JP2007083142A - Washing method and washing apparatus - Google Patents

Washing method and washing apparatus Download PDF

Info

Publication number
JP2007083142A
JP2007083142A JP2005273546A JP2005273546A JP2007083142A JP 2007083142 A JP2007083142 A JP 2007083142A JP 2005273546 A JP2005273546 A JP 2005273546A JP 2005273546 A JP2005273546 A JP 2005273546A JP 2007083142 A JP2007083142 A JP 2007083142A
Authority
JP
Japan
Prior art keywords
cleaning
washing
bubbles
cleaned
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005273546A
Other languages
Japanese (ja)
Other versions
JP4595764B2 (en
Inventor
Makoto Miyamoto
誠 宮本
Tomotsugu Kamiyama
智嗣 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005273546A priority Critical patent/JP4595764B2/en
Publication of JP2007083142A publication Critical patent/JP2007083142A/en
Application granted granted Critical
Publication of JP4595764B2 publication Critical patent/JP4595764B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a washing method and a washing apparatus capable of obtaining higher washing grade than that of a dipping process in a washing solution or a shower washing process, and eliminating the need of a complicated mechanism such a pump or a rotary system in a washing method for washing objects by supplying numerous bubbles. <P>SOLUTION: In the conventional washing method, washing objects are dipped in a washing solution, and micro-bubbles are made to act. In the bubble washing method of the present invention, the washing objects are washed near the boundary part of the foaming part formed by floating up bubbles and gas. Thus, breaking effect of the bubbles can be used to enhance washing grade. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、部品等の被洗浄物を気泡によって洗浄する方法及び洗浄装置に関するものである。   The present invention relates to a method and an apparatus for cleaning an object to be cleaned such as a part with bubbles.

従来、工業的洗浄の分野において、フロン系の溶剤や有機溶剤そのほか石油系などの特別な洗浄剤が用いられてきたが、オゾン層の破壊や地下水、河川、海洋汚染などの環境問題を誘起することが明らかにされてため、これらの特殊な洗浄剤を用いない洗浄方法および洗浄装置の開発が進められている。
この要請に応える技術として、水を主体とした洗浄液中に微細気泡(マイクロバブル)を発生させる技術が開発されている。
例えば、洗浄装置中に浸漬された被洗浄物を回転させることにより得られる相対速度によって、被洗浄物が気泡と衝突し、洗浄効率を高める方法がある(例えば特許文献1)。
また、浸漬槽の底部から微細気泡と洗浄液を攪拌しうる大きさの気泡とを交互に発生させ、微細な気泡表面に油を付着させ、そこに大きな泡を供給し浮力を与えて、油を水面に浮上させて洗浄する方法がある(例えば特許文献2)。
また、高圧容器内で、高圧容器内で生成された気体溶存水を洗浄水噴射系の洗浄水噴射ノズルから被洗浄体に噴射することにより、被洗浄体に対する洗浄水衝突時の衝撃力によって被洗浄体に付着している異物を剥離して除去するとともに、洗浄水に溶存している気体の分離によって発生した多数の気泡が被洗浄体に衝突して破裂した場合の衝撃力によって、被洗浄体に付着している異物を剥離して除去するようにした洗浄方法もある(例えば特許文献3)。
Traditionally, in the field of industrial cleaning, fluorocarbon solvents, organic solvents, and other special cleaning agents such as petroleum have been used, but they induce environmental problems such as destruction of the ozone layer, groundwater, rivers, and ocean pollution. Therefore, the development of a cleaning method and a cleaning apparatus that do not use these special cleaning agents is underway.
As a technique for meeting this demand, a technique for generating fine bubbles in a cleaning liquid mainly composed of water has been developed.
For example, there is a method in which the object to be cleaned collides with bubbles due to the relative speed obtained by rotating the object to be cleaned immersed in the cleaning apparatus, and the cleaning efficiency is increased (for example, Patent Document 1).
In addition, fine bubbles and bubbles of a size that can agitate the cleaning liquid are alternately generated from the bottom of the immersion tank, oil is adhered to the surface of the fine bubbles, and large bubbles are supplied thereto to give buoyancy to There is a method of cleaning by floating on the water surface (for example, Patent Document 2).
Further, in the high-pressure vessel, the gas dissolved water generated in the high-pressure vessel is sprayed from the washing water injection nozzle of the washing water injection system onto the object to be cleaned, so that it is covered by the impact force at the time of the washing water collision with the object to be cleaned. The foreign matter adhering to the cleaning object is peeled off and removed, and the object is cleaned by the impact force when many bubbles generated by separation of the gas dissolved in the cleaning water collide with the object to be cleaned and burst. There is also a cleaning method in which foreign matter adhering to the body is removed by peeling (for example, Patent Document 3).

特開平7−227582号公報(図6他)Japanese Patent Laid-Open No. 7-227582 (FIG. 6 and others) 特開平6−179991号公報(〔0008〕他)JP-A-6-177991 ([0008] et al.) 特開平6−71233号公報(〔0005〕、図1他)JP-A-6-71233 ([0005], FIG. 1 and others)

従来の気泡を用いた洗浄方法では、回転機構を必要とするため装置が複雑化、高コストとなる、洗浄槽の下部から気泡を供給するだけなので、複雑な形状のワークの洗浄ができない、部品から脱離した油が他の部品に再付着し、洗浄度が確保できないなどの問題があった。また、洗浄液を高速で被洗浄物に供給するために、多大なエネルギーが必要、洗浄の均一性に乏しいなどの問題があった。   In the conventional cleaning method using air bubbles, a rotating mechanism is required, which complicates the device and increases the cost. Since only air bubbles are supplied from the lower part of the cleaning tank, it is not possible to clean a workpiece with a complicated shape. There was a problem that the oil desorbed from the oil reattached to other parts and the degree of cleaning could not be secured. In addition, in order to supply the cleaning liquid to the object to be cleaned at high speed, there is a problem that a lot of energy is required and the uniformity of cleaning is poor.

この発明は、上記のような問題点を解決するためになされたもので、気泡がそれ自身の浮力により浮上する現象と、浮上した気泡が気体と接することにより崩壊する(破泡)現象とを利用して、すなわち破泡が最も効率よく起こる付近に被洗浄物を設置し、破泡現象によって生じる衝撃力によって被洗浄物に付着した除去対象物(油脂や粒子などの異物)を脱離させ、気泡表面への除去対象物の界面吸着と破泡による剥離と両方を併せ持つ洗浄方法および洗浄装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and includes a phenomenon in which bubbles rise due to their own buoyancy and a phenomenon in which the bubbles that have risen collapse due to contact with gas (bubble breakage). In other words, the object to be cleaned is installed in the vicinity where bubble breakage occurs most efficiently, and the removal target (foreign matter such as oil or particles) attached to the object to be cleaned is removed by the impact force generated by the bubble breaking phenomenon. An object of the present invention is to provide a cleaning method and a cleaning apparatus that have both the interfacial adsorption of an object to be removed to the bubble surface and the separation by bubble breaking.

この発明に係る洗浄方法は、気泡発生手段により生成された洗浄液の気泡が前記洗浄液の気泡が前記洗浄液の液面に浮上して形成される起泡部に被洗浄物を配置し、前記起泡部での破泡を被洗浄物の洗浄すべき処理面に作用させて洗浄を行うものである。   In the cleaning method according to the present invention, an object to be cleaned is disposed in a foaming portion in which bubbles of the cleaning liquid generated by the bubble generating means are formed by the bubbles of the cleaning liquid floating above the surface of the cleaning liquid, and the foaming Cleaning is performed by causing the bubble breakage at the part to act on the surface to be cleaned of the object to be cleaned.

この発明に係る洗浄装置は、洗浄槽内の洗浄液に気泡を発生させる気泡生成手段と、該気泡発生手段により生成された気泡が前記洗浄液の液面に浮上して形成される起泡部または前記洗浄液の近傍に被洗浄物を配置する手段とを備えたものである。   The cleaning apparatus according to the present invention includes a bubble generating means for generating bubbles in the cleaning liquid in the cleaning tank, and the foaming portion formed by the bubbles generated by the bubble generating means floating on the liquid surface of the cleaning liquid, And means for arranging an object to be cleaned in the vicinity of the cleaning liquid.

この発明によれば、気泡が破泡する気液界面近傍にて破泡作用を利用して洗浄を行うので、従来残存していた微細な凹部等への汚れの除去も可能となり、洗浄度を向上させることが可能となる。   According to the present invention, cleaning is performed using the bubble breaking action in the vicinity of the gas-liquid interface where bubbles are broken, so that it is possible to remove dirt on fine concave portions that have remained in the past, and the degree of cleaning is improved. It becomes possible to improve.

まず、本発明における洗浄の原理について、述べる。本発明の洗浄方法を有効化させる方法としてマイクロバブルといわれる数100μm〜数μmの微細な気泡を利用することがあげられる。通常の気泡では気泡径が大きいため、単位体積あたりの表面積が小さい、気泡密度が低いなどの要因もからみ、効率的に洗浄できない。これに対して、マイクロバブルを用いた場合には、単位体積あたりの表面積が大きく、気泡密度が高いために、効率的な洗浄および均一洗浄が可能となり、十分な効果を得ることが可能となる。さらに、本発明では、破泡時の衝撃力の効果も合わせもたせることで、気泡径よりも小さな構造部に付着した油、あるいは粒子などの序子対象物を除去することが可能となる。この破泡作用の高い部位、すなわち気液界面付近に被洗浄物を配置することで、マイクロバブルでは生成気泡数を指数的に向上させることが可能となるので、気液界面での破泡の確率も同様に向上させることができ、被処理物の洗浄処理速度の向上および均一性の向上が可能となる。
以下に具体的実施の形態に基づいて説明する。
First, the principle of cleaning in the present invention will be described. As a method for making the cleaning method of the present invention effective, it is possible to use fine bubbles of several hundred μm to several μm called microbubbles. Since normal bubbles have a large bubble diameter, they cannot be cleaned efficiently due to factors such as a small surface area per unit volume and a low bubble density. On the other hand, when microbubbles are used, since the surface area per unit volume is large and the bubble density is high, efficient cleaning and uniform cleaning are possible, and sufficient effects can be obtained. . Furthermore, in the present invention, the effect of the impact force at the time of bubble breakage is also combined, so that it is possible to remove the introductory objects such as oil or particles adhering to the structure smaller than the bubble diameter. Microbubbles can increase the number of bubbles generated exponentially by placing the object to be cleaned near the gas-liquid interface, that is, in the vicinity of the gas-liquid interface. The probability can be improved in the same manner, and the cleaning processing speed and uniformity of the workpiece can be improved.
This will be described below based on specific embodiments.

実施の形態1.
図1は本発明の洗浄方法を説明するための図である。図において、ベンチュリタイプのマイクロバブル生成器3の気体導入部4、液体導入部5からそれぞれ例えば、空気と水を供給して生成した気泡6を洗浄槽2内に溜められた洗浄液9中に供給する。洗浄液9の表層には気泡6の集合した起泡部7が形成されるが、被洗浄物1の処理面はこの起泡部7の境界部8に接するように配置される。図2は従来の洗浄方法を説明する図であるが、従来は被洗浄物1を洗浄カゴ等に入れて、その処理面は気泡6の通過部に位置する。本発明の特徴は、従来気泡を含む洗浄が洗浄槽内で行われていたものを、気体と液体との境界部付近で行うことにあり、図1によって明確に示される。
Embodiment 1 FIG.
FIG. 1 is a view for explaining the cleaning method of the present invention. In the figure, for example, bubbles 6 generated by supplying air and water from the gas introduction part 4 and the liquid introduction part 5 of the venturi type microbubble generator 3 are supplied into the cleaning liquid 9 stored in the cleaning tank 2. To do. A foaming portion 7 in which bubbles 6 are gathered is formed on the surface layer of the cleaning liquid 9, and the processing surface of the article to be cleaned 1 is disposed so as to be in contact with the boundary portion 8 of the foaming portion 7. FIG. 2 is a diagram for explaining a conventional cleaning method. Conventionally, an object to be cleaned 1 is put in a cleaning basket or the like, and its processing surface is located at a passage part of bubbles 6. A feature of the present invention is that what is conventionally performed in the cleaning tank in which cleaning including bubbles is performed in the vicinity of the boundary between the gas and the liquid, which is clearly shown in FIG.

次に、本発明の洗浄方法の原理を説明する。まず、図1中において被洗浄物1を気体と液体の境界部8に設置するが、この境界部について説明する。
無数のマイクロバブルを含む液体の場合には、多数の気泡6が一斉に上昇するために液体の上部に起泡部とよばれる層を形成する。本発明の洗浄の場合には図1に示すように液体部(洗浄液)9、起泡部7が存在する。図1において最も効率よく破泡が起こる位置は、起泡部7と気体が接する境界8である。したがって本発明の境界部8とは、本起泡部と気体との境目のことをいう。これにより既に記述したように破泡の衝撃力を利用した洗浄が可能となる。
Next, the principle of the cleaning method of the present invention will be described. First, in FIG. 1, the object to be cleaned 1 is installed at the boundary portion 8 between the gas and the liquid. This boundary portion will be described.
In the case of a liquid containing innumerable microbubbles, a large number of bubbles 6 rise all at once, so that a layer called a foaming part is formed on the upper part of the liquid. In the case of the cleaning according to the present invention, there are a liquid portion (cleaning liquid) 9 and a foaming portion 7 as shown in FIG. In FIG. 1, the position where the bubble breakage occurs most efficiently is the boundary 8 where the foaming portion 7 contacts the gas. Therefore, the boundary part 8 of the present invention refers to the boundary between the foaming part and the gas. As a result, as described above, cleaning using the impact force of foam breakage becomes possible.

図3には、(a)従来の液中での洗浄と(b)本発明の気液界面での効果の違いを概念的に示す。被洗浄物として一般的な精密・機械部品などの表面には数μm以下の非常に微細な凹凸が存在する。例えば除去対象物を油脂汚れとした場合には、この微細な凹部1aに浸入した油分を除去しない限り所望の洗浄度を得ることはできない。最も簡単な方法としては、この凹凸よりも小さいサイズの気泡を生成させ、それを用いて洗浄することである。ところが、先駆的な気泡微細化の技術を用いても、μmオーダーの気泡を高密度に生成させることは容易ではなく、表面の凹凸よりも一桁から二桁大きな数10μm〜数100μmサイズの気泡を洗浄に用いざるを得ない。従って通常は図3(a)に示したように気泡径よりも十分小さな凹部1aに存在する油脂などの除去対象物に気泡は作用することができず、油脂分を除去することはできない。流速を高めることにより洗浄度が向上することがわかっているが、これは気泡が壊れる際の衝撃力を利用したものである。流速を高めるためには気泡を含んだ液全体を加速させる必要があるために、多大なエネルギーを要し、装置が複雑化する。また液中では距離に依存して指数的に流速がおちるために、処理の均一性を保持することは容易ではない。
図3(b)には本発明の起泡部と気体との境界部での洗浄メカニズムを示す。本境界部8では最も効率よく気泡が破泡6bし、衝撃力を発生させる。その衝撃力を利用して微細な凹部1aに沈み込んだ油脂などの汚れをあたかもかきだすような作用で、被洗浄物表面から除くことができ、洗浄度を向上させることができる。
FIG. 3 conceptually shows the difference between (a) conventional cleaning in liquid and (b) gas-liquid interface of the present invention. There are very fine irregularities of several μm or less on the surface of precision / mechanical parts that are generally used as objects to be cleaned. For example, when the object to be removed is made of oil and fat stains, a desired degree of cleaning cannot be obtained unless the oil that has entered the fine recesses 1a is removed. The simplest method is to generate bubbles having a size smaller than the irregularities and wash them using them. However, even with the use of pioneering bubble miniaturization technology, it is not easy to generate bubbles on the order of μm with high density, and bubbles of several tens to several hundreds of micrometers that are one to two orders of magnitude larger than the surface irregularities. Must be used for cleaning. Therefore, normally, as shown in FIG. 3 (a), the bubbles cannot act on the removal target such as fats and oils present in the recess 1a sufficiently smaller than the bubble diameter, and the fats and oils cannot be removed. It has been found that increasing the flow rate improves the cleanliness, but this utilizes the impact force when the bubbles break. In order to increase the flow velocity, it is necessary to accelerate the entire liquid containing bubbles, which requires a great deal of energy and complicates the apparatus. Further, since the flow velocity exponentially drops depending on the distance in the liquid, it is not easy to maintain the uniformity of the treatment.
FIG. 3B shows the cleaning mechanism at the boundary between the foaming portion and the gas of the present invention. At the boundary 8, the bubbles are most efficiently broken 6b to generate an impact force. It is possible to remove the dirt such as fats and oils sinking into the fine recess 1a by using the impact force, so that it can be removed from the surface of the object to be cleaned, and the degree of cleaning can be improved.

図4は、本発明の洗浄方法について説明する図である。図中(a)はマイクロバブル生成前、(b)はマイクロバブル生成時の被洗浄物1の状態を示す。図中(a)のように被洗浄物1の被処理面を洗浄液に対面するように洗浄液の表面近傍まで配置する。(b)においてマイクロバブルを生成させると、気泡の上昇により起泡部7が形成され、界面が上昇10する。被処理物1は上述のとおり境界部での破泡作用を受けるように位置調整される。   FIG. 4 is a diagram for explaining the cleaning method of the present invention. In the figure, (a) shows the state of the object to be cleaned 1 before the generation of microbubbles, and (b) shows the state of the object to be cleaned 1 when the microbubbles are generated. As shown in FIG. 1A, the surface to be processed of the object to be cleaned 1 is disposed up to the vicinity of the surface of the cleaning liquid so as to face the cleaning liquid. When microbubbles are generated in (b), the foaming portion 7 is formed by the rising of the bubbles, and the interface rises 10. The position of the workpiece 1 is adjusted so as to receive the bubble breaking action at the boundary as described above.

実施の形態において、洗浄度を向上させるためには、気泡径を小さくて単位体積あたりの表面積を増加させる、洗浄液の温度をあげる、流動速度をあげるなどがあげられる。
また、洗浄液の循環を行いたい場合には循環ポンプを、また洗浄液の温度を高めたい場合には温調器を付属させればよい。
In the embodiment, in order to improve the degree of cleaning, the bubble diameter is reduced to increase the surface area per unit volume, the temperature of the cleaning liquid is increased, the flow rate is increased, and the like.
A circulation pump may be attached to circulate the cleaning liquid, and a temperature controller may be attached to increase the temperature of the cleaning liquid.

実施の形態2.
実施の形態1の洗浄装置、洗浄方法を用いた洗浄効果について従来技術と対比して説明する。図5は従来の液中洗浄、本発明の境界部(起泡部-気体の界面部)での洗浄の効果を示したもので、洗浄後の残油量を示したものである。従来の液中洗浄は、図2において、洗浄槽2側壁のマイクロバブル生成部3から4cmのところに被洗浄物1の処理面をマイクロバブル生成部3に対面するように固定して行った。本発明の実施においては図1に示すとおり、被洗浄物1の処理面をほぼ境界部、界面に配置して行った。なお、従来、本発明のいずれの実験条件としても、洗浄槽の容量35L,洗浄時の液温50℃、洗浄液の供給量は14 L/min、ガスの供給量は14L/minとした。また、気泡を微細化させる添加剤として酢酸を0.5wt%添加した。SUS316の平板に所定面積・所定量の油分、それぞれ疎水性油(ここでは日本ホートン社製の疎水切削加工油カットマックスを使用)、灯油、サラダ油、を塗布したものを被洗浄物として1分間洗浄した。洗浄後の被洗浄物の残留油分は、実験後に付着した油分を炭化水素系の溶剤に溶解させ、油分濃度計OCMA-300(堀場製作所製)を用いて測定した。測定された油分濃度の値より、部品1cm2あたりの残留油分(μg/cm2)を求めた。
Embodiment 2. FIG.
The cleaning effect using the cleaning apparatus and the cleaning method of the first embodiment will be described in comparison with the prior art. FIG. 5 shows the effect of conventional submerged cleaning and cleaning at the boundary portion (foaming portion-gas interface portion) of the present invention, and shows the amount of residual oil after cleaning. In FIG. 2, the conventional submerged cleaning is performed by fixing the processing surface of the cleaning object 1 to face the microbubble generating unit 3 at a position 4 cm from the microbubble generating unit 3 on the side wall of the cleaning tank 2. In the practice of the present invention, as shown in FIG. 1, the processing surface of the article to be cleaned 1 was disposed substantially at the boundary and interface. Conventionally, in any of the experimental conditions of the present invention, the capacity of the cleaning tank was 35 L, the liquid temperature at the time of cleaning was 50 ° C., the supply amount of the cleaning liquid was 14 L / min, and the supply amount of the gas was 14 L / min. Moreover, 0.5 wt% of acetic acid was added as an additive for refining bubbles. SUS316 flat plate coated with a predetermined area and a predetermined amount of oil, each with hydrophobic oil (here, using hydrophobic cutting oil cut max manufactured by Nippon Horton), kerosene, salad oil, and washed for 1 minute did. The residual oil content of the object to be cleaned after washing was measured using an oil concentration meter OCMA-300 (manufactured by Horiba Seisakusho) after dissolving the oil adhering after the experiment in a hydrocarbon solvent. From the measured oil concentration value, the residual oil content (μg / cm 2 ) per 1 cm 2 of the part was determined.

図5より、本発明の洗浄方法を用いた場合、従来の洗浄方法より何れの油に対しても数倍以上洗浄度を向上させることが確認された。本実施の形態においては、一般の金属加工に用いられる切削油、加工油、熱処理油、潤滑油などいずれの油に対しても同様の効果を奏することを確認した。また、工業的な油に限らず、主要油脂とされるバター、ラード、牛脂、魚油、大豆油、菜種油、ゴマ油、オリーブ油、やし油、パーム油などに対しても効果を奏することを確認した。   From FIG. 5, it was confirmed that when the cleaning method of the present invention was used, the cleaning degree was improved several times or more for any oil compared to the conventional cleaning method. In this Embodiment, it confirmed that there existed the same effect with respect to all oils, such as cutting oil used for general metal processing, processing oil, heat processing oil, and lubricating oil. In addition to industrial oils, we confirmed that they are effective against butter, lard, beef tallow, fish oil, soybean oil, rapeseed oil, sesame oil, olive oil, palm oil, palm oil, etc. .

また、同様の実験条件を用いて、従来技術の他の手法であるシャワー形態で気泡を含む洗浄液を供給した実験を行った。すなわち、同様の洗浄液の供給量、ガスの供給量添加剤等の条件で洗浄液を直接被洗浄物に供給した。この場合においても、本発明の洗浄方法のほうが数倍以上の洗浄度を有することを確認した。   Moreover, the experiment which supplied the washing | cleaning liquid containing a bubble with the shower form which is another technique of the prior art was performed using the same experiment conditions. That is, the cleaning liquid was directly supplied to the object to be cleaned under the same conditions as the cleaning liquid supply amount, the gas supply amount additive, and the like. Even in this case, it was confirmed that the cleaning method of the present invention has a cleaning degree several times or more.

添加剤の濃度に関しては気泡の微細化に効果を有する濃度範囲、具体的には0.0001重量%〜10重量%の範囲まで有効であり、望ましくは0.001重量%〜1重量%の範囲がよい。また洗浄時の温度も高いほど効果が高い。しかしながら、あまりに高い温度では、ミストの問題などによる作業場の安全性、エネルギー消費の観点から好ましくない。好ましくは40度〜80度が適当である。   Regarding the concentration of the additive, it is effective up to a concentration range having an effect on the refinement of the bubbles, specifically, 0.0001 wt% to 10 wt%, and preferably 0.001 wt% to 1 wt%. The higher the temperature during washing, the higher the effect. However, an excessively high temperature is not preferable from the viewpoint of workplace safety and energy consumption due to mist problems. Preferably 40 to 80 degrees is appropriate.

さらに粒子の除去効果についても検証を行った。シリカ、アルミナ、ポリスチレン、金属酸化物の微粒子(それぞれ0.2μm,0.5 μm,2.0μm,10μm)を基板上に所定量強制汚染させ、その除去効果を調べた。その結果いずれの粒子種についても界面洗浄の方が1桁以上洗浄後の残留粒子数は少なかった。また上記以外の粒子種についても同様に本発明の界面洗浄のほうが洗浄後の残留粒子数は少なかった。
また基板の材質に対しても検討を行ったステンレス以外に、真鍮、銅、鉄、アルミなどの金属系基板、塩化ビニル、フッ素樹脂、アクリル、ポリプロピレン、ポリビニル、ポリエチレン、ポリスチレン、ガラス、シリコン、ガリ砒素、酸化チタンなどの光触媒、セラミックス、超伝導体などの基板や基材についても同様の効果、すなわち従来の液中洗浄やシャワー洗浄よりも十分な洗浄効果を確認した。
Furthermore, the particle removal effect was also verified. Silica, alumina, polystyrene, and metal oxide fine particles (0.2 μm, 0.5 μm, 2.0 μm, and 10 μm, respectively) were forcibly contaminated on the substrate by a predetermined amount, and the removal effect was examined. As a result, for any particle type, the number of residual particles after cleaning by one or more orders of magnitude was smaller with interfacial cleaning. In addition, with respect to the particle types other than the above, the number of residual particles after cleaning was smaller in the interface cleaning of the present invention.
In addition to the stainless steel, which was also examined for the material of the substrate, metal substrates such as brass, copper, iron and aluminum, vinyl chloride, fluororesin, acrylic, polypropylene, polyvinyl, polyethylene, polystyrene, glass, silicon, galley Similar effects were confirmed for substrates and base materials such as photocatalysts such as arsenic and titanium oxide, ceramics, and superconductors, that is, cleaning effects more sufficient than conventional submerged cleaning and shower cleaning.

実施の形態3.
以下、境界部での微細気泡の効果について説明する。洗浄条件は実施の形態2と同じ洗浄条件で、添加剤の有無と気泡発生の有無において洗浄効果を確認した。図6には微細気泡で洗浄した場合、微細気泡生成のための添加剤を含まない場合、また気泡を含まず添加剤のみで洗浄した場合の残油量の結果を示す。気泡を含む洗浄の場合、気泡を含まない洗浄よりも4倍以上洗浄度が向上した。さらに、添加剤を含み微細気泡による洗浄では添加剤を含まない気泡(数mmΦ以上)を用いた洗浄よりも5倍以上洗浄効果が高いことを確認した。なお、実施の形態2と同様にいずれの油に対しても効果を奏することを確認した。
Embodiment 3 FIG.
Hereinafter, the effect of fine bubbles at the boundary will be described. The cleaning conditions were the same as those in Embodiment 2, and the cleaning effect was confirmed by the presence or absence of additives and the presence or absence of bubbles. FIG. 6 shows the results of the residual oil amount when washed with fine bubbles, when the additive for generating fine bubbles is not included, and when washed with only the additive without bubbles. In the case of washing with bubbles, the degree of washing improved by 4 times or more compared with washing without bubbles. Furthermore, it was confirmed that cleaning with fine bubbles containing an additive had a cleaning effect 5 times or more higher than cleaning using bubbles (several mmΦ or more) without additives. In addition, it confirmed that there existed an effect with respect to any oil similarly to Embodiment 2. FIG.

次に微細気泡の洗浄効果をより明らかにするため、洗浄液の平均気泡径に対する洗浄効果を検討した。なお、洗浄液中の気泡径を均一にすることは困難であるため、高速度カメラで洗浄液を撮像、画像処理することで洗浄液の気泡径分布および気泡径の平均値を算出、その値を平均気泡径と定義した。平均気泡径が1μmから500μmの範囲で添加剤をまったく含まない数mm以上の平均気泡径よりも洗浄効果がみられた。さらに、この効果は1μmから300μmで向上した。特に10μmから100μmの平均気泡径を有する場合に、最も洗浄効果がみられることを確認した。
なお、本発明の実施の形態で示した結果は、本洗浄条件によらず、たとえば液温、添加剤の種類・濃度、注入するガス量を変化させた場合にも同様の効果が得られた。
Next, in order to clarify the cleaning effect of fine bubbles, the cleaning effect on the average bubble diameter of the cleaning liquid was examined. In addition, since it is difficult to make the bubble diameter in the cleaning liquid uniform, the average value of the bubble diameter distribution and the bubble diameter of the cleaning liquid is calculated by imaging and processing the cleaning liquid with a high-speed camera. Defined as diameter. The cleaning effect was seen more than the average bubble diameter of several mm or more which does not contain an additive at all in the range of the average bubble diameter from 1 μm to 500 μm. Furthermore, this effect was improved from 1 μm to 300 μm. In particular, it was confirmed that the most cleaning effect was observed when the average cell diameter was 10 μm to 100 μm.
It should be noted that the results shown in the embodiment of the present invention showed the same effect even when, for example, the liquid temperature, the type / concentration of the additive, and the amount of injected gas were changed regardless of the main cleaning conditions. .

実施の形態4.
次に、被洗浄物を設置する位置ついて検討した。実施の形態1の本発明の洗浄原理の説明において、被洗浄物は境界部の界面に配置するのが気泡の破泡作用を受けやすいことを示したが、その界面近傍の位置について洗浄効果との関係を詳細に検討した。
図7には洗浄時の境界部を座標0とした場合の高さ方向の洗浄度変化を示す。図において0〜−1cmまでは起泡部、−1cm以下は液体部、0cm以上は気体部で洗浄したことを意味する。本結果より深さ方向に対する明確な洗浄度変化がわかる。境界部が最も洗浄度がよく、起泡部では徐々に洗浄度が低下する。さらに液体部では洗浄力は急速に失われる。液中では破泡の効果がなくなるためである。境界部に近い気体部(+1cm)では遠い箇所(+2cm)よりも洗浄度がよいのは、破泡による気泡の飛散によって衝撃力が伝播し、洗浄効果が得られているからである。境界部よりも十分遠い気体部では当然のことながらまったく洗浄効果は得られない。従って本実施の形態により本発明の洗浄方法においては、最適な位置が存在することがわかった。最適位置は無数の気泡を含む洗浄液において、液体の部分と気泡によって起泡する部分において、起泡部と気体との境界であり、この付近で洗浄することが最も望ましい。また境界部でなくとも起泡部で洗浄してもそれに近い洗浄効果が得られる。また、境界部から気体より若干上方であっても洗浄効果を得ることができる。添加剤の種類・濃度、注入するガス量を変化させた場合に起泡部の高さは変化するが、本実施の形態の洗浄位置は起泡部及び境界部上方1cm以内(起泡部もしくは洗浄液面の上方1cm以内)であり、この範囲であれば起泡部の高さに依存せず、同様の洗浄効果が得られる。
Embodiment 4 FIG.
Next, the position where the object to be cleaned was installed was examined. In the description of the cleaning principle of the present invention of Embodiment 1, it has been shown that the object to be cleaned is easily subjected to the bubble breaking action of the bubbles when placed at the boundary interface. The relationship was examined in detail.
FIG. 7 shows a change in the cleaning degree in the height direction when the boundary at the time of cleaning is set to coordinate 0. FIG. In the figure, 0 to -1 cm means washing with a foaming part, -1 cm or less means washing with a liquid part, and 0 cm or more means washing with a gas part. From this result, a clear change in the cleaning degree with respect to the depth direction can be seen. The boundary part has the best cleaning degree, and the foaming part gradually decreases the cleaning degree. Furthermore, the cleaning power is rapidly lost in the liquid part. This is because the bubble breaking effect is lost in the liquid. The reason why the degree of cleaning is better in the gas part (+1 cm) near the boundary than in the far part (+2 cm) is that the impact force is propagated by the scattering of bubbles due to bubble breakage, and the cleaning effect is obtained. As a matter of course, no cleaning effect can be obtained in a gas part sufficiently far from the boundary part. Therefore, according to this embodiment, it has been found that an optimum position exists in the cleaning method of the present invention. The optimum position is the boundary between the foaming portion and the gas in the liquid portion and the portion that is foamed by the bubbles in the cleaning liquid containing an infinite number of bubbles, and it is most desirable to clean in this vicinity. Moreover, even if it wash | cleans by a foaming part even if it is not a boundary part, the cleaning effect close | similar to it is acquired. In addition, the cleaning effect can be obtained even slightly above the gas from the boundary. When the type and concentration of the additive and the amount of gas to be injected are changed, the height of the foaming part changes, but the cleaning position of this embodiment is within 1 cm above the foaming part and the boundary part (the foaming part or Within 1 cm above the surface of the cleaning liquid), and within this range, the same cleaning effect can be obtained without depending on the height of the foaming portion.

実施の形態5.
次に、気泡よりも微細な凹凸が存在する表面に付着した油脂汚れの除去結果について検討した。図8は、平均気泡径50μm(最小 20μm, 最大500μm)を用いた場合の被洗浄物の凹凸(表面粗さ:それぞれRaおよびRz)に対する洗浄度依存性を示す。RaおよびRzはそれぞれ算術平均粗さ、十点平均粗さの略称で、粗さ形状パラメータとして定JIS B0601-1994に定められている。Raは粗さ曲線(表面形状の曲線) の平均線から絶対値偏差の平均値、Rzは基準長さ毎の山頂の高い方から5点、谷底かの低い方から5点を選んだ場合の平均高さとして定義される。
Ra,Rzいずれの結果においても境界部で洗浄するほうが洗浄度は高くなった。また特徴的なことはRa, Rzの値が大きくなるほど液中と境界部での洗浄度の差が大きくなることである。これは図3のモデルで示したように、液中の洗浄では凹部が細く、深くなるほど気泡が作用できなくなり、その領域が洗浄面全体で増加するために洗浄度が悪化する。一方境界部では同様に粗さの影響は受けるものの、破泡による汚染物の除去効果は維持されており、徐々にしか洗浄度の悪化はみられない。このため表面が粗くなるほど両洗浄方法での洗浄度の差が顕著になるものと推測される。
Embodiment 5. FIG.
Next, the removal result of the oil-and-fat dirt adhering to the surface where the unevenness | corrugation finer than a bubble exists was examined. FIG. 8 shows the cleaning degree dependency on the unevenness (surface roughness: Ra and Rz, respectively) of the object to be cleaned when the average bubble diameter is 50 μm (minimum 20 μm, maximum 500 μm). Ra and Rz are abbreviations for arithmetic average roughness and ten-point average roughness, respectively, and are defined in JIS B0601-1994 as roughness shape parameters. Ra is the average value of absolute value deviation from the average line of the roughness curve (surface shape curve), Rz is the value when 5 points from the highest peak and 5 points from the lowest valley are selected for each reference length. Defined as average height.
In both Ra and Rz results, the degree of cleansing was higher when washing at the boundary. What is also characteristic is that the larger the Ra and Rz values, the greater the difference in cleanliness between the liquid and the boundary. As shown in the model of FIG. 3, in the cleaning in the liquid, the concave portion becomes narrower, and as the depth becomes deeper, the bubbles cannot act, and the area increases on the entire cleaning surface, so the cleaning degree deteriorates. On the other hand, the boundary is similarly affected by roughness, but the effect of removing contaminants by foam breakage is maintained, and the degree of cleaning is only gradually deteriorated. For this reason, it is presumed that the difference in the cleaning degree between the two cleaning methods becomes more remarkable as the surface becomes rougher.

実施の形態6.
上記実施の形態1〜5では境界部に浮上した気泡の破泡現象を用いることで洗浄効果を得た。さらに洗浄効率を向上させるためには、気泡を強制的に破泡させる手段を備えればよい。本実施の形態では気泡を効率よく破泡させる手段として超音波を作用させた。
図9には本発明の実施の形態で用いた超音波素子を備えた洗浄装置の構成図を示す。図中(a)は上面図、(b)は図中(a)の矢印方向からみた図である。図において、超音波発信器11に接続された超音波振動子12より石英棒13に超音波が伝播するように配置している。本装置では起泡部付近に洗浄槽をまたぐように一定間隔をおいて直径1〜2cmの石英棒13を設置してある。
Embodiment 6 FIG.
In the said Embodiment 1-5, the cleaning effect was acquired by using the bubble breaking phenomenon of the bubble which floated to the boundary part. In order to further improve the cleaning efficiency, a means for forcibly breaking bubbles may be provided. In the present embodiment, ultrasonic waves are used as means for efficiently breaking bubbles.
FIG. 9 shows a configuration diagram of a cleaning apparatus including an ultrasonic element used in the embodiment of the present invention. In the figure, (a) is a top view, and (b) is a view seen from the direction of the arrow in (a). In the figure, the ultrasonic transducer 12 connected to the ultrasonic transmitter 11 is arranged so that the ultrasonic wave propagates to the quartz rod 13. In this apparatus, quartz rods 13 having a diameter of 1 to 2 cm are installed at regular intervals so as to straddle the washing tank in the vicinity of the foaming portion.

マイクロバブル発生部3から発生した気泡6は、石英棒13からの超音波によって破泡現象が促進され、効率よく破泡が進むことになる。これにより上記実施の形態1〜5で示した気液界面での破泡に加え、超音波での気泡の破泡も加わることになり、より一層洗浄度を向上させることが可能となる。実際に同条件で、超音波の印加の有無による洗浄度を調べたところ、超音波印加ありの場合は、ない場合に比べ洗浄度は3倍(残油量が1/3)となり、その効果を確認した。
さらに、超音波周波数は20kHz〜3MHzの範囲で効果があった。本実施の形態では石英棒を介して超音波を印加する方法をとったが、これに限らず起泡部に超音波を印加した場合であれば、効果を奏することができる。例えば、超音波素子自身を液面近傍に配置してもよいし、石英の代わりに超音波伝播物質である、ステンレスやなどの金属製のものポリプロピレン、ポリスチレン等の棒等を配置してもよい。
The bubbles 6 generated from the microbubble generator 3 are accelerated by the ultrasonic wave from the quartz rod 13 and the bubbles are efficiently broken. Thereby, in addition to the bubble breakage at the gas-liquid interface shown in the first to fifth embodiments, the bubble breakage by the ultrasonic wave is also added, and the degree of cleaning can be further improved. Actually, under the same conditions, the degree of cleaning with and without the application of ultrasonic waves was examined. When ultrasonic waves were applied, the degree of cleaning was tripled (the amount of residual oil was 1/3) compared to when no ultrasonic waves were applied. It was confirmed.
Furthermore, the ultrasonic frequency was effective in the range of 20 kHz to 3 MHz. In the present embodiment, a method of applying ultrasonic waves via a quartz rod is used. However, the present invention is not limited to this, and an effect can be obtained if ultrasonic waves are applied to the foaming portion. For example, the ultrasonic element itself may be disposed in the vicinity of the liquid surface, or a rod made of a metal such as stainless steel or the like, which is an ultrasonic propagation material, instead of quartz, may be disposed. .

実施の形態7.
上記実施の形態における洗浄方法においては、被洗浄物から除去した油脂などの汚れの再付着をさせないことが重要である。起泡部の流動のない条件で洗浄をした場合には、活発な破泡除作用があっても、除去物が液面内を漂い、再度被洗浄物に対して付着してしまうことが危惧される。実際に流動のない条件では、残油量が飽和してしまい、目標レベルの高洗浄度を得ることができなかった。本実施の形態においては、被洗浄物から除去された油等の汚染物の再付着を防止する手段を備えたものである。
再付着を抑制するためには液面の流動性をもたせることが有効な手段となる。たとえば洗浄槽を少し傾斜させると液面は高いほうから低い方へと流動するので、除去した汚れ成分が自ずと基板面の外に運びだされる。境界部付近で水平方向の流れが生じるように液体の流れを制御した場合にも同様に基板への再付着防止が可能となる。
Embodiment 7 FIG.
In the cleaning method in the above embodiment, it is important not to cause redeposition of dirt such as oil and fat removed from the object to be cleaned. When washing is performed under conditions where the foaming part does not flow, there is a risk that the removed substance will drift in the liquid surface and adhere to the object to be cleaned again even if there is an active defoaming action. It is. Under the condition that there was no actual flow, the amount of residual oil was saturated, and a high level of cleaning at the target level could not be obtained. In this embodiment, there is provided means for preventing reattachment of contaminants such as oil removed from the object to be cleaned.
In order to suppress re-adhesion, it is an effective means to provide fluidity of the liquid surface. For example, when the cleaning tank is tilted slightly, the liquid level flows from higher to lower, so that the removed dirt component is naturally carried out of the substrate surface. Even when the flow of the liquid is controlled so that a horizontal flow is generated in the vicinity of the boundary portion, it is possible to prevent reattachment to the substrate.

図10は、本実施の形態に係る洗浄装置の構成を示す図である。洗浄槽2の境界部もしくは起泡部で流れを制御する装置14を付加した洗浄装置を示す。本装置では図中矢印15で示すように、洗浄槽2からオーバーフロー槽16へと一方向に流れるよう制御されている。これにより除去した汚れを速やかにオーバーフロー槽へと流すことが可能なる。本流体の制御装置としては、液面付近に送風する手段を用いてもよい。すなわち水より浮力の軽く液面を漂う油分を、境界部に送風させることで移動可能となり、高洗浄度が得られることになる。この起泡部で流れを制御する装置14を設けることによって洗浄後の残油量をさらに、1/2〜1/10に低減することも確認できた。また、起泡部で流れを制御する装置14を設けなくても、洗浄液の増減によって境界部を移動させた場合にも残油量低減の効果が認められた。   FIG. 10 is a diagram showing the configuration of the cleaning apparatus according to the present embodiment. The washing | cleaning apparatus which added the apparatus 14 which controls a flow in the boundary part or foaming part of the washing tank 2 is shown. In this apparatus, as indicated by an arrow 15 in the figure, the flow is controlled to flow from the cleaning tank 2 to the overflow tank 16 in one direction. As a result, the removed dirt can be quickly flowed to the overflow tank. As the fluid control device, a means for blowing air near the liquid surface may be used. In other words, oil that floats lighter than water and floats on the liquid surface can be moved by blowing air to the boundary, and a high degree of cleaning can be obtained. It was also confirmed that the residual oil amount after washing was further reduced to 1/2 to 1/10 by providing the device 14 for controlling the flow at the foaming portion. Further, even when the apparatus 14 for controlling the flow at the foaming part was not provided, the effect of reducing the residual oil amount was recognized even when the boundary part was moved by increasing or decreasing the cleaning liquid.

実施の形態8.
上記実施の形態1〜7においては、被洗浄物が平板の単純な形状を例にして基本的な特性について説明した。一般部品・精密洗浄においては3次元的に形状が複雑なものを洗う場合が多い。本実施の形態においては、これらの洗浄物を効率的に洗浄する方法について説明する。
Embodiment 8 FIG.
In the first to seventh embodiments, the basic characteristics have been described by taking the simple shape of the object to be cleaned as a flat plate. In general parts and precision cleaning, there are many cases where three-dimensionally complicated shapes are washed. In the present embodiment, a method for efficiently cleaning these cleaning objects will be described.

図11は本実施の形態による洗浄装置の構成を示す図である。図において、3次元形状の被洗浄17を入れた洗浄カゴ18を所定の速度で上下させ、境界部および起泡部を通過するようにしてある。この時、洗浄カゴ18は図中矢印で示すように中の被洗浄物17の処理面が境界部あるいは起泡部に晒されるように回転させるとよい。洗浄カゴ18の可動範囲および速度は最適化させることが重要である。   FIG. 11 is a diagram showing the configuration of the cleaning apparatus according to the present embodiment. In the figure, a cleaning basket 18 containing a three-dimensional shape to be cleaned 17 is moved up and down at a predetermined speed so as to pass through a boundary portion and a foaming portion. At this time, the cleaning basket 18 is preferably rotated so that the processing surface of the object to be cleaned 17 is exposed to the boundary portion or the foaming portion as indicated by an arrow in the figure. It is important to optimize the movable range and speed of the cleaning basket 18.

図12は本実施の形態による別の洗浄装置の構成を示す図である。図11では被洗浄物17をいれた洗浄カゴ18を上下させる例について示したが、図12蒸気液界面を移動させるための装置の構成図を示す。洗浄槽と並列にポンプ19で接続された予備槽20を備える。このポンプを用いて液を予備槽側に移すと、気液界面が下がる。また下がった界面を基に戻したい場合には予備槽の液を洗浄槽側に戻せばよい。これによって簡単に洗浄槽内の気液界面の位置を制御することが可能となる。
このように気液界面の位置を制御することで、汚染物の再付着防止の効果もあるが、ポンプ19の近傍にフィルタを設け、除去物を回収するようにすると、再付着の防止効果が一層向上する。
FIG. 12 is a diagram showing the configuration of another cleaning apparatus according to the present embodiment. 11 shows an example in which the cleaning basket 18 containing the article 17 to be cleaned is moved up and down, FIG. 12 shows a configuration diagram of an apparatus for moving the vapor-liquid interface. A preliminary tank 20 connected by a pump 19 is provided in parallel with the cleaning tank. When the liquid is transferred to the auxiliary tank using this pump, the gas-liquid interface is lowered. When it is desired to return the lowered interface to the base, the liquid in the preliminary tank may be returned to the cleaning tank side. This makes it possible to easily control the position of the gas-liquid interface in the cleaning tank.
Controlling the position of the gas-liquid interface in this way also has the effect of preventing the reattachment of contaminants. However, if a filter is provided in the vicinity of the pump 19 to collect the removed matter, the effect of preventing the reattachment can be obtained. Further improve.

本実施の形態のように、複雑形状の被処理物であっても境界部、起泡部を通過させるようにし、気泡の破泡作用により洗浄効果を高めることができる。   As in the present embodiment, even if the workpiece has a complicated shape, the boundary portion and the foaming portion are allowed to pass through, and the cleaning effect can be enhanced by the bubble breaking action of bubbles.

上記実施の形態1〜8においては、起泡部と気体との境界における洗浄効果を示したが、気体としては上記のような空気に限られるものではなく、酸化性のガスを用いてもよい。特にオゾンガスを用いた場合には、油脂の除去だけでなく、有機物の分解除去に効果を発揮することが確認された。また破泡のエネルギーによって菌の不活化にも有効であることも確認した。また、還元性のガスたとえば水素やメタンなどを用いてもよい。洗浄液は特別なものを準備することなく、水で洗浄効果が得られるが、気泡生成が可能な溶媒例えば、一般有機溶媒((アルコール、エステル、有機酸、ケトン、エーテル、ベンゼン、アルデヒ ト、ヘキサン、アルキルベンゼン、キシレン等)であれば用いることできる。さらに、洗浄液として水を用いた場合に気泡促進の添加剤として、酢酸を用いた例を示したが、酢酸などのカルボン酸化合物、メタノールなどのアルコール系化合物、塩化ナトリウム、アニオン・カチオン・ノニオン系界面活性剤などをはじめとして、脂肪酸とその誘導体、グリセリンとその誘導体、アミン系化合物の使用が考えられる。
なお、気体にオゾン等の酸化性ガスを用いた場合、オゾンガスとの反応性の高い物質との併用は避けることが好ましく、洗浄液や添加剤としてメタノールなどのアルコール系、アニオン・カチオン・ノニオン系界面活性剤、脂肪酸とその誘導体、グリセリンとその誘導体、アミン系化合物の使用は好ましくない。オゾンガス濃度や添加剤の濃度等注意を払う必要がある。
また上記実施の形態においてはいずれも油脂の汚れの除去を例示して説明したが、粒子汚れについても、破泡のエネルギーによって基板上や被処理物に付着した粒子を脱離させる作用や気泡表面への粒子の付着作用による基板や被処理物への再付着防止などの効果が期待されることは言うまでもない。
In the said Embodiment 1-8, although the washing | cleaning effect in the boundary of a foaming part and gas was shown, as gas, it is not restricted to the above air, You may use oxidizing gas. . In particular, when ozone gas was used, it was confirmed that it exhibited an effect not only for removing fats and oils but also for decomposing and removing organic substances. It was also confirmed that it was effective in inactivating bacteria by the energy of breaking bubbles. A reducing gas such as hydrogen or methane may be used. The cleaning solution can be washed with water without preparing a special cleaning solution, but it can generate bubbles, for example, general organic solvents ((alcohols, esters, organic acids, ketones, ethers, benzene, aldehydes, hexanes) In addition, an example of using acetic acid as an additive for promoting bubbles when water is used as a cleaning liquid has been shown, but carboxylic acid compounds such as acetic acid, methanol, etc. In addition to alcohol compounds, sodium chloride, anionic / cationic / nonionic surfactants, etc., fatty acids and derivatives thereof, glycerin and derivatives thereof, and amine compounds can be used.
In addition, when an oxidizing gas such as ozone is used as the gas, it is preferable to avoid using it together with a substance that is highly reactive with ozone gas. As the cleaning liquid or additive, alcohol-based, anion-cation-nonionic interfaces such as methanol The use of activators, fatty acids and derivatives thereof, glycerin and derivatives thereof, and amine compounds is not preferred. It is necessary to pay attention to ozone gas concentration and additive concentration.
In the above-described embodiments, the removal of oily and fat stains has been described as an example. However, for the particle stains, the action of desorbing particles adhering to the substrate and the object to be processed by the energy of bubble breaking and the bubble surface Needless to say, effects such as prevention of reattachment to the substrate and the object to be processed due to the adhesion of particles to the substrate are expected.

本発明の実施の形態1によるマイクロバブル洗浄装置を示す構成図である。It is a block diagram which shows the microbubble washing | cleaning apparatus by Embodiment 1 of this invention. 従来のマイクロバブル洗浄装置、洗浄方法を示す構成図である。It is a block diagram which shows the conventional microbubble washing | cleaning apparatus and the washing | cleaning method. 本発明の洗浄原理を従来技術と対比して説明する概念図で、(a)は従来の液中洗浄の場合、(b)は本発明の気液界面での洗浄の場合を示す図である。The conceptual diagram explaining the cleaning principle of this invention in contrast with a prior art, (a) is the figure in the case of the conventional submerged cleaning, (b) is the figure which shows the case of the cleaning in the gas-liquid interface of this invention. . 本発明の洗浄方法を説明するための図で、(a)はマイクロバブル生成前の状態、(b)はマイクロバブル生成時の被洗浄物の位置を示す図である。It is a figure for demonstrating the washing | cleaning method of this invention, (a) is the state before microbubble production | generation, (b) is a figure which shows the position of the to-be-cleaned object at the time of microbubble production | generation. 本発明の実施の形態2による洗浄効果を示す図である。It is a figure which shows the cleaning effect by Embodiment 2 of this invention. 本発明の実施の形態3による洗浄効果を示す図である。It is a figure which shows the cleaning effect by Embodiment 3 of this invention. 本発明の実施の形態4による洗浄効果を示す図で、被洗浄物の位置と残油量の関係を示した図である。It is a figure which shows the cleaning effect by Embodiment 4 of this invention, and is the figure which showed the relationship between the position of to-be-cleaned object, and the amount of residual oil. 本発明の実施の形態5による洗浄効果を示す図で、(a)は被洗浄物の処理面の表面粗さ(Ra)と残油量の関係、(b)は被洗浄物の処理面の表面粗さ(Rz)と残油量との関係を示した図である。It is a figure which shows the cleaning effect by Embodiment 5 of this invention, (a) is the relationship between the surface roughness (Ra) of the processed surface of a to-be-cleaned object, and residual oil amount, (b) is the processed surface of a to-be-cleaned object. It is the figure which showed the relationship between surface roughness (Rz) and residual oil amount. 本発明の実施の形態6による洗浄装置を示す構成図で、(a)は上面図、(b)は(a)中矢印の方向から見た図である。It is a block diagram which shows the washing | cleaning apparatus by Embodiment 6 of this invention, (a) is a top view, (b) is the figure seen from the direction of the arrow in (a). 本発明の実施の形態7による洗浄装置を示す構成図である。It is a block diagram which shows the washing | cleaning apparatus by Embodiment 7 of this invention. 本発明の実施の形態8による洗浄装置を示す構成図である。It is a block diagram which shows the washing | cleaning apparatus by Embodiment 8 of this invention. 本発明の実施の形態8による別の洗浄装置を示す構成図である。It is a block diagram which shows another washing | cleaning apparatus by Embodiment 8 of this invention.

符号の説明Explanation of symbols

1 被洗浄物、 1a 被洗浄物の処理面、 2 洗浄槽、
3 マイクロバブル生成部、 4 気体導入部、 5 液体導入部、
6、6a 気泡、 6b 破壊した気泡、 7 起泡部、
8 境界部、 9 洗浄液、 10 界面の上昇、
11 超音波発信器、 12 超音波振動子、 13 石英棒、
14 表面流体移動制御装置、 15 除去物の流れ方向、 16 オーバーフロー槽、
17 被洗浄物、 18 洗浄カゴ、 19 ポンプ、 20 予備槽。
1 Object to be cleaned, 1a Processed surface of object to be cleaned, 2 Cleaning tank,
3 micro-bubble generating part, 4 gas introducing part, 5 liquid introducing part,
6, 6a bubbles, 6b broken bubbles, 7 foaming part,
8 boundary, 9 cleaning liquid, 10 rise of interface,
11 Ultrasonic transmitter, 12 Ultrasonic vibrator, 13 Quartz rod,
14 Surface fluid movement control device, 15 Flow direction of removed material, 16 Overflow tank,
17 Object to be cleaned, 18 Cleaning basket, 19 Pump, 20 Spare tank.

Claims (7)

気泡発生手段により生成された洗浄液の気泡が前記洗浄液の液面に浮上して形成される起泡部での破泡を、被洗浄物の洗浄すべき処理面に作用させることを特徴とする洗浄方法。 Washing characterized in that bubbles generated in the cleaning liquid generated by the bubble generating means float on the liquid surface of the cleaning liquid, and bubbles are broken on the surface to be cleaned of the object to be cleaned. Method. 被洗浄物を起泡部または前記起泡部もしくは洗浄液面の上方1cm以内に配置することを特徴とする請求項1に記載の洗浄方法。 The cleaning method according to claim 1, wherein the object to be cleaned is disposed within 1 cm above the foaming part or the foaming part or the cleaning liquid surface. 気泡径が1μmから500μmであることを特徴とする請求項1または2に記載の洗浄方法。 The cleaning method according to claim 1, wherein the bubble diameter is 1 μm to 500 μm. 洗浄槽内の洗浄液に気泡を発生させる気泡生成手段と、該気泡発生手段により生成された気泡が前記洗浄液の液面に浮上して形成される起泡部または前記洗浄液面の近傍に被洗浄物を配置する手段とを備えたことを特徴とする洗浄装置。 A bubble generating means for generating bubbles in the cleaning liquid in the cleaning tank, and a foamed part formed by the bubbles generated by the bubble generating means floating on the liquid surface of the cleaning liquid or an object to be cleaned in the vicinity of the cleaning liquid surface And a means for arranging the cleaning device. さらに気泡の破泡促進手段とを備えたことを特徴とする請求項4に記載の洗浄装置。 The cleaning apparatus according to claim 4, further comprising a bubble breakage promoting means. 被洗浄物を配置する手段は、前記被洗浄物の位置を可変する制御手段を備えることを特徴とする請求項4に記載の洗浄装置。 5. The cleaning apparatus according to claim 4, wherein the means for arranging the object to be cleaned includes a control means for changing a position of the object to be cleaned. さらに洗浄液の循環手段を備えたことを特徴とする請求項4に記載の洗浄装置。

The cleaning apparatus according to claim 4, further comprising a cleaning liquid circulation means.

JP2005273546A 2005-09-21 2005-09-21 Cleaning method and object to be cleaned Expired - Fee Related JP4595764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005273546A JP4595764B2 (en) 2005-09-21 2005-09-21 Cleaning method and object to be cleaned

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005273546A JP4595764B2 (en) 2005-09-21 2005-09-21 Cleaning method and object to be cleaned

Publications (2)

Publication Number Publication Date
JP2007083142A true JP2007083142A (en) 2007-04-05
JP4595764B2 JP4595764B2 (en) 2010-12-08

Family

ID=37970666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005273546A Expired - Fee Related JP4595764B2 (en) 2005-09-21 2005-09-21 Cleaning method and object to be cleaned

Country Status (1)

Country Link
JP (1) JP4595764B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136852A (en) * 2007-12-11 2009-06-25 Kao Corp Deodorizing and cleaning method for production apparatus for foods or beverages
JP2009154069A (en) * 2007-12-26 2009-07-16 Nitto Denko Corp Method of cleaning glass
JP2009186092A (en) * 2008-02-06 2009-08-20 Mitsubishi Electric Corp Bath hot-water supply device
WO2010114034A1 (en) * 2009-04-01 2010-10-07 Jトップ株式会社 Method and device for desorbing substance adherent to particulate substance
KR20150056182A (en) * 2013-11-15 2015-05-26 한국기계연구원 Apparatus for cleaning organic matter using fine ozone bubble
CN107713755A (en) * 2017-11-16 2018-02-23 江门市乐米电器有限公司 A kind of electric heating products brokenly bubble component
JP2018068570A (en) * 2016-10-27 2018-05-10 三菱電機株式会社 Washing device
WO2018142632A1 (en) 2017-01-31 2018-08-09 株式会社 金星 Composition for fine-bubble generation and generation device
WO2018225601A1 (en) * 2017-06-07 2018-12-13 大同メタル工業株式会社 Cleaning fluid
CN110473773A (en) * 2019-08-22 2019-11-19 北京北方华创微电子装备有限公司 Method for cleaning wafer and wafer cleaning equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320124A (en) * 1993-03-15 1994-11-22 Hitachi Ltd Ultrasonic washing method and apparatus
JPH08257421A (en) * 1995-03-22 1996-10-08 Hayashi Shigemichi Automatic water inclusion device and water inclusion method for rice milling
JP2002316106A (en) * 2001-04-18 2002-10-29 Nsk Ltd Part washing apparatus
JP2004283683A (en) * 2003-03-20 2004-10-14 Mitsubishi Electric Corp Apparatus and method for producing foam
JP2004342932A (en) * 2003-05-16 2004-12-02 Shin Etsu Handotai Co Ltd Method of washing wafer
JP2005093733A (en) * 2003-09-17 2005-04-07 Ebara Corp Substrate treating device
JP2005142309A (en) * 2003-11-05 2005-06-02 Icf Kk Substrate cleaning method, apparatus, and system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320124A (en) * 1993-03-15 1994-11-22 Hitachi Ltd Ultrasonic washing method and apparatus
JPH08257421A (en) * 1995-03-22 1996-10-08 Hayashi Shigemichi Automatic water inclusion device and water inclusion method for rice milling
JP2002316106A (en) * 2001-04-18 2002-10-29 Nsk Ltd Part washing apparatus
JP2004283683A (en) * 2003-03-20 2004-10-14 Mitsubishi Electric Corp Apparatus and method for producing foam
JP2004342932A (en) * 2003-05-16 2004-12-02 Shin Etsu Handotai Co Ltd Method of washing wafer
JP2005093733A (en) * 2003-09-17 2005-04-07 Ebara Corp Substrate treating device
JP2005142309A (en) * 2003-11-05 2005-06-02 Icf Kk Substrate cleaning method, apparatus, and system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136852A (en) * 2007-12-11 2009-06-25 Kao Corp Deodorizing and cleaning method for production apparatus for foods or beverages
JP2009154069A (en) * 2007-12-26 2009-07-16 Nitto Denko Corp Method of cleaning glass
JP2009186092A (en) * 2008-02-06 2009-08-20 Mitsubishi Electric Corp Bath hot-water supply device
WO2010114034A1 (en) * 2009-04-01 2010-10-07 Jトップ株式会社 Method and device for desorbing substance adherent to particulate substance
JP5357961B2 (en) * 2009-04-01 2013-12-04 豊田合成株式会社 Method and apparatus for removing particulate matter deposits
KR20150056182A (en) * 2013-11-15 2015-05-26 한국기계연구원 Apparatus for cleaning organic matter using fine ozone bubble
KR101688638B1 (en) * 2013-11-15 2016-12-21 한국기계연구원 Apparatus for cleaning organic matter using fine ozone bubble
JP2018068570A (en) * 2016-10-27 2018-05-10 三菱電機株式会社 Washing device
JP7035307B2 (en) 2016-10-27 2022-03-15 三菱電機株式会社 Cleaning equipment
WO2018142632A1 (en) 2017-01-31 2018-08-09 株式会社 金星 Composition for fine-bubble generation and generation device
EP3888778A2 (en) 2017-01-31 2021-10-06 Kinboshi Inc. Fine bubble generation apparatus
WO2018225601A1 (en) * 2017-06-07 2018-12-13 大同メタル工業株式会社 Cleaning fluid
JP2018202350A (en) * 2017-06-07 2018-12-27 大同メタル工業株式会社 Cleaning fluid
GB2578248A (en) * 2017-06-07 2020-04-22 Daido Metal Co Cleaning fluid
CN107713755A (en) * 2017-11-16 2018-02-23 江门市乐米电器有限公司 A kind of electric heating products brokenly bubble component
CN110473773A (en) * 2019-08-22 2019-11-19 北京北方华创微电子装备有限公司 Method for cleaning wafer and wafer cleaning equipment
CN110473773B (en) * 2019-08-22 2022-03-22 北京北方华创微电子装备有限公司 Wafer cleaning method and wafer cleaning equipment

Also Published As

Publication number Publication date
JP4595764B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4595764B2 (en) Cleaning method and object to be cleaned
JP5252861B2 (en) Substrate processing equipment
WO2016147995A1 (en) Cleaning device
JP4970623B2 (en) Steel plate pickling method and pickling apparatus
KR101207384B1 (en) Method and apparatus for cleaning of semiconductor wafer using micro nano-bubble
CN102725824A (en) Improved ultrasonic cleaning fluid, method and apparatus
CN102489470A (en) Cleaning device and cleaning method of glass substrate
JP2007136275A (en) Washing device
JP6261814B2 (en) Washing apparatus and washing method, and membrane separation bioreactor
JP5015717B2 (en) Substrate cleaning device
JP5053115B2 (en) Substrate processing apparatus and processing method
JP5078822B2 (en) Cleaning method and cleaning device
JP2009202156A (en) Cleaning apparatus
JP5517756B2 (en) Cleaning device
CN103691714B (en) A kind of cleaning device and cleaning method
JP2000001799A (en) Electrolytic cleaning composition for die, and die cleaning device using the composition
FI3003583T3 (en) Specific process for cleaning electronic components and/or circuits
JP2017119259A (en) Washing equipment and washing method
JP4487544B2 (en) Cleaning method and object to be cleaned
JP2010227795A (en) Cleaning apparatus and method
JP2009178480A (en) Dishwasher
JP2009061454A (en) Washing method and washing object
JP2009213811A (en) Dishwasher
CN102489469A (en) Method for cleaning substrate with ultrasonic oscillation liquid
JP2009256805A (en) Cleaning device, cleaning method and object to be cleaned

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R151 Written notification of patent or utility model registration

Ref document number: 4595764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees