JP2009120876A - Low-yield ratio high-tensile strength steel sheet excellent in welding heat-affected zone and low-temperature toughness in base material, and its manufacturing method - Google Patents

Low-yield ratio high-tensile strength steel sheet excellent in welding heat-affected zone and low-temperature toughness in base material, and its manufacturing method Download PDF

Info

Publication number
JP2009120876A
JP2009120876A JP2007293648A JP2007293648A JP2009120876A JP 2009120876 A JP2009120876 A JP 2009120876A JP 2007293648 A JP2007293648 A JP 2007293648A JP 2007293648 A JP2007293648 A JP 2007293648A JP 2009120876 A JP2009120876 A JP 2009120876A
Authority
JP
Japan
Prior art keywords
low
less
steel sheet
toughness
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007293648A
Other languages
Japanese (ja)
Other versions
JP4490472B2 (en
Inventor
祐二 ▲高▼橋
Yuji Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007293648A priority Critical patent/JP4490472B2/en
Priority to CN2008101745567A priority patent/CN101435050B/en
Priority to KR20080111588A priority patent/KR101060789B1/en
Publication of JP2009120876A publication Critical patent/JP2009120876A/en
Application granted granted Critical
Publication of JP4490472B2 publication Critical patent/JP4490472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-yield ratio high-tensile steel sheet excellent in low temperature toughness of an HAZ, even subjected to welding with large heat input and also, excellent in low temperature toughness of the base material (steel sheet). <P>SOLUTION: The low-yield ratio high-tensile steel sheet satisfies a prescribed chemical component composition and also, in a micro-structure at the position of t/4 (t: sheet thickness), a ferrite partial ratio occupying in the total structure is 60-85 area%, and an island-shaped martensite partial ratio is 1-5 area% and the balance composed of a mixed structure of a bainite structure and further, remaining austenite in the island-shaped martensite occupies ≥60 area%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、溶接熱影響部および母材の低温靭性に優れた低降伏比高張力鋼板に関するものであり、低温に曝される用途に使用される場合、例えば液化アンモニアと液化プロパンガスとを混載する多目的タンク用として適用できるような、溶接熱影響部および母材の低温靭性に優れている低降伏比高張力鋼板に関するものである。尚、本発明は、上記高張力鋼板の溶接方法まで限定するものではなく、サブマージアーク溶接、エレクトロガスアーク溶接等に適用できるが、以下では、溶接熱影響部の靭性確保が特に困難であるといわれている大入熱の片面サブマージアーク溶接を施す場合を例に説明する。   The present invention relates to a low-yield-ratio high-tensile steel sheet excellent in low-temperature toughness of a weld heat-affected zone and a base material. When used in applications exposed to low temperatures, for example, liquefied ammonia and liquefied propane gas are mixed. The present invention relates to a low-yield ratio high-tensile steel sheet that is excellent in low-temperature toughness of a weld heat-affected zone and a base material, which can be applied to a multipurpose tank. The present invention is not limited to the above-described high-strength steel plate welding method, and can be applied to submerged arc welding, electrogas arc welding, etc., but in the following, it is said that securing the toughness of the weld heat affected zone is particularly difficult. The case where the single-sided submerged arc welding with large heat input is applied will be described as an example.

近年では、海洋構造物やLPG等の液化ガスを貯蔵する低温用タンク等を短期間で製造すべく、例えば入熱量が50〜200kJ/cmにも及ぶ大入熱の片面サブマージアーク溶接施工が広く採用されている。しかし、この溶接は、施工の高能率化を実現できる反面、溶接により形成される溶接熱影響部(以下、「HAZ」と示すことがある)の靭性を安定して確保することが難しく、低入熱による多層溶接を適用して製造しなければならないことも多々ある。従って、上記低温用タンク等の製造に、高能率施工が可能な上記大入熱溶接法が採用され、且つ−60℃程度の低温であっても、優れたHAZ靭性(以下、「HAZの低温靭性」、または単に「HAZ靭性」ということがある)を確保した鋼板が求められている。   In recent years, single-sided submerged arc welding with large heat input, for example, with a heat input of 50 to 200 kJ / cm, has been widely used to produce marine structures and low-temperature tanks for storing liquefied gas such as LPG in a short period of time. It has been adopted. However, while this welding can achieve high efficiency of construction, it is difficult to stably secure the toughness of the weld heat affected zone (hereinafter referred to as “HAZ”) formed by welding. In many cases, it is necessary to apply multilayer welding by heat input. Therefore, the high heat input welding method capable of high-efficiency construction is adopted for manufacturing the low temperature tank and the like, and excellent HAZ toughness (hereinafter referred to as “HAZ low temperature”) even at a low temperature of about −60 ° C. There is a need for a steel sheet that ensures “toughness” or simply “HAZ toughness”.

一方、液化アンモニア用タンクに使用する鋼板には、応力腐食割れ(SCC)を防止するために440MPa以下の低い降伏強さYSと、鋼材総重量を低減するために510MPa以上の引張強度TSを具備していることが要求される。液化アンモニアと液化プロパンガスを混載するタンクの場合、使用する鋼板(溶接母材)の特性として、更に低温靭性にも優れていることが要求される。液化アンモニアは、鋼板の応力腐食割れ(SCC)を引き起こすことが知られており、鋼板の特性として降伏強さYSを440MPa以下に抑えることが規定されている(非特許文献1)。   On the other hand, the steel sheet used for the liquefied ammonia tank has a low yield strength YS of 440 MPa or less to prevent stress corrosion cracking (SCC) and a tensile strength TS of 510 MPa or more to reduce the total weight of the steel material. It is required that In the case of a tank in which liquefied ammonia and liquefied propane gas are mixed, it is required that the low-temperature toughness is further excellent as a characteristic of the steel sheet (welding base material) to be used. It is known that liquefied ammonia causes stress corrosion cracking (SCC) of a steel sheet, and as a property of the steel sheet, it is specified that the yield strength YS is suppressed to 440 MPa or less (Non-patent Document 1).

しかしながら、上記液化アンモニアと液化プロパンガスを混載する多目的用では、当然のことながら両者に要求される特性を満足させる必要があり、また船舶等の海洋構造物の大型化に伴い、船舶等に搭載されるタンクの大容量化も進み、それによる鋼板の高張力化も求められおり、降伏強さYSの上限規制に伴う低降伏比化(降伏比YR=YS/TS)の同時達成が大きな課題となっている。   However, in the multipurpose use where the above liquefied ammonia and liquefied propane gas are mixed, it is necessary to satisfy the characteristics required for both of them, and it is installed in ships as the marine structures such as ships increase in size. As the capacity of the tank is increased, it is also required to increase the tensile strength of the steel sheet, and simultaneously achieving a lower yield ratio (yield ratio YR = YS / TS) due to the upper limit of the yield strength YS is a major issue. It has become.

一般的にHAZ靭性を改善するために低成分系にし、加速冷却等によって組織をベイナイト組織主体にすることで、強度とHAZ・母材靭性を両立させることはできるが、低降伏比を達成することまではできない。鋼板の低降伏比を達成するには、鋼組織の二相化(Dual phase化)、すなわち降伏強さを支配する軟質相(通常、フェライト)と引張強度を確保するための硬質相(パーライト、ベイナイト、マルテンサイト等)の混合組織化が有効であり、軟質相の存在によって強度は上記のベイナイトに比べて低下することになる。   Generally, a low component system is used to improve the HAZ toughness, and the structure is mainly composed of a bainite structure by accelerated cooling or the like, so that both strength and HAZ / base metal toughness can be achieved, but a low yield ratio is achieved. I can't do that. In order to achieve a low yield ratio of the steel sheet, the steel structure is duplexed (dual phase), that is, the soft phase that controls the yield strength (usually ferrite) and the hard phase (pearlite, to ensure tensile strength). (Bainite, martensite, etc.) is effective, and the presence of the soft phase lowers the strength compared to the bainite.

強度向上には硬質相をマルテンサイトにすることが有効であるが、ラスマルテンサイトやCを高濃度に濃縮した状態で生成する高炭素マルテンサイト(これは、「レンズ状マルテンサイト」と呼ばれる)は、硬くて脆いために、低温靭性上有害とされ、これまで積極的に利用されることはなかった。   It is effective to make the hard phase martensite in order to improve the strength, but it is a high carbon martensite that is produced in a state in which lath martensite or C is concentrated to a high concentration (this is called “lens-like martensite”). Since it is hard and brittle, it is harmful to low-temperature toughness and has not been actively used so far.

これまでにも、強度を確保しつつHAZ・母材靭性を改善するための各種技術が提案されている。例えば特許文献1には、硬質相をベイナイト主体とすると共に、Niを多量に含有させることによって(6.5〜12%)、強度を上げつつHAZ靭性や母材靭性を改善する技術が提案されている。しかしながらこうした技術では、Ni添加によるコスト上昇を回避できないばかりか、鋼板の応力腐食割れ(SCC)からNiの含有量を5%以下に制限する規制があり(前記非特許文献1)、これによってNi添加による効果を最大限に活用できないのが実情である。   Until now, various techniques for improving HAZ / base metal toughness while ensuring strength have been proposed. For example, Patent Document 1 proposes a technique for improving the HAZ toughness and the base metal toughness while increasing the strength by making the hard phase mainly bainite and containing a large amount of Ni (6.5 to 12%). ing. However, in such a technique, an increase in cost due to the addition of Ni cannot be avoided, and there is a restriction that the Ni content is limited to 5% or less due to stress corrosion cracking (SCC) of the steel sheet (Non-Patent Document 1). The fact is that the effects of the addition cannot be fully utilized.

また、特許文献2には、焼戻し等の熱処理によりラスマルテンサイトを分解させることによって、母材靭性を改善する技術が提案されている。しかしながら、この技術では熱処理による強度の低下は避けられず、結果的にNiやMo等の強化元素を含有せざるを得ず、HAZ靭性との両立を実現するまでに至っていない。   Patent Document 2 proposes a technique for improving the base material toughness by decomposing lath martensite by heat treatment such as tempering. However, in this technique, strength reduction due to heat treatment is unavoidable, and as a result, strengthening elements such as Ni and Mo have to be included, and it has not yet been possible to achieve both HAZ toughness.

一方、特許文献3には、旧オーステナイトの微細化効果のあるNbやMo等の合金元素を添加し、硬質相である島状マルテンサイト(MA:Martensite−Austenite constituent)を積極的に生成させ、形態(アスペクト比)やサイズを規定することによって、高炭素マルテンサイトによる母材靭性劣化を最小限に抑え、高強度と靭性の両立を図る技術が提案されている。しかしながら、NbやMo等の添加により、HAZ靭性との両立までには至っておらず、また母材靭性についても、更なる安全性を確保できるレベル(破面遷移温度vTrsで−90℃以下)には達していない。
IGC CODE 17.13(International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk) 2002年版 特開昭63−290246号公報 特開昭58−153730号公報 特開2002−3983号公報
On the other hand, in Patent Document 3, an alloy element such as Nb or Mo having a refinement effect of prior austenite is added, and island-shaped martensite (MA) which is a hard phase is actively generated, By defining the form (aspect ratio) and size, a technique for minimizing the deterioration of the base metal toughness due to high carbon martensite and achieving both high strength and toughness has been proposed. However, due to the addition of Nb, Mo, etc., the HAZ toughness has not been achieved, and the toughness of the base metal is at a level that can ensure further safety (at the fracture surface transition temperature vTrs of −90 ° C. or lower). Has not reached.
IGC CODE 17.13 (International Code for the Construction and Equipment of Shipping Carrying Liquidated Gases in Bulk) 2002 Edition JP-A 63-290246 JP 58-153730 A JP 2002-3983 A

本発明はこの様な事情に鑑みてなされたものであって、その目的は、大入熱で溶接を行った場合にもHAZの低温靭性に優れると共に、母材(鋼板)の低温靭性にも優れた低降伏比高張力鋼板を提供することにある。   The present invention has been made in view of such circumstances, and the purpose thereof is excellent in low temperature toughness of HAZ even when welding is performed with high heat input, and also in low temperature toughness of a base material (steel plate). The object is to provide an excellent low yield ratio high strength steel sheet.

上記目的を達成し得た本発明の高張力鋼板とは、C:0.06〜0.09%(「質量%」の意味、化学成分については以下同じ)、Si:0.05〜0.25%、Mn:1.2〜1.6%、P:0.01%以下(0%を含まない)、S:0.003%以下(0%を含まない)、Al:0.06%以下(0%を含まない)、B:0.0007〜0.0015%、Ti:0.009〜0.018%、N:0.0050〜0.0080%およびNb:0.012〜0.020%を夫々含有すると共に、鋼中の固溶N量が0.0003〜0.0040%であり、残部が鉄および不可避的不純物であり、且つt/4(t:板厚)位置のミクロ組織において、全組織に占めるフェライト分率が60〜85面積%、島状マルテンサイト分率が1〜5面積%であり、残部がベイナイト組織の混合組織からなり、更に前記島状マルテンサイト中の残留オーステナイトが60面積%以上である点に要旨を有するものである。   The high-tensile steel sheet of the present invention that can achieve the above-mentioned object is C: 0.06 to 0.09% (meaning “mass%”, the same applies to chemical components), Si: 0.05 to 0.00. 25%, Mn: 1.2 to 1.6%, P: 0.01% or less (not including 0%), S: 0.003% or less (not including 0%), Al: 0.06% The following (excluding 0%), B: 0.0007 to 0.0015%, Ti: 0.009 to 0.018%, N: 0.0050 to 0.0080%, and Nb: 0.012 to 0. 020% of each is contained, the amount of solute N in the steel is 0.0003 to 0.0040%, the balance is iron and inevitable impurities, and the micro of t / 4 (t: plate thickness) position In the structure, the ferrite fraction in the whole structure is 60 to 85 area%, and the island-like martensite fraction is 1 to 5 area%. Ri, the balance being mixed structure of bainite, and further retained austenite in the island martensite has a gist in that it is 60 area% or more.

本発明の高張力鋼板においては、必要によって、更に、(a)Cu:0.4%以下(0%を含まない)および/またはNi:0.4%以下(0%を含まない)、(b)Mo:0.15%以下(0%を含まない)、Cr:0.15%以下(0%を含まない)およびV:0.04%以下(0%を含まない)よりなる群から選ばれる1種以上、(c)Ca:0.003%以下(0%を含まない)、等を含有させることも好ましく、含有させる成分に応じてその特性が改善される。   In the high-tensile steel sheet of the present invention, if necessary, (a) Cu: 0.4% or less (not including 0%) and / or Ni: 0.4% or less (not including 0%), ( b) From the group consisting of Mo: 0.15% or less (not including 0%), Cr: 0.15% or less (not including 0%), and V: 0.04% or less (not including 0%) It is also preferable to include one or more selected, (c) Ca: 0.003% or less (not including 0%), and the like, and the characteristics are improved according to the components to be included.

上記のような低降伏比高張力鋼板を製造するに当たっては、上記のような化学成分組成を満足する鋼スラブを、1000〜1250℃の温度に加熱し、Ar3変態点以上の温度で熱間圧延を終了した後、620〜720℃の温度域から冷却を開始し、350〜450℃の温度範囲まで10℃/秒以上の平均冷却速度で加速冷却を行い、その後放冷するようにすればよい。 In producing such a low-yield-ratio high-tensile steel sheet as described above, a steel slab satisfying the chemical composition as described above is heated to a temperature of 1000 to 1250 ° C., and hot at a temperature not lower than the Ar 3 transformation point. After finishing rolling, cooling is started from a temperature range of 620 to 720 ° C., accelerated cooling is performed at an average cooling rate of 10 ° C./second or more to a temperature range of 350 to 450 ° C., and then left to cool. Good.

本発明によれば、鋼板(母材)の降伏強さYSが440MPa以下、引張強さTSが510MPa以上で、且つ鋼板(母材)の低温靭性にも優れ、更に鋼板に大入熱の溶接を施した場合でも、HAZは−60℃で優れた靭性を示すことから、液化アンモニアと液化プロパンガスとを混載する多目的タンク等の溶接構造物の大型化に寄与すると共に、例えば大入熱の片面サブマージアーク溶接法を採用でき、上記溶接構造物をより短期間で製造することができる。   According to the present invention, the yield strength YS of a steel plate (base material) is 440 MPa or less, the tensile strength TS is 510 MPa or more, and the low temperature toughness of the steel plate (base material) is excellent. Even when applied, HAZ exhibits excellent toughness at -60 ° C., which contributes to an increase in the size of a welded structure such as a multi-purpose tank in which liquefied ammonia and liquefied propane gas are mixed. A single-sided submerged arc welding method can be employed, and the welded structure can be manufactured in a shorter period of time.

本発明者は、HAZおよび母材の低温靭性に優れる高張力鋼板を実現するべく様々な角度から検討した。その結果、HAZ靭性を確保するために、Cを0.09%以下、Siを0.25%以下と比較的低めに設定しつつ化学成分組成を調整した上で、TiN,BNによるオーステナイト粒内の結晶粒微細化効果を最大限に生かしつつ、所定量の固溶Nを島状マルテンサイト(MA)中に存在させるようにすれば、残留オーステナイト(残留γ)が安定化し、MA中に所定量の残留γを確保することができ、これによって鋼板(母材)の強度・靭性とHAZ靭性が両立できることを見出し、本発明を完成した。   This inventor examined from various angles in order to implement | achieve the high-tensile steel plate excellent in the low temperature toughness of HAZ and a base material. As a result, in order to ensure HAZ toughness, the chemical component composition was adjusted while setting C to be 0.09% or less and Si to be 0.25% or less, and then within the austenite grains by TiN and BN. By making a predetermined amount of solid solution N exist in the island martensite (MA) while making the best use of the grain refinement effect of the above, the retained austenite (residual γ) is stabilized, and the It was found that a certain amount of residual γ could be ensured, whereby the strength and toughness of the steel sheet (base material) and the HAZ toughness were compatible, and the present invention was completed.

本発明の高張力鋼板は、t/4(t:板厚)位置のミクロ組織において、フェライト分率が60〜85面積%に調整する必要がある。このフェライト分率が60面積%未満となると、降伏強さYS:440MPa以下を達成することができず、85面積%を超えると引張強度TS:510MPa以上を確保することができなくなる。このフェライト分率の好ましい範囲は、65面積%以上、80面積%以下である。   In the high-tensile steel plate of the present invention, the ferrite fraction needs to be adjusted to 60 to 85 area% in the microstructure at the t / 4 (t: plate thickness) position. If the ferrite fraction is less than 60 area%, the yield strength YS: 440 MPa or less cannot be achieved, and if it exceeds 85 area%, the tensile strength TS: 510 MPa or more cannot be ensured. A preferable range of this ferrite fraction is 65 area% or more and 80 area% or less.

本発明の高張力鋼板は、その組織がフェライト、MAおよびベイナイトの混合組織からなるものであるが、組織中のMA分率を1〜5面積%に調整する必要がある。MAは鋼板の強度確保のために必要であり、こうした観点から1面積%以上とする必要があるが、MA分率が過剰になって5面積%を超えると母材の低温靭性が却って低下することになる。またMA中の残留γ比率は母材靭性を確保するために60面積%以上であることが必要である。即ち、MA中の残留γは母材靭性を確保するため必要であり、そのためには60面積%以上を確保する必要があり(残部は高炭素マルテンサイト)、残留γの面積率が少ないと高炭素マルテンサイトの比率が増加して良好な母材靭性が確保できなくなる。   The high-strength steel sheet of the present invention is composed of a mixed structure of ferrite, MA, and bainite, but the MA fraction in the structure needs to be adjusted to 1 to 5 area%. MA is necessary for securing the strength of the steel sheet, and from this point of view, it is necessary to set it to 1 area% or more. However, if the MA fraction becomes excessive and exceeds 5 area%, the low temperature toughness of the base material decreases. It will be. Further, the residual γ ratio in MA needs to be 60 area% or more in order to ensure the base material toughness. That is, the residual γ in the MA is necessary to ensure the base material toughness. For that purpose, it is necessary to ensure 60% by area or more (the remainder is high carbon martensite). The ratio of carbon martensite increases and good base material toughness cannot be secured.

本発明の高張力鋼板では、その鋼板としての基本的特性を満足させるために、CおよびSiの含有量を低減しつつ、化学成分組成を適切に調整する必要があるが、これらの成分を含めその基本成分(C、Si、Mn、P、S、Al、B、N、Ti、Nb)の範囲限定理由は次の通りである。   In the high-tensile steel sheet of the present invention, in order to satisfy the basic characteristics as the steel sheet, it is necessary to appropriately adjust the chemical composition while reducing the C and Si contents. The reasons for limiting the ranges of the basic components (C, Si, Mn, P, S, Al, B, N, Ti, Nb) are as follows.

[C:0.06〜0.09%]
硬質相であるMAの生成を抑制し、−60℃でのHAZ靭性を確保すべく、C含有量を0.09%以下に抑える必要がある。一方、Cは、鋼板の強度確保に必須の元素でもあることから、0.06%以上含有させる。
[C: 0.06 to 0.09%]
In order to suppress the formation of MA, which is a hard phase, and to ensure the HAZ toughness at −60 ° C., it is necessary to suppress the C content to 0.09% or less. On the other hand, C is also an element essential for ensuring the strength of the steel sheet, so it is contained in an amount of 0.06% or more.

[Si:0.05〜0.25%]
Siは0.25%以下に低減することにより、MAの生成を十分に抑制でき、HAZの低温靭性を容易に確保することができる。一方、Siは、溶鋼の脱酸に使用されると共に強度向上に有効に作用する元素であるため、0.05%以上含有させる必要がある。
[Si: 0.05 to 0.25%]
By reducing Si to 0.25% or less, the formation of MA can be sufficiently suppressed, and the low temperature toughness of HAZ can be easily ensured. On the other hand, since Si is an element that is used for deoxidation of molten steel and effectively works to improve strength, it is necessary to contain 0.05% or more.

[Mn:1.2〜1.6%]
Mnは、SをMnSとして捕捉し、SによるHAZ靭性の劣化を抑制するのに有用な元素である。また、焼入れ性を高めて鋼板の高強度化に寄与する元素でもある。こうした作用を有効に発揮させるには、Mnを1.2%以上含有させる必要がある。好ましくは1.35%以上である。しかし、Mn量が過剰になるとHAZ靭性、母材靭性が却って劣化するため、1.6%以下に抑える。
[Mn: 1.2 to 1.6%]
Mn is an element useful for capturing S as MnS and suppressing degradation of HAZ toughness due to S. It is also an element that contributes to increasing the strength of the steel sheet by increasing the hardenability. In order to exhibit such an action effectively, it is necessary to contain 1.2% or more of Mn. Preferably it is 1.35% or more. However, if the amount of Mn becomes excessive, the HAZ toughness and the base metal toughness deteriorate instead, so the content is limited to 1.6% or less.

[P:0.01%以下(0%を含まない)]
Pは、HAZ靭性を劣化させる元素であるため極力低減する必要があり、本発明では0.01%以下に抑える。しかしPは、鋼の製造で不可避的に混入する不純物であり、工業的にその量を0%にすることは困難である。
[P: 0.01% or less (excluding 0%)]
P is an element that deteriorates the HAZ toughness, so it is necessary to reduce it as much as possible. In the present invention, P is suppressed to 0.01% or less. However, P is an impurity inevitably mixed in the production of steel, and it is difficult to make the amount 0% industrially.

[S:0.003%以下(0%を含まない)]
Sは、粗大な硫化物を生成してHAZ靭性を劣化させる元素である。よって極力低減する必要があり、本発明では0.003%以下に抑える。しかしSは、鋼の製造で不可避的に混入する不純物であり、工業的にその量を0%にすることは困難である。
[S: 0.003% or less (excluding 0%)]
S is an element that generates coarse sulfides and degrades the HAZ toughness. Therefore, it is necessary to reduce as much as possible, and in the present invention, it is suppressed to 0.003% or less. However, S is an impurity inevitably mixed in the production of steel, and it is difficult to make the amount 0% industrially.

[Al:0.06%以下(0%を含まない)]
Alは、脱酸剤として使用されるが、Al含有量が過剰になると、アルミナ等の酸化物系介在物が増大し、HAZ靭性が劣化するので、0.06%以下に抑える。
[Al: 0.06% or less (excluding 0%)]
Al is used as a deoxidizer, but if the Al content is excessive, oxide inclusions such as alumina increase and the HAZ toughness deteriorates, so the content is suppressed to 0.06% or less.

[B:0.0007〜0.0015%]
Bは、BNを生成することにより粒内フェライトの生成を促進する作用を有し、HAZ靭性を向上させる。また固溶Bは、粒界フェライトの粗大化およびフェライトサイドプレートの生成を抑制し、オーステナイト粒内の結晶粒を微細化する効果も有する。該作用効果を十分発揮させるには、Bを0.0007%以上含有させる必要がある。一方、Bが多過ぎると、過剰の固溶Bの作用により結晶が一定方向に形成され、HAZ靭性が却って劣化する。よってB含有量は、0.0015%以下に抑える。
[B: 0.0007 to 0.0015%]
B has the effect | action which accelerates | stimulates the production | generation of an intragranular ferrite by producing | generating BN, and improves HAZ toughness. Solid solution B also has the effect of suppressing the coarsening of grain boundary ferrite and the formation of ferrite side plates, and making the crystal grains in the austenite grains finer. In order to fully exhibit this effect, it is necessary to contain B 0.0007% or more. On the other hand, when there is too much B, a crystal | crystallization is formed in a fixed direction by the effect | action of excess solute B, and HAZ toughness deteriorates on the contrary. Therefore, the B content is limited to 0.0015% or less.

[Ti:0.009〜0.018%]
Tiは、TiN系析出物を生成して粒内フェライトの生成を促進すると共に、オーステナイト粒の粗大化抑制にも有効な元素である。また、高強度化に寄与する元素でもある。こうした作用を有効に発揮させるには、Tiを0.009%以上含有させる必要があり、好ましくは0.010%以上である。しかし、Tiを過剰に含有させると、却ってHAZ靭性の低下を招くだけでなく、フリーとなるN量(固溶N量)が低下し、圧延での残留オーステナイト(残量γ)の安定効果が弱まるため0.018%以下とする必要がある。
[Ti: 0.009 to 0.018%]
Ti is an element that generates TiN-based precipitates and promotes the formation of intragranular ferrite, and is also effective in suppressing austenite grain coarsening. It is also an element contributing to high strength. In order to effectively exhibit such an action, it is necessary to contain Ti by 0.009% or more, and preferably 0.010% or more. However, when Ti is excessively contained, not only the HAZ toughness is lowered, but also the amount of free N (solid solution N) is reduced, and the effect of stabilizing the retained austenite (residual amount γ) in rolling is reduced. In order to weaken, it is necessary to make it 0.018% or less.

[N:0.0050〜0.0080%]
Nは、Ti、B、Al、Nb等の元素と窒化物を形成してHAZ靭性を向上させる元素である。また固溶したN(その量については後述する)はMAに固溶析出し、残留γを安定化させる働きを有していることから、その量も含めて0.0050%以上(好ましくは0.0060%以上)含有させる必要がある。しかしなから、Nが過剰になると固溶N量が増加し却ってHAZ靭性を劣化させるので0.0080%以下に抑える。
[N: 0.0050 to 0.0080%]
N is an element that improves the HAZ toughness by forming a nitride with an element such as Ti, B, Al, or Nb. Further, since N dissolved in a solid solution (the amount of which will be described later) precipitates in MA and stabilizes residual γ, 0.0050% or more including this amount (preferably 0) .0060% or more) must be contained. However, if N is excessive, the amount of solute N is increased and the HAZ toughness is deteriorated.

[Nb:0.012〜0.020%]
Nbは、NbN系析出物を生成してオーステナイト粒の粗大化抑制に有効な元素である。また高強度化に寄与する元素でもある。この様な作用を有効に発揮させるためには、Nb含有量は0.012%以上とする必要があり、好ましくは0.015%以上である。しかし過剰に含まれていると、却ってHAZ靭性の低下を招くだけでなく、フリーとなるN量が低下し、圧延での残留γ量の安定効果が弱まるため、0.020%以下に抑える。
[Nb: 0.012-0.020%]
Nb is an element that generates NbN-based precipitates and is effective in suppressing austenite grain coarsening. It is also an element contributing to high strength. In order to effectively exhibit such an action, the Nb content needs to be 0.012% or more, preferably 0.015% or more. However, if it is excessively contained, not only the HAZ toughness is lowered, but also the amount of free N is lowered, and the effect of stabilizing the residual γ amount in rolling is weakened.

[固溶N:0.0003〜0.0040%]
上記のようにNは、窒化物を形成してHAZ靭性を向上させる元素であるが、窒化物を形成して残ったN(固溶N)はMAに固溶析出し、残留γを安定化させる働きを有している。こうした効果を発揮させるためには、固溶N量は、0.0003%以上(好ましくは0.0004%以上)を確保する必要がある。しかしなから、固溶Nが過剰になると却ってHAZ靭性を劣化させるので0.0040%以下(好ましくは0.0037%以下)に抑える。
[Solution N: 0.0003 to 0.0040%]
As mentioned above, N is an element that improves the HAZ toughness by forming nitrides. However, N (solid solution N) remaining after forming nitrides forms a solid solution in MA and stabilizes residual γ. It has a function to make it. In order to exhibit such an effect, it is necessary to ensure that the amount of solute N is 0.0003% or more (preferably 0.0004% or more). However, if the solute N is excessive, the HAZ toughness is deteriorated, so it is suppressed to 0.0040% or less (preferably 0.0037% or less).

本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避的不純物であり、該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素(例えば、Mg,Zr,O,H,希土類元素等)の混入が許容され得る。また、必要によって、下記の元素を積極的に含有させることも有効であり、含有される元素の種類に応じて鋼板の特性が更に改善される。これらの元素を含有させるときの範囲設定理由は、下記の通りである。   The contained elements specified in the present invention are as described above, and the balance is iron and unavoidable impurities, and as the unavoidable impurities, elements brought in depending on the situation of raw materials, materials, production facilities, etc. (for example, Mg, Zr, O, H, rare earth elements, etc.) can be mixed. Further, if necessary, it is also effective to positively contain the following elements, and the characteristics of the steel sheet are further improved according to the type of elements contained. The reason for setting the range when these elements are contained is as follows.

[Cu:0.4%以下(0%を含まない)および/またはNi:0.4%以下(0%を含まない)]
CuおよびNiは、いずれも母材靭性確保、強度確保に有用な元素である。こうした効果は、それらの含有量が増加するにつれて増大するが、過剰に含有させると、Cuは熱間加工性を阻害させ、NiはHAZ靭性を劣化させる。またNiの過剰添加は、液体アンモニア中で応力腐食割れ(SCC)を誘発する可能性がある。こうしたことから、CuおよびNiを含有させるときの含有量は、0.4%以下と定めた。
[Cu: 0.4% or less (not including 0%) and / or Ni: 0.4% or less (not including 0%)]
Cu and Ni are both useful elements for securing the base material toughness and the strength. These effects increase as their content increases. However, when excessively contained, Cu inhibits hot workability and Ni deteriorates HAZ toughness. In addition, excessive addition of Ni may induce stress corrosion cracking (SCC) in liquid ammonia. For these reasons, the content when Cu and Ni are contained is determined to be 0.4% or less.

[Mo:0.15%以下(0%を含まない)、Cr:0.15%以下(0%を含まない)およびV:0.04%以下(0%を含まない)よりなる群から選ばれる1種以上]
Mo,CrおよびVは、いずれも焼入れ性を高めて高強度化に有効な元素である。こうした効果は、それらの含有量が増加するにつれて増大するが、過剰に含有させると、HAZ靭性の劣化を招くので、Moは0.15%以下、Crは0.15%以下、Vは0.04%以下に夫々抑えるのがよい。
[Mo: 0.15% or less (not including 0%), Cr: 0.15% or less (not including 0%), and V: 0.04% or less (not including 0%) One or more
Mo, Cr, and V are all effective elements for enhancing the hardenability and increasing the strength. These effects increase as the content thereof increases. However, if excessively contained, the HAZ toughness is deteriorated, so that Mo is 0.15% or less, Cr is 0.15% or less, and V is 0.00. It is better to keep it below 04%.

[Ca:0.003%以下(0%を含まない)]
Caは、HAZ靭性に悪影響を及ぼすSをCaSとして固定すると共に、非金属介在物を粒状に形態制御して靭性を向上させるのに有効な元素である。この様な効果を十分発揮させるには、Caを0.0010%以上含有させることが好ましいが、過剰に含有させても、これらの効果は飽和しHAZ靭性が却って劣化する。よってCa含有量は、0.003%以下とすることが好ましい。
[Ca: 0.003% or less (excluding 0%)]
Ca is an element effective for fixing S, which adversely affects HAZ toughness, as CaS, and for improving the toughness by controlling the form of nonmetallic inclusions in a granular form. In order to exert such effects sufficiently, it is preferable to contain 0.0010% or more of Ca, but even if Ca is contained excessively, these effects are saturated and the HAZ toughness deteriorates. Therefore, the Ca content is preferably 0.003% or less.

上記のような組織にして本発明の鋼材を製造するには、例えば下記に示す方法によって、HAZの低温靭性に優れた低降伏比高張力鋼板を得ることができる。   In order to produce the steel material of the present invention having the above-described structure, a low yield ratio high-tensile steel plate excellent in low temperature toughness of HAZ can be obtained by, for example, the following method.

前述した成分組成を満足する鋼スラブを、1000〜1250℃の温度に加熱し、Ar3変態点以上の温度で熱間圧延を終了した後、620〜720℃の温度域から冷却を開始し、350〜450℃の温度範囲まで10℃/秒以上の平均冷却速度で加速冷却を行い、その後放冷する。この方法における各条件の範囲設定理由は次の通りである。 The steel slab satisfying the above-described component composition is heated to a temperature of 1000 to 1250 ° C., and after the hot rolling is completed at a temperature equal to or higher than the Ar 3 transformation point, cooling is started from a temperature range of 620 to 720 ° C., Accelerated cooling is performed at an average cooling rate of 10 ° C./second or more to a temperature range of 350 to 450 ° C., and then allowed to cool. The reason for setting the range of each condition in this method is as follows.

[熱間圧延時の鋼片の加熱温度:1000〜1250℃]
熱間圧延時の鋼片の加熱温度は、加熱時のオーステナイト粒を小さく保ち、圧延組織の微細化を図るために適切な範囲に設定する必要がある。1250℃は加熱時のオーステナイト粒を極端に粗大化しない上限であり、加熱温度がこれを超えるとオーステナイト粒の粗大化と共に、変態後の組織も粗大化し、鋼の靭性が著しく劣化する。一方、加熱温度が低過ぎると、後述する圧延完了温度(Ar3変態点以上)の確保が困難となるばかりでなく、オーステナイト粒の粗大化を抑制する働きを持つNbの溶体化の観点から、加熱温度の下限を1000℃とした。
[Heating temperature of steel slab during hot rolling: 1000 to 1250 ° C.]
The heating temperature of the steel slab at the time of hot rolling needs to be set to an appropriate range in order to keep the austenite grains at the time of heating small and to refine the rolling structure. 1250 ° C. is an upper limit that does not excessively coarsen the austenite grains during heating. If the heating temperature exceeds this, the austenite grains become coarser, the structure after transformation becomes coarser, and the toughness of the steel deteriorates remarkably. On the other hand, if the heating temperature is too low, it is difficult not only to secure the rolling completion temperature (above Ar 3 transformation point), which will be described later, but also from the viewpoint of solutionization of Nb that has the function of suppressing the coarsening of austenite grains. The lower limit of the heating temperature was 1000 ° C.

[熱間圧延終了温度:Ar3変態点以上の温度]
熱間圧延終了温度は、上記加熱温度と同様、鋼材を確実にオーステナイト状態にするための条件である。そのためにはAr3変態点以上の温度とする必要がある。Ar3変態点温度を下回ると、圧延中不均一にフェライトが変態析出し、フェライトを加工(圧延)する恐れがあり、材質のバラツキの観点から好ましくない。圧延終了温度の上限は、上記加熱温度の範囲内となる。尚、本発明において、「Ar3変態点」とは、下記式(1)で求められた値である。
Ar3変態点(℃)=930―230・[C]+25・[Si]−74・[Mn]−56・[Cu]−16・[Ni]−9・[Cr]−5・[Mo]−1620・[Nb]
…(1)
但し、[C],[Si],[Mn],[Cu],[Ni],[Cr],[Mo]および[Nb]は、夫々C,Si,Mn,Cu,Ni,Cr,MoおよびNbの含有量(質量%)を示し、合金元素を添加しない場合は、その項がないものとして計算する。
[Hot rolling finish temperature: temperature above Ar 3 transformation point]
The hot rolling end temperature is a condition for ensuring that the steel material is in an austenite state, similarly to the heating temperature. For this purpose, the temperature must be equal to or higher than the Ar 3 transformation point. If the temperature is lower than the Ar 3 transformation point temperature, ferrite may be transformed and precipitated non-uniformly during rolling, and the ferrite may be processed (rolled), which is not preferable from the viewpoint of material variation. The upper limit of the rolling end temperature is within the range of the heating temperature. In the present invention, the “Ar 3 transformation point” is a value determined by the following formula (1).
Ar 3 transformation point (° C.) = 930−230 · [C] + 25 · [Si] −74 · [Mn] −56 · [Cu] −16 · [Ni] −9 · [Cr] −5 · [Mo] -1620 [Nb]
... (1)
However, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo] and [Nb] are respectively C, Si, Mn, Cu, Ni, Cr, Mo and When the content (% by mass) of Nb is shown and no alloy element is added, the calculation is made assuming that the term is not present.

[加速冷却開始温度:620〜720℃]
上記熱間圧延を終了した後は、放冷(1℃/秒相当)して所定の温度範囲としてから加速冷却を開始する。冷却開始温度が720℃を超えると、フェライト変態の核生成の成長が不足することでフェライト分率が不足し、降伏強さが大きくなる。一方、冷却開始温度が620℃未満になると、フェライト分率が多くなり過ぎ、その後の放冷中にパーライトが生成して母材の強度・靭性が低下する。
[Accelerated cooling start temperature: 620 to 720 ° C.]
After the hot rolling is finished, it is allowed to cool (corresponding to 1 ° C./second) to reach a predetermined temperature range, and then accelerated cooling is started. When the cooling start temperature exceeds 720 ° C., the growth of nucleation of ferrite transformation is insufficient, resulting in insufficient ferrite fraction and increased yield strength. On the other hand, when the cooling start temperature is less than 620 ° C., the ferrite fraction is excessively increased, and pearlite is generated during the subsequent cooling and the strength and toughness of the base material are lowered.

[加速冷却時の平均冷却速度:10℃/秒以上]
上記冷却開始温度(620〜720℃)から、350〜450℃の温度まで冷却するときの平均冷却速度は、10℃/秒以上とする必要がある。この冷却速度が10℃/秒未満となると、冷却途中でパーライトが生成して所定のフェライト+ベイナイトの混合組織が得られず(フェライト+パーライト組織となる)、母材靭性や強度が低下することになる。この平均冷却速度の上限については、限定するものではないが、工業的に採用できることを考慮して60℃/秒程度が好ましい。
[Average cooling rate during accelerated cooling: 10 ° C / second or more]
The average cooling rate when cooling from the cooling start temperature (620 to 720 ° C.) to a temperature of 350 to 450 ° C. needs to be 10 ° C./second or more. When this cooling rate is less than 10 ° C./second, pearlite is generated during cooling and a predetermined ferrite + bainite mixed structure cannot be obtained (becomes ferrite + pearlite structure), and the base material toughness and strength are reduced. become. The upper limit of the average cooling rate is not limited, but is preferably about 60 ° C./second in consideration of industrial applicability.

[加速冷却停止温度:350〜450℃]
冷却停止温度が、350℃よりも低くなると、マルテンサイト(ラスマルテンサイト)が生成して、フェライト+マルテンサイト組織となって母材の靭性や強度が低下することになる。一方、この冷却停止温度が450℃よりも高くなると、所定量の島状マルテンサイトが確保できず、母材の靭性や強度が低下することになる。
[Accelerated cooling stop temperature: 350 to 450 ° C.]
When the cooling stop temperature is lower than 350 ° C., martensite (lass martensite) is generated, and the toughness and strength of the base material are lowered with a ferrite + martensite structure. On the other hand, when the cooling stop temperature is higher than 450 ° C., a predetermined amount of island martensite cannot be secured, and the toughness and strength of the base material are lowered.

[加速冷却終了後の放冷]
加速冷却を行った後は、放冷を行う必要がある。この放冷によって所定のフェライト分率を確保できることになる。尚、本発明において「放冷」とは、冷却を停止して鋼板を放置することによって、冷却速度が1.0℃/秒未満であるような状態を意味する。
[Cooling after accelerated cooling]
After accelerated cooling, it is necessary to cool. A predetermined ferrite fraction can be secured by this cooling. In the present invention, “cooling” means a state in which the cooling rate is less than 1.0 ° C./second by stopping the cooling and allowing the steel sheet to stand.

尚、上記で示した温度は、鋼板の平均的な性能を発揮する位置として、t/4部(t:板厚)の位置の温度で管理したものである。また、本発明の鋼材は、いわゆる厚鋼板に有利に適用できる。このときの板厚は、約7mm以上であり上限は特に限定されないが、通常40mm以下程度である。   In addition, the temperature shown above was managed by the temperature of the position of t / 4 part (t: board thickness) as a position which exhibits the average performance of a steel plate. The steel material of the present invention can be advantageously applied to so-called thick steel plates. The plate thickness at this time is about 7 mm or more, and the upper limit is not particularly limited, but is usually about 40 mm or less.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例
によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

下記表1に示す化学成分組成の鋼片を、1100℃に加熱し、所定の板厚(12mmまたは30mm)まで熱間圧延を施して熱間圧延を終了した後、所定の冷却速度で所定の温度範囲(冷却停止温度)まで冷却し、その後放冷した。このときの製造条件を表2に示す。尚、表1に示した固溶N量は、下記の方法で測定した値である。   The steel pieces having the chemical composition shown in Table 1 below are heated to 1100 ° C., hot-rolled to a predetermined plate thickness (12 mm or 30 mm), and after the hot rolling is finished, It cooled to the temperature range (cooling stop temperature), and then left to cool. The production conditions at this time are shown in Table 2. In addition, the solid solution N amount shown in Table 1 is a value measured by the following method.

[固溶N量の測定方法]
10×10×50(mm)のサンプルを、各鋼板のt/4部(t:板厚)から切り出し、このサンプルを電解液(アセチルアセトンを10質量%含有するエタノール溶液)中に浸漬させ、100mAの電流を5時間流して、母材の金属Feを電気分解し、電解液体に存在する析出物(TiN、BN、NbN等)をメッシュ直径:0.1μmのフィルターで濾過して残渣を回収した。残渣中のN濃度を求め、全N量から差し引いた量を固溶N量とした。
[Measurement method of solid solution N amount]
A 10 × 10 × 50 (mm) sample was cut out from t / 4 part (t: plate thickness) of each steel plate, and this sample was immersed in an electrolytic solution (ethanol solution containing 10% by mass of acetylacetone) to obtain 100 mA. Was applied for 5 hours to electrolyze the base metal Fe, and precipitates (TiN, BN, NbN, etc.) present in the electrolytic liquid were filtered through a filter having a mesh diameter of 0.1 μm to collect the residue. . The N concentration in the residue was determined, and the amount subtracted from the total N amount was defined as the solid solution N amount.

Figure 2009120876
Figure 2009120876

Figure 2009120876
Figure 2009120876

上記の様にして得られた各鋼板について、母材組織(混合組織、フェライト分率、MA分率、残留γ比率)、母材特性[降伏強さYS、引張強さTS、降伏比YR(YS/TS)、靭性(破面遷移温度vTrs)]、およびHAZ靭性(vE-60)の評価を、それぞれ下記の要領で実施した。 For each steel plate obtained as described above, the matrix structure (mixed structure, ferrite fraction, MA fraction, residual γ ratio), matrix characteristics [yield strength YS, tensile strength TS, yield ratio YR ( YS / TS), toughness (fracture surface transition temperature vTrs)], and HAZ toughness (vE- 60 ) were evaluated in the following manner.

[フェライト分率の測定]
フェライトの分率は、各鋼板のt/4部(t:板厚)について、3%ナイタール溶液でエッチングした後、光学顕微鏡を用いて倍率400倍で10視野の写真を撮影した後、画像解析ソフトを用いて測定し、平均値を求めた。また、フェライトの分率については、各鋼板のt/4部(t:板厚)の位置だけでなく、t/2部(t:板厚)の位置においても測定したところ、同じ組織となっていることが確認できた。
[Measurement of ferrite fraction]
The ferrite fraction was measured for t / 4 parts (t: plate thickness) of each steel plate after etching with a 3% nital solution, taking 10 fields of view at 400 times magnification using an optical microscope, and analyzing the image. Measurement was performed using software, and an average value was obtained. Further, the ferrite fraction was measured not only at the position of t / 4 part (t: thickness) of each steel sheet but also at the position of t / 2 part (t: thickness), and the same structure was obtained. It was confirmed that

[MA分率]
各鋼板のt/4部(t:板厚)の位置において、レペラ腐食をした後、光学顕微鏡を用いて倍率1000倍で1視野:50μm×50μmの領域を観察し、画像解析ソフトを用いて測定し、10視野の平均値を求めた。
[MA fraction]
At the position of t / 4 part (t: thickness) of each steel plate, after repeller corrosion, an optical microscope is used to observe an area of 1 field of view: 50 μm × 50 μm at a magnification of 1000 times, and using image analysis software Measurements were made and the average of 10 fields of view was determined.

[残留γ比率]
各鋼板のt/4部(t:板厚)の位置において、X線回折し、リーベルト法でα−Fe(200)面とγ−Fe(200)面のピーク強度比から理論強度比を計算によって求めて、残留γの比率を求めた。このとき用いたX線回折装置は、RAD−RU300(商品名:理学電気社製)を使用し、ターゲットはCo、ターゲット出力は40kV、200mAとした。
[Residual γ ratio]
At the position of t / 4 part (t: thickness) of each steel plate, X-ray diffraction is performed, and the theoretical strength ratio is calculated from the peak strength ratio of the α-Fe (200) plane and the γ-Fe (200) plane by the Liberty method. The ratio of residual γ was determined by calculation. The X-ray diffractometer used at this time used RAD-RU300 (trade name: manufactured by Rigaku Corporation), the target was Co, the target output was 40 kV, and 200 mA.

[母材特性の評価]
各鋼板の全厚から、圧延方向に直角の方向にJIS Z 2201の1B号試験片を採取して、JIS Z 2241の要領で引張試験を行ない、降伏強さYS(降伏点があるときは下降伏点YP、ないときは0.2%耐力σ0.2)および引張強さ(TS)を測定した。そして降伏強さ:440MPa以下、引張強さ:510MPa以上で、降伏比(YS/TS)が80%以下のものを、本発明の低降伏比高張力鋼板と評価した。
[Evaluation of base material properties]
JIS Z 2201 No. 1B test piece was taken from the total thickness of each steel plate in the direction perpendicular to the rolling direction, and subjected to a tensile test in accordance with JIS Z 2241, yield strength YS (if there is a yield point, Yield point YP, 0.2% yield strength (σ 0.2 ) when not present, and tensile strength (TS) were measured. And the thing whose yield strength: 440MPa or less, tensile strength: 510MPa, and yield ratio (YS / TS) was 80% or less was evaluated as the low yield ratio high-tensile steel sheet of the present invention.

また各鋼板の表面側から1mm削った部位から、圧延方向にJIS Z 2202のVノッチ試験片を採取して、JIS Z 2242の要領でシャルピー衝撃試験を行い、破面遷移温度vTrsを測定した。そして、破面遷移温度vTrsが−90℃以下のものを優れた母材靭性を具備していると評価した。   Further, a V-notch test piece of JIS Z 2202 was taken in the rolling direction from a portion of each steel plate cut by 1 mm from the surface side, and a Charpy impact test was performed in the manner of JIS Z 2242 to measure the fracture surface transition temperature vTrs. And it evaluated that the fracture surface transition temperature vTrs had the outstanding base material toughness with -90 degreeC or less.

[HAZ靭性の評価]
上記鋼板を用いた片面サブマージアーク溶接をFCB法で実施した。FCB法は銅板の上に裏当てフラックスを敷き、開先裏面に押し当て、表面片側から裏ビードを形成しながら溶接を完了させる方法であり、造船等の板継ぎ溶接で一般的に適用されている。開先形状を図1[(a)は板厚12mmの場合、(b)は板厚30mmの場合]に示す。溶接材料は、下記の低温用鋼溶接材料(神戸製鋼所製)を使用し、図2および表3の溶接条件で溶接継手を作製した。
[溶接材料]
・ワイヤ;US−255
・表フラックス;PFI−50LT
・裏当てフラックス;MF−1R
[Evaluation of HAZ toughness]
Single-sided submerged arc welding using the steel plate was performed by the FCB method. The FCB method is a method of laying a backing flux on a copper plate, pressing it against the back of the groove, and completing the welding while forming a back bead from one side of the surface. Yes. The groove shape is shown in FIG. 1 [(a) when the plate thickness is 12 mm, (b) when the plate thickness is 30 mm]. As the welding material, the following low-temperature steel welding material (manufactured by Kobe Steel) was used, and a welded joint was produced under the welding conditions shown in FIG. 2 and Table 3.
[Welding material]
・ Wire; US-255
・ Front flux; PFI-50LT
・ Backing flux; MF-1R

Figure 2009120876
Figure 2009120876

そして、表面側から1mm削り、HAZ(ボンド部)の位置に板表面に垂直に切欠きを入れたJIS Z 2202のVノッチ試験片を、それぞれ3個採取し、JIS Z 2242の要領でシャルピー衝撃試験を行った。そして、試験温度:−60℃での吸収エネルギー(vE-60)を測定した。そして、該吸収エネルギー(vE-60)の平均値が100J以上のものを、HAZの低温靭性に優れると評価した。 Then, three V-notch test pieces of JIS Z 2202 each cut by 1 mm from the surface side and notched perpendicularly to the plate surface at the position of HAZ (bond part) were collected, and Charpy impact was performed according to the procedure of JIS Z 2242. A test was conducted. And the absorbed energy (vE- 60 ) in test temperature: -60 degreeC was measured. And the thing whose average value of this absorbed energy (vE- 60 ) is 100J or more was evaluated as excellent in the low temperature toughness of HAZ.

これらの結果を、実溶接施工条件(施工法、入熱量)と共に、一括して下記表4に示す。   These results are shown in Table 4 below together with the actual welding conditions (construction method, heat input).

Figure 2009120876
Figure 2009120876

これらの結果から、次の様に考察することができる(尚、下記No.は、表中の実験No.を示す)。   From these results, it can be considered as follows (note that the following No. indicates the experiment No. in the table).

本発明で規定する要件を満たすNo.1〜9の鋼板は、HAZの低温靭性に優れていると共に、母材特性(低温靭性、降伏強さYS:440MPa以下、引張強さTS:510MPa以上)も優れた高張力鋼板であり、該鋼板を、大入熱片面サブマージアーク溶接法で溶接し、低温条件の用途に用いる場合にも優れた特性を発揮する。   No. satisfying the requirements defined in the present invention. The steel sheets 1 to 9 are high-tensile steel sheets having excellent HAZ low-temperature toughness and excellent base material properties (low-temperature toughness, yield strength YS: 440 MPa or less, tensile strength TS: 510 MPa or more), The steel plate is welded by a high heat input single-sided submerged arc welding method, and exhibits excellent characteristics when used for low temperature conditions.

これに対し、本発明の規定を満足しないNo.10〜19は、夫々、以下の不具合を有している。即ち、No.10は、固溶N量が過剰になっており母材の靭性が劣化していると共に、Ti含有量が不足しており、HAZの低温靭性が低下している。No.11は、固溶N量が不足しており母材の靭性が劣化していると共に、Ti含有量が過剰であるので、HAZの低温靭性が低下している。No.12は、固溶N量が不足しており母材の靭性が劣化していると共に、CやSiの含有量が過剰であるので、HAZの低温靭性が低下している。   On the other hand, No. which does not satisfy the provisions of the present invention. 10 to 19 have the following problems. That is, no. In No. 10, the amount of solid solution N is excessive, the toughness of the base material is deteriorated, the Ti content is insufficient, and the low temperature toughness of the HAZ is lowered. No. In No. 11, the amount of dissolved N is insufficient, the toughness of the base material is deteriorated, and the Ti content is excessive, so the low temperature toughness of HAZ is reduced. No. In No. 12, the amount of dissolved N is insufficient, the toughness of the base material is deteriorated, and the content of C and Si is excessive, so the low temperature toughness of HAZ is lowered.

No.13は、Mn含有量が過剰になっており、HAZ靭性および母材靭性に劣っている。No.14は、母材靭性に優れているものの、B含有量が不足しており、HAZの低温靭性が低下している。   No. No. 13 has an excessive Mn content and is inferior in HAZ toughness and base metal toughness. No. Although 14 is excellent in base material toughness, the B content is insufficient, and the low temperature toughness of HAZ is lowered.

No.15は、HAZ靭性に優れているものの、冷却開始温度が高くなっており、フェライト分率が低いため、希望する母材特性(降伏強さYS:440MPa以下)が得られていない。No.16は、HAZ靭性に優れているものの、冷却開始温度が低くなっており、フェライト分率が高いため、希望する母材特性(引張強度TS:510MPa以上)が得られていない。   No. No. 15 has excellent HAZ toughness, but the cooling start temperature is high and the ferrite fraction is low, so the desired base material properties (yield strength YS: 440 MPa or less) are not obtained. No. No. 16 has excellent HAZ toughness, but the cooling start temperature is low and the ferrite fraction is high, so the desired base material properties (tensile strength TS: 510 MPa or more) are not obtained.

No.17は、HAZ靭性に優れているものの、冷却停止温度が低くなっており、フェライト分率が低いため、希望する母材特性(破面遷移温度vTrs:−90℃以下)が得られていない。No.18は、HAZ靭性に優れているものの、平均冷却速度が低くなっており、フェライト+マルテンサイト組織となっており、母材靭性が劣化すると共に、希望する母材特性(引張強度TS:510MPa以上)が得られていない。No.19は、冷却開始温度が高くなっており、MAが生成せずに、母材靭性が劣化すると共に、希望する母材特性(引張強度TS:510MPa以上)が得られていない。   No. No. 17 has excellent HAZ toughness, but the cooling stop temperature is low and the ferrite fraction is low, so the desired base material characteristics (fracture surface transition temperature vTrs: −90 ° C. or lower) are not obtained. No. No. 18 is excellent in HAZ toughness, but has a low average cooling rate, has a ferrite + martensite structure, deteriorates the base material toughness, and desired base material characteristics (tensile strength TS: 510 MPa or more) ) Is not obtained. No. No. 19 has a high cooling start temperature, does not produce MA, deteriorates the base material toughness, and does not obtain the desired base material characteristics (tensile strength TS: 510 MPa or more).

上記表4の結果に基づき、固溶N量と母材靭性(破面遷移温度vTrs)の関係を図3に示すが[図中、「●印」は本発明鋼(試験No.1〜9)、「▲印」は比較鋼(試験No.10〜12)]、固溶N量を適切な範囲(0.00030〜0.0040%)に制御することによって、良好な母材靭性が発揮されていることが分かる。   Based on the results of Table 4 above, the relationship between the amount of solute N and the base material toughness (fracture surface transition temperature vTrs) is shown in FIG. 3 [in the figure, “●” indicates the steel of the present invention (Test Nos. 1-9). ) And “▲” are comparative steels (test Nos. 10 to 12)], and by controlling the amount of solute N within an appropriate range (0.00030 to 0.0040%), good base metal toughness is exhibited. You can see that.

実施例での溶接における開先形状の断面図を示す。Sectional drawing of the groove shape in the welding in an Example is shown. FCB溶接時の電極配置の模式図を示す。The schematic diagram of the electrode arrangement | positioning at the time of FCB welding is shown. 固溶N量と母材の破面遷移温度vTrsとの関係を示すグラフである。It is a graph which shows the relationship between the amount of solute N and the fracture surface transition temperature vTrs of a base material.

Claims (5)

C:0.06〜0.09%(「質量%」の意味、化学成分については以下同じ)、Si:0.05〜0.25%、Mn:1.2〜1.6%、P:0.01%以下(0%を含まない)、S:0.003%以下(0%を含まない)、Al:0.06%以下(0%を含まない)、B:0.0007〜0.0015%、Ti:0.009〜0.018%、N:0.0050〜0.0080%およびNb:0.012〜0.020%を夫々含有すると共に、鋼中の固溶N量が0.0003〜0.0040%であり、残部が鉄および不可避的不純物であり、且つt/4(t:板厚)位置のミクロ組織において、全組織に占めるフェライト分率が60〜85面積%、島状マルテンサイト分率が1〜5面積%であり、残部がベイナイト組織の混合組織からなり、更に前記島状マルテンサイト中の残留オーステナイトが60面積%以上であることを特徴とする溶接熱影響部および母材の低温靭性に優れた低降伏比高張力鋼板。   C: 0.06 to 0.09% (meaning “mass%”, chemical components are the same hereinafter), Si: 0.05 to 0.25%, Mn: 1.2 to 1.6%, P: 0.01% or less (not including 0%), S: 0.003% or less (not including 0%), Al: 0.06% or less (not including 0%), B: 0.0007 to 0 .0015%, Ti: 0.009 to 0.018%, N: 0.0050 to 0.0080% and Nb: 0.012 to 0.020%, respectively, and the amount of solute N in the steel is 0.0003 to 0.0040%, the balance is iron and inevitable impurities, and in the microstructure at the position of t / 4 (t: plate thickness), the ferrite fraction in the entire structure is 60 to 85 area% The island-like martensite fraction is 1 to 5% by area and the balance is a mixed structure of bainite structure. Low yield ratio high-strength steel sheet excellent in low temperature toughness of the heat affected zone and the base metal, wherein the further residual austenite in the island martensite is 60 area% or more. 更に、Cu:0.4%以下(0%を含まない)および/またはNi:0.4%以下(0%を含まない)を含有するものである請求項1に記載の低降伏比高張力鋼板。   Furthermore, Cu: 0.4% or less (not including 0%) and / or Ni: 0.4% or less (not including 0%), low yield ratio high tension according to claim 1 steel sheet. 更に、Mo:0.15%以下(0%を含まない)、Cr:0.15%以下(0%を含まない)およびV:0.04%以下(0%を含まない)よりなる群から選ばれる1種以上を含有するものである請求項1または2に記載の低降伏比高張力鋼板。   Furthermore, Mo: 0.15% or less (not including 0%), Cr: 0.15% or less (not including 0%), and V: 0.04% or less (not including 0%) The low-yield-ratio high-tensile steel sheet according to claim 1 or 2, which contains one or more selected. 更に、Ca:0.003%以下(0%を含まない)を含有するものである請求項1〜3のいずれかに記載の低降伏比高張力鋼板。   The low yield ratio high tensile strength steel sheet according to any one of claims 1 to 3, further comprising Ca: 0.003% or less (not including 0%). 請求項1〜4のいずれかに記載の低降伏比高張力鋼板を製造するに当り、前記化学成分組成を満足する鋼スラブを、1000〜1250℃の温度に加熱し、Ar3変態点以上の温度で熱間圧延を終了した後、620〜720℃の温度域から冷却を開始し、350〜450℃の温度範囲まで10℃/秒以上の平均冷却速度で加速冷却を行い、その後放冷することを特徴とする低降伏比高張力鋼板の製造方法。 In producing the low-yield-ratio high-tensile steel sheet according to any one of claims 1 to 4, a steel slab satisfying the chemical composition is heated to a temperature of 1000 to 1250 ° C, and the Ar 3 transformation point or higher is reached. After finishing the hot rolling at a temperature, cooling is started from a temperature range of 620 to 720 ° C., accelerated cooling is performed at an average cooling rate of 10 ° C./second or more to a temperature range of 350 to 450 ° C., and then allowed to cool A method for producing a low-yield-ratio high-tensile steel sheet, characterized in that
JP2007293648A 2007-11-12 2007-11-12 Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same Active JP4490472B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007293648A JP4490472B2 (en) 2007-11-12 2007-11-12 Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
CN2008101745567A CN101435050B (en) 2007-11-12 2008-11-10 Low temperature tenacity excellent low yield ratio high intensity steel plate for welding heat influenced part and mother plate, and manufacturing method thereof
KR20080111588A KR101060789B1 (en) 2007-11-12 2008-11-11 High-resistance-ratio high tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007293648A JP4490472B2 (en) 2007-11-12 2007-11-12 Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009120876A true JP2009120876A (en) 2009-06-04
JP4490472B2 JP4490472B2 (en) 2010-06-23

Family

ID=40709686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293648A Active JP4490472B2 (en) 2007-11-12 2007-11-12 Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same

Country Status (3)

Country Link
JP (1) JP4490472B2 (en)
KR (1) KR101060789B1 (en)
CN (1) CN101435050B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605287A (en) * 2012-03-09 2012-07-25 武汉钢铁(集团)公司 Steel for high-ductility anti-seismic structure with yield ratio smaller than or equal to 0.70 and production method of steel
EP2484792A1 (en) * 2009-09-30 2012-08-08 JFE Steel Corporation Steel plate with low yield ratio, high strength, and high toughness and process for producing same
CN105543666A (en) * 2015-12-30 2016-05-04 首钢总公司 Automobile beam steel with 960 MPa yield strength and production method thereof
JP2016148105A (en) * 2015-02-10 2016-08-18 新日鐵住金株式会社 Steel sheet for lpg tank and manufacturing method therefor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103103451B (en) * 2013-01-30 2014-12-24 武汉钢铁(集团)公司 Low-temperature steel for large-line energy welding with yield ratio not more than 0.85 and production method of low-temperature steel
CN105143489B (en) * 2013-07-25 2017-03-08 新日铁住金株式会社 Line-pipes steel plate and line pipe
CN103706917B (en) * 2013-12-25 2015-10-28 青岛武船重工有限公司 A kind of FCB that prevents welds the terminal heating means producing terminal crackle
JP6149778B2 (en) * 2014-03-31 2017-06-21 Jfeスチール株式会社 Steel plate with excellent wear resistance and method for producing the same
CN114134416B (en) * 2021-11-16 2022-10-25 山东钢铁集团日照有限公司 Low-yield-ratio high-strength medium-thickness steel plate and short-process manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432261C (en) * 2003-06-12 2008-11-12 杰富意钢铁株式会社 Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness and method for producing thereof
JP4252949B2 (en) * 2004-09-22 2009-04-08 株式会社神戸製鋼所 Low yield ratio high-tensile steel sheet with small acoustic anisotropy and excellent weldability, and method for producing the same
JP4778779B2 (en) * 2005-11-04 2011-09-21 株式会社神戸製鋼所 High-tensile steel plate with excellent low-temperature toughness in heat affected zone

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2484792A1 (en) * 2009-09-30 2012-08-08 JFE Steel Corporation Steel plate with low yield ratio, high strength, and high toughness and process for producing same
EP2484792A4 (en) * 2009-09-30 2013-03-06 Jfe Steel Corp Steel plate with low yield ratio, high strength, and high toughness and process for producing same
US8778096B2 (en) 2009-09-30 2014-07-15 Jfe Steel Corporation Low yield ratio, high strength and high toughness steel plate and method for manufacturing the same
CN102605287A (en) * 2012-03-09 2012-07-25 武汉钢铁(集团)公司 Steel for high-ductility anti-seismic structure with yield ratio smaller than or equal to 0.70 and production method of steel
CN102605287B (en) * 2012-03-09 2013-07-31 武汉钢铁(集团)公司 Steel for high-ductility anti-seismic structure with yield ratio smaller than or equal to 0.70 and production method of steel
JP2016148105A (en) * 2015-02-10 2016-08-18 新日鐵住金株式会社 Steel sheet for lpg tank and manufacturing method therefor
CN105543666A (en) * 2015-12-30 2016-05-04 首钢总公司 Automobile beam steel with 960 MPa yield strength and production method thereof

Also Published As

Publication number Publication date
KR101060789B1 (en) 2011-08-30
KR20090049030A (en) 2009-05-15
CN101435050B (en) 2011-03-16
CN101435050A (en) 2009-05-20
JP4490472B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP4972451B2 (en) Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
JP4881773B2 (en) Low yield ratio high strength steel plate with excellent low temperature toughness of weld heat affected zone
JP4490472B2 (en) Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
JP5910219B2 (en) High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same
JP6705569B1 (en) Clad steel plate and method of manufacturing the same
JP6451871B2 (en) Steel material for large heat input welding
JP2012207237A (en) 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF
JP2005232513A (en) High strength steel sheet and manufacturing method
JP4787141B2 (en) Thick steel plate with excellent toughness of weld heat-affected zone and low softening
JP5432548B2 (en) Thick steel plate with excellent brittle crack propagation stop properties
JP2009045671A (en) Wire for high-heat input electroslag welding
JP5147276B2 (en) High-tensile steel plate with excellent brittle cracking suppression / stop properties and low temperature toughness of weld heat affected zone
JP5284015B2 (en) Thick steel plate with excellent brittle crack propagation stop properties
JP5432565B2 (en) Thick steel plate with excellent brittle crack propagation stopping properties and fatigue crack growth inhibition properties
JP2008240033A (en) High strength low yield ratio steel material having excellent toughness in weld heat-affected zone
JP5849892B2 (en) Steel material for large heat input welding
JP4778779B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP5176847B2 (en) Low yield ratio low temperature steel and method for producing the same
JPWO2017135179A1 (en) Steel material for large heat input welding
KR20130126715A (en) Thick steel sheet having superior fatigue resistance properties in sheet thickness direction, method for producing same, and fillet welded joint using said thick steel sheet
KR102192969B1 (en) High-strength ultra-thick steel sheet with excellent brittle crack propagation stopping properties and its manufacturing method
WO2021200572A1 (en) High-strength low-alloy steel sheet having exceptional parent-material toughness and welded-joint toughness, and method for manufacturing said steel sheet
JP7396322B2 (en) steel plate
JP2005307313A (en) Method for producing steel plate excellent in earthquake-proof and weldability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4