JP2009124877A - 電源出力制御装置 - Google Patents

電源出力制御装置 Download PDF

Info

Publication number
JP2009124877A
JP2009124877A JP2007296761A JP2007296761A JP2009124877A JP 2009124877 A JP2009124877 A JP 2009124877A JP 2007296761 A JP2007296761 A JP 2007296761A JP 2007296761 A JP2007296761 A JP 2007296761A JP 2009124877 A JP2009124877 A JP 2009124877A
Authority
JP
Japan
Prior art keywords
voltage
output
error
waveform
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007296761A
Other languages
English (en)
Inventor
Tomoyuki Mogi
智之 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2007296761A priority Critical patent/JP2009124877A/ja
Publication of JP2009124877A publication Critical patent/JP2009124877A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】直流の入力電圧の過渡的な変動に速やかに応答して直流出力電圧を安定に供給でき、しかも、スイッチング電源装置の動作効率を低下させることがない電源出力制御装置を提供する。
【解決手段】出力電圧と基準電圧との誤差に対応する誤差電圧を生成する誤差増幅器11、バッテリ電圧の電圧レベルに基づいて振幅が変化する波形電圧を生成する鋸波発生回路12、波形電圧と誤差電圧とを比較し、比較の結果に基づいて制御パルスのデューティ比を制御するPWM回路13によってバッテリ電圧の変化に応じてデューティ比が変化する制御パルスを生成し、この制御パルスに基づいてバッテリ電圧の変動を補償する。
【選択図】 図1

Description

本発明は、電源の出力を制御する電源出力制御装置に係り、特にバッテリ電源から供給される電圧の変動を抑えて一定の出力電圧を維持する電源出力制御装置に関する。
現在、携帯電話機やゲーム機等に搭載される小型のバッテリ電源が開発されている。バッテリ電源は充電された後、携帯電話機等において所望の値の電圧を各部品に出力する。このようなバッテリ電源には、バッテリ電源から電力の供給を受ける負荷の変動によらず出力電圧を所望の値に設定するための構成が備えられている。出力電圧を調整する構成を備えた従来技術としては、例えば、特許文献1のスイッチング電源装置が挙げられる。
特許文献1に記載されたスイッチング電源装置は、直流の電圧を入力し、直流の出力電圧として出力する電源として機能する。出力電圧は、コイルに入力され、コイルに接続されたスイッチのオン、オフにより充放電され、出力される。
そして、特許文献1のスイッチング制御装置は、自装置(DC/DCコンバータ)の出力電圧を分割し、分割によって得られた電圧と基準電圧との差分の誤差電圧を増幅する。増幅された誤差電圧は、パルス幅変調(Pulse Width Modulation:PWM)回路に供給される。パルス幅変調回路は、パルス波形を有するパルス電圧を出力する。パルス電圧のデューティ比は、供給された誤差電圧にしたがって制御される。
前記したスイッチは、パルス幅変調回路から出力されるパルス電圧によってオン、オフされてコイルに電力を充放電する。このようなフィードバック制御により、特許文献1のスイッチング制御装置は、出力電圧と基準電圧との差分(誤差)を使い、出力電圧を保障することができる。
特開2003−274648号公報
しかしながら、上記した特許文献1等の従来技術は、入力電圧の変化に対する充分なフィードバック制御の応答性が得られない場合がある。このとき、従来技術では、入力電圧の過渡的な変化が出力電圧に現れて、安定した直流電圧の供給が妨げられる。
この点を解消するには、フィードバック制御の応答性を向上させ、入力電圧の変動に速やかに対応すればよい。ただし、フィードバック制御の応答性向上には、一般的にはスイッチング周波数を増加させる必要があって、スイッチング電源装置の動作効率を低下させるという不具合を生じることになる。
本発明は、このような点に鑑みてなされたものであって、スイッチング電源装置において、直流の入力電圧の過渡的な変動に速やかに応答して直流出力電圧を安定に供給でき、しかも、スイッチング周波数の増加によってスイッチング制御装置の動作効率を低下させることがない電源出力制御装置を提供することを目的とする。
以上の課題を解決するため、本発明の請求項1に記載の電源出力制御装置は、入力されるバッテリ電圧の変動を、当該バッテリ電圧の変化に応じてデューティ比が変化する制御パルスを使って補償し、出力電圧とする電源出力制御装置であって、自装置の出力電圧と所定の基準電圧との誤差に対応する誤差電圧を生成する誤差電圧生成手段と、前記バッテリ電圧の電圧レベルに応じて振幅が変化する波形電圧を生成する波形電圧生成手段と、前記波形電圧と、前記誤差電圧とを比較し、比較の結果に基づいて前記制御パルスのデューティ比を制御するデューティ比制御手段と、を備えることを特徴とする。このような発明によれば、バッテリ電圧の電圧レベルに応じて振幅が変化する波形電圧と誤差電圧とを比較する。そして、この比較の結果に基づいて、バッテリ電圧の変動を補償するための制御パルスのデューティ比を制御することができる。バッテリ電圧の変化はフィードバックに反映されるよりも早く波形電圧の振幅に表れる。このため、バッテリ電圧の変化にフィードバック制御よりも高速に応答し、補償する電源出力制御装置を提供することができる。
さらに、このような制御を、波形電圧生成手段、PWM回路等のデューティ比制御手段といった周知の構成を使って比較的簡易に実現することができる。
また、本発明の請求項2に記載の電源出力制御装置は、請求項1に記載の発明において、前記波形電圧生成手段が、前記バッテリ電圧を、前記バッテリ電圧の電圧レベルに応じた電流値を有する電流に変換する電圧・電流変換回路と、前記電圧・電流変換回路の変換によって得られた電流によって充電され、所定の周期で充放電される充放電回路と、を備え、前記充放電回路の充放電電圧を前記波形電圧として出力することを特徴とする。
このような構成によれば、比較的簡易な構成でありながら、バッテリ電圧の電圧レベルに応じて振幅が速やかに変化する波形電圧生成手段を実現することが可能になる。
また、本発明の請求項3に記載の電源出力制御装置は、請求項1または請求項2に記載の発明において、前記出力電圧が、前記バッテリ電圧の電力エネルギを、前記制御パルスのデューティ比に応じて蓄積する電力蓄積素子を介して導出され、前記波形電圧生成手段は、前記バッテリ電圧が増加した場合、前記電力蓄積素子に電力が蓄積される蓄積時間が短くなるように前記波形電圧の振幅を変化させ、前記バッテリ電圧が低下した場合、前記電力蓄積素子の前記蓄積時間が長くなるように前記波形電圧の振幅を変化させることを特徴とする。
このような構成によれば、コイル等の電力蓄積素子という簡易な構成により、バッテリ電圧の低下及び増加に伴う出力電圧の変動を補償することができる。
すなわち、本発明の電源出力制御装置は、直流入力電圧の変動を、スイッチのオン、オフを制御する制御パルスのパルス幅に速やかに反映させるフィードフォワード制御の構成を有した電源出力制御装置である。直流の入力電圧を、電圧・電流変換回路によって電流に変換し、この電流でコンデンサ等を充電し、さらに別途放電手段によって充電された電力エネルギを放電することによって入力電圧に比例する振幅を持つ波形電圧を生成することができる。
また、一定電流から前記変換された電流を差し引いた電流でコンデンサ等を充電し、充電された電力エネルギを放電することによって入力電圧に反比例する振幅を持つ波形電圧を生成することができる。
直流の入力電圧と振幅との間には、必ずしも線形性は必要でなく、振幅は入力電圧の変化に応じて増加または減少するものであればよい。入力電圧の変化に応じて振幅をいずれの方向に変化させるかは、電源出力制御装置に使用される誤差増幅器の極性や、デューティ比制御手段(PWM回路)に備えられる比較器の極性等によって適正な方向を選択すればよい。
さらに、波形電圧は鋸波あるいは三角波であって、生成された鋸波あるいは三角波と、出力電圧と基準電圧との差を増幅した誤差増幅器の誤差電圧とを比較した結果に基づいて制御パルスのデューティ比を制御することで、入力電圧の変動を速やかにスイッチをオン、オフするデューティ比に反映させることができる。
本発明によれば、スイッチング電源装置において、直流の入力電圧の過渡的な変動に速やかに応答して直流出力電圧を安定に供給することができる。しかも、入力電圧の変動によって振幅が変化する波形電圧を生成し、この波形電圧を使って入力電圧の変動に応答する。このため、スイッチング周波数を高めてフィードバックすることがなく、スイッチング周波数の増加によってスイッチング制御装置の動作効率を低下させることがない電源出力制御装置を提供することができる。
以下、図を参照して本発明に係る電源出力制御装置の一実施形態を説明する。
(装置構成)
図1は、本実施形態の電源出力制御装置を説明するための回路図である。本実施形態の電源出力制御装置は、スイッチング電源装置等の電源装置に適用される電源出力制御装置であり、直流電圧を入力し、降下して直流電圧として出力する降圧コンバータに適用されるものとした。本実施形態の電源出力制御装置は、直流電圧VBATを入力し、直流電圧VOUTとして出力する。本明細書の実施形態では、以降、VBATを入力電圧VBAT、VOUTを出力電圧VOUTとも記す。
図示した電源出力制御装置は、入力されるバッテリ電圧である入力電圧VBATの変動を、入力電圧VBAT電圧の変化に応じてデューティ比が変化する制御パルスを使って補償し、出力電圧とする電源出力制御装置である。電源出力制御装置は、このために、制御パルスを生成する制御回路1を有し、誤差電圧と制御パルスに基づいて入力電圧VBATの変動を補償している。
制御回路1は、出力電圧VOUTと、所定の基準電圧VREFとの誤差に対応する誤差電圧を生成する誤差増幅器11を有している。誤差増幅器11は、自装置(電源出力制御装置)の出力電圧VOUTと所定の基準電圧との誤差に対応する誤差電圧を生成していて、本実施形態の誤差電圧生成手段として機能する。なお、誤差電圧を、以降誤差電圧VEAOとも記すものとする。
また、制御回路1は、入力電圧VBATの電圧レベルに基づいて振幅が変化する波形電圧であるRAMP電圧を生成する鋸波発生回路12、RAMP電圧と誤差電圧とを比較し、比較の結果に基づいて制御パルスのデューティ比を制御するPWM回路13とを有している。鋸波発生回路12によって生成される波形電圧は、立ち上がりと立下りの傾きが異なる、いわゆる鋸波と呼ばれる波形を有するものとする。
以上の構成のうち、誤差増幅器11は、出力電圧VOUTを分割する抵抗R1及び抵抗R2と、分割された電圧値と基準電圧VREFとを比較する比較器14とを有し、分割された電圧値と基準電圧VREFとの差分を増幅する機能を有している。増幅された差分が、誤差電圧VEAOとして出力される。
なお、本実施形態の構成では、誤差増幅器11が、誤差電圧VEAOをそのまま出力してもよいし、反転して出力してもよい。図1の構成では、誤差電圧VEAOを反転して出力するものとした。このような場合、出力電圧VOUTの上昇によって誤差電圧VEAOは低下することになる。
(鋸波発生回路)
鋸波発生回路12は、入力電圧VBATの電圧レベルに応じた振幅を有する鋸波の波形電圧を発生する機能を有している。このため、鋸波発生回路12は、入力電圧VBATを分割する抵抗R3及び抵抗R4と、分割された電圧値をバッファする演算増幅器16を有し、バッファされた電圧でトランジスタ16aを制御して抵抗R5を流れる電流量を変化させている。これにより、入力電圧VBATの電圧レベルを電流に変換して取り出している。この結果、入力電圧VBATが、入力電圧VBATの電圧レベルに応じた電流値を有する電流に変換される。
また、鋸波発生回路12は、取り出された電流をコピーするカレントミラー回路17、コンデンサC1、コンデンサC1の両端に接続されたスイッチ18、スイッチ18を一定の周期(1MHz)でオン、オフするためのクロック発生器(CLKGEN)19を有している。
コンデンサC1の一方の端子にはカレントミラー回路17によってコピーされた電流の出力端子が接続され、他方の端子は接地端子に接続されている。このような状態で、スイッチ18を例えば1MHzでオン、オフさせる。このとき、変換によって得られた電流によって、1MHzの周期でコンデンサC1が充放電される。この結果、コンデンサC1の端子からは入力電圧VBATの電圧レベルに対応した振幅をもつRAMP電圧が波形電圧として出力される。
なお、誤差電圧VEAOを反転して出力する構成では、RAMP電圧の振幅Vmと入力電圧VBATとは比例している。
このような鋸波発生回路12は、本実施形態の波形電圧生成手段として機能する。また、演算増幅器16、トランジスタ16a、抵抗R5が電圧・電流変換回路として機能する。さらにコンデンサC1及びスイッチ18を含む構成が充放電回路として機能する。
PWM回路13は、誤差電圧VEAOとRAMP電圧とを入力し、比較してパルス電圧PWM OUTを出力する比較器20を有している。PWM回路13は、本実施形態のデューティ比制御手段として機能する。
PWM回路13の出力であるパルス電圧PWM OUTは、ゲートドライブ(GDRIVE)回路22に入力されている。GDRIVE回路22は、パルス電圧PWM OUTのデューティ比に応じてスイッチSW1、スイッチSW2をオン、オフする回路である。
GDRIVE回路22の出力によって、トランジスタで構成されるスイッチSW1、スイッチSW2が交互にオン、オフされる。スイッチSW1、スイッチSW2によって構成されるスイッチング回路は、入力電圧VBATを入力しており、その出力が電力蓄積素子であるコイル21を介して導出される。
つまり、入力電圧VBATの電圧レベルに対応した電力エネルギがパルス電圧PWM OUTのデューティ比に応じてコイル21に蓄積され、さらに、蓄積されたエネルギは出力電圧端子VOUTに転送され、出力電圧VOUTとして出力される。
出力電圧VOUTの出力端子には、平滑コンデンサC2が接続されている。このため、出力電圧VOUTは、平滑コンデンサC2によって平滑され、安定した電圧レベルを有するものとなる。したがって、このような構成によれば、負荷抵抗R6の値が変化した場合にも出力電圧VOUTを一定の値に保つことが可能である。
(動作波形)
図2は、入力電圧VBATの変動とRAMP電圧及び誤差電圧VEAOとの関係を説明するための図である。図示したように、本実施形態の構成によれば、RAMP電圧の振幅Vmが、入力電圧VBATの変動に速やかに対応して変化する。一方、従来のフィードバック制御に使われる誤差電圧VEAOは、フィードバック制御のループが応答するまで変化せず、補償の時間遅延を発生する。
図2に示した例では、RAMP電圧の振幅Vmが、誤差電圧VEAOよりも小さい場合(RAMP電圧<誤差電圧VEAO)にPWM OUTがLowレベル(以降Lレベルと記す)になる。また、反対に、RAMP電圧の振幅Vmが、誤差電圧VEAOよりも大きい場合(RAMP電圧>誤差電圧VEAO)にPWM OUTがHighレベル(以降Hレベルと記す)になる。
入力電圧VBATの変動に対し、鋸波の振幅Vmは速やかに変化する。これに対して誤差電圧VEAOは、フィードバック制御のループが応答するまでに時間遅延があり、即座には変化することができない。図2中では、波形電圧RAMP、誤差電圧VEAOが、RAMP<VEAOのときPWM OUTがLレベルになり、この区間においてスイッチSW1がオンしてコイル21にエネルギが蓄積される。
図2において、入力電圧VBATが増加しても、誤差電圧VEAOは即座に応答できないため一定のままであり、鋸波RAMPの振幅Vmだけが入力電圧VBATに比例して増加する。その結果、PWM OUTのLレベルの区間が短くなり、コイル21に蓄積されるエネルギが減少する。つまり、入力電圧VBATが増加したことによって出力電圧VOUTが増加することを妨げるよう作用する。
また、反対に、入力電圧VBATが減少した場合にも、誤差電圧VEAOは即座に応答できないため一定のままであり、鋸波RAMPの振幅Vmだけが入力電圧VBATに比例して減少する。その結果、PWM OUTのLレベルの区間が長くなり、コイル21に蓄積されるエネルギが増加する。つまり、入力電圧VBATが減少したことによって出力電圧VOUTが減少することを妨げるよう作用する。このような構成は、PWM OUTのデューティ比に応じてコイル21の蓄積エネルギ量を制御していることになる。
すなわち、本実施形態は、入力電圧VBATが増加した場合、コイル21に電力エネルギが蓄積される蓄積時間が短くなるようにRAMP電圧の振幅を変化させ、入力電圧VBATが低下した場合、コイル21のエネルギ蓄積時間が長くなるようにRAMP電圧の振幅を変化させるものといえる。そして、上記の制御により、入力電圧VBATの変動に従来のフィードバック制御よりも高速に応答して入力電圧VBATの変動による出力電圧の変動を補償できる。
なお、以上述べた構成は、電源装置として降圧コンバータの例について説明した。しかし、本実施形態は、昇圧コンバータ、昇圧・降圧コンバータにも同様にして適用することが可能である。
(変形例)
次に、以上述べた本実施形態の変形例を説明する。
図3は、本実施形態の変形例を説明するための図であって、図1に示した電源出力制御装置と同様の構成を含んでいる。図3では、図1に記した構成と同様の構成には同様の符号を付して示し、説明の一部を略すものとする。
図3に示した構成において、誤差増幅器31は、誤差電圧VEAOを反転させることなく出力する点で図1の誤差増幅器11と相違する。また、このような構成に対応して、鋸波発生回路32が入力電圧VBATの電圧レベルの変化に反比例して変化する振幅を有する鋸波を生成する点が、鋸波発生回路12と相違する。
すなわち、鋸波発生回路は、図1に示したカレントミラー回路17に加え、カレントミラー回路37をさらに有している。カレントミラー回路37には、定電流源30が接続されている。そして、定電流源30から、カレントミラー回路37及びコンデンサC1に電流が供給されている。カレントミラー回路17を流れる電流がカレントミラー回路37にもコピーされる。このため、定電流源30によって供給される電流のうち、コピーされた電流量を除いた電流に対応する電力エネルギがコンデンサC1に蓄積される。
コンデンサC1に蓄積された電力エネルギは、RAMP電圧として出力される。つまり、図3に示した回路では、入力電圧VBATに応じた電流が大きいほどコンデンサC1に蓄積される電力エネルギが小さくなる。このため、鋸波発生回路32からは、入力電圧VBATの電圧レベルと振幅が反比例するRAMP電圧が出力されることになる。
図3に示した構成では、出力電圧VOUTは、抵抗R1、抵抗R2によって分割され、比較器14において基準電圧VREFと比較される。誤差増幅器31は、分割された電圧値と基準電圧VREFとの差分を増幅し、誤差電圧VEAOとして出力する。誤差電圧VEAOが反転されずに出力されるため、図3に示した構成では、出力電圧VOUTの上昇によって誤差電圧VEAOも上昇することになる。
PWM回路13では、誤差電圧VEAOと鋸波発生回路32によって出力されたRAMP電圧を比較器20に入力し、パルス電圧PWM OUTを出力する。GDRIVE回路22は、パルス電圧PWM OUTのデューティに基づいてスイッチSW1、スイッチSW2をオン、オフしてコイル21に電力エネルギを蓄積し、出力電圧VOUTとして出力する。
図3に示した構成にあっても、パルス電圧PWM OUTは、GDRIVE回路22に入力されている。GDRIVE回路22は、パルス電圧PWM OUTのデューティ比に応じてスイッチSW1、スイッチSW2を交互にオン、オフする。スイッチSW1、スイッチSW2によって構成されるスイッチング回路は、入力電圧VBATを入力しており、その出力がコイル21を介して出力される。
つまり、入力電圧VBATの電圧レベルに対応した電力エネルギがパルス電圧PWM OUTのデューティ比に応じてコイル21に蓄積され、出力電圧VOUTとして出力される。
なお、図3の構成においては、波形電圧RAMP、誤差電圧VEAOが、RAMP>VEAOのときスイッチSW1がオンし、反対に、RAMP<VEAOのときスイッチSW2がオンしてコイル21に蓄積されたエネルギが出力電圧VOUTとして出力される。
出力電圧VOUTの出力端子には、平滑コンデンサC2が接続されている。このため、出力電圧VOUTは、平滑コンデンサC2によって平滑され、安定した電圧レベルを有するものとなる。したがって、このような構成によれば、負荷抵抗R6の値が変化した場合にも出力電圧VOUTを一定の値に保つことが可能である。
図4は、本実施形態の他の変形例を説明するための他の図であって、鋸波に代えて三角波を波形電圧として用いた点で図1に示した電源出力制御装置と相違する構成を説明するための図である。
図4に示した構成は、三角波の波形電圧を生成するための三角波発生回路を説明するための図である。三角波発生回路は、入力電圧VBATを分割する抵抗R1、抵抗R2及び抵抗R3と、分割された電圧値をバッファする演算増幅器46、演算増幅器46の出力によって制御されるトランジスタ46a、トランジスタ46aによって抵抗R4に流れる電流値が制御され、その電流値をコピーするミラー回路47、ミラー回路47によってコピーされた電流によって充放電されるコンデンサC11、コンデンサC11の充電用トランジスタTr1及び放電用トランジスタTr2を備えている。また、図4に示した構成は、比較器41、ラッチ回路を構成する2つのNAND回路43、インバータ44を有している。
このような構成において、入力電圧VBATは、抵抗R1、抵抗R2及び抵抗R3によって分割される。分割された抵抗は、演算増幅器46によってバッファされる。バッファされた電圧によってトランジスタ46aが制御されることにより、入力電圧VBATを、その電圧レベルに応じた電流に変換して取り出だすことができる。この電流がカレントミラー回路47によってコピーされ、コピーされた電流はコンデンサC11の上部端子45に出力される。
カレントミラー回路47には、充電用トランジスタTr1、放電用トランジスタTr2があって、コンデンサC11は、充電用トランジスタTr1、放電用トランジスタTr2によって充電、放電できる。
すなわち、充電用トランジスタTr1と電源端子VDDとの間にスイッチSW11が接続され、放電用トランジスタTr2と接地端子VSSとの間にスイッチSW12が接続されているので、これらスイッチSW11、スイッチSW12を交互にオン、オフさせることで、コンデンサC11を充放電させる。
また、コンデンサC11の上部端子45の電圧を入力の1つとする比較器41の出力がNAND回路43によって構成されるラッチ回路に保持される。この保持出力を入力したインバータ44のスイッチSW11、スイッチSW12がオン、オフ制御される。
コンデンサC11の上部端子45の電圧値が、
入力電圧VBAT×(R2+R3)/(R1+R2+R3)
(ただし、R1、R2、R3はそれぞれ抵抗R1、抵抗R2、抵抗R3の抵抗値)
を越えると、スイッチSW11がオン、スイッチSW12がオフしてコンデンサC11が放電される。また、上部端子45の電圧値が予め設定されているVREF1を下回るとスイッチSW11がオン、スイッチSW12がオフしてコンデンサC11の充電が開始される。抵抗R1、抵抗R2、抵抗R3、抵抗R4の抵抗値、コンデンサC11の容量、VREF1の各値を適正な値に調整し、コンデンサC11を充放電することにより、上部端子45から、図5に示す三角波のRAMP電圧を得ることができる。
図5に示した三角波は、前記した鋸波と同様に、振幅が入力電圧VBATに比例して変化し、かつ周波数は変化しない波形電圧である。また、鋸波と同様に、入力電圧VBATの変動に対して従来のフィードバック制御の誤差電圧VEAOよりも早く応答して変化する。
本実施形態の電源出力制御装置は、図5に示した三角波のRAMP電圧を鋸波と同様に使い、RAMP電圧が誤差電圧VEAOよりも低い場合にLレベル、RAMP電圧が誤差電圧VEAOよりも高い場合にHレベルになる制御パルスであるパルス電圧PWM OUTを生成することができる。そして、この制御パルスを使って図1、図3のスイッチSW1、スイッチSW2を駆動することにより、入力電圧VBATの変動に応じて出力電圧VOUTを補償することができる。
また、このような変形例も、降圧コンバータ、昇圧コンバータ、昇圧・降圧コンバータのいずれにも適用できることはいうまでもない。
本発明の一実施形態の電源出力制御装置を説明するための回路図である。 図1示した入力電圧VBATの変動とRAMP電圧及び誤差電圧VEAOとの関係を説明するための図である。 本実施形態の変形例を説明するための図であって、誤差増幅器が誤差電圧を反転させることなく出力する構成を説明するための図である。 本実施形態の他の変形例を説明するための図であって、鋸波に代えて三角波を波形電圧として用いる構成を説明するための図である。 図4に示した構成で生成される三角波を説明するための図である。
符号の説明
1 制御回路
11,31 誤差増幅器
12 鋸波発生回路
14,20 比較器
15 増幅回路
16 演算増幅器
17 カレントミラー回路
18 スイッチ
21 リアクタ
22 GDRIVE回路
C1,C2,C11 コンデンサ
SW1,SW2,SW11,SW12 スイッチ

Claims (3)

  1. 入力されるバッテリ電圧の変動を、当該バッテリ電圧の変化に応じてデューティ比が変化する制御パルスを使って補償して出力電圧とする電源出力制御装置であって、
    前記出力電圧と所定の基準電圧との誤差に対応する誤差電圧を生成する誤差電圧生成手段と、
    前記バッテリ電圧の電圧レベルに応じて振幅が変化する波形電圧を生成する波形電圧生成手段と、
    前記波形電圧と、前記誤差電圧とを比較し、比較の結果に基づいて前記制御パルスのデューティ比を制御するデューティ比制御手段と、
    を備えることを特徴とする電源出力制御装置。
  2. 前記波形電圧生成手段は、
    前記バッテリ電圧を、前記バッテリ電圧の電圧レベルに応じた電流値を有する電流に変換する電圧・電流変換回路と、
    前記電圧・電流変換回路の変換によって得られた電流によって充電され、所定の周期で充放電される充放電回路と、を備え、
    前記充放電回路の充放電電圧を前記波形電圧として出力することを特徴とする請求項1に記載の電源出力制御装置。
  3. 前記出力電圧は、前記バッテリ電圧の電力エネルギを、前記制御パルスのデューティ比に応じて蓄積する電力蓄積素子を介して導出され、
    前記波形電圧生成手段は、
    前記バッテリ電圧が増加した場合、前記電力蓄積素子に電力が蓄積される蓄積時間が短くなるように前記波形電圧の振幅を変化させ、前記バッテリ電圧が低下した場合、前記電力蓄積素子の前記蓄積時間が長くなるように前記波形電圧の振幅を変化させることを特徴とする請求項1または請求項2に記載の電源出力制御装置。
JP2007296761A 2007-11-15 2007-11-15 電源出力制御装置 Withdrawn JP2009124877A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007296761A JP2009124877A (ja) 2007-11-15 2007-11-15 電源出力制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007296761A JP2009124877A (ja) 2007-11-15 2007-11-15 電源出力制御装置

Publications (1)

Publication Number Publication Date
JP2009124877A true JP2009124877A (ja) 2009-06-04

Family

ID=40816433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007296761A Withdrawn JP2009124877A (ja) 2007-11-15 2007-11-15 電源出力制御装置

Country Status (1)

Country Link
JP (1) JP2009124877A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093156A1 (ja) * 2010-01-28 2011-08-04 ミツミ電機株式会社 昇降圧dc-dcコンバータおよびスイッチング制御回路
US9048729B2 (en) 2010-01-28 2015-06-02 Mitsumi Electric Co., Ltd. Step-up/down DC-DC converter and switching control circuit
WO2020067726A1 (ko) * 2018-09-27 2020-04-02 주식회사 벤디슨 친환경 저주파 자극기
JP7399739B2 (ja) 2020-02-19 2023-12-18 ローム株式会社 スイッチング電源装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093156A1 (ja) * 2010-01-28 2011-08-04 ミツミ電機株式会社 昇降圧dc-dcコンバータおよびスイッチング制御回路
JP2011155778A (ja) * 2010-01-28 2011-08-11 Mitsumi Electric Co Ltd 昇降圧dc−dcコンバータおよびスイッチング制御回路
US8957650B2 (en) 2010-01-28 2015-02-17 Mitsumi Electric Co., Ltd. Step-up/down DC-DC converter and switching control circuit
US9048729B2 (en) 2010-01-28 2015-06-02 Mitsumi Electric Co., Ltd. Step-up/down DC-DC converter and switching control circuit
WO2020067726A1 (ko) * 2018-09-27 2020-04-02 주식회사 벤디슨 친환경 저주파 자극기
JP7399739B2 (ja) 2020-02-19 2023-12-18 ローム株式会社 スイッチング電源装置

Similar Documents

Publication Publication Date Title
JP5091027B2 (ja) スイッチングレギュレータ
TWI405062B (zh) 切換式調整器及其操作控制方法
US7723967B2 (en) Step-up converter having an improved dynamic response
US7944191B2 (en) Switching regulator with automatic multi mode conversion
KR100744592B1 (ko) Dc-dc 컨버터, dc-dc 컨버터의 제어 회로 및dc-dc 컨버터의 제어 방법
KR101131262B1 (ko) 전류 모드 제어형 스위칭 레귤레이터
JP5577829B2 (ja) 電源装置、制御回路及び電源装置の制御方法
JP5556404B2 (ja) スイッチング電源装置
KR101250346B1 (ko) 스위칭 전원장치
JP5405891B2 (ja) 電源装置、制御回路、電源装置の制御方法
JP2010259257A (ja) スイッチングレギュレータ及びその動作制御方法
JP2008131746A (ja) 昇降圧型スイッチングレギュレータ
JP4666345B2 (ja) チャージポンプ回路
JP2007259599A (ja) スイッチングレギュレータ
JP2009153289A (ja) Dc−dcコンバータ
JP2006006004A (ja) 昇降圧型dc−dcコンバータ
JP2007215268A (ja) 電流制御型dc−dcコンバータの制御回路、電流制御型dc−dcコンバータ、および電流制御型dc−dcコンバータの制御方法
JP2007215268A5 (ja)
JP2009219240A (ja) Dc−dcコンバータ
JP2020065402A (ja) スイッチングレギュレータ
US20140340066A1 (en) Timing generator and timing signal generation method for power converter
US20190305679A1 (en) Methods and devices for operating converters
JP4548100B2 (ja) Dc−dcコンバータ
JP2009124877A (ja) 電源出力制御装置
JP6046999B2 (ja) スイッチング電源装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201