozone solution and method for utilizing ozone solution Download PDF

Info

Publication number
WO2023089904A1
WO2023089904A1 PCT/JP2022/032675 JP2022032675W WO2023089904A1 WO 2023089904 A1 WO2023089904 A1 WO 2023089904A1 JP 2022032675 W JP2022032675 W JP 2022032675W WO 2023089904 A1 WO2023089904 A1 WO 2023089904A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
ozone
ufb
dissolved
ultra
Prior art date
Application number
PCT/JP2022/032675
Other languages
French (fr)
Japanese (ja)
Inventor
毅 山久保
雅彦 久保田
輝 山本
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2023089904A1 publication Critical patent/WO2023089904A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2101/00Chemical composition of materials used in disinfecting, sterilising or deodorising

Definitions

  • the present invention relates to a method for producing and utilizing an ozone solution.
  • Patent Literature 1 discloses a method for producing ozone-dissolved water in which high-concentration ozone gas is dissolved.
  • the present invention provides a method for producing an ozone solution and a method for utilizing the ozone solution that can produce an ozone solution having a desired concentration with a simple configuration.
  • the method of utilizing the dissolved ozone solution of the present invention includes a first dissolving step of dissolving ozone gas in a liquid, and an ultra-fine bubble generating step of generating ultra-fine bubbles in the dissolved ozone solution in which the ozone gas is dissolved in the first dissolving step.
  • FIG. 4 is a schematic configuration diagram of a pretreatment unit;
  • FIG. FIG. 3 is a diagram for explaining a schematic configuration diagram of a dissolving unit and a dissolving state of a liquid;
  • 2 is a schematic configuration diagram of a T-UFB generation unit;
  • FIG. 3 is a diagram showing the detailed structure of a heating element;
  • FIG. 4 is a diagram showing how film boiling occurs when a predetermined voltage pulse is applied to a heating element;
  • FIG. 4 is a diagram schematically showing how film boiling bubbles are generated and UFB is generated;
  • FIG. 4 is a diagram showing how UFB is generated as a film boiling bubble shrinks.
  • FIG. 4 is a diagram showing how UFB is generated when a film boiling bubble contracts.
  • FIG. 10 is a diagram showing how UFB is generated by impact when film boiling bubbles disappear.
  • 4 is a diagram showing a configuration example of a post-processing unit;
  • FIG. 4 is a schematic diagram showing a defoaming unit for defoaming USB; It is the flowchart which showed the procedure of the ozone solution utilization method.
  • FIG. 10 is a diagram showing the results of comparative evaluation of the sterilization effects of ozone-dissolved liquids.
  • ozone ultra-fine bubbles (hereinafter simply referred to as UFB) having a diameter of less than 1.0 ⁇ m are used to generate an ozone solution with a desired concentration.
  • UFB ozone ultra-fine bubbles
  • FIG. 1 is a diagram showing an example of an ultra-fine bubble generator (also referred to as a UFB generator) applicable to the present invention.
  • the UFB generator 1 of this embodiment includes a pretreatment unit 100, a dissolution unit 200, a T-UFB generation unit 300, a posttreatment unit 400, and a recovery unit 500.
  • the liquid W such as tap water supplied to the pretreatment unit 100 is treated in the order described above and is recovered by the recovery unit 500 as a TUFB-containing liquid.
  • T-UFB Thermal-Ultra Fine Bubble
  • FIG. 2 is a schematic configuration diagram of the pretreatment unit 100.
  • the pretreatment unit 100 of the present embodiment deaerates the supplied liquid W.
  • the pretreatment unit 100 mainly has a deaeration container 101, a shower head 102, a decompression pump 103, a liquid introduction path 104, a liquid circulation path 105, and a liquid extraction path .
  • a liquid W such as tap water is supplied from the liquid introduction passage 104 to the degassing container 101 via the valve 109 .
  • the shower head 102 provided in the deaeration container 101 atomizes the liquid W into the deaeration container 101 .
  • the shower head 102 is for promoting vaporization of the liquid W, but a centrifugal separator or the like can be substituted as a mechanism for producing the effect of promoting vaporization.
  • the decompression pump 103 After a certain amount of the liquid W is stored in the degassing container 101, when the decompression pump 103 is operated with all the valves closed, the already vaporized gas component is discharged and dissolved in the liquid W. Vaporization and evacuation of gaseous components present are also promoted. At this time, the internal pressure of the degassing container 101 may be reduced to about several hundred to several thousand Pa (1.0 Torr to 10.0 Torr) while checking the pressure gauge 108 . Gases deaerated by the pretreatment unit 100 include, for example, nitrogen, oxygen, argon, and carbon dioxide.
  • the degassing process described above can be repeatedly performed on the same liquid W by using the liquid circulation path 105 .
  • the shower head 102 is operated with the valve 109 of the liquid introduction path 104 and the valve 110 of the liquid outlet path 106 closed and the valve 107 of the liquid circulation path 105 opened.
  • the liquid W stored in the degassing container 101 and subjected to the degassing process once is sprayed again into the degassing container 101 via the shower head 102 .
  • the decompression pump 103 by activating the decompression pump 103, the vaporization process by the shower head 102 and the degassing process by the decompression pump 103 are performed on the same liquid W at the same time.
  • the gas component contained in the liquid W can be reduced step by step each time the above-described repeated processing using the liquid circulation path 105 is performed.
  • the valve 110 is opened to send the liquid W to the dissolving unit 200 through the liquid lead-out path 106 .
  • FIG. 2 shows the pretreatment unit 100 that vaporizes the dissolved matter by reducing the pressure of the gas portion
  • the method of degassing the dissolved liquid is not limited to this.
  • a heat boiling method in which the liquid W is boiled to vaporize the dissolved matter may be employed, or a membrane degassing method in which hollow fibers are used to increase the interface between the liquid and the gas may be employed.
  • SEPAREL series manufactured by Dainippon Ink Co., Ltd.
  • SEPAREL series is commercially available as a degassing module using hollow fibers.
  • This uses poly-4-methylpentene-1 (PMP) as the raw material of the hollow fiber membrane, and is mainly used for the purpose of degassing air bubbles from the ink supplied to the piezo head. Furthermore, two or more of the vacuum degassing method, the heat boiling method, and the membrane degassing method may be used in combination.
  • PMP poly-4-methylpentene-1
  • FIGS. 3(a) and 3(b) are schematic diagrams of the dissolving unit 200 and diagrams for explaining the dissolving state of the liquid.
  • the dissolving unit 200 is a unit that dissolves ozone gas (hereinafter referred to as gas G) in the liquid W supplied from the pretreatment unit 100 .
  • the dissolving unit 200 of this embodiment mainly has a dissolving container 201 , a rotating shaft 203 to which a rotating plate 202 is attached, a liquid introduction path 204 , a gas introduction path 205 , a liquid outlet path 206 and a pressure pump 207 .
  • Methods such as ultraviolet irradiation, discharge, and electrolysis are commonly used to generate ozone gas.
  • the method for generating ozone gas is not specified, and any available ozone gas generating device may be connected to the gas introduction path 205 .
  • the liquid W supplied from the pretreatment unit 100 is supplied to the dissolution container 201 through the liquid introduction path 204 and stored therein.
  • the gas G is supplied to the dissolving container 201 through the gas introduction path 205 .
  • the pressure pump 207 is operated to increase the internal pressure of the dissolving container 201 to approximately 0.5 MPa.
  • a safety valve 208 is arranged between the pressure pump 207 and the dissolving container 201 . Further, by rotating the rotating plate 202 in the liquid via the rotating shaft 203, the gas G supplied to the dissolution container 201 is bubbled, the contact area with the liquid W is increased, and the dissolution in the liquid W is facilitated. Facilitate.
  • solubility of the gas G reaches approximately the maximum saturation solubility.
  • means for lowering the temperature of the liquid may be arranged in order to dissolve as much gas as possible. It is also possible to increase the internal pressure of the dissolving container 201 to 0.5 MPa or higher. In that case, it is necessary to optimize the material of the container from a safety point of view.
  • the liquid W in which the components of the gas G are dissolved at the desired concentration is obtained, the liquid W is discharged through the liquid lead-out path 206 and supplied to the T-UFB generation unit 300 .
  • the back pressure valve 209 adjusts the flow pressure of the liquid W so that the pressure during supply does not become higher than necessary.
  • FIG. 3(b) is a diagram schematically showing how the mixed gas G is dissolved in the dissolution container 201.
  • FIG. Bubbles 2 containing the component of gas G mixed in liquid W dissolve from the portion in contact with liquid W. As shown in FIG. Therefore, the bubble 2 gradually shrinks, and the gas-dissolved liquid 3 exists around the bubble 2 . Since buoyancy acts on the bubble 2 , the bubble 2 moves to a position off the center of the gas-dissolved liquid 3 or separates from the gas-dissolved liquid 3 to become a residual bubble 4 . That is, the liquid W supplied to the T-UFB generation unit 300 through the liquid lead-out path 206 includes the gas-dissolved liquid 3 surrounding the bubbles 2, and the gas-dissolved liquid 3 and the bubbles 2 separated from each other. There are mixed states.
  • the gas-dissolved liquid 3 means "a region in which the mixed gas G has a relatively high dissolved concentration in the liquid W".
  • the concentration is highest around the bubble 2 or even in the state separated from the bubble 2, and the concentration of the gas component is continuous as the distance from that position increases. relatively low. That is, in FIG. 3B, the area of the gas-dissolved liquid 3 is surrounded by a dashed line for explanation, but such a clear boundary does not actually exist.
  • the present invention even if a gas that is not completely dissolved exists in the liquid in the form of bubbles, it is allowed.
  • FIG. 4 is a schematic configuration diagram of the T-UFB generation unit 300.
  • the T-UFB generation unit 300 mainly includes a chamber 301, a liquid introduction path 302, and a liquid outlet path 303. Flow from the liquid introduction path 302 to the liquid outlet path 303 through the chamber 301 is controlled by a flow pump (not shown). formed by Various types of pumps such as diaphragm pumps, gear pumps, and screw pumps can be used as fluid pumps.
  • the liquid W introduced from the liquid introduction path 302 is mixed with the gas-dissolved liquid 3 of the gas G mixed by the dissolving unit 200 .
  • An element substrate 12 provided with heat generating elements 10 is arranged on the bottom surface of the chamber 301 .
  • a bubble 13 caused by film boiling (hereinafter also referred to as a film boiling bubble 13 ) is generated in a region in contact with the heating element 10 .
  • ultra-fine bubbles (UFB 11) containing the gas G are generated.
  • UFB 11 ultra-fine bubbles
  • FIGS. 5(a) and 5(b) are diagrams showing the detailed structure of the heating element 10.
  • FIG. 5(a) shows the vicinity of the heating elements 10
  • FIG. 5(b) shows a cross-sectional view of the element substrate 12 in a wider area including the heating elements 10. As shown in FIG.
  • a thermal oxide film 305 as a heat storage layer and an interlayer film 306 also serving as a heat storage layer are laminated on the surface of a silicon substrate 304.
  • a SiO 2 film or a SiN film can be used as the interlayer film 306 .
  • a resistance layer 307 is formed on the surface of the interlayer film 306 , and wiring 308 is partially formed on the surface of the resistance layer 307 .
  • an Al alloy wiring such as Al, Al--Si, or Al--Cu can be used.
  • a protective layer 309 made of an SiO 2 film or a Si 3 N 4 film is formed on the surfaces of these wirings 308 , resistance layer 307 and interlayer film 306 .
  • the protective layer 309 On the surface of the protective layer 309, the portion corresponding to the heat acting portion 311 that eventually becomes the heating element 10 and its surroundings are covered with the protective layer 309 against chemical and physical impacts accompanying the heat generation of the resistance layer 307.
  • An anti-cavitation film 310 is formed to protect the .
  • a region on the surface of the resistance layer 307 where the wiring 308 is not formed is a heat acting portion 311 where the resistance layer 307 generates heat.
  • a heat-generating portion of the resistance layer 307 where the wiring 308 is not formed functions as a heat-generating element (heater) 10 .
  • the layers of the element substrate 12 are sequentially formed on the surface of the silicon substrate 304 by semiconductor manufacturing techniques, whereby the silicon substrate 304 is provided with the heat acting portion 311 .
  • the configuration shown in the figure is an example, and various other configurations are applicable.
  • a configuration in which the resistive layer 307 and the wiring 308 are stacked in reverse order, and a configuration in which an electrode is connected to the lower surface of the resistive layer 307 are applicable.
  • any configuration may be used as long as the liquid can be heated by the heat acting portion 311 to cause film boiling in the liquid.
  • FIG. 5(b) is an example of a cross-sectional view of a region including a circuit connected to the wiring 308 in the element substrate 12.
  • An N-type well region 322 and a P-type well region 323 are partially provided on the surface layer of the silicon substrate 304, which is a P-type conductor.
  • a P-MOS 320 is formed in the N-type well region 322 and an N-MOS 321 is formed in the P-type well region 323 by introducing and diffusing impurities such as ion implantation by a general MOS process.
  • the P-MOS 320 is composed of a source region 325 and a drain region 326 obtained by partially introducing an N-type or P-type impurity into the surface layer of the N-type well region 322, a gate wiring 335, and the like.
  • a gate wiring 335 is deposited on the surface of the portion of the N-type well region 322 excluding the source region 325 and the drain region 326 via a gate insulating film 328 with a thickness of several hundred angstroms.
  • the N-MOS 321 is composed of a source region 325 and a drain region 326 formed by partially introducing an N-type or P-type impurity into the surface layer of a P-type well region 323, a gate wiring 335, and the like.
  • a gate wiring 335 is deposited on the surface of the portion of the P-type well region 323 excluding the source region 325 and the drain region 326 via a gate insulating film 328 with a thickness of several hundred angstroms.
  • the gate wiring 335 is made of polysilicon deposited by CVD to a thickness of 3000 ⁇ to 5000 ⁇ .
  • an N-MOS transistor 330 for driving an electrothermal conversion element is formed in a portion different from the N-MOS 321.
  • the N-MOS transistor 330 is composed of a source region 332 and a drain region 331 partially formed in the surface layer of the P-type well region 323 by steps such as impurity introduction and diffusion, a gate wiring 333, and the like.
  • a gate wiring 333 is deposited on the surface of a portion of the P-type well region 323 excluding the source region 332 and the drain region 331 via a gate insulating film 328 .
  • an N-MOS transistor 330 is used as a driving transistor for the electrothermal conversion element.
  • the drive transistor may be any transistor that has the ability to individually drive a plurality of electrothermal conversion elements and that can obtain the fine structure described above. Not limited.
  • the electrothermal conversion element and its driving transistor are formed on the same substrate, but they may be formed on separate substrates.
  • an oxide film isolation region 324 is formed by field oxidation to a thickness of 5000 ⁇ to 10000 ⁇ . ing. Each device is isolated by this oxide film isolation region 324 .
  • a portion of the oxide film isolation region 324 corresponding to the heat acting portion 311 functions as the first heat storage layer 334 on the silicon substrate 304 .
  • An interlayer insulating film 336 made of a PSG film or BPSG film having a thickness of about 7000 ⁇ is formed on the surface of each element of the P-MOS 320, N-MOS 321 and N-MOS transistor 330 by CVD. After the interlayer insulating film 336 is flattened by heat treatment, an Al electrode 337 serving as a first wiring layer is formed via a contact hole penetrating the interlayer insulating film 336 and the gate insulating film 328 . An interlayer insulating film 338 made of an SiO2 film with a thickness of 10000 ⁇ to 15000 ⁇ is formed on the surfaces of the interlayer insulating film 336 and the Al electrode 337 by plasma CVD.
  • the resistance layer 307 is electrically connected to the Al electrode 337 near the drain region 331 through a through hole formed in the interlayer insulating film 338 .
  • Al wiring 308 is formed on the surface of the resistance layer 307 as a second wiring layer serving as wiring to each electrothermal conversion element.
  • the wiring 308, the resistance layer 307, and the protective layer 309 on the surface of the interlayer insulating film 338 are made of a 3000 ⁇ thick SiN film formed by plasma CVD.
  • the anti-cavitation film 310 deposited on the surface of the protective layer 309 is made of at least one metal selected from Ta, Fe, Ni, Cr, Ge, Ru, Zr, Ir, etc., and is a thin film with a thickness of about 2000 ⁇ .
  • FIGS. 6(a) and 6(b) are diagrams showing how film boiling occurs when a predetermined voltage pulse is applied to the heating element 10.
  • FIG. Here, the case of film boiling under atmospheric pressure is shown.
  • the horizontal axis indicates time.
  • the vertical axis of the lower graph indicates the voltage applied to the heating element 10
  • the vertical axis of the upper graph indicates the volume and internal pressure of the film boiling bubbles 13 generated by film boiling.
  • FIG. 6(b) shows how the film boiling bubbles 13 correspond to timings 1 to 3 shown in FIG. 6(a). Each state will be described below in chronological order.
  • the UFB 11 generated by film boiling is mainly generated in the vicinity of the surface of the film boiling bubbles 13 .
  • the UFB 11 generated in the T-UFB generation unit 300 is supplied again to the dissolution unit 200 through the circulation path, and the liquid is supplied to the T-UFB generation unit. 300 shows a state in which the liquid is re-supplied to the liquid path.
  • the inside of the chamber 301 is kept at substantially atmospheric pressure.
  • film boiling bubbles 13 the generated bubbles (hereinafter referred to as film boiling bubbles 13) expand due to the high pressure acting from the inside (timing 1).
  • the foaming pressure at this time is considered to be about 8 to 10 MPa, which is close to the saturated vapor pressure of water.
  • the film boiling bubble 13 expands due to the inertia of the pressure obtained at timing 1 even after the voltage is no longer applied.
  • the negative pressure generated along with the expansion gradually increases and acts in the direction of shrinking the film boiling bubble 13 .
  • the volume of the film boiling bubble 13 reaches its maximum at timing 2 when the inertial force and the negative pressure are balanced, and then rapidly shrinks due to the negative pressure.
  • FIGS. 7(a) to (d) are diagrams schematically showing how the UFB 11 is generated as the film boiling bubbles 13 are generated and expanded.
  • FIG. 7A shows the state before a voltage pulse is applied to the heating element 10.
  • FIG. 7(b) shows how a voltage is applied to the heating element 10 and the film boiling bubbles 13 are generated uniformly over almost the entire area of the heating element 10 in contact with the liquid W.
  • FIG. 7(b) shows how a voltage is applied to the heating element 10 and the film boiling bubbles 13 are generated uniformly over almost the entire area of the heating element 10 in contact with the liquid W.
  • FIG. 7(b) shows how a voltage is applied to the heating element 10 and the film boiling bubbles 13 are generated uniformly over almost the entire area of the heating element 10 in contact with the liquid W.
  • the surface temperature of the heating element 10 rises to about 600 to 800° C. during pulse application, and the liquid around the film boiling bubble 13 is also rapidly heated.
  • a region of the liquid located around the film boiling bubbles 13 and rapidly heated is shown as an unfoamed high-temperature region 14 .
  • the gas-dissolved liquid 3 contained in the unfoamed high-temperature region 14 exceeds the thermal solubility limit and precipitates to become UFB.
  • the deposited bubbles have a diameter of about 10 nm to 100 nm and have a high gas-liquid interfacial energy. Therefore, it floats in the liquid W while maintaining its independence without disappearing in a short time.
  • the bubbles generated by the thermal action when the film boiling bubbles 13 are generated and expanded are referred to as first UFB 11A.
  • FIG. 7(c) shows the process in which the film boiling bubbles 13 expand. Even after the application of the voltage pulse to the heating element 10 ends, the film boiling bubbles 13 continue to expand due to the inertia of the force obtained when they are generated, and the non-bubbled high-temperature regions 14 also move and diffuse due to inertia. That is, in the process in which the film boiling bubbles 13 expand, the gas-dissolved liquid 3 contained in the unfoamed high-temperature region 14 is newly precipitated as bubbles to form the first UFB 11A.
  • FIG. 7(d) shows a state in which the film boiling bubble 13 has reached its maximum volume.
  • the film boiling bubble 13 expands due to inertia, but the negative pressure inside the film boiling bubble 13 gradually increases with the expansion, and acts as a negative pressure to contract the film boiling bubble 13 . Then, when this negative pressure balances with the inertial force, the volume of the film boiling bubbles 13 reaches its maximum, and thereafter begins to contract.
  • FIGS. 8(a) to 8(c) are diagrams showing how the UFB 11 is generated as the film boiling bubbles 13 contract.
  • FIG. 8(a) shows a state in which the film boiling bubbles 13 have started contracting. Even if the film boiling bubble 13 starts contracting, the surrounding liquid W still has an inertial force in the expanding direction. Therefore, the inertial force acting in the direction away from the heating element 10 and the force directed toward the heating element 10 due to the contraction of the film boiling bubble 13 act on the extreme periphery of the film boiling bubble 13, resulting in a decompressed region. Become. In the drawing, such a region is indicated as an unfoamed negative pressure region 15.
  • FIG. 8(a) shows a state in which the film boiling bubbles 13 have started contracting. Even if the film boiling bubble 13 starts contracting, the surrounding liquid W still has an inertial force in the expanding direction. Therefore, the inertial force acting in the direction away from the heating element 10 and the force directed toward the heating element 10 due to the contraction of the
  • the gas-dissolving liquid 3 contained in the non-foaming negative pressure region 15 exceeds the pressure solubility limit and precipitates as bubbles.
  • the precipitated bubbles have a diameter of about 100 nm, and do not disappear in a short period of time and float in the liquid W while maintaining their independence.
  • the bubbles deposited by the pressure action when the film boiling bubbles 13 contract in this manner are referred to as second UFB 11B.
  • FIG. 8(b) shows the process of contraction of the film boiling bubble 13.
  • the speed at which the film boiling bubbles 13 shrink is accelerated by the negative pressure, and the unfoamed negative pressure region 15 also moves with the contraction of the film boiling bubbles 13 . That is, in the process of contraction of the film boiling bubbles 13, the gas-dissolved liquid 3 at the location through which the unfoamed negative pressure region 15 passes is deposited one after another to form the second UFB 11B.
  • FIG. 8(c) shows the state immediately before the film boiling bubble 13 disappears.
  • the accelerated contraction of the film boiling bubbles 13 also increases the moving speed of the surrounding liquid W, but pressure loss occurs due to the flow path resistance in the chamber 301 .
  • the area occupied by the unfoamed negative pressure area 15 becomes even larger, and a large number of second UFBs 11B are generated.
  • FIGS. 9(a) to (c) are diagrams showing how UFB is generated by reheating the liquid W when the film boiling bubbles 13 are contracted.
  • FIG. 9A shows a state in which the surface of the heating element 10 is covered with shrinking film boiling bubbles 13 .
  • FIG. 9(b) shows a state in which the contraction of the film boiling bubbles 13 progresses and part of the surface of the heating element 10 is in contact with the liquid W.
  • FIG. 9(b) shows a state in which the contraction of the film boiling bubbles 13 progresses and part of the surface of the heating element 10 is in contact with the liquid W.
  • heat remains on the surface of the heating element 10 to such an extent that film boiling does not occur even when the liquid W is brought into contact with the surface.
  • the area of the liquid that is heated by contact with the surface of the heating element 10 is shown as an unfoamed reheating area 16 .
  • the gas-dissolved liquid 3 contained in the unfoamed reheating region 16 is precipitated beyond the thermal solubility limit.
  • bubbles generated by reheating the liquid W when the film boiling bubbles 13 contract in this manner are referred to as third UFB 11C.
  • FIG. 9(c) shows a state in which the shrinkage of the film boiling bubbles 13 has progressed further.
  • the area of the heat generating element 10 in contact with the liquid W becomes larger, so the third UFB 11C is generated until the film boiling bubbles 13 disappear.
  • FIGS. 10(a) and 10(b) are diagrams showing how UFB is generated by impact (so-called cavitation) when the film boiling bubbles 13 generated by film boiling are destroyed.
  • FIG. 10(a) shows a state immediately before the film boiling bubble 13 disappears. The film boiling bubbles 13 are rapidly contracted by the internal negative pressure, and are surrounded by the non-foamed negative pressure region 15 .
  • FIG. 10(b) shows the state immediately after the film boiling bubble 13 disappears at the point P.
  • the acoustic wave spreads concentrically with the point P as a starting point due to the impact.
  • Acoustic waves are a general term for elastic waves that propagate regardless of gas, liquid, or solid. be done.
  • the gas-dissolved liquid 3 contained in the unfoamed negative pressure region 15 is resonated by the shock wave when the film boiling bubbles 13 disappear, and undergoes a phase transition exceeding the pressure solubility limit at the timing when the low pressure surface 17B passes. . That is, at the same time when the film boiling bubbles 13 disappear, a large number of bubbles are precipitated in the non-bubbled negative pressure region 15 .
  • a bubble generated by a shock wave when the film boiling bubble 13 disappears is called a fourth UFB 11D.
  • the diameter is significantly smaller than the first to third UFBs, and the gas-liquid interfacial energy is higher than the first to third UFBs. Therefore, it is considered that the fourth UFB 11D has different properties and produces different effects from those of the first to third UFBs 11A to 11C.
  • the fourth UFB 11D is uniformly generated throughout the concentric spherical region where the shock wave propagates, it is uniformly present in the chamber 301 from the time of generation. At the timing when the fourth UFB 11D is generated, many first to third UFBs already exist, but the existence of these first to third UFBs does not greatly affect the generation of the fourth UFB 11D. do not have. Also, it is considered that the generation of the fourth UFB 11D will not cause the first to third UFBs to disappear.
  • the UFB 11 is generated in a plurality of stages from the generation of the film boiling bubbles 13 by the heat generated by the heating element 10 to the disappearance of the bubbles.
  • the first UFB 11A, the second UFB 11B and the third UFB 11C are generated near the surface of film boiling bubbles generated by film boiling.
  • the neighborhood is a region within about 20 ⁇ m from the surface of the film boiling bubble.
  • the fourth UFB 11D is generated in a region where a shock wave generated when bubbles disappear (disappear) propagates.
  • an example was shown until the film boiling bubbles 13 disappeared, but the present invention is not limited to this in order to generate UFB.
  • UFB can be generated even when the film boiling bubbles 13 are not exhausted.
  • the dissolution characteristics of the gas rise and the generated UFB becomes easier to liquefy.
  • temperatures are well below ambient temperature.
  • the UFB once generated has a high internal pressure and a high gas-liquid interfacial energy, so the possibility of a high pressure acting to break the gas-liquid interface is extremely low. That is, the UFB once produced does not disappear easily as long as the liquid is stored at normal temperature and normal pressure.
  • the higher the liquid pressure, the higher the gas dissolution characteristics, and the lower the pressure the lower the dissolution characteristics. That is, the lower the pressure of the liquid, the more likely the phase transition of the gas-dissolved liquid dissolved in the liquid to the gas is promoted, and the UFB is likely to be generated.
  • the pressure of the liquid is lowered from normal pressure, the dissolution characteristics drop sharply and UFB begins to be generated.
  • the pressure dissolution characteristics decrease, resulting in a situation in which a large amount of UFB is generated.
  • the first to fourth UFBs with different generated factors have been individually explained, but the above-mentioned generating factors occur simultaneously and frequently with the event of film boiling. Therefore, at least two types of UFBs among the first to fourth UFBs may be generated simultaneously, and these generation factors may cooperate with each other to generate UFBs. However, it is common that all generation factors are caused by changes in the volume of film boiling bubbles generated by the film boiling phenomenon.
  • T-UFB Thermal-Ultra Fine Bubble
  • the UFB produced by the T-UFB producing method is called T-UFB
  • the liquid containing T-UFB produced by the T-UFB producing method is called T-UFB-containing liquid.
  • the bubbles generated by the T-UFB generation method are 1.0 ⁇ m or less, and millibubbles and microbubbles are difficult to generate. That is, according to the T-UFB generation method, UFB is predominantly and efficiently generated.
  • the T-UFB produced by the T-UFB production method has a higher gas-liquid interfacial energy than the UFB produced by the conventional method, and does not disappear easily as long as it is stored at normal temperature and normal pressure. Furthermore, even if new T-UFB is generated by new film boiling, the previously generated T-UFB is prevented from disappearing due to the impact.
  • the number and concentration of T-UFB contained in the T-UFB-containing liquid have hysteresis characteristics with respect to the number of occurrences of film boiling in the T-UFB-containing liquid.
  • the concentration of T-UFB contained in the T-UFB-containing liquid can be adjusted by controlling the number of heating elements arranged in the T-UFB generation unit 300 and the number of voltage pulse applications to the heating elements. .
  • the UFB-containing liquid W having the desired UFB concentration is generated in the T-UFB generation unit 300 .
  • the UFB-containing liquid W is supplied to the post-processing unit 400 .
  • FIG. 11(a) to (c) are diagrams showing a configuration example of the post-processing unit 400 of this embodiment.
  • the post-treatment unit 400 of the present embodiment removes impurities contained in the UFB-containing liquid W in stages in the order of inorganic ions, organic substances, and insoluble solids.
  • FIG. 11(a) shows a first post-treatment mechanism 410 for removing inorganic ions.
  • the first post-treatment mechanism 410 includes an exchange container 411 , a cation exchange resin 412 , a liquid introduction path 413 , a water collection pipe 414 and a liquid outlet path 415 .
  • the exchange container 411 contains a cation exchange resin 412 .
  • the UFB-containing liquid W produced by the T-UFB production unit 300 is injected into the exchange container 411 via the liquid introduction path 413 and absorbed by the cation exchange resin 412, where cations as impurities are removed. be.
  • Such impurities include metal materials separated from the element substrate 12 of the T-UFB generation unit 300, such as SiO 2 , SiN, SiC, Ta, Al 2 O 3 , Ta 2 O 5 and Ir. be done.
  • the cation exchange resin 412 is a synthetic resin in which a functional group (ion exchange group) is introduced into a polymer matrix having a three-dimensional network structure. presenting.
  • a styrene-divinylbenzene copolymer is generally used as the polymer base, and methacrylic acid-based and acrylic acid-based functional groups can be used as the functional group.
  • the above materials are only examples. Various changes can be made to the above materials as long as the desired inorganic ions can be effectively removed.
  • the UFB-containing liquid W absorbed by the cation exchange resin 412 and from which the inorganic ions have been removed is collected by the water collecting pipe 414 and sent to the next step through the liquid lead-out path 415 .
  • FIG. 11(b) shows a second post-treatment mechanism 420 for removing organic matter.
  • the second post-treatment mechanism 420 includes a container 421 , a filtration filter 422 , a vacuum pump 423 , a valve 424 , a liquid introduction path 425 , a liquid extraction path 426 and an air suction path 427 .
  • the inside of the storage container 421 is divided into upper and lower regions by a filtration filter 422 .
  • the liquid introduction path 425 connects to the upper area of the upper and lower areas, and the air suction path 427 and the liquid lead-out path 426 connect to the lower area.
  • the vacuum pump 423 When the vacuum pump 423 is driven with the valve 424 closed, the air in the container 421 is discharged through the air suction path 427, the pressure inside the container 421 becomes negative, and the UFB-containing liquid is drawn from the liquid introduction path 425. W is introduced. Then, the UFB-containing liquid W from which impurities have been removed by the filtration filter 422 is stored in the container 421 .
  • Impurities removed by the filtration filter 422 include organic materials that can be mixed in the tubes and each unit, such as organic compounds containing silicon, siloxane, and epoxy.
  • Filter membranes that can be used for the filtration filter 422 include a sub- ⁇ m mesh filter that can remove even bacteria and an nm mesh filter that can remove viruses.
  • the vacuum pump 423 is stopped and the valve 424 is opened. liquid.
  • the vacuum filtration method is used as a method for removing organic impurities, but gravity filtration or pressure filtration can also be used as a filtration method using a filter.
  • FIG. 11(c) shows a third post-treatment mechanism 430 for removing undissolved solids.
  • the third post-treatment mechanism 430 comprises a sedimentation container 431 , a liquid introduction channel 432 , a valve 433 and a liquid outlet channel 434 .
  • a predetermined amount of the UFB-containing liquid W is stored in the precipitation container 431 from the liquid introduction path 432 and left for a while.
  • the solids contained in the UFB-containing liquid W settle to the bottom of the sedimentation container 431 due to gravity.
  • relatively large-sized bubbles such as microbubbles also rise to the surface of the liquid due to buoyancy and are removed from the UFB-containing liquid.
  • the valve 433 is opened after a sufficient amount of time has passed, the UFB-containing liquid W from which solids and large-sized bubbles have been removed is sent to the recovery unit 500 through the liquid lead-out path 434 .
  • the present invention is not limited to this, and any post-processing mechanism may be employed as appropriate.
  • the T-UFB-containing liquid W from which impurities have been removed in the post-treatment unit 400 may be sent to the recovery unit 500 as it is, or may be returned to the dissolution unit 200 again.
  • the dissolved gas concentration of the T-UFB-containing liquid W which has decreased due to the production of T-UFB, can be replenished to the saturation state in the dissolving unit 200 again.
  • the concentration of UFB in the T-UFB-containing liquid can be further increased based on the characteristics described above.
  • the UFB content concentration can be increased by the number of circulations through the dissolving unit 200, the T-UFB generation unit 300, and the post-treatment unit 400, and after the desired UFB content concentration is obtained, the UFB-containing liquid W can be sent to the recovery unit 500 .
  • the recovery unit 500 recovers and stores the UFB-containing liquid W sent from the post-treatment unit 400 .
  • the T-UFB-containing liquid recovered by the recovery unit 500 becomes a high-purity UFB-containing liquid from which various impurities have been removed.
  • the recovery unit 500 may be provided with a cooling means. Note that such a cooling means may be provided in a part of the post-processing unit 400 .
  • a unit for removing impurities as shown in FIGS. 11(a) to (c) may be provided upstream of the T-UFB generation unit 300, or may be provided both upstream and downstream. If the liquid supplied to the UFB generator is tap water, rain water, or contaminated water, the liquid may contain organic or inorganic impurities. If the liquid W containing such impurities is supplied to the T-UFB generation unit 300, there is a risk that the heating elements 10 will be degraded or salting out will occur. By providing a mechanism as shown in FIGS. 11(a) to 11(c) upstream of the T-UFB generation unit 300, the above impurities can be removed in advance.
  • the bubble diameter of the T-UFB containing liquid containing ozone gas generated by this UFB generator 1 is 200 nm or less, the particle size distribution range is small, and the state of containing ozone gas can be maintained even after being left for half a year or more. . Therefore, the storage stability is better than that of UFB-containing liquids produced by other methods, which will be described later.
  • ultra-fine bubbles with a diameter of less than 1.0 ⁇ m are not easily affected by buoyancy, so as long as the liquid is stored at normal temperature and pressure, it will not disappear easily. Therefore, the ozone UFB-containing liquid thus generated can be stored in a container or the like for a long period of time. Moreover, since it is housed in a predetermined container, it can be easily transported and can be transported by a general method.
  • FIG. 12 is a schematic diagram showing a defoaming unit 600 for defoaming USB in an ozone UFB-containing liquid in this embodiment.
  • the defoaming unit 600 a transmitting unit of a commercially available ultrasonic cleaner is used. Note that the defoaming unit 600 is not limited to this. In other words, there is a shear type defoaming method in which bubbles are destroyed by the shearing force acting on the gap between the rotating disc and the orifice plate in the ozone UFB-containing liquid, and a swirling flow of the ozone UFB-containing liquid to concentrate only the bubbles in the center to eliminate and dissolve the bubbles. Defoaming by centrifugal separation may be used.
  • the antifoaming unit 600 is filled with water 601 such as tap water, and is set in a container 610 containing an ozone UFB-containing liquid 611 diluted as necessary. Next, ultrasonic waves are oscillated at 1.6 MHz and 100 W for 15 minutes.
  • the ozone UFB-containing liquid 611 contains, in addition to the UFB, bubbles larger than the UFB, and aggregates of the UFB and large-sized bubbles.
  • UFB and aggregates containing UFB are defoamed by ultrasonic waves, and ozone contained in UFB and aggregates is dissolved in water to obtain an ozone solution. This ozone-dissolved liquid is the same as the ozone-dissolved liquid generated in the pretreatment unit 100 (see FIG.
  • the ozone concentration is halved in about one hour.
  • ultrasonic waves were applied at 1.6 MHz and 100 W for 15 minutes.
  • the conditions may be adjusted such that the frequency is about 1 to 5 MHz, the intensity is about 50 to 250 W, and the time is about 5 to 30 minutes, and the conditions may be appropriately optimized according to the performance of the ultrasonic device.
  • the UFB is defoamed and an ozone-dissolved liquid in which ozone gas is dissolved can be produced.
  • an ozone absorbing solution neutral phosphate buffered potassium iodide solution
  • the prepared ozone-absorbing liquid and ozone-dissolving liquid are mixed and stirred at a ratio of 1:1 (for example, 10 ml each), and the absorbance at a wavelength of 352 nm is measured using a spectrophotometer.
  • the ozone absorbing solution and distilled water are mixed and stirred at a ratio of 1:1, and the absorbance is measured in the same manner as the blank absorbance.
  • the ozone-dissolved liquid immediately after being created by defoaming the UFB of the ozone UFB-containing liquid with ultrasonic waves was confirmed to be in a state of high ozone concentration.
  • the concentration of the ozone-dissolved liquid immediately after defoaming by ultrasonic waves was confirmed, but compared to the ozone-UFB-containing liquid generated by the T-UFB method, The resulting ozone concentrations were low.
  • FIG. 13 is a flow chart showing the procedure of the ozone solution utilization method in this embodiment.
  • S means a step in each process.
  • the dissolved ozone liquid is generated by the dissolving unit 200 in S001, and then the ozone UFB-containing liquid containing ozone gas is generated by the T-UFB generation unit 300 in S002.
  • the generated ozone UFB-containing liquid is stored in a container or the like (not shown).
  • the container containing the ozone UFB-containing liquid is then transported to a location where the ozone UFB-containing liquid is utilized. Since it is in a liquid state in a container, it can be transported by common methods.
  • the UFB containing ozone gas has a size of 200 nm or less in diameter. Unlike millibubbles and microbubbles, UFBs are not easily affected by buoyancy, so they rise to the liquid surface and float in the liquid without disappearing. Therefore, the ozone UFB-containing liquid can contain ozone at an ozone solubility (generally 0.6 g/L in water at room temperature) or more, and can maintain a stable concentration. That is, even after such storage and transportation, the UFB in the ozone UFB-containing liquid does not disappear, and the ozone UFB-containing liquid can have long-term storage stability, storage efficiency, and transportation efficiency.
  • an ozone solubility generally 0.6 g/L in water at room temperature
  • the ozone UFB-containing liquid is diluted as necessary.
  • an ozone-dissolved liquid having a concentration suitable for the purpose of use can be prepared.
  • the ozone UFB in the ozone-containing liquid is defoamed and dissolved by a defoaming unit 600 (see FIG. 12) such as an ultrasonic device, and in S006 an ozone-dissolved liquid having a desired concentration is generated.
  • the generated ozone solution is utilized for desired purposes such as sterilization, deodorization, and cleaning.
  • the time from defoaming of UFB in S005 to application as the ozone-dissolved liquid in S007 is preferably within 30 minutes as a standard.
  • the liquid in which the ultra-fine bubbles containing ozone are generated is generated in advance, the ultra-fine bubbles are defoamed by the defoaming means at a desired timing, and the ozone gas is dissolved in the liquid. Desired processing such as sterilization is performed with an ozone solution. As a result, an ozone solution having a desired concentration that can be applied at a desired time can be produced in a small size and with a simple configuration.
  • Example 1 In this embodiment, a case will be described in which the ozone solution produced by the above production method is utilized for sterilization in S007 of FIG.
  • FIG. 14 compares the sterilization effect of an ozone-dissolved liquid (hereinafter also referred to as a sterilization liquid) generated by irradiating an ozone UFB-containing liquid generated by the T-UFB method with ultrasonic waves to eliminate UFB. It is the figure which showed the result of having evaluated.
  • Bacteria and fungi were prepared as samples for sterilization evaluation. The bacterial samples used were "Gram-negative bacilli" Escherichia coli, Salmonella and Vibrio parahaemolyticus. As mold samples, Aspergillus, Blue mold, Rhizopus and Ketama mold were used.
  • Bacteria are generally classified into two groups according to the structure of the outer wall of the cell. One is “Gram-positive bacteria” which has a relatively thick and hard outer wall, and the other is “Gram-negative bacteria” which has a relatively thin and fragile outer membrane. On the other hand, conventionally, bacteria are also classified according to their external shape, such as long-shaped "bacilli” and round-shaped “cocci.” Bacteria can thus be classified from these combinations as “Gram-positive bacilli,” “Gram-positive cocci,” “Gram-negative bacilli,” and “Gram-negative cocci,” and the like.
  • Escherichia coli, Salmonella, and Vibrio parahaemolyticus used as samples in this embodiment are included in "Gram-negative bacilli" and are typical Gram-negative bacilli.
  • Bacillus natto is known as a representative of "Gram-positive bacilli”.
  • Kabi is a common name for fungi that spans multiple classification items, and is a term that refers to a part of fungi, or a common name for a colony of microorganisms that looks similar to it and can be observed with the naked eye. is. Therefore, there are molds with various lifestyles. Aspergillus, blue mold, cruciferous mold, and vertebrate mold used as samples in this embodiment are so-called weed-like molds that quickly emerge in an artificial environment.
  • each bacterial or fungal cell suspension was brought into contact with each sterilization solution for 72 hours.
  • a 10e(+6)-fold dilution was prepared from the liquid after contact, and 100 ⁇ L of the dilution was smeared onto a plate medium.
  • the smeared plate medium was cultured and the number of bacteria was measured. The results shown in FIG. 13 were obtained from the above tests.
  • ozone-dissolved solution that does not generate UFB and is used for comparison, and in the case of distilled water that does not dissolve ozone, ozone has no sterilizing effect and the reduction rate is 0%. Met. It is believed that the ozone-dissolved solution left for one day lost the dissolved ozone over time and could not obtain the sterilization effect.
  • Example 2 It is known that the ozone solution has a higher cleaning effect than tap water or the like. Therefore, in this embodiment, the ozone-dissolved liquid obtained by defoaming the UFB with ultrasonic waves or the like immediately before use is caused to flow over the surface of the object in a state of high ozone concentration in S006 of FIG. As a result, contaminants stuck to the object can be peeled off from the surface of the object and washed. Its cleaning effect is higher than that of tap water or a detergent in which a surfactant is dissolved.
  • Ozone is known to have a strong oxidizing action and to detoxify harmful organic substances.
  • harmful organic substances include persistent chlorides such as trichlorethylene, tetrachlorethylene, dichloromethane and carbon tetrachloride.
  • Substances that have a detoxifying effect are not limited to this.
  • the ozone-dissolved liquid obtained by defoaming the UFB with ultrasonic waves or the like immediately before use is used as a solution containing harmful substances in a state of high ozone concentration in S006 of FIG. Mix, stir.
  • chemical reactions with hard-to-decompose harmful organic substances can be caused to reduce the molecular weight and change them into harmless organic substances.
  • the ozone solution obtained by defoaming and dissolving the UFB in the ozone UFB-containing liquid has the effects of sterilization, cleaning, and detoxification of harmful chemical substances.
  • individual explanations are omitted, it can be suitably used in places where there is immediate effect by using it as an ozone dissolution liquid rather than using it as an ozone UFB-containing liquid, such as deodorizing effect and surface modification of plastics and metals. can.
  • the generation method is not limited to the T-UFB method as long as UFB containing ozone can be generated.
  • a mechanical pressure reduction structure such as a pressure reduction nozzle is provided in a part of the flow path, and the liquid is caused to flow at a predetermined pressure so as to pass through this pressure reduction structure.
  • a piezoelectric element or the like may be used to generate the ozone UFB-containing liquid.
  • the ultra-fine bubble-containing liquid containing ozone is generated in advance, and the UFB is defoamed to turn ozone into a liquid at the desired timing when the ozone-containing liquid is actually used.
  • should be dissolved in As a result, it is possible to produce an ozone solution having a desired concentration that can be applied at a desired time, with a small size and a simple configuration.
  • heating element 100 pretreatment unit 200 dissolution unit 300 T-UFB generation unit 400 posttreatment unit 500 recovery unit 600 defoaming unit W liquid

Abstract

Provided are a method for manufacturing an ozone solution with which it is possible to manufacture, using a small and simple configuration, an ozone solution that can be employed at a prescribed point in time, and a method for utilizing an ozone solution. In order to achieve the above, a liquid in which ultrafine bubbles are generated is stored for a prescribed time, the ultrafine bubbles are removed by a defoaming means at a desired timing, ozone gas is dissolved in the liquid, and sterilization is performed using an ozone solution thereby produced.

Description

オゾン溶解液の製造方法および活用方法Manufacturing method and utilization method of ozone solution
 本発明は、オゾン溶解液の製造方法および活用方法に関する。 The present invention relates to a method for producing and utilizing an ozone solution.
 オゾン溶解水には殺菌作用、洗浄作用、消臭作用など有用な効果があり、医療分野、食品分野など産業分野で広く利用されている。特許文献1には、高い濃度のオゾンガスが溶解されたオゾン溶解水の製造方法が開示されている。 Ozone-dissolved water has useful effects such as sterilization, cleaning, and deodorizing effects, and is widely used in industrial fields such as the medical and food fields. Patent Literature 1 discloses a method for producing ozone-dissolved water in which high-concentration ozone gas is dissolved.
特開2019-206463号公報JP 2019-206463 A
 水に溶解したオゾンは非常に不安定で十数分で半減すると言われている。そのため、利用する場所の近傍でオゾン溶解水を生成し、オゾンが分解し、所望のオゾン濃度よりも低くなってしまう前に使用しなければならないという制限が生じる。また、特許文献1におけるオゾン溶解水の製造方法は、紫外線光源などを使用しており大掛かりなものである。 It is said that ozone dissolved in water is extremely unstable and halves in ten minutes. Therefore, there is a restriction that the ozone-dissolved water must be generated near the place of use and used before the ozone decomposes and becomes lower than the desired ozone concentration. Moreover, the method for producing ozone-dissolved water in Patent Document 1 uses an ultraviolet light source or the like, and is a large-scale method.
 よって本発明は、所望の濃度のオゾン溶解液を簡素な構成で製造可能なオゾン溶解液の製造方法およびオゾン溶解液の活用方法を提供する。 Therefore, the present invention provides a method for producing an ozone solution and a method for utilizing the ozone solution that can produce an ozone solution having a desired concentration with a simple configuration.
 そのため本発明のオゾン溶解液の活用方法は、液体にオゾンガスを溶解させる第1溶解工程と、前記第1溶解工程でオゾンガスを溶解したオゾン溶解液に、ウルトラファインバブルを生成するウルトラファインバブル生成工程と、前記ウルトラファインバブル生成工程で生成されたウルトラファインバブルを含む液体を保存する保存工程と、前記保存工程で保存されていた液体に含まれるウルトラファインバブルを消泡する消泡工程と、前記消泡工程で消泡されたウルトラファインバブルを液体に溶解する第2溶解工程と、前記第2溶解工程でオゾンガスが溶解されたオゾン溶解液を適用する適用工程と、を有することを特徴とする。 Therefore, the method of utilizing the dissolved ozone solution of the present invention includes a first dissolving step of dissolving ozone gas in a liquid, and an ultra-fine bubble generating step of generating ultra-fine bubbles in the dissolved ozone solution in which the ozone gas is dissolved in the first dissolving step. a storage step of storing the liquid containing the ultra-fine bubbles generated in the ultra-fine bubble generation step; a defoaming step of defoaming the ultra-fine bubbles contained in the liquid stored in the storage step; characterized by comprising a second dissolving step of dissolving the ultra-fine bubbles defoamed in the defoaming step in a liquid, and an applying step of applying the ozone solution in which the ozone gas is dissolved in the second dissolving step. .
 本発明によれば、所望の時点で所望の濃度のオゾン溶解液を小型でかつ簡素な構成で製造可能なオゾン溶解液の製造方法およびオゾン溶解液の活用方法を提供することができる。 According to the present invention, it is possible to provide a method for producing an ozone solution and a method for utilizing the ozone solution that can produce an ozone solution with a desired concentration at a desired time in a small size and with a simple configuration.
 本開示の更なる特徴は、添付の図面を参照して行う以下の実施形態の説明より明らかになる。 Further features of the present disclosure will become apparent from the following description of embodiments with reference to the accompanying drawings.
UFB生成装置の一例を示す図である。It is a figure which shows an example of a UFB generation apparatus. 前処理ユニットの概略構成図である。4 is a schematic configuration diagram of a pretreatment unit; FIG. 溶解ユニットの概略構成図及び液体の溶解状態を説明するための図である。FIG. 3 is a diagram for explaining a schematic configuration diagram of a dissolving unit and a dissolving state of a liquid; T-UFB生成ユニットの概略構成図である。2 is a schematic configuration diagram of a T-UFB generation unit; FIG. 発熱素子の詳細構造を示す図である。FIG. 3 is a diagram showing the detailed structure of a heating element; 発熱素子に所定の電圧パルスを印加した場合の膜沸騰の様子を示す図である。FIG. 4 is a diagram showing how film boiling occurs when a predetermined voltage pulse is applied to a heating element; 膜沸騰泡の発生及びUFBが生成される様子を模式的に示す図である。FIG. 4 is a diagram schematically showing how film boiling bubbles are generated and UFB is generated; 膜沸騰泡の収縮に伴ってUFBが生成される様子を示す図である。FIG. 4 is a diagram showing how UFB is generated as a film boiling bubble shrinks. 膜沸騰泡の収縮時において、UFBが生成される様子を示す図である。FIG. 4 is a diagram showing how UFB is generated when a film boiling bubble contracts. 膜沸騰泡の消泡時の衝撃によってUFBが生成される様子を示す図である。FIG. 10 is a diagram showing how UFB is generated by impact when film boiling bubbles disappear. 後処理ユニットの構成例を示す図である。4 is a diagram showing a configuration example of a post-processing unit; FIG. USBを消泡させる消泡ユニットを示した概略図である。FIG. 4 is a schematic diagram showing a defoaming unit for defoaming USB; オゾン溶解液活用方法の手順を示したフローチャートである。It is the flowchart which showed the procedure of the ozone solution utilization method. オゾン溶解液の除菌効果を比較評価した結果を示した図である。FIG. 10 is a diagram showing the results of comparative evaluation of the sterilization effects of ozone-dissolved liquids.
(第1の実施形態)
 本実施形態では、直径が1.0μm未満のオゾンウルトラファインバブル(以下、単にUFBとも言う)を利用して、所望の濃度のオゾン溶解液を生成する。以下、図面を参照して本発明の第1の実施形態について説明する。
(First embodiment)
In this embodiment, ozone ultra-fine bubbles (hereinafter simply referred to as UFB) having a diameter of less than 1.0 μm are used to generate an ozone solution with a desired concentration. A first embodiment of the present invention will be described below with reference to the drawings.
<<UFB生成装置の構成>>
 図1は、本発明に適用可能なウルトラファインバブル生成装置(UFB生成装置ともいう)の一例を示す図である。本実施形態のUFB生成装置1は、前処理ユニット100、溶解ユニット200、T-UFB生成ユニット300、後処理ユニット400、及び回収ユニット500を含む。前処理ユニット100に供給された水道水などの液体Wは、上記の順番で各ユニット固有の処理が施され、TUFB含有液として回収ユニット500で回収される。以下、各ユニットの機能及び構成について説明する。詳細は後述するが、本明細書では急激な発熱に伴う膜沸騰を利用して生成したUFBをT-UFB(Thermal-Ultra Fine Bubble)と称す。
<<Configuration of UFB generator>>
FIG. 1 is a diagram showing an example of an ultra-fine bubble generator (also referred to as a UFB generator) applicable to the present invention. The UFB generator 1 of this embodiment includes a pretreatment unit 100, a dissolution unit 200, a T-UFB generation unit 300, a posttreatment unit 400, and a recovery unit 500. The liquid W such as tap water supplied to the pretreatment unit 100 is treated in the order described above and is recovered by the recovery unit 500 as a TUFB-containing liquid. The function and configuration of each unit will be described below. Although the details will be described later, in this specification, UFB generated by utilizing film boiling accompanying rapid heat generation is referred to as T-UFB (Thermal-Ultra Fine Bubble).
 図2は、前処理ユニット100の概略構成図である。本実施形態の前処理ユニット100は、供給された液体Wに対し脱気処理を行う。前処理ユニット100は、主に、脱気容器101、シャワーヘッド102、減圧ポンプ103、液体導入路104、液体循環路105、液体導出路106を有する。例えば水道水のような液体Wは、バルブ109を介して、液体導入路104から脱気容器101に供給される。この際、脱気容器101に設けられたシャワーヘッド102が、液体Wを霧状にして脱気容器101内に噴霧する。シャワーヘッド102は、液体Wの気化を促すためのものであるが、気化促進効果を生み出す機構としては、遠心分離器なども代替可能である。 FIG. 2 is a schematic configuration diagram of the pretreatment unit 100. As shown in FIG. The pretreatment unit 100 of the present embodiment deaerates the supplied liquid W. As shown in FIG. The pretreatment unit 100 mainly has a deaeration container 101, a shower head 102, a decompression pump 103, a liquid introduction path 104, a liquid circulation path 105, and a liquid extraction path . A liquid W such as tap water is supplied from the liquid introduction passage 104 to the degassing container 101 via the valve 109 . At this time, the shower head 102 provided in the deaeration container 101 atomizes the liquid W into the deaeration container 101 . The shower head 102 is for promoting vaporization of the liquid W, but a centrifugal separator or the like can be substituted as a mechanism for producing the effect of promoting vaporization.
 ある程度の液体Wが脱気容器101に貯留された後、全てのバルブを閉じた状態で減圧ポンプ103を作動させると、既に気化している気体成分が排出されるとともに、液体Wに溶解している気体成分の気化と排出も促される。この際、脱気容器101の内圧は、圧力計108を確認しながら数百~数千Pa(1.0Torr~10.0Torr)程度に減圧されればよい。前処理ユニット100によって脱気される気体としては、例えば窒素、酸素、アルゴン、二酸化炭素などが含まれる。 After a certain amount of the liquid W is stored in the degassing container 101, when the decompression pump 103 is operated with all the valves closed, the already vaporized gas component is discharged and dissolved in the liquid W. Vaporization and evacuation of gaseous components present are also promoted. At this time, the internal pressure of the degassing container 101 may be reduced to about several hundred to several thousand Pa (1.0 Torr to 10.0 Torr) while checking the pressure gauge 108 . Gases deaerated by the pretreatment unit 100 include, for example, nitrogen, oxygen, argon, and carbon dioxide.
 以上説明した脱気処理は、液体循環路105を利用することにより、同じ液体Wに対して繰り返し行うことができる。具体的には、液体導入路104のバルブ109と液体導出路106のバルブ110を閉塞し、液体循環路105のバルブ107を開放した状態で、シャワーヘッド102を作動させる。これにより、脱気容器101に貯留され、脱気処理が一度行われた液体Wは、再びシャワーヘッド102を介して脱気容器101に噴霧される。更に、減圧ポンプ103を作動させることにより、シャワーヘッド102による気化処理と減圧ポンプ103による脱気処理が、同じ液体Wに対し重ねて行われることになる。そして、液体循環路105を利用した上記繰り返し処理を行う度に、液体Wに含まれる気体成分を段階的に減少させていくことができる。所望の純度に脱気された液体Wが得られると、バルブ110を開放することにより、液体Wは液体導出路106を経て溶解ユニット200に送液される。 The degassing process described above can be repeatedly performed on the same liquid W by using the liquid circulation path 105 . Specifically, the shower head 102 is operated with the valve 109 of the liquid introduction path 104 and the valve 110 of the liquid outlet path 106 closed and the valve 107 of the liquid circulation path 105 opened. As a result, the liquid W stored in the degassing container 101 and subjected to the degassing process once is sprayed again into the degassing container 101 via the shower head 102 . Furthermore, by activating the decompression pump 103, the vaporization process by the shower head 102 and the degassing process by the decompression pump 103 are performed on the same liquid W at the same time. Then, the gas component contained in the liquid W can be reduced step by step each time the above-described repeated processing using the liquid circulation path 105 is performed. When the liquid W degassed to the desired purity is obtained, the valve 110 is opened to send the liquid W to the dissolving unit 200 through the liquid lead-out path 106 .
 なお、図2では、気体部を低圧にして溶解物を気化させる前処理ユニット100を示したが、溶解した液体を脱気させる方法はこれに限らない。例えば、液体Wを煮沸して溶解物を気化させる加熱煮沸法を採用してもよいし、中空糸を用いて液体と気体の界面を増大させる膜脱気方法を採用してもよい。中空糸を用いた脱気モジュールとしては、SEPARELシリーズ(大日本インキ社製)が市販されている。これは、中空糸膜の原料にポリ4-メチルペンテン-1(PMP)を用いて、主にピエゾヘッド向けに供給するインクなどから気泡を脱気する目的で使用されている。更に、真空脱気法、加熱煮沸法、及び膜脱気方法の2つ以上を併用してもよい。 Although FIG. 2 shows the pretreatment unit 100 that vaporizes the dissolved matter by reducing the pressure of the gas portion, the method of degassing the dissolved liquid is not limited to this. For example, a heat boiling method in which the liquid W is boiled to vaporize the dissolved matter may be employed, or a membrane degassing method in which hollow fibers are used to increase the interface between the liquid and the gas may be employed. SEPAREL series (manufactured by Dainippon Ink Co., Ltd.) is commercially available as a degassing module using hollow fibers. This uses poly-4-methylpentene-1 (PMP) as the raw material of the hollow fiber membrane, and is mainly used for the purpose of degassing air bubbles from the ink supplied to the piezo head. Furthermore, two or more of the vacuum degassing method, the heat boiling method, and the membrane degassing method may be used in combination.
 図3(a)及び(b)は、溶解ユニット200の概略構成図及び液体の溶解状態を説明するための図である。溶解ユニット200は、前処理ユニット100より供給された液体Wに対しオゾンガス(以下、気体Gと称す)を溶解させるユニットである。本実施形態の溶解ユニット200は、主に、溶解容器201、回転板202が取り付けられた回転シャフト203、液体導入路204、気体導入路205、液体導出路206、及び加圧ポンプ207を有する。 FIGS. 3(a) and 3(b) are schematic diagrams of the dissolving unit 200 and diagrams for explaining the dissolving state of the liquid. The dissolving unit 200 is a unit that dissolves ozone gas (hereinafter referred to as gas G) in the liquid W supplied from the pretreatment unit 100 . The dissolving unit 200 of this embodiment mainly has a dissolving container 201 , a rotating shaft 203 to which a rotating plate 202 is attached, a liquid introduction path 204 , a gas introduction path 205 , a liquid outlet path 206 and a pressure pump 207 .
 オゾンガスの生成には紫外線を照射する方法、放電を利用する方法、電気分解による方法などが一般的に用いられている。本発明において、オゾンガスの生成方法については規定せず、入手可能なオゾンガス生成装置を気体導入路205に接続すればよい。 Methods such as ultraviolet irradiation, discharge, and electrolysis are commonly used to generate ozone gas. In the present invention, the method for generating ozone gas is not specified, and any available ozone gas generating device may be connected to the gas introduction path 205 .
 前処理ユニット100より供給された液体Wは、液体導入路204より、溶解容器201に供給され貯留される。一方、気体Gは気体導入路205より溶解容器201に供給される。所定量の液体Wと気体Gが溶解容器201に貯留されると、加圧ポンプ207を作動し溶解容器201の内圧を0.5Mpa程度まで上昇させる。加圧ポンプ207と溶解容器201の間には安全弁208が配されている。また、回転シャフト203を介して液中の回転板202を回転させることにより、溶解容器201に供給された気体Gを気泡化し、液体Wとの接触面積を大きくし、液体W中への溶解を促進する。そしてこのような作業を、気体Gの溶解度がほぼ最大飽和溶解度に達するまで継続する。この際、可能な限り多くの気体を溶解させるために、液体の温度を低下させる手段を配してもよい。また、溶解容器201の内圧を0.5MPa以上に上げる事も可能である。その場合は、安全面から容器の材料などを最適にする必要がある。 The liquid W supplied from the pretreatment unit 100 is supplied to the dissolution container 201 through the liquid introduction path 204 and stored therein. On the other hand, the gas G is supplied to the dissolving container 201 through the gas introduction path 205 . When predetermined amounts of the liquid W and the gas G are stored in the dissolving container 201, the pressure pump 207 is operated to increase the internal pressure of the dissolving container 201 to approximately 0.5 MPa. A safety valve 208 is arranged between the pressure pump 207 and the dissolving container 201 . Further, by rotating the rotating plate 202 in the liquid via the rotating shaft 203, the gas G supplied to the dissolution container 201 is bubbled, the contact area with the liquid W is increased, and the dissolution in the liquid W is facilitated. Facilitate. Such operations are continued until the solubility of the gas G reaches approximately the maximum saturation solubility. At this time, means for lowering the temperature of the liquid may be arranged in order to dissolve as much gas as possible. It is also possible to increase the internal pressure of the dissolving container 201 to 0.5 MPa or higher. In that case, it is necessary to optimize the material of the container from a safety point of view.
 気体Gの成分が所望の濃度で溶解された液体Wが得られると、液体Wは液体導出路206を経由して排出され、T-UFB生成ユニット300に供給される。この際、背圧弁209は、供給時の圧力が必要以上に高くならないように液体Wの流圧を調整する。 When the liquid W in which the components of the gas G are dissolved at the desired concentration is obtained, the liquid W is discharged through the liquid lead-out path 206 and supplied to the T-UFB generation unit 300 . At this time, the back pressure valve 209 adjusts the flow pressure of the liquid W so that the pressure during supply does not become higher than necessary.
 図3(b)は、溶解容器201で混入された気体Gが溶解していく様子を模式的に示す図である。液体W中に混入された気体Gの成分を含む気泡2は、液体Wに接触している部分から溶解する。このため、気泡2は徐々に収縮し、気泡2の周囲には気体溶解液体3が存在する状態となる。気泡2には浮力が作用するため、気泡2は気体溶解液体3の中心から外れた位置に移動したり、気体溶解液体3から分離して残存気泡4となったりする。すなわち、液体導出路206を介してT-UFB生成ユニット300に供給される液体Wには、気体溶解液体3が気泡2を囲った状態のものや、気体溶解液体3と気泡2が互いに分離した状態のものが混在している。 FIG. 3(b) is a diagram schematically showing how the mixed gas G is dissolved in the dissolution container 201. FIG. Bubbles 2 containing the component of gas G mixed in liquid W dissolve from the portion in contact with liquid W. As shown in FIG. Therefore, the bubble 2 gradually shrinks, and the gas-dissolved liquid 3 exists around the bubble 2 . Since buoyancy acts on the bubble 2 , the bubble 2 moves to a position off the center of the gas-dissolved liquid 3 or separates from the gas-dissolved liquid 3 to become a residual bubble 4 . That is, the liquid W supplied to the T-UFB generation unit 300 through the liquid lead-out path 206 includes the gas-dissolved liquid 3 surrounding the bubbles 2, and the gas-dissolved liquid 3 and the bubbles 2 separated from each other. There are mixed states.
 なお、図において気体溶解液体3とは、「液体W中において、混入された気体Gの溶解濃度が比較的高い領域」を意味している。実際に液体Wに溶解している気体成分においては、気泡2の周囲や、気泡2と分離した状態であっても領域の中心で濃度が最も高く、その位置から離れるほど気体成分の濃度は連続的に低くなる。すなわち、図3(b)では説明のために気体溶解液体3の領域を破線で囲っているが、実際にはこのような明確な境界が存在するわけではない。また、本発明においては、完全に溶解しない気体が、気泡の状態で液体中に存在しても許容される。 In the figure, the gas-dissolved liquid 3 means "a region in which the mixed gas G has a relatively high dissolved concentration in the liquid W". In the gas component actually dissolved in the liquid W, the concentration is highest around the bubble 2 or even in the state separated from the bubble 2, and the concentration of the gas component is continuous as the distance from that position increases. relatively low. That is, in FIG. 3B, the area of the gas-dissolved liquid 3 is surrounded by a dashed line for explanation, but such a clear boundary does not actually exist. In addition, in the present invention, even if a gas that is not completely dissolved exists in the liquid in the form of bubbles, it is allowed.
 図4は、T-UFB生成ユニット300の概略構成図である。T-UFB生成ユニット300は、主に、チャンバー301、液体導入路302、液体導出路303を備え、液体導入路302からチャンバー301内を経て液体導出路303に向かう流れが、不図示の流動ポンプによって形成されている。流動ポンプとしては、ダイヤフラムポンプ、ギアポンプ、スクリューポンプなど各種ポンプを採用することができる。液体導入路302から導入される液体Wには、溶解ユニット200によって混入された気体Gの気体溶解液体3が混在している。 4 is a schematic configuration diagram of the T-UFB generation unit 300. FIG. The T-UFB generation unit 300 mainly includes a chamber 301, a liquid introduction path 302, and a liquid outlet path 303. Flow from the liquid introduction path 302 to the liquid outlet path 303 through the chamber 301 is controlled by a flow pump (not shown). formed by Various types of pumps such as diaphragm pumps, gear pumps, and screw pumps can be used as fluid pumps. The liquid W introduced from the liquid introduction path 302 is mixed with the gas-dissolved liquid 3 of the gas G mixed by the dissolving unit 200 .
 チャンバー301の底面には発熱素子10が設けられた素子基板12が配されている。発熱素子10に所定の電圧パルスが印加されることにより、発熱素子10に接触する領域に膜沸騰により生じる泡13(以下、膜沸騰泡13ともいう)が発生する。そして、膜沸騰泡13の膨張や収縮に伴って気体Gを含有するウルトラファインバブル(UFB11)が生成される。その結果、液体導出路303からは多数のUFB11が含まれたUFB含有液Wが導出される。 An element substrate 12 provided with heat generating elements 10 is arranged on the bottom surface of the chamber 301 . By applying a predetermined voltage pulse to the heating element 10 , a bubble 13 caused by film boiling (hereinafter also referred to as a film boiling bubble 13 ) is generated in a region in contact with the heating element 10 . As the film boiling bubbles 13 expand and contract, ultra-fine bubbles (UFB 11) containing the gas G are generated. As a result, a UFB-containing liquid W containing a large number of UFBs 11 is drawn out from the liquid lead-out path 303 .
 図5(a)及び(b)は、発熱素子10の詳細構造を示す図である。図5(a)は発熱素子10の近傍、同図(b)は発熱素子10を含むより広い領域の素子基板12の断面図をそれぞれ示している。 FIGS. 5(a) and 5(b) are diagrams showing the detailed structure of the heating element 10. FIG. FIG. 5(a) shows the vicinity of the heating elements 10, and FIG. 5(b) shows a cross-sectional view of the element substrate 12 in a wider area including the heating elements 10. As shown in FIG.
 図5(a)に示すように、本実施形態の素子基板12は、シリコン基板304の表面に、蓄熱層としての熱酸化膜305と、蓄熱層を兼ねる層間膜306と、が積層されている。層間膜306としては、SiO2膜、または、SiN膜を用いることができる。層間膜306の表面には抵抗層307が形成され、その抵抗層307の表面に、配線308が部分的に形成されている。配線308としては、Al、Al-Si、またはAl-CuなどのAl合金配線を用いることができる。これらの配線308、抵抗層307、及び、層間膜306の表面には、SiO2膜、またはSi34膜から成る保護層309が形成されている。 As shown in FIG. 5A, in the element substrate 12 of this embodiment, a thermal oxide film 305 as a heat storage layer and an interlayer film 306 also serving as a heat storage layer are laminated on the surface of a silicon substrate 304. . A SiO 2 film or a SiN film can be used as the interlayer film 306 . A resistance layer 307 is formed on the surface of the interlayer film 306 , and wiring 308 is partially formed on the surface of the resistance layer 307 . As the wiring 308, an Al alloy wiring such as Al, Al--Si, or Al--Cu can be used. A protective layer 309 made of an SiO 2 film or a Si 3 N 4 film is formed on the surfaces of these wirings 308 , resistance layer 307 and interlayer film 306 .
 保護層309の表面において、結果的に発熱素子10となる熱作用部311に対応する部分、及び、その周囲には、抵抗層307の発熱に伴う化学的、及び物理的な衝撃から保護層309を保護するための耐キャビテーション膜310が形成されている。抵抗層307の表面において、配線308が形成されていない領域は、抵抗層307が発熱する熱作用部311である。配線308が形成されていない抵抗層307の発熱部分は、発熱素子(ヒータ)10として機能する。このように素子基板12における層は、半導体の製造技術によってシリコン基板304の表面に順次に形成され、これにより、シリコン基板304に熱作用部311が備えられる。 On the surface of the protective layer 309, the portion corresponding to the heat acting portion 311 that eventually becomes the heating element 10 and its surroundings are covered with the protective layer 309 against chemical and physical impacts accompanying the heat generation of the resistance layer 307. An anti-cavitation film 310 is formed to protect the . A region on the surface of the resistance layer 307 where the wiring 308 is not formed is a heat acting portion 311 where the resistance layer 307 generates heat. A heat-generating portion of the resistance layer 307 where the wiring 308 is not formed functions as a heat-generating element (heater) 10 . Thus, the layers of the element substrate 12 are sequentially formed on the surface of the silicon substrate 304 by semiconductor manufacturing techniques, whereby the silicon substrate 304 is provided with the heat acting portion 311 .
 なお、図に示す構成は一例であり、その他の各種構成が適用可能である。例えば、抵抗層307と配線308との積層順が逆の構成、及び抵抗層307の下面に電極を接続させる構成(所謂プラグ電極構成)が適用可能である。つまり、後述するように、熱作用部311により液体を加熱して、液体中に膜沸騰を生じさせることができる構成であればよい。 The configuration shown in the figure is an example, and various other configurations are applicable. For example, a configuration in which the resistive layer 307 and the wiring 308 are stacked in reverse order, and a configuration in which an electrode is connected to the lower surface of the resistive layer 307 (so-called plug electrode configuration) are applicable. In other words, as will be described later, any configuration may be used as long as the liquid can be heated by the heat acting portion 311 to cause film boiling in the liquid.
 図5(b)は、素子基板12において、配線308に接続される回路を含む領域の断面図の一例である。P型導電体であるシリコン基板304の表層には、N型ウェル領域322、及び、P型ウェル領域323が部分的に備えられている。一般的なMOSプロセスによるイオンインプランテーションなどの不純物の導入、及び拡散によって、N型ウェル領域322にP-MOS320が形成され、P型ウェル領域323にN-MOS321が形成される。 FIG. 5(b) is an example of a cross-sectional view of a region including a circuit connected to the wiring 308 in the element substrate 12. As shown in FIG. An N-type well region 322 and a P-type well region 323 are partially provided on the surface layer of the silicon substrate 304, which is a P-type conductor. A P-MOS 320 is formed in the N-type well region 322 and an N-MOS 321 is formed in the P-type well region 323 by introducing and diffusing impurities such as ion implantation by a general MOS process.
 P-MOS320は、N型ウェル領域322の表層に部分的にN型あるいはP型の不純物を導入してなるソース領域325及びドレイン領域326と、ゲート配線335などから構成されている。ゲート配線335は、ソース領域325及びドレイン領域326を除くN型ウェル領域322の部分の表面に、厚さ数百Åのゲート絶縁膜328を介して堆積されている。 The P-MOS 320 is composed of a source region 325 and a drain region 326 obtained by partially introducing an N-type or P-type impurity into the surface layer of the N-type well region 322, a gate wiring 335, and the like. A gate wiring 335 is deposited on the surface of the portion of the N-type well region 322 excluding the source region 325 and the drain region 326 via a gate insulating film 328 with a thickness of several hundred angstroms.
 N-MOS321は、P型ウェル領域323の表層に部分的にN型あるいはP型の不純物を導入してなるソース領域325及びドレイン領域326と、ゲート配線335などから構成されている。ゲート配線335は、ソース領域325及びドレイン領域326を除くP型ウェル領域323の部分の表面に、厚さ数百Åのゲート絶縁膜328を介して堆積されている。ゲート配線335は、CVD法により堆積された厚さ3000Å~5000Åのポリシリコンからなる。これらのP-MOS320及びN-MOS321によって、C-MOSロジックが構成される。 The N-MOS 321 is composed of a source region 325 and a drain region 326 formed by partially introducing an N-type or P-type impurity into the surface layer of a P-type well region 323, a gate wiring 335, and the like. A gate wiring 335 is deposited on the surface of the portion of the P-type well region 323 excluding the source region 325 and the drain region 326 via a gate insulating film 328 with a thickness of several hundred angstroms. The gate wiring 335 is made of polysilicon deposited by CVD to a thickness of 3000 Å to 5000 Å. These P-MOS 320 and N-MOS 321 constitute a C-MOS logic.
 P型ウェル領域323において、N-MOS321と異なる部分には、電気熱変換素子(発熱抵抗素子)の駆動用のN-MOSトランジスタ330が形成されている。N-MOSトランジスタ330は、不純物の導入及び拡散などの工程によりP型ウェル領域323の表層に部分的に形成されたソース領域332及びドレイン領域331と、ゲート配線333などから構成されている。ゲート配線333は、P型ウェル領域323におけるソース領域332及びドレイン領域331を除く部分の表面に、ゲート絶縁膜328を介して堆積されている。 In the P-type well region 323, an N-MOS transistor 330 for driving an electrothermal conversion element (heating resistance element) is formed in a portion different from the N-MOS 321. The N-MOS transistor 330 is composed of a source region 332 and a drain region 331 partially formed in the surface layer of the P-type well region 323 by steps such as impurity introduction and diffusion, a gate wiring 333, and the like. A gate wiring 333 is deposited on the surface of a portion of the P-type well region 323 excluding the source region 332 and the drain region 331 via a gate insulating film 328 .
 本例においては、電気熱変換素子の駆動用トランジスタとして、N-MOSトランジスタ330を用いた。しかし、その駆動用トランジスタは、複数の電気熱変換素子を個別に駆動する能力を持ち、かつ、上述したような微細な構造を得ることができるトランジスタであればよく、N-MOSトランジスタ330には限定されない。また本例においては、電気熱変換素子と、その駆動用トランジスタと、が同一基板上に形成されているが、これらは、別々の基板に形成してもよい。 In this example, an N-MOS transistor 330 is used as a driving transistor for the electrothermal conversion element. However, the drive transistor may be any transistor that has the ability to individually drive a plurality of electrothermal conversion elements and that can obtain the fine structure described above. Not limited. Also, in this example, the electrothermal conversion element and its driving transistor are formed on the same substrate, but they may be formed on separate substrates.
 P-MOS320とN-MOS321との間、及びN-MOS321とN-MOSトランジスタ330との間等の各素子間には、5000Å~10000Åの厚さのフィールド酸化により酸化膜分離領域324が形成されている。この酸化膜分離領域324によって各素子が分離されている。酸化膜分離領域324において、熱作用部311に対応する部分は、シリコン基板304上の一層目の蓄熱層334として機能する。 Between the P-MOS 320 and the N-MOS 321, and between the N-MOS 321 and the N-MOS transistor 330, an oxide film isolation region 324 is formed by field oxidation to a thickness of 5000 Å to 10000 Å. ing. Each device is isolated by this oxide film isolation region 324 . A portion of the oxide film isolation region 324 corresponding to the heat acting portion 311 functions as the first heat storage layer 334 on the silicon substrate 304 .
 P-MOS320、N-MOS321、及びN-MOSトランジスタ330の各素子の表面には、CVD法により、厚さ約7000ÅのPSG膜、またはBPSG膜などから成る層間絶縁膜336が形成されている。層間絶縁膜336を熱処理により平坦にした後に、層間絶縁膜336及びゲート絶縁膜328を貫通するコンタクトホールを介して、第1の配線層となるAl電極337が形成される。層間絶縁膜336及びAl電極337の表面には、プラズマCVD法により、厚さ10000Å~15000ÅのSiO2膜から成る層間絶縁膜338が形成される。層間絶縁膜338の表面において、熱作用部311及びN-MOSトランジスタ330に対応する部分には、コスパッタ法により、厚さ約500ÅのTaSiN膜から成る抵抗層307が形成される。抵抗層307は、層間絶縁膜338に形成されたスルーホールを介して、ドレイン領域331の近傍のAl電極337と電気的に接続される。抵抗層307の表面には、各電気熱変換素子への配線となる第2の配線層としてのAlの配線308が形成される。配線308、抵抗層307、及び層間絶縁膜338の表面の保護層309は、プラズマCVD法により形成された厚さ3000ÅのSiN膜から成る。保護層309の表面に堆積された耐キャビテーション膜310は、Ta、Fe,Ni,Cr,Ge,Ru,Zr,Ir等から選択される少なくとも1つ以上の金属であり、厚さ約2000Åの薄膜から成る。抵抗層307としては、上述したTaSiN以外のTaN0.8、CrSiN、TaAl、WSiN等、液体中に膜沸騰を生じさせることができるものであれば各種材料が適用可能である。 An interlayer insulating film 336 made of a PSG film or BPSG film having a thickness of about 7000 Å is formed on the surface of each element of the P-MOS 320, N-MOS 321 and N-MOS transistor 330 by CVD. After the interlayer insulating film 336 is flattened by heat treatment, an Al electrode 337 serving as a first wiring layer is formed via a contact hole penetrating the interlayer insulating film 336 and the gate insulating film 328 . An interlayer insulating film 338 made of an SiO2 film with a thickness of 10000 Å to 15000 Å is formed on the surfaces of the interlayer insulating film 336 and the Al electrode 337 by plasma CVD. A resistive layer 307 made of a TaSiN film having a thickness of about 500 .ANG. The resistance layer 307 is electrically connected to the Al electrode 337 near the drain region 331 through a through hole formed in the interlayer insulating film 338 . Al wiring 308 is formed on the surface of the resistance layer 307 as a second wiring layer serving as wiring to each electrothermal conversion element. The wiring 308, the resistance layer 307, and the protective layer 309 on the surface of the interlayer insulating film 338 are made of a 3000 Å thick SiN film formed by plasma CVD. The anti-cavitation film 310 deposited on the surface of the protective layer 309 is made of at least one metal selected from Ta, Fe, Ni, Cr, Ge, Ru, Zr, Ir, etc., and is a thin film with a thickness of about 2000 Å. consists of Various materials other than TaSiN, such as TaN 0.8 , CrSiN, TaAl, and WSiN, can be used for the resistive layer 307 as long as they can cause film boiling in a liquid.
 図6(a)及び(b)は、発熱素子10に所定の電圧パルスを印加した場合の膜沸騰の様子を示す図である。ここでは、大気圧のもとでの膜沸騰を生じさせた場合を示している。図6(a)において、横軸は時間を示す。また、下段のグラフの縦軸は発熱素子10に印加される電圧を示し、上段のグラフの縦軸は膜沸騰により発生した膜沸騰泡13の体積と内圧を示す。一方、図6(b)は、膜沸騰泡13の様子を、図6(a)に示すタイミング1~3に対応づけて示している。以下、時間に沿って各状態を説明する。尚、後述するように膜沸騰によって発生したUFB11は主として膜沸騰泡13の表面近傍に発生する。図6(b)に示す状態は、図1で示したように、T-UFB生成ユニット300で発生したUFB11から循環経路を介して溶解ユニット200に再度供給され、その液体がT-UFB生成ユニット300の液路に再度供給された状態を示す。 FIGS. 6(a) and 6(b) are diagrams showing how film boiling occurs when a predetermined voltage pulse is applied to the heating element 10. FIG. Here, the case of film boiling under atmospheric pressure is shown. In FIG. 6A, the horizontal axis indicates time. The vertical axis of the lower graph indicates the voltage applied to the heating element 10, and the vertical axis of the upper graph indicates the volume and internal pressure of the film boiling bubbles 13 generated by film boiling. On the other hand, FIG. 6(b) shows how the film boiling bubbles 13 correspond to timings 1 to 3 shown in FIG. 6(a). Each state will be described below in chronological order. As will be described later, the UFB 11 generated by film boiling is mainly generated in the vicinity of the surface of the film boiling bubbles 13 . In the state shown in FIG. 6B, as shown in FIG. 1, the UFB 11 generated in the T-UFB generation unit 300 is supplied again to the dissolution unit 200 through the circulation path, and the liquid is supplied to the T-UFB generation unit. 300 shows a state in which the liquid is re-supplied to the liquid path.
 発熱素子10に電圧が印加される前、チャンバー301内はほぼ大気圧が保たれている。発熱素子10に電圧が印加されると、発熱素子10に接する液体に膜沸騰が生じ、発生した気泡(以下、膜沸騰泡13と称す)は内側から作用する高い圧力によって膨張する(タイミング1)。このときの発泡圧力は約8~10MPaとみなされ、これは水の飽和蒸気圧に近い値である。 Before the voltage is applied to the heating element 10, the inside of the chamber 301 is kept at substantially atmospheric pressure. When a voltage is applied to the heating element 10, film boiling occurs in the liquid in contact with the heating element 10, and the generated bubbles (hereinafter referred to as film boiling bubbles 13) expand due to the high pressure acting from the inside (timing 1). . The foaming pressure at this time is considered to be about 8 to 10 MPa, which is close to the saturated vapor pressure of water.
 電圧の印加時間(パルス幅)は0.5usec~10.0usec程度であるが、電圧が印加されなくなった後も、膜沸騰泡13はタイミング1で得られた圧力の慣性によって膨張する。但し、膜沸騰泡13の内部では膨張に伴って発生した負圧力が徐々に大きくなり、膜沸騰泡13を収縮する方向に作用する。やがて慣性力と負圧力が釣り合ったタイミング2で膜沸騰泡13の体積は最大となり、その後は負圧力によって急速に収縮する。 Although the voltage application time (pulse width) is about 0.5 to 10.0 usec, the film boiling bubble 13 expands due to the inertia of the pressure obtained at timing 1 even after the voltage is no longer applied. However, inside the film boiling bubble 13 , the negative pressure generated along with the expansion gradually increases and acts in the direction of shrinking the film boiling bubble 13 . The volume of the film boiling bubble 13 reaches its maximum at timing 2 when the inertial force and the negative pressure are balanced, and then rapidly shrinks due to the negative pressure.
 膜沸騰泡13が消滅する際、膜沸騰泡13は発熱素子10の全面ではなく、1箇所以上の極めて小さな領域で消滅する。このため、発熱素子10においては、膜沸騰泡13が消滅する極めて小さな領域に、タイミング1で示す発泡時よりも更に大きな力が発生する(タイミング3)。 When the film boiling bubble 13 disappears, the film boiling bubble 13 disappears not in the entire surface of the heating element 10 but in one or more very small areas. Therefore, in the heating element 10, a force larger than that at the time of foaming shown at timing 1 is generated in a very small area where the film boiling bubbles 13 disappear (timing 3).
 以上説明したような膜沸騰泡13の発生、膨張、収縮及び消滅は、発熱素子10に電圧パルスが印加されるたびに繰り返され、そのたびに新たなUFB11が生成される。 The generation, expansion, contraction, and disappearance of the film boiling bubbles 13 as described above are repeated each time a voltage pulse is applied to the heating element 10, and each time a new UFB 11 is generated.
 次に図7~図10を用いて、膜沸騰泡13の発生、膨張、収縮及び消滅の各過程において、UFB11が生成される様子を更に詳しく説明する。 Next, with reference to FIGS. 7 to 10, how the UFB 11 is generated in each process of generation, expansion, contraction and disappearance of the film boiling bubbles 13 will be described in more detail.
 図7(a)~(d)は、膜沸騰泡13の発生及び膨張に伴ってUFB11が生成される様子を模式的に示す図である。図7(a)は、発熱素子10に電圧パルスが印加される前の状態を示している。チャンバー301の内部には、気体溶解液体3が混在した液体Wが流れている。 7(a) to (d) are diagrams schematically showing how the UFB 11 is generated as the film boiling bubbles 13 are generated and expanded. FIG. 7A shows the state before a voltage pulse is applied to the heating element 10. FIG. Inside the chamber 301, the liquid W mixed with the gas-dissolved liquid 3 is flowing.
 図7(b)は、発熱素子10に電圧が印加され、液体Wに接している発熱素子10のほぼ全域で膜沸騰泡13が一様に発生した様子を示している。電圧が印加されたとき、発熱素子10の表面温度は10℃/μsec以上の速度で急激に上昇し、ほぼ300℃に達し
た時点で膜沸騰が起こり、膜沸騰泡13が生成される。
FIG. 7(b) shows how a voltage is applied to the heating element 10 and the film boiling bubbles 13 are generated uniformly over almost the entire area of the heating element 10 in contact with the liquid W. FIG. When a voltage is applied, the surface temperature of the heating element 10 rises rapidly at a rate of 10° C./μsec or more, and when it reaches approximately 300° C., film boiling occurs and film boiling bubbles 13 are generated.
 発熱素子10の表面温度は、その後もパルスの印加中に600~800℃程度まで上昇し、膜沸騰泡13の周辺の液体も急激に加熱される。図では、膜沸騰泡13の周辺に位置し、急激に加熱される液体の領域を未発泡高温領域14として示している。未発泡高温領域14に含まれる気体溶解液体3は熱的溶解限界を超えて析出しUFBとなる。析出した気泡の直径は10nm~100nm程度であり、高い気液界面エネルギを有している。そのため、短時間で消滅することもなく液体W内で独立を保ながら浮遊する。本実施形態では、このように膜沸騰泡13の発生から膨張時に熱的作用によって生成される気泡を第1のUFB11Aと称す。 After that, the surface temperature of the heating element 10 rises to about 600 to 800° C. during pulse application, and the liquid around the film boiling bubble 13 is also rapidly heated. In the drawing, a region of the liquid located around the film boiling bubbles 13 and rapidly heated is shown as an unfoamed high-temperature region 14 . The gas-dissolved liquid 3 contained in the unfoamed high-temperature region 14 exceeds the thermal solubility limit and precipitates to become UFB. The deposited bubbles have a diameter of about 10 nm to 100 nm and have a high gas-liquid interfacial energy. Therefore, it floats in the liquid W while maintaining its independence without disappearing in a short time. In this embodiment, the bubbles generated by the thermal action when the film boiling bubbles 13 are generated and expanded are referred to as first UFB 11A.
 図7(c)は、膜沸騰泡13が膨張する過程を示している。発熱素子10への電圧パルスの印加が終了しても、膜沸騰泡13は発生したときに得た力の慣性によって膨張を続け、未発泡高温領域14も慣性によって移動及び拡散する。すなわち、膜沸騰泡13が膨張する過程において、未発泡高温領域14に含まれた気体溶解液体3が新たに気泡となって析出し、第1のUFB11Aとなる。 FIG. 7(c) shows the process in which the film boiling bubbles 13 expand. Even after the application of the voltage pulse to the heating element 10 ends, the film boiling bubbles 13 continue to expand due to the inertia of the force obtained when they are generated, and the non-bubbled high-temperature regions 14 also move and diffuse due to inertia. That is, in the process in which the film boiling bubbles 13 expand, the gas-dissolved liquid 3 contained in the unfoamed high-temperature region 14 is newly precipitated as bubbles to form the first UFB 11A.
 図7(d)は、膜沸騰泡13が最大体積となった状態を示している。膜沸騰泡13は慣性によって膨張するが、膨張に伴って膜沸騰泡13の内部の負圧は徐々に高まり、膜沸騰泡13を収縮しようとする負圧力として作用する。そして、この負圧力が慣性力と釣り合った時点で、膜沸騰泡13の体積は最大となり、以後収縮に転じる。 FIG. 7(d) shows a state in which the film boiling bubble 13 has reached its maximum volume. The film boiling bubble 13 expands due to inertia, but the negative pressure inside the film boiling bubble 13 gradually increases with the expansion, and acts as a negative pressure to contract the film boiling bubble 13 . Then, when this negative pressure balances with the inertial force, the volume of the film boiling bubbles 13 reaches its maximum, and thereafter begins to contract.
 膜沸騰泡13の収縮段階においては、図8(a)~(c)に示す過程により発生するUFB(第2のUFB11B)と、図9(a)~(c)に示す過程により発生するUFB(第3のUFB)とがある。これら2つの過程は併存しておきていると考えられる。 In the contraction stage of the film boiling bubble 13, the UFB (second UFB 11B) generated by the process shown in FIGS. 8(a) to (c) and the UFB generated by the process shown in FIGS. (third UFB). These two processes are thought to coexist.
 図8(a)~(c)は、膜沸騰泡13の収縮に伴ってUFB11が生成される様子を示す図である。図8(a)は、膜沸騰泡13が収縮を開始した状態を示している。膜沸騰泡13が収縮を開始しても、周囲の液体Wには膨張する方向の慣性力が残っている。よって、膜沸騰泡13の極周囲には、発熱素子10から離れる方向に作用する慣性力と、膜沸騰泡13の収縮に伴って発熱素子10に向かう力とが作用し、減圧された領域となる。図では、そのような領域を未発泡負圧領域15として示している。 FIGS. 8(a) to 8(c) are diagrams showing how the UFB 11 is generated as the film boiling bubbles 13 contract. FIG. 8(a) shows a state in which the film boiling bubbles 13 have started contracting. Even if the film boiling bubble 13 starts contracting, the surrounding liquid W still has an inertial force in the expanding direction. Therefore, the inertial force acting in the direction away from the heating element 10 and the force directed toward the heating element 10 due to the contraction of the film boiling bubble 13 act on the extreme periphery of the film boiling bubble 13, resulting in a decompressed region. Become. In the drawing, such a region is indicated as an unfoamed negative pressure region 15. FIG.
 未発泡負圧領域15に含まれる気体溶解液体3は、圧的溶解限界を超え、気泡として析出する。析出した気泡の直径は100nm程度であり、その後短時間で消滅することもなく液体W内で独立を保ながら浮遊する。本実施形態では、このように膜沸騰泡13が収縮する際の圧力的作用によって析出する気泡を、第2のUFB11Bと称す。 The gas-dissolving liquid 3 contained in the non-foaming negative pressure region 15 exceeds the pressure solubility limit and precipitates as bubbles. The precipitated bubbles have a diameter of about 100 nm, and do not disappear in a short period of time and float in the liquid W while maintaining their independence. In the present embodiment, the bubbles deposited by the pressure action when the film boiling bubbles 13 contract in this manner are referred to as second UFB 11B.
 図8(b)は、膜沸騰泡13が収縮する過程を示している。膜沸騰泡13が収縮する速度は負圧力によって加速し、未発泡負圧領域15も膜沸騰泡13の収縮に伴って移動する。すなわち、膜沸騰泡13が収縮する過程において、未発泡負圧領域15が通過する箇所の気体溶解液体3が次々に析出し、第2のUFB11Bとなる。 FIG. 8(b) shows the process of contraction of the film boiling bubble 13. The speed at which the film boiling bubbles 13 shrink is accelerated by the negative pressure, and the unfoamed negative pressure region 15 also moves with the contraction of the film boiling bubbles 13 . That is, in the process of contraction of the film boiling bubbles 13, the gas-dissolved liquid 3 at the location through which the unfoamed negative pressure region 15 passes is deposited one after another to form the second UFB 11B.
 図8(c)は、膜沸騰泡13が消滅する直前の様子を示している。膜沸騰泡13の加速度的な収縮により、周囲の液体Wの移動速度も増大するが、チャンバー301内の流路抵抗によって圧力損失が生じる。その結果、未発泡負圧領域15が占める領域は更に大きくなり、多数の第2のUFB11Bが生成される。 FIG. 8(c) shows the state immediately before the film boiling bubble 13 disappears. The accelerated contraction of the film boiling bubbles 13 also increases the moving speed of the surrounding liquid W, but pressure loss occurs due to the flow path resistance in the chamber 301 . As a result, the area occupied by the unfoamed negative pressure area 15 becomes even larger, and a large number of second UFBs 11B are generated.
 図9(a)~(c)は、膜沸騰泡13の収縮時において、液体Wの再加熱によってUFBが生成される様子を示す図である。図9(a)は、発熱素子10の表面が収縮する膜沸騰泡13に被覆されている状態を示している。 9(a) to (c) are diagrams showing how UFB is generated by reheating the liquid W when the film boiling bubbles 13 are contracted. FIG. 9A shows a state in which the surface of the heating element 10 is covered with shrinking film boiling bubbles 13 .
 図9(b)は、膜沸騰泡13の収縮が進み、発熱素子10の表面の一部が液体Wに接触した状態を示している。このとき発熱素子10の表面には、液体Wが接しても膜沸騰には到らないほどの熱が残っている。図では、発熱素子10の表面に接することにより加熱される液体の領域を未発泡再加熱領域16として示している。膜沸騰には到らないものの、未発泡再加熱領域16に含まれる気体溶解液体3は、熱的溶解限界を超えて析出する。本実施形態では、このように膜沸騰泡13が収縮する際の液体Wの再加熱によって生成される気泡を第3のUFB11Cと称す。 FIG. 9(b) shows a state in which the contraction of the film boiling bubbles 13 progresses and part of the surface of the heating element 10 is in contact with the liquid W. FIG. At this time, heat remains on the surface of the heating element 10 to such an extent that film boiling does not occur even when the liquid W is brought into contact with the surface. In the figure, the area of the liquid that is heated by contact with the surface of the heating element 10 is shown as an unfoamed reheating area 16 . Although film boiling does not occur, the gas-dissolved liquid 3 contained in the unfoamed reheating region 16 is precipitated beyond the thermal solubility limit. In the present embodiment, bubbles generated by reheating the liquid W when the film boiling bubbles 13 contract in this manner are referred to as third UFB 11C.
 図9(c)は、膜沸騰泡13の収縮が更に進んだ状態を示している。膜沸騰泡13が小さくなるほど、液体Wに接する発熱素子10の領域が大きくなるため、第3のUFB11Cは、膜沸騰泡13が消滅するまで生成される。 FIG. 9(c) shows a state in which the shrinkage of the film boiling bubbles 13 has progressed further. As the film boiling bubbles 13 become smaller, the area of the heat generating element 10 in contact with the liquid W becomes larger, so the third UFB 11C is generated until the film boiling bubbles 13 disappear.
 図10(a)および(b)は、膜沸騰で生成された膜沸騰泡13の消泡時の衝撃(所謂、キャビテーションの一種)によって、UFBが生成される様子を示す図である。図10(a)は、膜沸騰泡13が消滅する直前の様子を示している。膜沸騰泡13は内部の負圧力によって急激に収縮し、その周囲を未発泡負圧領域15が覆う状態となっている。 FIGS. 10(a) and 10(b) are diagrams showing how UFB is generated by impact (so-called cavitation) when the film boiling bubbles 13 generated by film boiling are destroyed. FIG. 10(a) shows a state immediately before the film boiling bubble 13 disappears. The film boiling bubbles 13 are rapidly contracted by the internal negative pressure, and are surrounded by the non-foamed negative pressure region 15 .
 図10(b)は、膜沸騰泡13が点Pで消滅した直後の様子を示している。膜沸騰泡13が消泡するとき、その衝撃により音響波が点Pを起点として同心円状に広がる。音響波とは、気体、液体、固体を問わず伝播する弾性波の総称であり、本実施形態においては、液体Wの粗密、すなわち液体Wの高圧面17Aと低圧面17B、とが交互に伝播される。 FIG. 10(b) shows the state immediately after the film boiling bubble 13 disappears at the point P. When the film boiling bubble 13 disappears, the acoustic wave spreads concentrically with the point P as a starting point due to the impact. Acoustic waves are a general term for elastic waves that propagate regardless of gas, liquid, or solid. be done.
 この場合、未発泡負圧領域15に含まれる気体溶解液体3は、膜沸騰泡13の消泡時の衝撃波によって共振され、低圧面17Bが通過するタイミングで圧的溶解限界を超えて相転移する。すなわち、膜沸騰泡13の消滅と同時に、未発泡負圧領域15内には多数の気泡が析出する。本実施形態ではこのような膜沸騰泡13が消泡する時の衝撃波によって生成される気泡を第4のUFB11Dと称す。 In this case, the gas-dissolved liquid 3 contained in the unfoamed negative pressure region 15 is resonated by the shock wave when the film boiling bubbles 13 disappear, and undergoes a phase transition exceeding the pressure solubility limit at the timing when the low pressure surface 17B passes. . That is, at the same time when the film boiling bubbles 13 disappear, a large number of bubbles are precipitated in the non-bubbled negative pressure region 15 . In this embodiment, a bubble generated by a shock wave when the film boiling bubble 13 disappears is called a fourth UFB 11D.
 膜沸騰泡13の消泡時の衝撃波よって生成される第4のUFB11Bは、極めて狭い薄膜的領域に極めて短時間(1μS以下)で突発的に出現する。直径は第1~第3のUFBよりも十分小さく、第1~第3のUFBよりも気液界面エネルギが高い。このため、第4のUFB11Dは、第1~第3のUFB11A~11Cとは異なる性質を有し異なる効果を生み出すものと考えられる。 The fourth UFB 11B generated by the shock wave when the film boiling bubble 13 disappears suddenly appears in a very narrow film-like region in a very short time (1 μS or less). The diameter is significantly smaller than the first to third UFBs, and the gas-liquid interfacial energy is higher than the first to third UFBs. Therefore, it is considered that the fourth UFB 11D has different properties and produces different effects from those of the first to third UFBs 11A to 11C.
 また、第4のUFB11Dは、衝撃波が伝播する同心球状の領域のいたる所で一様に発生するため、生成された時点からチャンバー301内に一様に存在することになる。第4のUFB11Dが生成されるタイミングでは、第1~第3のUFBが既に多数存在しているが、これら第1~第3のUFBの存在が第4のUFB11Dの生成に大きく影響することはない。また、第4のUFB11Dの発生によって第1~第3のUFBが消滅することもないと考えられる。 In addition, since the fourth UFB 11D is uniformly generated throughout the concentric spherical region where the shock wave propagates, it is uniformly present in the chamber 301 from the time of generation. At the timing when the fourth UFB 11D is generated, many first to third UFBs already exist, but the existence of these first to third UFBs does not greatly affect the generation of the fourth UFB 11D. do not have. Also, it is considered that the generation of the fourth UFB 11D will not cause the first to third UFBs to disappear.
 以上説明したように発熱素子10の発熱により膜沸騰泡13が発生し消泡するまでの複数の段階においてUFB11が発生すると想定される。第1のUFB11A、第2のUFB11B及び第3のUFB11Cは、膜沸騰により発生する膜沸騰泡の表面の近傍に発生する。ここで近傍とは膜沸騰泡の表面から約20μm以内の領域である。第4のUFB11Dは、気泡が消泡(消滅)する際に発生する衝撃波が伝搬する領域に発生する。上述した例では膜沸騰泡13が消泡するまでの例を示したがUFBを発生させるためにはこれに限られない。例えば、発生した膜沸騰泡13が消泡する前に大気と連通することで、膜沸騰泡13が消耗まで至らない場合においてもUFBの生成が可能である。 As described above, it is assumed that the UFB 11 is generated in a plurality of stages from the generation of the film boiling bubbles 13 by the heat generated by the heating element 10 to the disappearance of the bubbles. The first UFB 11A, the second UFB 11B and the third UFB 11C are generated near the surface of film boiling bubbles generated by film boiling. Here, the neighborhood is a region within about 20 μm from the surface of the film boiling bubble. The fourth UFB 11D is generated in a region where a shock wave generated when bubbles disappear (disappear) propagates. In the above example, an example was shown until the film boiling bubbles 13 disappeared, but the present invention is not limited to this in order to generate UFB. For example, by communicating with the atmosphere before the generated film boiling bubbles 13 disappear, UFB can be generated even when the film boiling bubbles 13 are not exhausted.
 次にUFBの残存特性について説明する。液体の温度が高いほど気体成分の溶解特性は低くなり、温度が低いほど気体成分の溶解特性は高くなる。すなわち、液体の温度が高いほど、溶解している気体成分の相転移が促され、UFBが生成されやすくなる。液体の温度と気体の溶解度は反比例の関係にあり、液体の温度上昇により、飽和溶解度を超えた気体が気泡になって液体中に析出される。 Next, I will explain the remaining characteristics of UFB. The higher the temperature of the liquid, the lower the dissolution properties of the gaseous components, and the lower the temperature, the higher the dissolution properties of the gaseous components. That is, the higher the temperature of the liquid, the more likely the phase transition of dissolved gaseous components is promoted, and the more easily the UFB is generated. The temperature of the liquid and the solubility of the gas are in an inversely proportional relationship. As the temperature of the liquid rises, the gas exceeding the saturation solubility becomes bubbles and precipitates in the liquid.
 このため、液体の温度が常温から急激に上昇すると溶解特性が一気に下がり、UFBが生成され始める。そして、温度が上がるほど熱的溶解特性は下がり、多くのUFBが生成される状況となる。 For this reason, when the temperature of the liquid rises sharply from room temperature, the dissolution characteristics suddenly drop, and UFB begins to be generated. Then, as the temperature rises, the thermal dissolution characteristics decrease, resulting in a situation in which a large amount of UFB is generated.
 反対に液体の温度が常温から下降すると、気体の溶解特性は上昇し、生成されたUFBは液化しやすくなる。しかしながら、このような温度は、常温よりも十分に低い。更に、液体の温度が下がっても、一度発生したUFBは高い内圧と高い気液界面エネルギを有するため、この気液界面を破壊するほどの高い圧力が作用する可能性は極めて低い。すなわち、一度生成されたUFBは、液体を常温常圧で保存する限り、簡単に消滅することはない。 On the contrary, when the temperature of the liquid drops from normal temperature, the dissolution characteristics of the gas rise and the generated UFB becomes easier to liquefy. However, such temperatures are well below ambient temperature. Furthermore, even if the temperature of the liquid drops, the UFB once generated has a high internal pressure and a high gas-liquid interfacial energy, so the possibility of a high pressure acting to break the gas-liquid interface is extremely low. That is, the UFB once produced does not disappear easily as long as the liquid is stored at normal temperature and normal pressure.
 本実施形態において、図7(a)~(c)で説明した第1のUFB11A、及び図9(a)~(c)で説明した第3のUFB11Cは、このような気体の熱的溶解特性を利用して生成されたUFBと言える。 In this embodiment, the first UFB 11A described in FIGS. 7A to 7C and the third UFB 11C described in FIGS. It can be said that the UFB is generated using
 一方、液体の圧力と溶解特性の関係においては、液体の圧力が高いほど気体の溶解特性は高くなり、圧力が低いほど溶解特性は低くなる。すなわち液体の圧力が低いほど、液体に溶解している気体溶解液体の気体への相転移が促され、UFBが生成されやすくなる。液体の圧力が常圧から下がると、溶解特性が一気に下がり、UFBが生成され始める。そして、圧力が下がるほど圧的溶解特性は下がり、多くのUFBが生成される状況となる。 On the other hand, in the relationship between liquid pressure and dissolution characteristics, the higher the liquid pressure, the higher the gas dissolution characteristics, and the lower the pressure, the lower the dissolution characteristics. That is, the lower the pressure of the liquid, the more likely the phase transition of the gas-dissolved liquid dissolved in the liquid to the gas is promoted, and the UFB is likely to be generated. When the pressure of the liquid is lowered from normal pressure, the dissolution characteristics drop sharply and UFB begins to be generated. As the pressure decreases, the pressure dissolution characteristics decrease, resulting in a situation in which a large amount of UFB is generated.
 反対に液体の圧力が常圧から上昇すると、気体の溶解特性は上昇し、生成されたUFBは液化しやすくなる。しかしながら、このような圧力は、大気圧よりも十分に高く、更に、液体の圧力が上がっても、一度発生したUFBは高い内圧と高い気液界面エネルギを有するため、この気液界面を破壊するほどの高い圧力が作用する可能性は極めて低い。すなわち、一度生成されたUFBは、液体を常温常圧で保存する限り、簡単に消滅することはない。 On the contrary, when the pressure of the liquid rises from normal pressure, the dissolution characteristics of the gas rise and the generated UFB becomes easier to liquefy. However, such a pressure is sufficiently higher than the atmospheric pressure, and even if the pressure of the liquid rises, the UFB once generated has a high internal pressure and a high gas-liquid interfacial energy, and thus destroys the gas-liquid interface. It is extremely unlikely that such high pressure would act. That is, the UFB once produced does not disappear easily as long as the liquid is stored at normal temperature and normal pressure.
 本実施形態において、図8(a)~(c)で説明した第2のUFB11B、及び図10(a)~(c)で説明した第4のUFB11Dは、このような気体の圧力的溶解特性を利用して生成されたUFBと言える。 In this embodiment, the second UFB 11B described in FIGS. 8A to 8C and the fourth UFB 11D described in FIGS. It can be said that the UFB is generated using
 以上では、生成される要因の異なる第1~第4のUFBを個別に説明してきたが、上述した生成要因は、膜沸騰という事象に伴って同時多発的に起こるものである。このため、第1~第4のUFBのうち少なくとも2種類以上のUFBが同時に生成されることもあり、これら生成要因が互いに協働してUFBを生成することもある。但し、いずれの生成要因も、膜沸騰現象で生成される膜沸騰泡の体積変化に伴って招致されることは共通している。本明細書では、このように急激な発熱に伴う膜沸騰を利用してUFBを生成する方法を、T-UFB(Thermal-Ultra Fine Bubble)生成方法と称す。また、T-UFB生成方法によって生成したUFBをT-UFB、T-UFB生成方法によって生成されたT-UFBを含有する液体をT-UFB含有液と称す。 Above, the first to fourth UFBs with different generated factors have been individually explained, but the above-mentioned generating factors occur simultaneously and frequently with the event of film boiling. Therefore, at least two types of UFBs among the first to fourth UFBs may be generated simultaneously, and these generation factors may cooperate with each other to generate UFBs. However, it is common that all generation factors are caused by changes in the volume of film boiling bubbles generated by the film boiling phenomenon. In this specification, the method of producing UFB by utilizing film boiling accompanying rapid heat generation is referred to as T-UFB (Thermal-Ultra Fine Bubble) production method. Further, the UFB produced by the T-UFB producing method is called T-UFB, and the liquid containing T-UFB produced by the T-UFB producing method is called T-UFB-containing liquid.
 T-UFB生成方法によって生成される気泡はその殆どが1.0μm以下であり、ミリバブルやマイクロバブルは生成され難い。すなわち、T-UFB生成方法によれば、UFBが支配的に、かつ、効率的に生成されることになる。また、T-UFB生成方法によって生成されたT-UFBは、従来法によって生成されたUFBよりも高い気液界面エネルギを有し、常温常圧で保存する限り簡単に消滅することはない。更に、新たな膜沸騰によって新たなT-UFBが生成されても、先行して生成されていたT-UFBがその衝撃によって消滅することも抑制される。つまり、T-UFB含有液に含まれるT-UFBの数や濃度は、T-UFB含有液における膜沸騰の発生回数に対しヒステリシス特性を有すると言える。言い替えると、T-UFB生成ユニット300に配する発熱素子の数や発熱素子に対する電圧パルスの印加回数を制御することにより、T-UFB含有液に含まれるT-UFBの濃度を調整することができる。 Most of the bubbles generated by the T-UFB generation method are 1.0 μm or less, and millibubbles and microbubbles are difficult to generate. That is, according to the T-UFB generation method, UFB is predominantly and efficiently generated. In addition, the T-UFB produced by the T-UFB production method has a higher gas-liquid interfacial energy than the UFB produced by the conventional method, and does not disappear easily as long as it is stored at normal temperature and normal pressure. Furthermore, even if new T-UFB is generated by new film boiling, the previously generated T-UFB is prevented from disappearing due to the impact. In other words, it can be said that the number and concentration of T-UFB contained in the T-UFB-containing liquid have hysteresis characteristics with respect to the number of occurrences of film boiling in the T-UFB-containing liquid. In other words, the concentration of T-UFB contained in the T-UFB-containing liquid can be adjusted by controlling the number of heating elements arranged in the T-UFB generation unit 300 and the number of voltage pulse applications to the heating elements. .
 再び図1を参照する。T-UFB生成ユニット300において、所望のUFB濃度を有するT-UFB含有液Wが生成されると、当該UFB含有液Wは、後処理ユニット400に供給される。 Refer to Figure 1 again. After the T-UFB-containing liquid W having the desired UFB concentration is generated in the T-UFB generation unit 300 , the UFB-containing liquid W is supplied to the post-processing unit 400 .
 図11(a)~(c)は、本実施形態の後処理ユニット400の構成例を示す図である。本実施形態の後処理ユニット400は、UFB含有液Wに含まれる不純物を、無機物イオン、有機物、不溶固形物、の順に段階に除去する。 11(a) to (c) are diagrams showing a configuration example of the post-processing unit 400 of this embodiment. The post-treatment unit 400 of the present embodiment removes impurities contained in the UFB-containing liquid W in stages in the order of inorganic ions, organic substances, and insoluble solids.
 図11(a)は、無機物イオンを除去するための第1の後処理機構410を示す。第1の後処理機構410は、交換容器411、陽イオン交換樹脂412、液体導入路413、集水管414及び液体導出路415を備えている。交換容器411には、陽イオン交換樹脂412が収容されている。T-UFB生成ユニット300で生成されたUFB含有液Wは、液体導入路413を経由して交換容器411に注入され、陽イオン交換樹脂412に吸収され、ここで不純物としての陽イオンが除去される。このような不純物には、T-UFB生成ユニット300の素子基板12より剥離した金属材料などが含まれ、例えばSiO2、SiN、SiC、Ta、Al23、Ta25、Irが挙げられる。 FIG. 11(a) shows a first post-treatment mechanism 410 for removing inorganic ions. The first post-treatment mechanism 410 includes an exchange container 411 , a cation exchange resin 412 , a liquid introduction path 413 , a water collection pipe 414 and a liquid outlet path 415 . The exchange container 411 contains a cation exchange resin 412 . The UFB-containing liquid W produced by the T-UFB production unit 300 is injected into the exchange container 411 via the liquid introduction path 413 and absorbed by the cation exchange resin 412, where cations as impurities are removed. be. Such impurities include metal materials separated from the element substrate 12 of the T-UFB generation unit 300, such as SiO 2 , SiN, SiC, Ta, Al 2 O 3 , Ta 2 O 5 and Ir. be done.
 陽イオン交換樹脂412は、三次元的な網目構造を持った高分子母体に官能基(イオン交換基)を導入した合成樹脂であり、合成樹脂は0.4~0.7mm程度の球状粒子を呈している。高分子母体としては、スチレン-ジビニルベンゼンの共重合体が一般的であり、官能基としては例えばメタクリル酸系とアクリル酸系のものを用いることができる。但し、上記材料は一例である。所望の無機イオンを効果的に除去することができれば、上記材料は様々に変更可能である。陽イオン交換樹脂412に吸収され、無機イオンが除去されたUFB含有液Wは、集水管414によって集水され、液体導出路415を介して次の工程に送液される。 The cation exchange resin 412 is a synthetic resin in which a functional group (ion exchange group) is introduced into a polymer matrix having a three-dimensional network structure. presenting. A styrene-divinylbenzene copolymer is generally used as the polymer base, and methacrylic acid-based and acrylic acid-based functional groups can be used as the functional group. However, the above materials are only examples. Various changes can be made to the above materials as long as the desired inorganic ions can be effectively removed. The UFB-containing liquid W absorbed by the cation exchange resin 412 and from which the inorganic ions have been removed is collected by the water collecting pipe 414 and sent to the next step through the liquid lead-out path 415 .
 図11(b)は、有機物を除去するための第2の後処理機構420を示す。第2の後処理機構420は、収容容器421、ろ過フィルタ422、真空ポンプ423、バルブ424、液体導入路425、液体導出路426、及びエア吸引路427を備えている。収容容器421の内部は、ろ過フィルタ422によって上下2つの領域に分割されている。液体導入路425は、上下2つの領域のうち上方の領域に接続し、エア吸引路427及び液体導出路426は下方の領域に接続する。バルブ424を閉じた状態で真空ポンプ423を駆動すると、収容容器421内の空気がエア吸引路427を介して排出され、収容容器421の内部が負圧になり、液体導入路425よりUFB含有液Wが導入される。そして、ろ過フィルタ422によって不純物が除去された状態のUFB含有液Wが収容容器421に貯留される。 FIG. 11(b) shows a second post-treatment mechanism 420 for removing organic matter. The second post-treatment mechanism 420 includes a container 421 , a filtration filter 422 , a vacuum pump 423 , a valve 424 , a liquid introduction path 425 , a liquid extraction path 426 and an air suction path 427 . The inside of the storage container 421 is divided into upper and lower regions by a filtration filter 422 . The liquid introduction path 425 connects to the upper area of the upper and lower areas, and the air suction path 427 and the liquid lead-out path 426 connect to the lower area. When the vacuum pump 423 is driven with the valve 424 closed, the air in the container 421 is discharged through the air suction path 427, the pressure inside the container 421 becomes negative, and the UFB-containing liquid is drawn from the liquid introduction path 425. W is introduced. Then, the UFB-containing liquid W from which impurities have been removed by the filtration filter 422 is stored in the container 421 .
 ろ過フィルタ422によって除去される不純物には、チューブや各ユニットで混合され得る有機材料が含まれ、例えばシリコンを含む有機化合物、シロキサン、エポキシなどが挙げられる。ろ過フィルタ422に使用可能なフィルタ膜としては、細菌系まで除去できるサブμmメッシュのフィルタや、ウィルスまで除去できるnmメッシュのフィルタが挙げられる。 Impurities removed by the filtration filter 422 include organic materials that can be mixed in the tubes and each unit, such as organic compounds containing silicon, siloxane, and epoxy. Filter membranes that can be used for the filtration filter 422 include a sub-μm mesh filter that can remove even bacteria and an nm mesh filter that can remove viruses.
 収容容器421にUFB含有液Wがある程度貯留された後、真空ポンプ423を停止してバルブ424を開放すると、収容容器421のT-UFB含有液は液体導出路426を介して次の工程に送液される。なお、ここでは、有機物の不純物を除去する方法として真空ろ過法を採用したが、フィルタを用いたろ過方法としては、例えば重力ろ過法や加圧ろ過を採用することもできる。 After a certain amount of the UFB-containing liquid W is stored in the container 421, the vacuum pump 423 is stopped and the valve 424 is opened. liquid. Here, the vacuum filtration method is used as a method for removing organic impurities, but gravity filtration or pressure filtration can also be used as a filtration method using a filter.
 図11(c)は、不溶の固形物を除去するための第3の後処理機構430を示す。第3の後処理機構430は、沈殿容器431、液体導入路432、バルブ433及び液体導出路434を備えている。 FIG. 11(c) shows a third post-treatment mechanism 430 for removing undissolved solids. The third post-treatment mechanism 430 comprises a sedimentation container 431 , a liquid introduction channel 432 , a valve 433 and a liquid outlet channel 434 .
 まず、バルブ433を閉じた状態で沈殿容器431に所定量のUFB含有液Wを液体導入路432より貯留し、しばらく放置する。この間、UFB含有液Wに含まれている固形物は、重力によって沈殿容器431の底部に沈降する。また、UFB含有液に含まれるバブルのうち、マイクロバブルのような比較的大きなサイズのバブルも浮力によって液面に浮上し、UFB含有液から除去される。十分な時間が経過した後バルブ433を開放すると、固形物や大きなサイズのバブルが除去されたUFB含有液Wが液体導出路434を介して、回収ユニット500に送液される。本実施形態では3つの後処理機構を順に適用する例を示したが、これに限られず、必要に応じた後処理機構を適宜採用すれば良い。 First, with the valve 433 closed, a predetermined amount of the UFB-containing liquid W is stored in the precipitation container 431 from the liquid introduction path 432 and left for a while. During this time, the solids contained in the UFB-containing liquid W settle to the bottom of the sedimentation container 431 due to gravity. Among the bubbles contained in the UFB-containing liquid, relatively large-sized bubbles such as microbubbles also rise to the surface of the liquid due to buoyancy and are removed from the UFB-containing liquid. When the valve 433 is opened after a sufficient amount of time has passed, the UFB-containing liquid W from which solids and large-sized bubbles have been removed is sent to the recovery unit 500 through the liquid lead-out path 434 . In the present embodiment, an example in which three post-processing mechanisms are applied in order has been shown, but the present invention is not limited to this, and any post-processing mechanism may be employed as appropriate.
 再度図1を参照する。後処理ユニット400で不純物が除去されたT-UFB含有液Wは、そのまま回収ユニット500に送液してもよいが、再び溶解ユニット200に戻すこともできる。後者の場合、T-UFBの生成によって低下したT-UFB含有液Wの気体溶解濃度を、溶解ユニット200において再び飽和状態まで補填することができる。その上で新たなT-UFBをT-UFB生成ユニット300で生成すれば、上述した特性のもと、T-UFB含有液のUFB含有濃度を更に上昇させることができる。すなわち、溶解ユニット200、T-UFB生成ユニット300、後処理ユニット400を巡る循環回数の分だけ、UFB含有濃度を高めることができ、所望のUFB含有濃度が得られた後に、当該UFB含有液Wを回収ユニット500に送液することができる。 Refer to Figure 1 again. The T-UFB-containing liquid W from which impurities have been removed in the post-treatment unit 400 may be sent to the recovery unit 500 as it is, or may be returned to the dissolution unit 200 again. In the latter case, the dissolved gas concentration of the T-UFB-containing liquid W, which has decreased due to the production of T-UFB, can be replenished to the saturation state in the dissolving unit 200 again. Further, if new T-UFB is generated by the T-UFB generation unit 300, the concentration of UFB in the T-UFB-containing liquid can be further increased based on the characteristics described above. That is, the UFB content concentration can be increased by the number of circulations through the dissolving unit 200, the T-UFB generation unit 300, and the post-treatment unit 400, and after the desired UFB content concentration is obtained, the UFB-containing liquid W can be sent to the recovery unit 500 .
 回収ユニット500は、後処理ユニット400より送液されて来たUFB含有液Wを回収及び保存する。回収ユニット500で回収されたT-UFB含有液は、様々な不純物が除去された純度の高いUFB含有液となる。 The recovery unit 500 recovers and stores the UFB-containing liquid W sent from the post-treatment unit 400 . The T-UFB-containing liquid recovered by the recovery unit 500 becomes a high-purity UFB-containing liquid from which various impurities have been removed.
 回収ユニット500においては、何段階かのフィルタリング処理を行い、UFB含有液WをT-UFBのサイズごと分類してもよい。また、T-UFB方式により得られるTUFB含有液Wは、常温よりも高温であることが予想されるため、回収ユニット500には冷却手段を設けてもよい。なお、このような冷却手段は、後処理ユニット400の一部に設けられていてもよい。 In the recovery unit 500, several stages of filtering may be performed to classify the UFB-containing liquid W by T-UFB size. Further, since the TUFB-containing liquid W obtained by the T-UFB method is expected to have a temperature higher than normal temperature, the recovery unit 500 may be provided with a cooling means. Note that such a cooling means may be provided in a part of the post-processing unit 400 .
 図11(a)~(c)で示すような不純物を除去するためのユニットは、T-UFB生成ユニット300よりも上流に設けてもよいし、上流と下流の両方に設けてもよい。UFB生成装置に供給される液体が水道水や雨水、また汚染水などの場合は、液体中に有機系や無機系の不純物が含まれている事がある。そのような不純物を含んだ液体WをT-UFB生成ユニット300に供給すると、発熱素子10を変質させたり、塩析現象を招致したりするおそれが生じる。図11(a)~(c)で示すような機構をT-UFB生成ユニット300よりも上流に設けておくことにより、上記のような不純物を事前に除去することができる。 A unit for removing impurities as shown in FIGS. 11(a) to (c) may be provided upstream of the T-UFB generation unit 300, or may be provided both upstream and downstream. If the liquid supplied to the UFB generator is tap water, rain water, or contaminated water, the liquid may contain organic or inorganic impurities. If the liquid W containing such impurities is supplied to the T-UFB generation unit 300, there is a risk that the heating elements 10 will be degraded or salting out will occur. By providing a mechanism as shown in FIGS. 11(a) to 11(c) upstream of the T-UFB generation unit 300, the above impurities can be removed in advance.
 以上が、UFB生成装置1の概略であるが、図示したような複数のユニットは無論変更可能であり、全てを用意する必要は無い。生成するT-UFB含有液の使用目的に応じて、上述したユニットの一部を省略してもよいし、上述したユニット以外に更に別のユニットを追加してもよい。 The above is the outline of the UFB generation device 1, but of course the multiple units shown in the figure can be changed, and it is not necessary to prepare all of them. Depending on the intended use of the T-UFB-containing liquid to be produced, some of the units described above may be omitted, or other units may be added in addition to the units described above.
 このUFB生成装置1で生成したオゾンガスを内包するT-UFB含有液の気泡径は、200nm以下であり、粒径分布範囲が小さく、半年以上の放置後でもオゾンガスを内包している状態を維持できる。そのため、後述する他の方式で生成したUFB含有液と比べると保存安定性がよい。 The bubble diameter of the T-UFB containing liquid containing ozone gas generated by this UFB generator 1 is 200 nm or less, the particle size distribution range is small, and the state of containing ozone gas can be maintained even after being left for half a year or more. . Therefore, the storage stability is better than that of UFB-containing liquids produced by other methods, which will be described later.
 直径が1.0μm未満のウルトラファインバブル(UFB)は、ミリバブルやマイクロと異なり浮力の影響を受け難いため、液体を常温常圧で保存する限り、簡単に消滅することはない。従って、このようにして生成されたオゾンUFB含有液は、容器等に収納して長期間保管することが可能である。また、所定容器に収納されているので、輸送も容易であり一般的な方法で輸送することができる。 Unlike millibubbles and microbubbles, ultra-fine bubbles (UFB) with a diameter of less than 1.0 μm are not easily affected by buoyancy, so as long as the liquid is stored at normal temperature and pressure, it will not disappear easily. Therefore, the ozone UFB-containing liquid thus generated can be stored in a container or the like for a long period of time. Moreover, since it is housed in a predetermined container, it can be easily transported and can be transported by a general method.
 図12は、本実施形態におけるオゾンUFB含有液におけるUSBを消泡させる消泡ユニット600を示した概略図である。ここでは消泡ユニット600として、一般に市販されている超音波洗浄機の発信ユニットを用いている。なお、消泡ユニット600はこれに限定するものではない。つまり、オゾンUFB含有液を回転円板とオリフィス板の間隙に作用する剪断力により泡を破壊する剪断式消泡や、オゾンUFB含有液を旋回流により気泡だけを中心に集中し消泡、溶解させる遠心分離による消泡等でもよい。 FIG. 12 is a schematic diagram showing a defoaming unit 600 for defoaming USB in an ozone UFB-containing liquid in this embodiment. Here, as the defoaming unit 600, a transmitting unit of a commercially available ultrasonic cleaner is used. Note that the defoaming unit 600 is not limited to this. In other words, there is a shear type defoaming method in which bubbles are destroyed by the shearing force acting on the gap between the rotating disc and the orifice plate in the ozone UFB-containing liquid, and a swirling flow of the ozone UFB-containing liquid to concentrate only the bubbles in the center to eliminate and dissolve the bubbles. Defoaming by centrifugal separation may be used.
 消泡ユニット600内には、水道水などの水601を満たし、必要に応じて希釈されたオゾンUFB含有液611を容器610に収納した状態でセットする。次に、超音波を1.6MHz、100Wで15分間発振させる。オゾンUFB含有液611には、UFBの他にも、UFBよりもサイズの大きい気泡が含まれており、UFBとサイズの大きな気泡とが凝集した凝集体も含まれている。UFBやUFBを含む凝集体は、超音波によって消泡され、UFBや凝集体に含まれていたオゾンが水に溶解することでオゾン溶解液を得ることができる。このオゾン溶解液は、前処理ユニット100(図1参照)で生成されたオゾン溶解液と同じであり、1時間程度でオゾン濃度は半減することが知られている。つまり、消泡ユニット600での消泡処理はオゾン溶解液を利用する直前に行うことが好ましい。目安としては、オゾン溶解液を生成後、30分以内に使用することが好ましい。 The antifoaming unit 600 is filled with water 601 such as tap water, and is set in a container 610 containing an ozone UFB-containing liquid 611 diluted as necessary. Next, ultrasonic waves are oscillated at 1.6 MHz and 100 W for 15 minutes. The ozone UFB-containing liquid 611 contains, in addition to the UFB, bubbles larger than the UFB, and aggregates of the UFB and large-sized bubbles. UFB and aggregates containing UFB are defoamed by ultrasonic waves, and ozone contained in UFB and aggregates is dissolved in water to obtain an ozone solution. This ozone-dissolved liquid is the same as the ozone-dissolved liquid generated in the pretreatment unit 100 (see FIG. 1), and it is known that the ozone concentration is halved in about one hour. In other words, it is preferable to perform the defoaming treatment in the defoaming unit 600 immediately before using the ozone solution. As a guideline, it is preferable to use the ozone solution within 30 minutes after it is produced.
 本実施形態では、超音波を1.6MHz、100Wで15分間照射させた。この条件については、周波数1~5MHz程度、強度50~250W程度、時間5~30分程度で条件を調整すればよく、超音波装置の性能に応じて適宜その条件を最適化すればよい。これによって、UFBが消泡し液中にオゾンガスが溶解しているオゾン溶解液を生成することができる。 In this embodiment, ultrasonic waves were applied at 1.6 MHz and 100 W for 15 minutes. The conditions may be adjusted such that the frequency is about 1 to 5 MHz, the intensity is about 50 to 250 W, and the time is about 5 to 30 minutes, and the conditions may be appropriately optimized according to the performance of the ultrasonic device. As a result, the UFB is defoamed and an ozone-dissolved liquid in which ozone gas is dissolved can be produced.
 UFB含有液に緑色レーザー光線を照射するとレーザー光線が気泡に散乱されて緑色の輝線が目視で観察できる。気泡が消泡するとレーザー光線の散乱が無くなり、輝線が観察できなくなる。このような方法で、UFB含有液の気泡(USB)が消泡して溶解した状態を確認することができる。 When the UFB-containing liquid is irradiated with a green laser beam, the laser beam is scattered by the bubbles and a green emission line can be visually observed. When the bubbles disappear, the scattering of the laser beam disappears and the emission line cannot be observed. By such a method, it is possible to confirm the state in which the bubbles (USB) in the UFB-containing liquid are defoamed and dissolved.
 ここで、オゾンUFB含有液のUFBを消泡、溶解して作成したオゾン溶解液のオゾン濃度測定方法の一例を説明する。オゾンを吸収液(中性リン酸塩緩衝ヨウ化カリウム溶液)に反応させると、ヨウ化カリウムが酸化されて、
式:2KI + O3 + H2O → I2 + O2 + 2KOH
の反応でヨウ素を遊離し、ヨウ化カリウム溶液中では黄褐色に発色する。この発色液の波長352nmでの吸光度を測定し、オゾンの濃度を求める。以下、その方法を説明する。
Here, an example of a method for measuring the ozone concentration of an ozone-dissolved liquid prepared by defoaming and dissolving UFB in an ozone UFB-containing liquid will be described. When ozone is reacted with an absorption solution (neutral phosphate-buffered potassium iodide solution), potassium iodide is oxidized to
Formula: 2KI + O3 + H2OI2 + O2 + 2KOH
The reaction liberates iodine and develops a yellow-brown color in a potassium iodide solution. The absorbance of this coloring solution at a wavelength of 352 nm is measured to determine the concentration of ozone. The method will be described below.
 オゾン吸収液(中性リン酸塩緩衝ヨウ化カリウム溶液)として、りん酸二水素カリウム27.2g、無水りん酸水素二ナトリウム28.4g、ヨウ化カリウム20gを水約800mLに溶かす。次に、10%水酸化ナトリウム溶液でpH6.8~7.2に調整後、水で1000mLにする。調製したオゾン吸収液とオゾン溶解液とを1:1(例えばそれぞれ10mlづつ)を混合攪拌し、分光高度計を用いて波長352nmでの吸光度を測定する。オゾン吸収液と蒸留水を1:1で混合攪拌し、同じく吸光度を測定し、ブランクの吸光度とする。 As an ozone absorbing solution (neutral phosphate buffered potassium iodide solution), dissolve 27.2 g of potassium dihydrogen phosphate, 28.4 g of anhydrous disodium hydrogen phosphate, and 20 g of potassium iodide in about 800 mL of water. Then adjust to pH 6.8-7.2 with 10% sodium hydroxide solution and make up to 1000 mL with water. The prepared ozone-absorbing liquid and ozone-dissolving liquid are mixed and stirred at a ratio of 1:1 (for example, 10 ml each), and the absorbance at a wavelength of 352 nm is measured using a spectrophotometer. The ozone absorbing solution and distilled water are mixed and stirred at a ratio of 1:1, and the absorbance is measured in the same manner as the blank absorbance.
 次に、吸光度からオゾン濃度を算出する方法を説明する。基準溶液の調製として、0.1Nヨウ素標準液10mLをとり、水で100mLにする。この溶液を4.17/F(ファクター)=XmLをとり(F:試薬に記載 ほぼ1)、上記のオゾン吸収液で100mLにする。調製された基準溶液1mLが10μgのオゾンに相当する。次に、基準溶液を1.0、3.0、5.0、7.0、9.0、10.0mLをとり、上記のオゾン吸収液を加えてそれぞれ10mLにし、蒸留水をそれぞれ10mL加えて混合する。そして、波長352nmでの吸光度を測定し検量線を作成する。得られた検量線を用いることでオゾン溶解液のオゾン濃度を算出することができる。 Next, we will explain how to calculate the ozone concentration from the absorbance. To prepare the standard solution, take 10 mL of 0.1N iodine standard solution and make up to 100 mL with water. Take 4.17/F (factor) = X mL of this solution (F: described in the reagent, approximately 1), and make up to 100 mL with the above ozone absorbing solution. 1 mL of the prepared reference solution corresponds to 10 μg of ozone. Next, take 1.0, 3.0, 5.0, 7.0, 9.0 and 10.0 mL of the standard solution, add the above ozone absorbing solution to make 10 mL each, and add 10 mL each of distilled water. to mix. Then, absorbance at a wavelength of 352 nm is measured to create a calibration curve. By using the obtained calibration curve, the ozone concentration of the ozone solution can be calculated.
 このようにオゾン濃度を測定した結果、オゾンUFB含有液の状態でオゾンを分解させることなく長期間保管後でも、超音波によってオゾンUFB含有液のUFBを消泡して作成した直後のオゾン溶解液は、オゾン濃度が高い状態であることが確認できた。 As a result of measuring the ozone concentration in this way, even after long-term storage without decomposing ozone in the state of the ozone UFB-containing liquid, the ozone-dissolved liquid immediately after being created by defoaming the UFB of the ozone UFB-containing liquid with ultrasonic waves was confirmed to be in a state of high ozone concentration.
 なお、T-UFB以外の方式で生成したオゾンUFB含有液に関しても、超音波によって消泡した直後のオゾン溶解液の濃度を確認したが、T-UFB方式で生成したオゾンUFB含有液に比べて得られるオゾン濃度は低かった。 Regarding the ozone-UFB-containing liquid generated by a method other than T-UFB, the concentration of the ozone-dissolved liquid immediately after defoaming by ultrasonic waves was confirmed, but compared to the ozone-UFB-containing liquid generated by the T-UFB method, The resulting ozone concentrations were low.
 図13は、本実施形態におけるオゾン溶解液活用方法の手順を示したフローチャートである。以下、このフローチャートを用いて本実施形態におけるオゾン溶解液活用方法について説明する。なお、「S」は各工程におけるステップを意味する。
本実施形態におけるオゾン溶解液活用方法では、まず、S001で溶解ユニット200によってオゾン溶解液を生成し、その後、S002でT-UFB生成ユニット300によってオゾンガスを内包したオゾンUFB含有液を生成する。ここでは、T-UFB生成ユニット300を複数回循環させることでUFB含有濃度を濃くすることも可能である。そして、S003で、生成されたオゾンUFB含有液を不図示の容器等に収納して保管する。その後、オゾンUFB含有液を収納した容器は、オゾンUFB含有液を活用する場所へと輸送される。容器に収納された液体状態であるので、その輸送は一般的な方法で可能である。
FIG. 13 is a flow chart showing the procedure of the ozone solution utilization method in this embodiment. Hereinafter, the method for utilizing the ozone solution in this embodiment will be described using this flow chart. In addition, "S" means a step in each process.
In the ozone dissolved liquid utilization method in this embodiment, first, the dissolved ozone liquid is generated by the dissolving unit 200 in S001, and then the ozone UFB-containing liquid containing ozone gas is generated by the T-UFB generation unit 300 in S002. Here, it is also possible to increase the UFB concentration by circulating the T-UFB generation unit 300 multiple times. Then, in S003, the generated ozone UFB-containing liquid is stored in a container or the like (not shown). The container containing the ozone UFB-containing liquid is then transported to a location where the ozone UFB-containing liquid is utilized. Since it is in a liquid state in a container, it can be transported by common methods.
 オゾンガスを内包するUFBは、直径200nm以下のサイズを有する。UFBはミリバブルやマイクロと異なり浮力の影響を受け難いため、液面に上昇し消滅することなく液体中で浮遊する。このため、オゾンUFB含有液は、オゾン溶解度(水に対して一般に室温で0.6g/L)以上にオゾンを含有することができ、安定した含有濃度を維持することができる。すなわち、このような保管や輸送を経ても、オゾンUFB含有液内のUFBは消滅することなく存在し、オゾンUFB含有液として、長期の保存安定性、保管効率、輸送効率が可能となる。 The UFB containing ozone gas has a size of 200 nm or less in diameter. Unlike millibubbles and microbubbles, UFBs are not easily affected by buoyancy, so they rise to the liquid surface and float in the liquid without disappearing. Therefore, the ozone UFB-containing liquid can contain ozone at an ozone solubility (generally 0.6 g/L in water at room temperature) or more, and can maintain a stable concentration. That is, even after such storage and transportation, the UFB in the ozone UFB-containing liquid does not disappear, and the ozone UFB-containing liquid can have long-term storage stability, storage efficiency, and transportation efficiency.
 その後、S004で、必要に応じてオゾンUFB含有液を希釈する。オゾンUFB含有液を所望の濃度に希釈することで、利用目的に応じた濃度を有するオゾン溶解液を作成することができる。 After that, in S004, the ozone UFB-containing liquid is diluted as necessary. By diluting the ozone UFB-containing liquid to a desired concentration, an ozone-dissolved liquid having a concentration suitable for the purpose of use can be prepared.
 次に、S005で、超音波装置等の消泡ユニット600(図12参照)によってオゾン含有液のオゾンUFBを消泡、溶解し、S006で所望の濃度のオゾン溶解液を生成する。その後、S007で、生成したオゾン溶解液を除菌、消臭、洗浄等のような所望の目的に活用する。ここで、オゾン溶解後のオゾン溶解液におけるオゾンの減少を考慮し、S005でのUFBの消泡からS007でオゾン溶解液として適用するまでの時間は、目安として30分以内が好ましい。 Next, in S005, the ozone UFB in the ozone-containing liquid is defoamed and dissolved by a defoaming unit 600 (see FIG. 12) such as an ultrasonic device, and in S006 an ozone-dissolved liquid having a desired concentration is generated. Thereafter, in S007, the generated ozone solution is utilized for desired purposes such as sterilization, deodorization, and cleaning. Here, considering the reduction of ozone in the ozone-dissolved liquid after ozone dissolution, the time from defoaming of UFB in S005 to application as the ozone-dissolved liquid in S007 is preferably within 30 minutes as a standard.
 このように、オゾンを内包するウルトラファインバブルが生成された液体を予め生成しておき、所望のタイミングで消泡手段によりウルトラファインバブルを消泡し、オゾンガスを液体に溶解することで生成されたオゾン溶解液によって除菌等の所望の処理を行う。これによって、所望の時点で適用可能な所望の濃度のオゾン溶解液を小型でかつ簡素な構成で製造することができる。 In this way, the liquid in which the ultra-fine bubbles containing ozone are generated is generated in advance, the ultra-fine bubbles are defoamed by the defoaming means at a desired timing, and the ozone gas is dissolved in the liquid. Desired processing such as sterilization is performed with an ozone solution. As a result, an ozone solution having a desired concentration that can be applied at a desired time can be produced in a small size and with a simple configuration.
 以下、S007におけるオゾン溶解液の活用について、いくつかの実施例を挙げて説明する。 Below, several examples will be given to explain the utilization of the ozone solution in S007.
(実施例1)
 本実施例では、上記製造方法によって製造したオゾン溶解液を、図13のS007において、除菌に活用する場合について説明する。
(Example 1)
In this embodiment, a case will be described in which the ozone solution produced by the above production method is utilized for sterilization in S007 of FIG.
 図14は、T-UFB方式で生成したオゾンUFB含有液に、超音波を照射してUFBを消泡することで生成したオゾン溶解液(以下、除菌液ともいう)の除菌効果を比較評価した結果を示した図である。除菌評価対象のサンプルとしては、細菌とカビを用意した。細菌のサンプルとしては、「グラム陰性桿菌」である大腸菌、サルモネラ菌及び腸炎ビブリオを用いた。カビのサンプルとしては、コウジカビ、アオカビ、クモノスカビ及びケタマカビを用いた。また、比較サンプルとして、400ppmの次亜塩素酸水を用いた場合、オゾンUFB含有液を30日後に超音波で消泡、溶解した場合、1日放置したUFBを生成していないオゾン溶解液を用いた場合、オゾンを溶解していない蒸留水の場合、を示している。 FIG. 14 compares the sterilization effect of an ozone-dissolved liquid (hereinafter also referred to as a sterilization liquid) generated by irradiating an ozone UFB-containing liquid generated by the T-UFB method with ultrasonic waves to eliminate UFB. It is the figure which showed the result of having evaluated. Bacteria and fungi were prepared as samples for sterilization evaluation. The bacterial samples used were "Gram-negative bacilli" Escherichia coli, Salmonella and Vibrio parahaemolyticus. As mold samples, Aspergillus, Blue mold, Rhizopus and Ketama mold were used. As a comparison sample, when 400 ppm of hypochlorous acid water was used, when the ozone UFB-containing liquid was ultrasonically defoamed and dissolved after 30 days, the ozone-dissolved liquid which did not generate UFB was left for one day. When used, the case of distilled water in which ozone is not dissolved is shown.
 ここで、細菌の分類について簡単に説明する。通常、細菌は細胞の外壁の構造から、大きく2つに分類される。1つは比較的厚くて硬い外壁を有する「グラム陽性菌」であり、もう1つが比較的薄く脆弱な外膜を有する「グラム陰性菌」である。一方、細菌は従来、長形状の「桿菌」や丸形状の「球菌」など、外観形状からも分類されている。従って細菌は、これらの組み合わせから「グラム陽性桿菌」、「グラム陽性球菌」、「グラム陰性桿菌」および「グラム陰性球菌」などと分類することができる。本実施形態のサンプルとして使用する大腸菌、サルモネラ菌及び腸炎ビブリオは「グラム陰性桿菌」に含まれ、グラム陰性桿菌の代表的な菌である。一方、「グラム陽性桿菌」の代表としては、納豆菌が知られる。 Here, I will briefly explain the classification of bacteria. Bacteria are generally classified into two groups according to the structure of the outer wall of the cell. One is "Gram-positive bacteria" which has a relatively thick and hard outer wall, and the other is "Gram-negative bacteria" which has a relatively thin and fragile outer membrane. On the other hand, conventionally, bacteria are also classified according to their external shape, such as long-shaped "bacilli" and round-shaped "cocci." Bacteria can thus be classified from these combinations as "Gram-positive bacilli," "Gram-positive cocci," "Gram-negative bacilli," and "Gram-negative cocci," and the like. Escherichia coli, Salmonella, and Vibrio parahaemolyticus used as samples in this embodiment are included in "Gram-negative bacilli" and are typical Gram-negative bacilli. On the other hand, Bacillus natto is known as a representative of "Gram-positive bacilli".
 一方、「カビ」は、複数の分類項目にまたがる菌類の俗称であり、菌類の一部の姿を指す言葉、あるいはそれに似た様子に見える肉眼的に観察される微生物の集落(コロニー)の俗称である。従って、「カビ」には様々な生活様式をもったものが存在する。本実施形態でサンプルとして使用するコウジカビ、アオカビ、クモノスカビ及びケタマカビは、人為的な環境に素早く出現する、いわば雑草のようなカビである。 On the other hand, "Kabi" is a common name for fungi that spans multiple classification items, and is a term that refers to a part of fungi, or a common name for a colony of microorganisms that looks similar to it and can be observed with the naked eye. is. Therefore, there are molds with various lifestyles. Aspergillus, blue mold, cruciferous mold, and vertebrate mold used as samples in this embodiment are so-called weed-like molds that quickly emerge in an artificial environment.
 以下、本実施例における除菌液の効果を確認するための試験方法について説明する。まず、各細菌又はカビの菌体懸濁液を、各除菌液に72時間接触させた。そして、接触後の液体から10e(+6)倍の希釈液を作成し、希釈液の中から100μLを平板培地に塗抹した。更に、塗抹した平板培地を培養し、菌数を測定した。以上の試験により、図13に示す結果が得られた。 The test method for confirming the effect of the disinfectant solution in this example will be described below. First, each bacterial or fungal cell suspension was brought into contact with each sterilization solution for 72 hours. A 10e(+6)-fold dilution was prepared from the liquid after contact, and 100 μL of the dilution was smeared onto a plate medium. Furthermore, the smeared plate medium was cultured and the number of bacteria was measured. The results shown in FIG. 13 were obtained from the above tests.
 図13からも分かるように、本実施例の除菌液を用いた場合には、全ての細菌サンプルにおいて98%以上、全てのカビサンプルにおいて90%以上の除菌効果を確認することができ、細菌又はカビを不活性化させることができた。比較サンプルの400ppmの次亜塩素酸水は100%の除菌効果が得られた。オゾンUFB水を生成後、30日間保存した後にUFBを超音波で消泡、溶解した除菌液についても同様に、減少率90%以上の除菌効果を確認することができた。 As can be seen from FIG. 13, when the sterilization solution of this example was used, 98% or more of all bacteria samples and 90% or more of all mold samples were sterilized. Bacteria or fungi could be inactivated. Hypochlorous acid water of 400 ppm as a comparative sample had a 100% sterilization effect. Similarly, the sterilization effect of 90% or more reduction rate was also confirmed for the sterilization solution obtained by defoaming and dissolving the UFB with ultrasonic waves after storing the ozone UFB water for 30 days.
 また、比較対象として評価した、1日放置したUFBを生成していないオゾン溶解液を用いた場合、およびオゾンを溶解していない蒸留水の場合、オゾンによる除菌効果は無く減少率は0%であった。1日放置したオゾン溶解液は、時間の経過と共に、溶解したオゾンが失われ、除菌の効果を得られなかったと考えられる。 In addition, when using an ozone-dissolved solution that does not generate UFB and is used for comparison, and in the case of distilled water that does not dissolve ozone, ozone has no sterilizing effect and the reduction rate is 0%. Met. It is believed that the ozone-dissolved solution left for one day lost the dissolved ozone over time and could not obtain the sterilization effect.
(実施例2)
 オゾン溶解液は水道水などに比べ高い洗浄効果を有していることが知られている。そこで、本実施例では、利用直前に超音波等によってUFBを消泡することによって得られたオゾン溶解液を、図13のS006において、オゾン濃度が高い状態で物体表面に流動させる。これにより、物体にこびりついた汚染物を物体の表面から剥がし洗浄することができる。水道水や界面活性剤を溶解した洗剤と比較してもその洗浄効果は高い。
(Example 2)
It is known that the ozone solution has a higher cleaning effect than tap water or the like. Therefore, in this embodiment, the ozone-dissolved liquid obtained by defoaming the UFB with ultrasonic waves or the like immediately before use is caused to flow over the surface of the object in a state of high ozone concentration in S006 of FIG. As a result, contaminants stuck to the object can be peeled off from the surface of the object and washed. Its cleaning effect is higher than that of tap water or a detergent in which a surfactant is dissolved.
(実施例3)
 オゾンは強い酸化作用があり、有害な有機物質を無害化する作用があることが知られている。有害な有機物質の例としてトリクロロエチレン、テトラクロロエチレン、ジクロロメタン、四塩化炭素などの難分解性の塩化物がある。なお、無害化の効果のある物質はこの限りではない。本実施例では、オゾン溶解液は、利用直前に超音波等によってUFBを消泡することによって得られたオゾン溶解液を、図13のS006において、オゾン濃度が高い状態で有害物質を含む溶液と混合、攪拌する。これにより、難分解性の有害有機物と化学反応を起こし、低分子化し、無害の有機物に変化させることができる。
(Example 3)
Ozone is known to have a strong oxidizing action and to detoxify harmful organic substances. Examples of harmful organic substances include persistent chlorides such as trichlorethylene, tetrachlorethylene, dichloromethane and carbon tetrachloride. Substances that have a detoxifying effect are not limited to this. In this embodiment, the ozone-dissolved liquid obtained by defoaming the UFB with ultrasonic waves or the like immediately before use is used as a solution containing harmful substances in a state of high ozone concentration in S006 of FIG. Mix, stir. As a result, chemical reactions with hard-to-decompose harmful organic substances can be caused to reduce the molecular weight and change them into harmless organic substances.
 上記各実施例では、オゾンUFB含有液のUFBを消泡、溶解することにより得られたオゾン溶解液に、除菌効果、洗浄効果、有害化学物質無害化の効果があることを説明した。個別の説明は省略するが、その他にも消臭効果、プラスチックや金属などの表面改質などオゾンUFB含有液として用いるよりオゾン溶解液として使用することで即効性がある箇所に好適に用いることができる。 In each of the above examples, it was explained that the ozone solution obtained by defoaming and dissolving the UFB in the ozone UFB-containing liquid has the effects of sterilization, cleaning, and detoxification of harmful chemical substances. Although individual explanations are omitted, it can be suitably used in places where there is immediate effect by using it as an ozone dissolution liquid rather than using it as an ozone UFB-containing liquid, such as deodorizing effect and surface modification of plastics and metals. can.
(他の実施形態)
 以上では、T-UFB方式でオゾンUFB含有液を生成する場合を説明したが、オゾンを内包するUFBを生成することができれば、生成方法はT-UFB方式に限定されるものではない。例えばベンチュリー方式に代表される気泡生成装置においては、流路の一部に減圧ノズルのようなメカ的な減圧構造を設け、この減圧構造を通過するように所定の圧力で液体を流すことにより、オゾン内包UFBを生成することも可能である。また、圧電素子等を用いてオゾンUFB含有液を生成してもよい。
(Other embodiments)
In the above, the case of generating the ozone UFB-containing liquid by the T-UFB method has been described, but the generation method is not limited to the T-UFB method as long as UFB containing ozone can be generated. For example, in the air bubble generator represented by the venturi system, a mechanical pressure reduction structure such as a pressure reduction nozzle is provided in a part of the flow path, and the liquid is caused to flow at a predetermined pressure so as to pass through this pressure reduction structure. It is also possible to generate an ozone-encapsulated UFB. Alternatively, a piezoelectric element or the like may be used to generate the ozone UFB-containing liquid.
 いずれの生成方法を採用するにせよ、オゾンを内包するウルトラファインバブル含有液を予め生成しておき、実際にオゾン含有液を使用する所望のタイミングに合わせて、UFBを消泡してオゾンを液体に溶解させればよい。これにより、所望の時点で適用可能な所望の濃度のオゾン溶解液を小型でかつ簡素な構成で製造することが可能となる。 Regardless of which generation method is adopted, the ultra-fine bubble-containing liquid containing ozone is generated in advance, and the UFB is defoamed to turn ozone into a liquid at the desired timing when the ozone-containing liquid is actually used. should be dissolved in As a result, it is possible to produce an ozone solution having a desired concentration that can be applied at a desired time, with a small size and a simple configuration.
 10 発熱素子
 100 前処理ユニット
 200 溶解ユニット
 300 T-UFB生成ユニット
 400 後処理ユニット
 500 回収ユニット
 600 消泡ユニット
 W 液体
10 heating element 100 pretreatment unit 200 dissolution unit 300 T-UFB generation unit 400 posttreatment unit 500 recovery unit 600 defoaming unit W liquid
 本開示は上記実施の形態に制限されるものではなく、本開示の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本開示の範囲を公にするために以下の請求項を添付する。 The present disclosure is not limited to the above embodiments, and various modifications and variations are possible without departing from the spirit and scope of the present disclosure. Accordingly, the following claims are appended to publicize the scope of the present disclosure.
 本願は、2021年11月17日提出の日本国特許出願特願2021-186986を基礎として優先権主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2021-186986 filed on November 17, 2021, and the entire contents thereof are incorporated herein.

Claims (11)

  1.  液体にオゾンガスを溶解させる第1溶解工程と、
     前記第1溶解工程でオゾンガスを溶解したオゾン溶解液に、ウルトラファインバブルを生成するウルトラファインバブル生成工程と、
     前記ウルトラファインバブル生成工程で生成されたウルトラファインバブルを含む液体を保存する保存工程と、
     前記保存工程で保存されていた液体に含まれるウルトラファインバブルを消泡する消泡工程と、
     前記消泡工程で消泡されたウルトラファインバブルを液体に溶解する第2溶解工程と、
     前記第2溶解工程でオゾンガスが溶解されたオゾン溶解液を適用する適用工程と、
    を有することを特徴とするオゾン溶解液の活用方法。
    a first dissolving step of dissolving ozone gas in a liquid;
    an ultra-fine bubble generating step of generating ultra-fine bubbles in the ozone solution obtained by dissolving the ozone gas in the first dissolving step;
    a storage step of storing the liquid containing the ultra-fine bubbles generated in the ultra-fine bubble generation step;
    A defoaming step of defoaming ultra-fine bubbles contained in the liquid stored in the storage step;
    a second dissolving step of dissolving the ultra-fine bubbles defoamed in the defoaming step in a liquid;
    an applying step of applying an ozone solution in which ozone gas is dissolved in the second dissolving step;
    A method of utilizing an ozone solution, characterized by having
  2.  前記消泡工程では、超音波によってウルトラファインバブルを消泡させる請求項1に記載のオゾン溶解液の活用方法。 The method of utilizing the ozone solution according to claim 1, wherein in the defoaming step, ultra-fine bubbles are defoamed by ultrasonic waves.
  3.  前記ウルトラファインバブル生成工程は、液体中に膜沸騰を生じさせることによってウルトラファインバブルを生成する請求項1または2に記載のオゾン溶解液の活用方法。 The method of utilizing the ozone-dissolved liquid according to claim 1 or 2, wherein the ultra-fine bubble generation step generates ultra-fine bubbles by causing film boiling in the liquid.
  4.  前記適用工程では、オゾン溶解液を細菌又はカビに接触させることにより、細菌又はカビを不活性化させる請求項1ないし3のいずれか1項に記載のオゾン溶解液の活用方法。 The method of utilizing the dissolved ozone solution according to any one of claims 1 to 3, wherein in the applying step, the dissolved ozone solution is brought into contact with bacteria or fungi to inactivate them.
  5.  前記適用工程では、オゾン溶解液を物体に接触させながら流動させることにより、前記物体を洗浄する請求項1ないし3のいずれか1項に記載のオゾン溶解液の活用方法。 The method of utilizing the dissolved ozone solution according to any one of claims 1 to 3, wherein in the applying step, the object is washed by flowing the dissolved ozone solution while contacting the object.
  6.  前記適用工程では、オゾン溶解液を有害な物質に接触させることにより、前記有害な物質を無害化させる請求項1ないし3のいずれか1項に記載のオゾン溶解液の活用方法。 The method of utilizing the dissolved ozone solution according to any one of claims 1 to 3, wherein in the application step, the dissolved ozone solution is brought into contact with the harmful substance to detoxify the harmful substance.
  7.  前記消泡工程の前に、ウルトラファインバブルを含む液体を希釈する工程を更に有する請求項1ないし6のいずれか1項に記載のオゾン溶解液の活用方法。 The method for utilizing the ozone-dissolved liquid according to any one of claims 1 to 6, further comprising a step of diluting the liquid containing ultra-fine bubbles before the defoaming step.
  8.  前記保存工程では、ウルトラファインバブルを含む液体を所定容器に収納して輸送する請求項1ないし7のいずれか1項に記載のオゾン溶解液の活用方法。 The method for utilizing the ozone-dissolved liquid according to any one of claims 1 to 7, wherein in the storage step, the liquid containing ultra-fine bubbles is stored in a predetermined container and transported.
  9.  前記適用工程は、前記第2溶解工程の後、30分以内に行われる請求項1ないし8のいずれか1項に記載のオゾン溶解液の活用方法。 The method of utilizing the dissolved ozone solution according to any one of claims 1 to 8, wherein the applying step is performed within 30 minutes after the second dissolving step.
  10.  液体にオゾンガスを溶解させる第1溶解工程と、
     前記第1溶解工程でオゾンガスを溶解したオゾン溶解液に、ウルトラファインバブルを生成するウルトラファインバブル生成工程と、
     前記ウルトラファインバブル生成工程で生成されたウルトラファインバブルを消泡手段によって消泡する消泡工程と、
     前記消泡工程で消泡されたウルトラファインバブルに含まれていたオゾンガスを液体に溶解する第2溶解工程と、
    を有することを特徴とするオゾン溶解液の製造方法。
    a first dissolving step of dissolving ozone gas in a liquid;
    an ultra-fine bubble generating step of generating ultra-fine bubbles in the ozone solution obtained by dissolving the ozone gas in the first dissolving step;
    a defoaming step of defoaming the ultra-fine bubbles generated in the ultra-fine bubble generating step by defoaming means;
    a second dissolving step of dissolving the ozone gas contained in the ultra-fine bubbles defoamed in the defoaming step into a liquid;
    A method for producing an ozone solution, comprising:
  11.  前記消泡工程では、超音波によってウルトラファインバブルを消泡させる請求項10に記載のオゾン溶解液の製造方法。 The method for producing an ozone solution according to claim 10, wherein in the defoaming step, ultra-fine bubbles are defoamed by ultrasonic waves.
PCT/JP2022/032675 2021-11-17 2022-08-30 Method for manufacturing ozone solution and method for utilizing ozone solution WO2023089904A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-186986 2021-11-17
JP2021186986A JP2023074173A (en) 2021-11-17 2021-11-17 Production method and use method of ozone solution

Publications (1)

Publication Number Publication Date
WO2023089904A1 true WO2023089904A1 (en) 2023-05-25

Family

ID=86396657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032675 WO2023089904A1 (en) 2021-11-17 2022-08-30 Method for manufacturing ozone solution and method for utilizing ozone solution

Country Status (2)

Country Link
JP (1) JP2023074173A (en)
WO (1) WO2023089904A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975695A (en) * 1995-09-20 1997-03-25 Tokico Ltd Ozone water generator
JP2002126480A (en) * 2000-10-20 2002-05-08 Yaskawa Electric Corp Ozonized water treatment equipment
WO2018073987A1 (en) * 2016-10-19 2018-04-26 トスレック株式会社 Method for manufacturing and system for manufacturing beverage or other liquid containing bubbles
JP2020142232A (en) * 2019-02-28 2020-09-10 キヤノン株式会社 Ultra fine bubble generation method, ultra fine bubble generation device, and ultra fine bubble containing liquid
WO2021085629A1 (en) * 2019-10-31 2021-05-06 キヤノン株式会社 Method for producing ultra-fine bubble-containing liquid, ultra-fine bubble-containing liquid, method for utilizing ultra-fine bubbles, and device for utilizing ultra-fine bubbles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0975695A (en) * 1995-09-20 1997-03-25 Tokico Ltd Ozone water generator
JP2002126480A (en) * 2000-10-20 2002-05-08 Yaskawa Electric Corp Ozonized water treatment equipment
WO2018073987A1 (en) * 2016-10-19 2018-04-26 トスレック株式会社 Method for manufacturing and system for manufacturing beverage or other liquid containing bubbles
JP2020142232A (en) * 2019-02-28 2020-09-10 キヤノン株式会社 Ultra fine bubble generation method, ultra fine bubble generation device, and ultra fine bubble containing liquid
WO2021085629A1 (en) * 2019-10-31 2021-05-06 キヤノン株式会社 Method for producing ultra-fine bubble-containing liquid, ultra-fine bubble-containing liquid, method for utilizing ultra-fine bubbles, and device for utilizing ultra-fine bubbles

Also Published As

Publication number Publication date
JP2023074173A (en) 2023-05-29

Similar Documents

Publication Publication Date Title
JP7277176B2 (en) Ultra-fine bubble generation method and ultra-fine bubble generation device
CN111617654B (en) Microbubble generating apparatus, microbubble generating method, and microbubble-containing liquid
JP7282548B2 (en) Ultra-fine bubble generation method and ultra-fine bubble generation device
JP7277178B2 (en) Ultra fine bubble generator
JP7277177B2 (en) ULTRA FINE BUBBLE GENERATOR AND ULTRA FINE BUBBLE GENERATION METHOD
JP7317521B2 (en) ULTRA FINE BUBBLE GENERATOR AND ULTRA FINE BUBBLE GENERATION METHOD
JP7277180B2 (en) ULTRA FINE BUBBLE GENERATOR AND ULTRA FINE BUBBLE GENERATION METHOD
JP2021126607A (en) Ultrafine bubble generation method and ultrafine bubble generation device
JP7446844B2 (en) Ultra fine bubble generator
WO2021085629A1 (en) Method for producing ultra-fine bubble-containing liquid, ultra-fine bubble-containing liquid, method for utilizing ultra-fine bubbles, and device for utilizing ultra-fine bubbles
WO2023089904A1 (en) Method for manufacturing ozone solution and method for utilizing ozone solution
CN112742225A (en) Ultrafine bubble generating device and element substrate manufacturing method
US20220258107A1 (en) Ultra-fine bubble generating method and manufacturing apparatus and manufacturing method for ultra-fine bubble-containing liquid
WO2022215489A1 (en) Device for generating ozone-containing ultrafine bubble liquid, and method for generating ozone-containing ultrafine bubble liquid
US20210268397A1 (en) Apparatus for and method of producing ultrafine bubble-containing liquid, and ultrafine bubble-containing liquid
JP2021074713A (en) Production method for ultra fine bubble-containing liquid, ultra fine bubble-containing liquid, utilization method for ultra fine bubble, and utilization device for ultra fine bubble
JP2021137796A (en) Ultrafine bubble-containing liquid manufacturing device, manufacturing method, and ultrafine bubble-containing liquid
JP2022159989A (en) Device for generating ozone-containing ultrafine bubble liquid, and method for generating ozone-containing ultrafine bubble liquid
WO2021085579A1 (en) Generation method for generating ultrafine-bubble-containing solution that contains ultrafine bubbles, and ultrafine-bubble-containing liquid production device
JP2022163584A (en) Ultra fine bubble containing liquid producing device
JP2022161588A (en) Ultra fine bubble containing liquid generator, ultra fine bubble containing liquid generation method, and ultra fine bubble containing liquid
CN115069102A (en) Apparatus for producing liquid containing ultrafine bubbles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895192

Country of ref document: EP

Kind code of ref document: A1