JP2009130339A - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor Download PDF

Info

Publication number
JP2009130339A
JP2009130339A JP2007307315A JP2007307315A JP2009130339A JP 2009130339 A JP2009130339 A JP 2009130339A JP 2007307315 A JP2007307315 A JP 2007307315A JP 2007307315 A JP2007307315 A JP 2007307315A JP 2009130339 A JP2009130339 A JP 2009130339A
Authority
JP
Japan
Prior art keywords
chemical conversion
electrolytic capacitor
tab terminal
solid electrolytic
electrode foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007307315A
Other languages
Japanese (ja)
Inventor
Tetsuya Sadatsuka
哲也 定塚
Hidetaka Kitamura
英貴 北村
Kiyoshi Takahashi
潔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP2007307315A priority Critical patent/JP2009130339A/en
Publication of JP2009130339A publication Critical patent/JP2009130339A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further reduce resistance by electrically and reliably connecting a tab terminal to electrode foil, and to reduce a leakage current and improve a withstand voltage. <P>SOLUTION: In a method of manufacturing a solid electrolytic capacitor for forming a solid electrolyte made of an electroconductive polymer in a capacitor element 6 composed by winding or laminating anode electrode foil 3 and cathode electrode foil 4 to which tab terminals 1, 2 are mounted, respectively, via a separator as shown in Fig. 1, when manufacturing a capacitor element, unformed tab terminals, where no chemical coating films by chemical formation or anodic oxidation are formed on a connection surface with the electrode foil of at least a tab terminal, are mounted to the electrode foils each, and then the unformed tab terminals are subjected to chemical formation treatment during a formation process of the solid electrolytic capacitor to form them as chemical formation tab terminals. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、導電性高分子からなる固体電解質を用いた箔巻回型または箔積層型の固体電解コンデンサの製造方法に関し、さらに詳しく言えば、タブ端子と電極箔間の接続抵抗を低減する技術に関するものである。   The present invention relates to a method for manufacturing a foil wound type or foil laminated type solid electrolytic capacitor using a solid electrolyte made of a conductive polymer, and more specifically, a technique for reducing connection resistance between a tab terminal and an electrode foil. It is about.

導電性高分子からなる固体電解質を用いた固体電解コンデンサは、図1に示すように、基本的な構成として、ともに引き出し端子としてタブ端子1,2を陽極電極箔3,陰極電極箔4にそれぞれ取り付けている。   As shown in FIG. 1, a solid electrolytic capacitor using a solid electrolyte made of a conductive polymer has a basic configuration in which both tab terminals 1 and 2 are connected to an anode electrode foil 3 and a cathode electrode foil 4 as lead terminals, respectively. It is attached.

箔巻回型の固体電解コンデンサでは、この陽極電極箔3と陰極電極箔4とをセパレータ5を介して対向させて巻回してなるコンデンサ素子6に、ポリピロールやポリチオフェン等から適宜選択した導電性高分子を含浸し重合させて固体電解質を形成して、図示しない外装ケース内に収納し、その開口部を封口体または樹脂にて封止することにより作製される。   In the foil-wound solid electrolytic capacitor, a conductive element with an appropriate conductivity selected from polypyrrole, polythiophene, or the like is used for the capacitor element 6 formed by winding the anode electrode foil 3 and the cathode electrode foil 4 with the separator 5 therebetween. It is produced by impregnating and polymerizing molecules to form a solid electrolyte, which is housed in an exterior case (not shown), and the opening is sealed with a sealing body or resin.

タブ端子1,2は、図2に示すように、端子本体11と、端子本体11に取り付けられたCP線(ハンダメッキ銅被覆鋼線)12とを備えている。なお、近年においては、CP線のハンダメッキが鉛から鉛フリーに変わってきている。   As shown in FIG. 2, the tab terminals 1 and 2 include a terminal main body 11 and a CP wire (solder-plated copper-coated steel wire) 12 attached to the terminal main body 11. In recent years, solder plating of CP wire has been changed from lead to lead-free.

端子本体11は、アルミニウムの丸棒線を基材とし、所定長さの丸棒部11aを残して、その一端側を例えばプレスにより該丸棒線を羽子板状の平坦部11bとすることにより形成され、CP線3は、丸棒部11aの他端部に溶接により取り付けられる。   The terminal body 11 is formed by using a round bar wire of aluminum as a base material, leaving a round bar portion 11a of a predetermined length, and forming one end side of the round bar wire by a press, for example, to form a flat plate portion 11b like a battledore. The CP wire 3 is attached to the other end of the round bar portion 11a by welding.

タブ端子1,2は、通常、かしめにより電極箔3,4にそれぞれ取り付けられる。すなわち、図2に示すように、タブ端子1,2の平坦部11bをそれぞれ電極箔3,4の上に配置し、通常は平坦部11b側から例えば2本のかしめ針7,7を突き刺して、平坦部11bと電極箔3,4を貫通させる。   The tab terminals 1 and 2 are usually attached to the electrode foils 3 and 4 by caulking, respectively. That is, as shown in FIG. 2, the flat portions 11b of the tab terminals 1 and 2 are respectively arranged on the electrode foils 3 and 4, and usually, for example, two caulking needles 7 and 7 are pierced from the flat portion 11b side. The flat portion 11b and the electrode foils 3 and 4 are penetrated.

かしめ針7,7の突き刺しにより、平坦部11bおよび電極箔3,4を貫通する突き刺し孔が穿設されるとともに、該突き刺し孔の周りに電極箔3,4側に突出する花弁状の爪片(ともに図示しない)が形成され、同時にその爪片を潰し圧着して電極箔3,4に強固に押し付ける。   A piercing hole penetrating the flat portion 11b and the electrode foils 3 and 4 is formed by the piercing of the caulking needles 7 and 7, and a petal-like nail piece protruding toward the electrode foils 3 and 4 around the piercing hole. (Both not shown) are formed, and at the same time, the claw pieces are crushed and pressure-bonded to firmly press the electrode foils 3 and 4.

アルミニウム固体電解コンデンサでは、導電性高分子を含浸する前にセパレータ5を炭化させることもある。   In an aluminum solid electrolytic capacitor, the separator 5 may be carbonized before impregnating the conductive polymer.

通常、アルミニウム固体電解コンデンサに用いられる導電性高分子としては、ポリチオフェンやポリピロールが一般的であるが、該導電性高分子は化成皮膜の形成や修復性が乏しいため、タブ端子1,2にあらかじめ化成皮膜を形成している。   Usually, polythiophene and polypyrrole are generally used as the conductive polymer used in the aluminum solid electrolytic capacitor. However, since the conductive polymer is poor in formation of a chemical conversion film and restorability, the tab terminals 1 and 2 are previously provided. A chemical conversion film is formed.

タブ端子1,2には、その生産性の観点からアルミニウム丸棒線をタブ端子形状に形成する前に、長尺の丸棒線のまま化成液に浸漬させて表面に化成皮膜を形成した、いわゆるアルミニウム化成線が用いられている。   Before forming the aluminum round bar wire into the tab terminal shape from the viewpoint of its productivity, the tab terminals 1 and 2 were immersed in the chemical conversion liquid as a long round bar wire to form a chemical conversion film on the surface. So-called aluminum conversion wires are used.

該アルミニウム化成線を用いる場合、丸棒をプレス加工などにて平坦部11bを形成する際の衝撃で表面の化成皮膜の一部が破損してしまう。そのため、タブ端子を電極箔に取り付ける前に再度化学化成を行ったり、電極箔の側面に化成皮膜を形成する工程やコンデンサのエージング工程で、アルミニウムの化成皮膜(Al)を補修するようにしている(例えば、特許文献1参照)。 When the aluminum chemical conversion wire is used, a part of the chemical conversion film on the surface is damaged by an impact when the flat portion 11b is formed by pressing a round bar. Therefore, chemical conversion is performed again before the tab terminal is attached to the electrode foil, or the aluminum conversion film (Al 2 O 3 ) is repaired in the process of forming a conversion film on the side surface of the electrode foil or the capacitor aging process. (For example, refer to Patent Document 1).

特開2001−176753号公報JP 2001-176753 A

しかしながら、あらかじめ化成皮膜が付けられた化成タブ端子を使用する場合、電極箔との接続抵抗が高く、また、漏れ電流の低減や耐電圧の向上をはかることが難しいという問題がある。   However, when using a chemical conversion tab terminal to which a chemical conversion film has been applied in advance, there is a problem that the connection resistance with the electrode foil is high, and it is difficult to reduce the leakage current and improve the withstand voltage.

その原因を究明するため、本発明者らは、上記の手法にて化成皮膜を補修した化成タブ端子の表面を電子顕微鏡で観察した。その電子顕微鏡写真を図5に示す。これから分かるように、化成皮膜を補修したタブ端子の表面には、多数の凹凸を含む不均一な化成皮膜が形成されている。   In order to investigate the cause, the present inventors observed the surface of the chemical conversion tab terminal whose chemical conversion film was repaired by the above-mentioned method with an electron microscope. The electron micrograph is shown in FIG. As can be seen, a non-uniform chemical conversion film including a large number of irregularities is formed on the surface of the tab terminal repaired with the chemical conversion film.

この不均一な化成皮膜は、アルミニウム化成線をプレスする際に破損した化成皮膜が完全に修復できず、均一な皮膜にならないことによるものであり、本発明者らは、これが原因で化成タブ端子と電極箔との接続抵抗が高くなり、また、漏れ電流の低減や耐電圧の向上が阻害されているとの知見を得た。   This non-uniform conversion coating is due to the fact that the conversion coating damaged when pressing the aluminum conversion wire cannot be completely repaired and does not become a uniform coating. It was found that the connection resistance between the electrode foil and the electrode foil was increased, and that the reduction of leakage current and the improvement of the withstand voltage were hindered.

したがって、本発明の課題は、導電性高分子からなる固体電解質を用いた固体電解コンデンサにおいて、タブ端子と電極箔とを電気的に確実に接続して、より一層の低抵抗化をはかるとともに、漏れ電流の低減および耐電圧の向上をはかることにある。   Therefore, the subject of the present invention is to solidly connect the tab terminal and the electrode foil in a solid electrolytic capacitor using a solid electrolyte made of a conductive polymer to further reduce the resistance, The purpose is to reduce the leakage current and improve the withstand voltage.

上記課題を解決するため、本発明は、各々タブ端子を取り付けた陽極電極箔と陰極電極箔とをセパレータを介して巻回または積層してなるコンデンサ素子に、導電性高分子からなる固体電解質を形成する固体電解コンデンサの製造方法において、上記コンデンサ素子作成時には、少なくとも上記タブ端子の上記電極箔との接続面に化学化成または陽極酸化による化成皮膜が形成されていない未化成タブ端子を上記電極箔にそれぞれ取り付け、上記未化成タブ端子を上記固体電解コンデンサの形成工程中の化成工程で化成処理して化成タブ端子とすることを特徴としている。   In order to solve the above-described problems, the present invention provides a solid electrolyte made of a conductive polymer on a capacitor element in which an anode electrode foil and a cathode electrode foil each having a tab terminal attached thereto are wound or laminated via a separator. In the method for producing a solid electrolytic capacitor to be formed, at the time of producing the capacitor element, an unformed tab terminal in which a chemical conversion film by chemical conversion or anodic oxidation is not formed at least on the connection surface of the tab terminal with the electrode foil is used as the electrode foil. Each of the non-formed tab terminals is formed into a formed tab terminal by performing a chemical conversion process in the forming step in the solid electrolytic capacitor forming step.

本発明において、上記コンデンサ素子に上記固体電解質を形成する前に、上記未化成タブ端子を化成処理することが好ましい。   In the present invention, it is preferable that the unformed tab terminal is subjected to a chemical conversion treatment before the solid electrolyte is formed on the capacitor element.

また、本発明の好ましい態様として、上記化成処理を行った後、上記コンデンサ素子に上記固体電解質を形成する前に、上記化成処理に要した時間の1/6〜1/2の時間の再化成処理を行うようにしてもよい。   Further, as a preferred embodiment of the present invention, after the chemical conversion treatment is performed, before the solid electrolyte is formed on the capacitor element, re-chemical conversion is performed for 1/6 to 1/2 of the time required for the chemical conversion treatment. Processing may be performed.

また、化成処理または再化成処理は、アジピン酸系、リン酸系またはホウ酸系を主成分とする化成液にて行うことが好ましい。   Moreover, it is preferable to perform a chemical conversion treatment or a re-chemical conversion treatment with the chemical conversion liquid which has an adipic acid type, a phosphoric acid type, or a boric acid type as a main component.

この場合、再化成処理に用いる化成液は、化成処理で用いる化成液と同じ化成液であってもよいが、好ましくは異なる化成液が用いられるとよい。   In this case, the chemical conversion liquid used for the re-chemical conversion treatment may be the same chemical conversion liquid as that used in the chemical conversion treatment, but preferably a different chemical conversion liquid is used.

本発明によれば、少なくとも電極箔と接続する箇所の表面に化学化成または陽極酸化により化成皮膜が形成されていない未化成タブ端子を電極箔に取り付けたのち、タブ端子に化成処理を施すことにより、タブ端子の表面に均一な化成皮膜が形成されるため、タブ端子と電極箔との間の接続抵抗が低減され、化成皮膜の脆弱部からの漏れ電流が低減し、耐電圧性が向上する。   According to the present invention, by attaching an unformed tab terminal having no chemical film formed by chemical conversion or anodic oxidation on the surface of the portion connected to the electrode foil to the electrode foil, the tab terminal is then subjected to chemical conversion treatment. Since a uniform chemical conversion film is formed on the surface of the tab terminal, the connection resistance between the tab terminal and the electrode foil is reduced, the leakage current from the weak part of the chemical conversion film is reduced, and the voltage resistance is improved. .

本発明においても、基本的な構成として、図1に示すように、ともに充放電用の電極端子としてタブ端子1,2が取り付けられた陽極電極箔3と陰極電極箔4とをセパレータ5を介して巻回してなるコンデンサ素子6に、導電性高分子を含浸し重合させて固体電解質を形成し、図示しない有底筒状のアルミニウム製の金属ケース内に収納し、その開口部を封口体にて封止することにより、導電性高分子からなる固体電解質を用いた箔巻回型の固体電解コンデンサが作製される。   Also in the present invention, as shown in FIG. 1, as a basic configuration, an anode electrode foil 3 and a cathode electrode foil 4 to which tab terminals 1 and 2 are attached as charge / discharge electrode terminals are provided via a separator 5. The capacitor element 6 is rolled and impregnated with a conductive polymer to be polymerized to form a solid electrolyte, which is housed in a bottomed cylindrical aluminum metal case (not shown), and the opening is used as a sealing body. Thus, a foil wound type solid electrolytic capacitor using a solid electrolyte made of a conductive polymer is manufactured.

電極箔3,4には、アルミニウム,タンタル,チタンなどの弁金属箔、これらの合金箔もしくは蒸着箔などが用いられる。   For the electrode foils 3 and 4, valve metal foils such as aluminum, tantalum, and titanium, alloy foils or vapor deposition foils thereof are used.

また、タブ端子1,2は、図2に示すように、端子本体11と、端子本体11に取り付けられたCP線(ハンダメッキ銅被覆鋼線)12とを備えている。   As shown in FIG. 2, the tab terminals 1 and 2 include a terminal main body 11 and a CP wire (solder-plated copper-coated steel wire) 12 attached to the terminal main body 11.

端子本体11は、アルミニウムの丸棒線を基材とし、所定長さの丸棒部11aを残して、その一端側を例えばプレスにより羽子板状の平坦部11bとすることにより形成され、CP線12は、丸棒部11aの他端側に溶接により取り付けられる。   The terminal body 11 is formed by using a round bar wire made of aluminum as a base material, leaving a round bar portion 11a having a predetermined length, and forming one end side thereof as a flat plate portion 11b by pressing, for example, a CP wire 12 Is attached to the other end of the round bar 11a by welding.

本発明において、端子本体11には、未化成のアルミニウム丸棒線が用いられる。なお、未化成のアルミニウム丸棒線とは、丸棒線の表面に化学化成もしくは陽極酸化処理などにより意図的に形成される化成皮膜を持たない無垢のアルミニウム丸棒線をいう。   In the present invention, an unformed aluminum round bar wire is used for the terminal body 11. The unformed aluminum round bar wire refers to a solid aluminum round bar wire that does not have a chemical conversion film intentionally formed on the surface of the round bar wire by chemical conversion or anodizing treatment.

すなわち、本発明で用いるタブ端子1,2は、少なくとも電極箔3,4と接触する箇所には、化学化成または陽極酸化による化成皮膜が形成されていない未化成端子であり、本発明では、タブ端子(未化成タブ端子)1,2を、そのまま電極箔3,4に取り付ける。   That is, the tab terminals 1 and 2 used in the present invention are unformed terminals in which a chemical conversion film by chemical conversion or anodic oxidation is not formed at least at a position where they are in contact with the electrode foils 3 and 4. The terminals (unformed tab terminals) 1 and 2 are attached to the electrode foils 3 and 4 as they are.

取り付け方法にかしめを採用する場合には、図2に示すように、タブ端子1,2の平坦部11bをそれぞれ電極箔3,4の上に重ね、平坦部11b側よりかしめ針7,7を突き刺す。図示の例では、かしめ箇所を2箇所としているが、3箇所以上であってもよい。また、場合によっては1箇所でもよい。   When the caulking is adopted as the mounting method, as shown in FIG. 2, the flat portions 11b of the tab terminals 1 and 2 are overlapped on the electrode foils 3 and 4, respectively, and the caulking needles 7 and 7 are attached from the flat portion 11b side. pierce. In the illustrated example, there are two caulking locations, but there may be 3 or more locations. Moreover, depending on the case, one place may be sufficient.

なお、電極箔3,4へのタブ端子1,2の取り付け方法は、かしめ以外にレーザ溶接,超音波溶接または冷間圧接などでもよい。   Note that the method of attaching the tab terminals 1 and 2 to the electrode foils 3 and 4 may be laser welding, ultrasonic welding, cold pressure welding, or the like in addition to caulking.

本発明において、導電性高分子には、3,4−エチレンジオキシチオフェンが好ましいが、ピロール,チオフェン,フラン,アニリンおよびそれらの誘導体等、酸化重合により導電性ポリマーとなる各種モノマーを用いてもよい。   In the present invention, 3,4-ethylenedioxythiophene is preferable as the conductive polymer, but various monomers that become conductive polymers by oxidative polymerization such as pyrrole, thiophene, furan, aniline, and derivatives thereof may be used. Good.

本発明に適用される酸化剤としては、水溶液系の酸化剤と有機溶剤系の酸化剤が挙げられ、水溶液系の酸化剤としては、ペルオキソ二硫酸およびそのNa塩,K塩,NH塩,硝酸セリウム(IV),硝酸セリウム(IV)アンモニウム,硫酸鉄(III),硝酸鉄(III),塩化鉄(III)等が挙げられる。 Examples of the oxidizing agent applied to the present invention include an aqueous oxidizing agent and an organic solvent oxidizing agent. Examples of the aqueous oxidizing agent include peroxodisulfuric acid and its Na salt, K salt, NH 4 salt, Examples include cerium (IV) nitrate, ammonium cerium (IV) nitrate, iron (III) sulfate, iron (III) nitrate, and iron (III) chloride.

また、有機溶剤系の酸化剤としては、有機スルホン酸の第二鉄塩、例えばパラトルエンスルホン酸第二鉄,ドデシルベンゼンスルホン酸鉄(III),p−トルエンスルホン酸鉄(III)等が挙げられるが、これらに限定されるものではない。   Examples of organic solvent-based oxidizing agents include ferric salts of organic sulfonic acids such as ferric paratoluenesulfonate, iron (III) dodecylbenzenesulfonate, and iron (III) p-toluenesulfonate. However, it is not limited to these.

酸化剤溶液の溶媒としては、例えばテトラヒドロフラン(THF)やジオキサン,ジエチルエーテル等のエーテル類;アセトン,メチルエチルケトン等のケトン類,ジメチルホルムアミド,アセトニトリル,ベンゾニトリル,N−メチルピロリドン(NMP),ジメチルスルホキシド(DMSO)等の非プロトン性溶媒、メタノール,ブタノール,プロパノール等のアルコール類、または水あるいはこれらの混合溶媒を用いることができる。好ましくは、水、アルコール類またはケトン類あるいはそれらの混合系が望ましい。   Examples of the solvent for the oxidant solution include ethers such as tetrahydrofuran (THF), dioxane, and diethyl ether; ketones such as acetone and methyl ethyl ketone, dimethylformamide, acetonitrile, benzonitrile, N-methylpyrrolidone (NMP), dimethyl sulfoxide ( An aprotic solvent such as DMSO), alcohols such as methanol, butanol, and propanol, water, or a mixed solvent thereof can be used. Preferably, water, alcohols or ketones or a mixed system thereof is desirable.

本発明における未化成タブ端子の化成処理時間は、任意に選択されてよいが、液温が高ければ浸漬時間を短縮することができ、例えば液温85℃では30分浸漬程度を目安とすることができる。   The chemical conversion treatment time of the unformed tab terminal in the present invention may be arbitrarily selected, but if the liquid temperature is high, the immersion time can be shortened. For example, at a liquid temperature of 85 ° C., the immersion time is about 30 minutes. Can do.

化成液としては、アジピン酸系のほかにリン酸系,ホウ酸系等が挙げられる。化成処理の際に印加する電圧は、アルミニウム固体電解コンデンサの定格電圧の倍以上を印加して化成皮膜の耐電圧を高めておくことが好ましい。   Examples of the chemical conversion liquid include phosphoric acid and boric acid in addition to adipic acid. The voltage applied during the chemical conversion treatment is preferably applied at least twice the rated voltage of the aluminum solid electrolytic capacitor to increase the withstand voltage of the chemical conversion film.

また、本発明における未化成タブ端子は、化成処理工程後、必要に応じて再化成を行うのが好ましい。この場合、液温が化成処理工程で用いられる化成液と同じ液温であるとして、再化成処理時間は、化成処理時間の1/6〜1/2程度の時間でよい。再化成液としては、化成処理工程での化成液と同様に、アジピン酸系,リン酸系,ホウ酸系等が挙げられる。   Moreover, it is preferable that the unformed tab terminal in the present invention is re-formed as necessary after the chemical conversion treatment step. In this case, assuming that the liquid temperature is the same as the chemical liquid used in the chemical conversion treatment step, the re-chemical conversion treatment time may be about 1/6 to 1/2 of the chemical conversion treatment time. Examples of the re-chemical conversion liquid include adipic acid-based, phosphoric acid-based, boric acid-based and the like, similar to the chemical conversion liquid in the chemical conversion treatment step.

〔実施例1〕
まず、化学化成または陽極酸化を行っていないアルミニウム丸棒線をプレス加工して、幅2.5mm,厚み190μmの平坦部を有する未化成タブ端子を作製した。この未化成タブ端子を一対用いて、一方の未化成タブ端子の平坦部に、厚み100μm,幅2.2mmの陽極箔を重ね合わせて取り付け、他方の未化成タブ端子の平坦部には、厚み60μm,幅2.2mmの陰極箔を同様にして取り付けた。そして、陽極箔と陰極箔との間にセパレータを介在させて巻回してコンデンサ素子を作製した。
[Example 1]
First, an aluminum round bar wire not subjected to chemical conversion or anodization was pressed to produce an unformed tab terminal having a flat portion having a width of 2.5 mm and a thickness of 190 μm. Using a pair of these unformed tab terminals, an anode foil having a thickness of 100 μm and a width of 2.2 mm is attached to a flat portion of one unformed tab terminal, and a thickness is attached to the flat portion of the other unformed tab terminal. A cathode foil of 60 μm and a width of 2.2 mm was attached in the same manner. And it wound by interposing a separator between anode foil and cathode foil, and produced a capacitor element.

次に、陽極箔と陰極箔の各電極箔の酸化皮膜に存在する欠損部の修復および電極箔側面の切り口とタブ端子の平坦部に化成皮膜を形成するために、アジピン酸アンモンを主成分とする化成液に20〜60分間浸漬し電圧を印加して化成を行った。印加電圧は、耐電圧に余裕を持たせるために、この実施例では、定格電圧が16Vなので32V以上とした。   Next, in order to repair the defects existing in the oxide film of each electrode foil of the anode foil and the cathode foil, and to form a chemical conversion film on the cut surface of the electrode foil side surface and the flat portion of the tab terminal, the main component is ammonium adipate. The solution was immersed in a chemical conversion solution for 20 to 60 minutes, and a voltage was applied to perform chemical conversion. In this embodiment, the applied voltage is set to 32 V or more because the rated voltage is 16 V in order to provide a margin for the withstand voltage.

次に、コンデンサ素子にセパレータが炭化する200℃以上の熱を加えてセパレータを炭化したのち、リン酸アンモンを主成分とする化成液に5〜20分間浸漬して再化成を行った。   Next, after applying heat of 200 ° C. or higher at which the separator carbonized to the capacitor element to carbonize the separator, re-chemical conversion was performed by immersing in a chemical conversion liquid mainly composed of ammonium phosphate for 5 to 20 minutes.

この再化成後のタブ端子の平坦部を電子顕微鏡で観察したところ、図3に示すように、ほぼ均一な化成皮膜が認められた。これは、未化成タブ端子の下地には、そもそも化学化成もしくは陽極酸化による酸化皮膜自体がなく、その酸化皮膜による欠損による凹凸がないことによる。   When the flat part of the tab terminal after this re-chemical conversion was observed with an electron microscope, a substantially uniform chemical conversion film was observed as shown in FIG. This is because the base of the unformed tab terminal does not have an oxide film by chemical conversion or anodization in the first place, and has no irregularities due to defects due to the oxide film.

コンデンサ素子のセパレータは炭化させることが好ましいため、この実施例1では、セパレータを熱処理して炭化させたが、炭化させなくてもよい。   Since it is preferable to carbonize the separator of the capacitor element, in Example 1, the separator was carbonized by heat treatment, but it is not necessary to carbonize.

次に、導電性高分子であるチオフェンモノマー(3,4−エチレンジオキシチオフェン)をコンデンサ素子に含浸し重合させ、加熱処理してコンデンサ素子に固体電解質を作製した。   Next, a thiophene monomer (3,4-ethylenedioxythiophene), which is a conductive polymer, was impregnated into a capacitor element and polymerized, followed by heat treatment to produce a solid electrolyte in the capacitor element.

このコンデンサ素子をアルミニウム製の外装ケースに入れ、ゴム封口体にて封口して組み立てた後、130℃以上の加熱雰囲気下で電圧を印加して100分以上エージング処理して、アルミニウム固体電解コンデンサを作製した。   After this capacitor element is put in an aluminum outer case and sealed with a rubber sealing body and assembled, it is subjected to an aging treatment for 100 minutes or more by applying a voltage in a heated atmosphere of 130 ° C. or higher to obtain an aluminum solid electrolytic capacitor. Produced.

〔比較例1〕
タブ端子として、アルミニウム化成線を基材とし、成形後に再化成を行った化成タブ端子を用い、化成処理時間を5分間とした以外は、上記実施例1と同じ工程を経て、アルミニウム固体電解コンデンサを作製した。化成処理時間を上記実施例1の30分間と比較して5分間と短くしたのは、化成タブ端子にさらに厚く化成皮膜が形成されないようにするためである。
[Comparative Example 1]
The aluminum solid electrolytic capacitor was subjected to the same process as in Example 1 except that an aluminum conversion wire was used as a tab terminal, a conversion tab terminal that was re-formed after molding, and the conversion treatment time was 5 minutes. Was made. The reason for shortening the chemical conversion treatment time to 5 minutes as compared to 30 minutes in Example 1 is to prevent the chemical conversion film from being formed thicker on the chemical conversion tab terminal.

〔比較例2〕
上記実施例1と同様に未化成タブ端子を用いたが、化成処理時間を10分とした。それ以外は、上記実施例1と同じ工程を経て、アルミニウム固体電解コンデンサを作製した。
[Comparative Example 2]
Although the unchemical tab terminal was used like the said Example 1, the chemical conversion treatment time was 10 minutes. Other than that, the aluminum solid electrolytic capacitor was produced through the same steps as in Example 1 above.

上記実施例1および上記比較例1,2により、定格16V100μF相当のアルミニウム固体電解コンデンサのサンプルをそれぞれ600個作製し、その各々について、コンデンサ端子間に100V/minの掃引速度で電圧を印加し、その際の電流値の変化を測定した。各例での測定結果(平均値)を図4のグラフに示す。   According to Example 1 and Comparative Examples 1 and 2, 600 samples of an aluminum solid electrolytic capacitor equivalent to a rating of 16 V 100 μF were prepared, and a voltage was applied between the capacitor terminals at a sweep speed of 100 V / min for each of the samples. The change in current value at that time was measured. The measurement result (average value) in each example is shown in the graph of FIG.

これによると、各比較例1,2は、15Vを超えたあたたりから急激に電流の増加が起こるのに対し、実施例1は、約18Vまで電流上昇が抑えられており、耐電圧が20%ほど向上していることが分かる。   According to this, in each of Comparative Examples 1 and 2, the current suddenly increases after the voltage exceeds 15V, while in Example 1, the current increase is suppressed to about 18V, and the withstand voltage is It can be seen that it has improved by about 20%.

また、上記実施例1および上記比較例1,2による各サンプルのエージング後の5特性(化成最終電流(μA),容量(μF),tanδ,ESR(mΩ),漏れ電流(μA);いずれも平均値)を測定したので、その測定結果を表1に示す。   Further, five characteristics after aging of each sample according to Example 1 and Comparative Examples 1 and 2 (formation final current (μA), capacity (μF), tan δ, ESR (mΩ), leakage current (μA); Table 1 shows the measurement results.

実施例1は、比較例1と比較してESRが低く、かつ、漏れ電流が小さくなっている。比較例2は、未化成タブ端子を使用しているため、ESRが低いものの漏れ電流が大きい。これは、化成処理時間が実施例1に比べて短く、酸化皮膜の形成が不十分であったことによる。   In Example 1, the ESR is low and the leakage current is small as compared with Comparative Example 1. Since Comparative Example 2 uses an unformed tab terminal, the leakage current is large although the ESR is low. This is because the chemical conversion treatment time was shorter than that of Example 1 and the formation of the oxide film was insufficient.

なお、本発明は、箔巻回型のほかに、各々タブ端子が取り付けられた陽極箔と陰極箔とをセパレータを介して積層してなる積層型の固体電解コンデンサにも適用可能である。   In addition to the foil wound type, the present invention can also be applied to a stacked solid electrolytic capacitor in which an anode foil and a cathode foil each having a tab terminal attached thereto are stacked via a separator.

箔巻回型固体電解コンデンサの構造を示す模式的な分解斜視図。The typical disassembled perspective view which shows the structure of a foil winding type solid electrolytic capacitor. タブ端子を電極箔にかしめにより接続する状態を示す模式的な斜視図。The typical perspective view showing the state where a tab terminal is connected to electrode foil by caulking. 本発明により化成されたタブ端子の表面を撮影した電子顕微鏡写真。The electron micrograph which image | photographed the surface of the tab terminal formed by this invention. 実施例1および比較例1,2の電圧−電流特性を示すグラフ。The graph which shows the voltage-current characteristic of Example 1 and Comparative Examples 1 and 2. FIG. 従来用いられている化成タブ端子の表面を撮影した電子顕微鏡写真。The electron micrograph which image | photographed the surface of the chemical conversion tab terminal used conventionally.

符号の説明Explanation of symbols

1,2 タブ端子
1 端子本体
11a 丸棒部
11b 平坦部
12 CP線
3,4 電極箔
5 セパレータ
6コンデンサ素子
1, 2 Tab terminal 1 Terminal body 11a Round bar portion 11b Flat portion 12 CP wire 3, 4 Electrode foil 5 Separator 6 Capacitor element

Claims (5)

各々タブ端子を取り付けた陽極電極箔と陰極電極箔とをセパレータを介して巻回または積層してなるコンデンサ素子に、導電性高分子からなる固体電解質を形成する固体電解コンデンサの製造方法において、
上記コンデンサ素子作成時には、少なくとも上記タブ端子の上記電極箔との接続面に化学化成または陽極酸化による化成皮膜が形成されていない未化成タブ端子を上記電極箔にそれぞれ取り付け、上記未化成タブ端子を上記固体電解コンデンサの形成工程中の化成工程で化成処理して化成タブ端子とすることを特徴とする固体電解コンデンサの製造方法。
In a method for producing a solid electrolytic capacitor, in which a solid electrolyte made of a conductive polymer is formed on a capacitor element formed by winding or laminating an anode electrode foil and a cathode electrode foil each having a tab terminal attached thereto via a separator,
At the time of making the capacitor element, at least the unformed tab terminal on which the chemical conversion or anodic oxidation conversion film is not formed on the connection surface of the tab terminal with the electrode foil is attached to the electrode foil, and the unformed tab terminal is attached. A method for producing a solid electrolytic capacitor, characterized in that a chemical conversion treatment is performed in a chemical conversion step in the solid electrolytic capacitor forming step to form a chemical conversion tab terminal.
上記コンデンサ素子に上記固体電解質を形成する前に、上記未化成タブ端子を化成処理することを特徴とする請求項1に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein the unformed tab terminal is subjected to a chemical conversion treatment before the solid electrolyte is formed on the capacitor element. 上記化成処理を行った後、上記コンデンサ素子に上記固体電解質を形成する前に、上記化成処理に要した時間の1/6〜1/2の時間の再化成処理を行うことを特徴とする請求項1または2に記載の固体電解コンデンサの製造方法。   After the chemical conversion treatment is performed, before the solid electrolyte is formed on the capacitor element, the chemical conversion treatment is performed for 1/6 to 1/2 of the time required for the chemical conversion treatment. Item 3. A method for producing a solid electrolytic capacitor according to Item 1 or 2. アジピン酸系、リン酸系またはホウ酸系を主成分とする化成液にて上記化成処理または上記再化成処理を行うことを特徴とする請求項1ないし3のいずれか1項に記載の固体電解コンデンサの製造方法。   4. The solid electrolysis according to any one of claims 1 to 3, wherein the chemical conversion treatment or the re-chemical conversion treatment is performed with a chemical conversion liquid mainly composed of adipic acid, phosphoric acid, or boric acid. Capacitor manufacturing method. 上記再化成処理に用いる化成液は、上記化成処理で用いる化成液と異なることを特徴とする請求項3または4に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 3 or 4, wherein a chemical conversion liquid used in the re-chemical conversion treatment is different from a chemical conversion liquid used in the chemical conversion treatment.
JP2007307315A 2007-11-28 2007-11-28 Method for manufacturing solid electrolytic capacitor Withdrawn JP2009130339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007307315A JP2009130339A (en) 2007-11-28 2007-11-28 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307315A JP2009130339A (en) 2007-11-28 2007-11-28 Method for manufacturing solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2009130339A true JP2009130339A (en) 2009-06-11

Family

ID=40820908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307315A Withdrawn JP2009130339A (en) 2007-11-28 2007-11-28 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2009130339A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111319A1 (en) * 2011-02-18 2012-08-23 パナソニック株式会社 Electrolytic capacitor and method for manufacturing same
JP2013225547A (en) * 2012-04-20 2013-10-31 Nippon Chemicon Corp Method of manufacturing capacitor
JP2018041959A (en) * 2016-09-05 2018-03-15 湖北工業株式会社 Lead wire terminal and electrolytic capacitor
JP7481141B2 (en) 2020-03-26 2024-05-10 ニチコン株式会社 Wound Capacitor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111319A1 (en) * 2011-02-18 2012-08-23 パナソニック株式会社 Electrolytic capacitor and method for manufacturing same
CN103392214A (en) * 2011-02-18 2013-11-13 松下电器产业株式会社 Electrolytic capacitor and method for manufacturing same
US9287051B2 (en) 2011-02-18 2016-03-15 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and method for manufacturing same
CN103392214B (en) * 2011-02-18 2016-08-17 松下知识产权经营株式会社 Electrolysis condenser and manufacture method thereof
JP6060381B2 (en) * 2011-02-18 2017-01-18 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method thereof
JP2013225547A (en) * 2012-04-20 2013-10-31 Nippon Chemicon Corp Method of manufacturing capacitor
JP2018041959A (en) * 2016-09-05 2018-03-15 湖北工業株式会社 Lead wire terminal and electrolytic capacitor
JP7168185B2 (en) 2016-09-05 2022-11-09 湖北工業株式会社 Lead wire terminals and electrolytic capacitors
JP7481141B2 (en) 2020-03-26 2024-05-10 ニチコン株式会社 Wound Capacitor

Similar Documents

Publication Publication Date Title
US6661645B1 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5073947B2 (en) Winding capacitor and method of manufacturing the same
US20090237865A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP2017079322A (en) Solid electrolytic capacitor with ultrahigh capacitance
US10734163B2 (en) Electrolytic capacitor and manufacturing method therefor
US9916935B2 (en) Solid electrolytic capacitor with increased volumetric efficiency
JP2012039123A (en) Mechanically robust solid electrolytic capacitor assembly
JP2023100998A (en) Electrolytic capacitor
US20110232055A1 (en) Method of manufacturing electrolytic capacitor
JP2009130339A (en) Method for manufacturing solid electrolytic capacitor
JP5321964B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009130338A (en) Connection method for tab terminal to aluminum electrode foil, aluminum electrolytic capacitor, and solid electrolytic capacitor
JP6726886B2 (en) Electrolytic capacitor and manufacturing method thereof
JP2012069788A (en) Solid electrolytic capacitor
JP6735510B2 (en) Electrolytic capacitor
JP6433024B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2003173933A (en) Solid-state electrolytic capacitor and its manufacturing method
JP2001284174A (en) Solid electrolytic capacitor and its manufacturing method
JP4891140B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006108192A (en) Solid electrolytic capacitor
JP2008053512A (en) Solid electrolytic capacitor
JP2009246138A (en) Solid electrolytic capacitor and its manufacturing method
JP5023940B2 (en) Solid electrolytic capacitor
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201