JP2009117689A - 発光装置および電子機器 - Google Patents

発光装置および電子機器 Download PDF

Info

Publication number
JP2009117689A
JP2009117689A JP2007290463A JP2007290463A JP2009117689A JP 2009117689 A JP2009117689 A JP 2009117689A JP 2007290463 A JP2007290463 A JP 2007290463A JP 2007290463 A JP2007290463 A JP 2007290463A JP 2009117689 A JP2009117689 A JP 2009117689A
Authority
JP
Japan
Prior art keywords
potential
power supply
current source
source transistor
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007290463A
Other languages
English (en)
Inventor
Hiroaki Jo
宏明 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007290463A priority Critical patent/JP2009117689A/ja
Publication of JP2009117689A publication Critical patent/JP2009117689A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】電源線における電位降下によって、電源線に接続された各単位回路の発光量が減少することを抑制する。
【解決手段】発光装置10はn個の単位回路U1〜Unを備える。複数の単位回路U1〜Unの各々は、高位側電源線16から電力の供給を受けて駆動電流Idsを生成する電流源トランジスタTgと、駆動電流Idsに応じた輝度で発光する発光素子23と、を備え、複数の単位回路U1〜Unは、高位側電源線16の延在方向に沿って高位側電源線16に順に接続された1以上の単位回路Uを1組Cとする複数の組Cで構成され、各組C毎に、当該組Cにおける電流源トランジスタTgに供給されるゲート電位を生成する降圧回路22(ゲート電位生成手段)が設けられ、複数の組Cの各々において電流源トランジスタTgに供給されるゲート電位は、電源端子19から当該組Cにおける電流源トランジスタTgに至る電流経路の抵抗値が大きいほど低い。
【選択図】 図2

Description

本発明は、有機発光ダイオード(以下「OLED(Organic Light Emitting Diode)
」という)素子など各種の発光素子を利用した発光装置、及びそのような発光装置を備えた電子機器に関するものである。
基板の上に、OLED素子などの発光素子と、これに電流を供給するためのトランジスタと、を含む単位回路を複数個配列した構成の発光装置が従来から提案されている(例えば、特許文献1参照)。
特許文献1の構成においては、基板の上には更に電源線が設けられ、その電源線に各単位回路がそれぞれ接続される。電源からの電力は、電源端子を介して電源線に供給される。各々の単位回路のトランジスタは電源線から電力の供給を受けて駆動電流を生成する。各々の単位回路の発光素子は、トランジスタで生成された駆動電流の供給を受けて発光する。このとき、電流は電源線から各単位回路へ向かって流れる。
特開平8-108568号公報
ここで、電源線自体は抵抗体であるため、各発光素子に対する駆動電流の供給に伴って電源線に電流が流れると、電源線において電位降下が生じる。電源端子から単位回路のトランジスタと電源線との接続点に至る電流の経路長が大きいほど、その電流経路の抵抗値も大きくなり、接続点で生じる電位降下量も大きくなる。そうすると、トランジスタで生成される駆動電流も大きく減少し、これにより発光素子の発光強度(輝度)が大きく減少してしまう。
すなわち、電源端子から単位回路のトランジスタに至る電流の経路長が大きいほど発光素子の発光強度が大きく減少するので、各単位回路における発光素子の発光強度にばらつきが生じてしまうという問題があった。
本発明はこのような事情に鑑みてなされたものであり、電源線に接続された各単位回路における発光素子の発光強度のばらつきを抑制するという課題の解決を目的としている。
以上の課題を解決するために、本発明に係る発光装置は、電源端子を介して第1電位を供給する第1電源線と、第2電位を供給する第2電源線と、複数の単位回路とを備えた発光装置であって、複数の単位回路の各々は、第1電源線と接続され、発光素子に駆動電流を生成する電流源トランジスタと、電流源トランジスタによって生成される駆動電流に応じた輝度で発光する発光素子と、を備え、複数の単位回路は、第1及び第2電源線の延在方向に沿って第1及び第2電源線の間に順に接続された1以上の単位回路を1組とする複数の組で構成され、各組毎に、当該組における電流源トランジスタのゲートに供給する電位を生成するゲート電位生成手段が設けられ、複数の組の各々において電流源トランジスタのゲートに供給される電位は、電源端子から当該組における電流源トランジスタに至る電流経路の抵抗値が大きいほど第2電位に近い。
より具体的には、電流源トランジスタはPチャネルのトランジスタであり、第1電位は第2電位より高く、複数の組の各々において電流源トランジスタのゲートに供給される電位は、電源端子から当該組における電流源トランジスタに至る電流経路の抵抗値が大きいほど低いことが好ましい。
この態様によれば、第1電源線で生じる電位降下によって各単位回路の電流源トランジスタに供給される第1電位が減少しても、電流源トランジスタのゲートに供給される電位も第1電位の減少に応じて減少するため、各電流源トランジスタで生成される駆動電流のばらつきを抑制できる。従って、各単位回路における発光素子の発光強度(輝度)にばらつきが生じることを抑制できる。
この態様において、ゲート電位生成手段は、第1電源線から供給される第1電位を一定の電位だけ降下させ、その降下させた電位を電流源トランジスタのゲートに供給する降圧回路で構成され、電源端子から第1電源線と降圧回路との接続点に至る電流経路の抵抗値は、電源端子から、ゲートに当該降圧回路で降下された電位が供給される電流源トランジスタに至るまでの抵抗値が大きいほど大きいことが好ましい。この態様によれば、第1電源線における電位降下量が変化しても、各電流源トランジスタに供給される第1電位とゲートに供給される電位との電位差をほぼ一定の値に保つことができる。従って、第1電源線における電位降下量が変化しても、各単位回路における発光素子の発光強度にばらつきが生じることを抑制できる。
上述した発光装置において、電流源トランジスタをNチャネルのトランジスタとし、第2電位は第1電位より高いという構成にすることもできる。この場合、電源端子から各組の電流源トランジスタに至る電流経路の抵抗値が大きいほど当該電流源トランジスタに供給される第1電位は高くなるが、複数の組の各々において、電源端子から当該組における電流源トランジスタに至る電流経路の抵抗値が大きいほど当該電流源トランジスタのゲートに供給される電位を高く設定することによって、各組の電流源トランジスタで生成される駆動電流がばらつくことを抑制できる。
この態様において、ゲート電位生成手段は、第1電源線から供給される第1電位を一定の電位だけ昇圧させ、その昇圧させた電位を電流源トランジスタのゲートに供給する昇圧回路で構成され、電源端子から第1電源線と昇圧回路との接続点に至る電流経路の抵抗値は、電源端子から、ゲートに当該昇圧回路で昇圧された電位が供給される電流源トランジスタに至るまでの抵抗値が大きいほど大きいことが好ましい。この態様によれば、各電流源トランジスタに供給される第1電位とゲートに供給される電位との電位差を、第1電源線における電位変化に関わらず、ほぼ一定の値に保つことができる。
上述の発光装置においては、複数の組の各々において、ゲート電位生成手段から当該組における電流源トランジスタのゲートへ延びるゲート電位供給線が設けられ、互いに隣り合う組のゲート電位供給線同士が接続されるという態様であってもよい。この発明によれば、第1電源線における電位変化に対応するように、接続されたゲート電位供給線においても電位が変化する。これによって、各電流源トランジスタで生成される駆動電流のばらつき(発光素子の発光強度のばらつき)を抑制できる。
次に、本発明に係る電子機器は、上述した発光装置を備えることが好ましい。このような電子機器としては、プリンタ、複写機、ファクシミリ、あるいは、画像を表示する表示装置、パーソナルコンピュータ、携帯電話機等が該当する。
<A:第1実施形態>
図1は、本発明の第1実施形態に係る発光装置を露光装置(光ヘッド)として利用した画像形成装置の部分的な構成を示す斜視図である。同図に示すように、画像形成装置は発光装置10と集光性レンズアレイ11と感光体ドラム12(像担持体)とを含む。発光装置10は、基板13の表面に直線状に配列された多数の発光素子(図1においては図示略)を含む。これらの発光素子は、用紙などの記録材に印刷されるべき画像の態様に応じて選択的に発光する。感光体ドラム12は、主走査方向に延在する回転軸に支持され、外周面を発光装置10に対向させた状態で副走査方向(記録材が搬送される方向)に回転する。
集光性レンズアレイ11は発光装置10と感光体ドラム12との間隙に配置される。この集光性レンズアレイ11は、各々の光軸を発光装置10に向けた姿勢でアレイ状に配列された多数の屈折率分布型レンズを含む。このような集光性レンズアレイ11としては、例えば日本板硝子株式会社から入手可能なSLA(セルフォック・レンズ・アレイ)がある(セルフォック/SELFOCは日本板硝子株式会社の登録商標)。
発光装置10の各発光素子からの出射光は集光性レンズアレイ11の各屈折率分布型レンズを透過したうえで感光体ドラム12の表面に到達する。この露光によって感光体ドラム12の表面には所望の画像に応じた潜像(静電潜像)が形成される。
図2は、発光装置10の電気的な構成を示すブロック図である。図2に示すように、発光装置10は、電源回路14及び15と、高位側電源線16と、低位側電源線(接地線)17と、n個の単位回路U(U〜U)と、駆動回路18と、が基板13の表面に配置された構造となっている。電源回路14及び15は、長尺状の基板13の長手方向両端部の近傍に配置されている。高位側電源線16及び低位側電源線17は主走査方向に沿って延在する。高位側電源線16の両端には電源端子19が設けられている。また、低位側電源線17の両端にも電源端子20が設けられている。高位側電源線16には電源端子19を介して電源回路14及び15から電源電位VELが供給される。低位側電源線17には電源端子20を介して電源回路14及び15から接地電位VCT(VEL>VCT)が供給される。単位回路U〜Uは、主走査方向に沿って配列され、その各々は、高位側電源線16及び低位側電源線17との間に配置される。
図2に示すように、単位回路Uは、電流源トランジスタTgと、トランジスタTrと、発光素子21と、を含む。なお、他の単位回路U〜Uも単位回路Uと同様に構成されている。図2に示すように、発光素子21は、高位側電源線16と低位側電源線17との間に配置される。発光素子21は、駆動電流Idsに応じた階調となる素子である。本実施形態における発光素子21は、有機EL素子(ElectroLuminescent)材料で形成された発光層が陽極と陰極との間隙に介在するОLED素子であり、発光層に供給される駆動電流Idsの電流値に応じた輝度で発光する。
図2に示すように、電流源トランジスタTgは、高位側電源線16と発光素子21との間に配置されるPチャネル型のトランジスタ(典型的には薄膜トランジスタ)である。電流源トランジスタTgのソースは高位側電源線16と接続され、高位側電源線16から電源電位VELが供給される。図2に示すように、各単位回路U〜Uにおける電流源トランジスタTgのソースと高位側電源線16との接続点をそれぞれS〜Sとする。また、図2に示すように、各単位回路U〜Uには、電流源トランジスタTgのゲートに供給する電位(以下、「ゲート電位」という)を生成する降圧回路22(ゲート電位生成手段)が設けられている。降圧回路22の詳細な態様については後述する。電流源トランジスタTgには降圧回路22からゲート電位が供給されると共に、そのソースには高位側電源線16から電源電位VELが供給される。これにより、各電流源トランジスタTgは定電流源として機能する。
図2に示すように、トランジスタTrは、電流源トランジスタTgと発光素子21との間に配置されるトランジスタ(典型的には薄膜トランジスタ)である。駆動回路18は、画像形成装置の制御装置(例えばCPUやコントローラである。)から送られた階調データに応じた電位VdをトランジスタTrのゲートに供給する。本実施形態における階調データは、発光素子21に対して点灯(高階調)および消灯(低階調)の何れかを指定するデータである。トランジスタTrは、階調データに応じた電位Vdがゲートに供給されることでオン状態又はオフ状態の何れかに制御される。トランジスタTrがオン状態に変化すると、電流源トランジスタTgで生成された駆動電流Idsが発光素子21に供給され、これによって発光素子21は発光する。これに対し、トランジスタTrがオフ状態に変化すると、電流源トランジスタTgで生成された駆動電流Idsの電流値はゼロとなって発光素子21は消灯する。
発光素子21の発光強度(輝度)は、定電流源である電流源トランジスタTgで生成される駆動電流Idsの電流値で決まる。電流源トランジスタTgは飽和領域で動作し、電流源トランジスタTgによって生成される駆動電流Idsは、次に示す式(1)で表される。
Ids=(μ*Cox/2)*(W/L)*(Vgs−Vth)*(1+Vds)・・(1)
上記式(1)において、μは電子の移動度、Coxは電流源トランジスタTgのゲート容量、Wは電流源トランジスタTgのチャネル幅、Lは電流源トランジスタTgのチャネル長、Vgsは電流源トランジスタTgのゲート・ソース間電圧、Vthは電流源トランジスタTgの閾値電圧、Vdsは電流源トランジスタTgのドレイン・ソース間電圧をそれぞれ表している。
各単位回路U〜Uにおける発光素子21の発光強度(輝度)を等しくするためには、各単位回路U〜Uの電流源トランジスタTgで生成される駆動電流Idsの電流値を等しくする必要がある。そうすると、各単位回路U〜Uにおいて、電流源トランジスタTgで生成される駆動電流Idsの電流値に大きく影響を与える電流源トランジスタTgのゲート・ソース間電圧Vgsを一定にする必要がある。
図3は、高位側電源線16における主走査方向の各接続点S〜Sの位置と、各単位回路U〜Uの電流源トランジスタTgに供給される電源電位VELとゲート電位との関係を示す図である。高位側電源線16は抵抗体であるため、各発光素子21に対する駆動電流Idsの供給に伴って電流が高位側電源線16を流れると、高位側電源線16において電位降下が生じる。電源端子19から電流源トランジスタTgと高位側電源線16との接続点Sに至る電流の経路長が大きいほど、その電流経路における抵抗値も大きいため、接続点Sで生じる電位降下量も大きい。すなわち、図3に示すように、各接続点S〜Sの位置が高位側電源線16の両方の端部19からその延在方向の中央(電源端子19間の中点)に向かうにつれて電源電位VELは減少する。
ところで、高位側電源線16における電位降下によって各電流源トランジスタTgに供給される電源電位VELが減少しても、各電流源トランジスタTgに供給されるゲート電位も電源電位VELの減少に応じて減少すれば、各電流源トランジスタTgのゲート・ソース間電圧Vgsがばらつくことを抑制できる。本実施形態はかかる点に着目したものである。図2の各降圧回路22は、各単位回路U〜Uの電流源トランジスタTgに供給されるゲート電位が、電源端子19から電流源トランジスタTgに至るまでの電流経路の抵抗値が大きいほど低いようにゲート電位を生成して各単位回路U〜Uの電流源トランジスタTgに供給している。さらに詳述すると、降圧回路22は、高位側電源線16から供給される電位を一定の電位だけ降下させ、その降下させた電位を電流源トランジスタTgのゲートに供給する。降圧回路22は、高位側電源線16から供給される電位を一定の電位だけ降下させ、その降下させた電位を電流源トランジスタTgのゲートに供給するものであればよく、例えば降圧回路22は、バンドギャップリファレンス回路やツェナーダイオードなどで構成される。
図2に示すように、各降圧回路22と高位側電源線16との接続点DをそれぞれD1〜Dnとする。本形態では、降圧回路22と高位側電源線16との接続点Dは、その降圧回路22に対応する電流源トランジスタTgと高位側電源線16との接続点Sの近傍に設けられる。従って、その接続点Sの電位と接続点Dの電位はほぼ同電位である(図2において、例えば接続点S1と接続点D1は同電位である)。電源端子19から接続点Dに至る電流経路の抵抗値は、電源端子19から、当該降圧回路22からゲート電位が供給される電流源トランジスタTgに至る電流経路の抵抗値が大きいほど大きい。
本形態では、各降圧回路22の各々における電位降下量△Vは等しい。そのため、接続点Dにおける電位が低いほど(すなわち、接続点Dにおける電源電位VELの減少量が大きいほど)、その降圧回路22から電流源トランジスタTgに供給されるゲート電位は低い。
本形態の構成によれば、図3に示すように各電流源トランジスタTgにおけるゲート・ソース間電圧Vgsは、各接続点Sにおける電源電位VELの減少量に関わらず降圧回路22における電位降下量△Vに均一化される。これにより、各電流源トランジスタTgで生成される駆動電流Idsのばらつき(発光素子21の発光強度のばらつき)が抑制される。
<B:第2実施形態>
第1実施形態の発光装置10においては、各単位回路U〜U毎に降圧回路22を設けていた。これに対して、第2実施形態の発光装置10においては、図4に示すように、n個の単位回路U〜Uを所定個(本形態では2個)毎に区分した複数の組Cの各々について降圧回路22が配置される。他の構成については、第1実施形態の構成と同じであるため、重複する部分については説明を省略する。
図4に示すように、1つの組Cに属する複数個(本形態では2個)の単位回路Uは、高位側電源線16および低位側電源線17の延在方向に沿って高位側電源線16および低位側電源線17との間に順に接続されている。各組Cに配置された降圧回路22は、各組Cの電流源トランジスタTgに供給されるゲート電位が、電源端子19から当該組Cにおける電流源トランジスタTgに至るまでの電流経路の抵抗値が大きいほど低いようにゲート電位を生成して各組Cの電流源トランジスタTgに供給する。具体的な態様については、以下に説明する。
図4に示すように、各組Cにおいては、降圧回路22から各電流源トランジスタTgのゲートに延びるゲート電位供給線23がそれぞれ設けられている。各組Cにおいて、降圧回路22で生成されたゲート電位は、ゲート電位供給線23を経由して各電流源トランジスタTgのゲートにそれぞれ供給される。ここで、各電流源トランジスタTgのゲートにおけるインピーダンスは非常に大きいため、各ゲートには殆ど電流が流れず、ゲート電位供給線23において電位降下は殆ど発生しない。そのため、図5に示すように、同じ組Cに属する各電流源トランジスタTgのゲートに降圧回路22から供給されるゲート電位は殆ど同電位となる。
電源端子19から高位側電源線16と降圧回路22との接続点Dに至るまでの電流経路の抵抗値は、電源端子19から、当該降圧回路22に対応する組Cにおける電流源トランジスタTgと高位側電源線16との各接続点Sに至るまでの電流経路の抵抗値が大きいほど大きい。各降圧回路22の各々における電位降下量△Vは等しいため、接続点Dにおける電位が低いほど、降圧回路22から各電流源トランジスタTgに供給されるゲート電位は低い。
従って、図5に示すように各組Cにおける電源電位VELが低いほど各組におけるゲート電位も低く、各電流源トランジスタTgにおけるゲート・ソース間電圧Vgsのばらつきが抑制される。これにより、各単位回路U〜Uにおける発光素子21の発光強度のばらつきが抑制される。
本形態では、各単位回路U〜U毎にゲート電位生成手段を設けていないため、より簡易な構成で各単位回路U〜Uにおける発光素子21の発光強度のばらつきを抑制することができるという利点がある。
<C:第3実施形態>
第2実施形態の発光装置10においては、降圧回路22とゲート電位供給線23とを各組C毎に独立に設けていた。これに対して、第3実施形態の発光装置10においては、互いに隣り合う組Cのゲート電位供給線23同士が接続される。他の構成については、第2実施形態の構成と同じであるため、重複する部分については説明を省略する。
図6に示すように、互いに隣り合う2組(例えば図6のC1とC2)の各々のゲート電位供給線23同士が接続される。さらに詳述すると、組C1のゲート電位供給線23の延出方向端部(組C1の降圧回路22とは反対側の端部)は、次段の組C2のゲート電位供給線23のうち降圧回路22から初段の電流源トランジスタTgのゲートに至るまでの区間に設けられた接続点Eに接続される。電源端子19から組C2における電流源トランジスタTgに至るまでの電流の経路長(電流経路の抵抗値)は、電源端子19から組C1における電流源トランジスタTgに至るまでの電流の経路長(電流経路の抵抗値)よりも大きいため、組C2における電流源トランジスタTgに供給されるゲート電位は、組C1における電流源トランジスタTgに供給されるゲート電位よりも低い。そのため、組C1における降圧回路22と次段の組C2のゲート電位供給線23に設けられた接続点Eとの間には、組C1におけるゲート電位と組C2におけるゲート電位の相違による電位差が生じ、図6に示すように組C1における降圧回路22から接続点Eに向かって電流Iが流れる。ゲート電位供給線23自体は抵抗体であるため、ゲート電位供給線23に電流Iが流れると、ゲート電位供給線23において電位降下が生じる。組C1において、降圧回路22からの電流経路の抵抗値が大きいほど、ゲート電位供給線23における電位降下量は大きい。
各組Cにおいて、電源端子19から当該組Cにおける電流源トランジスタと高位側電源線16との接続点Sに至るまでの電流経路の抵抗値が大きいほど、降圧回路22からその接続点Sに対応する電流源トランジスタTgのゲートに至るまでの電流経路の抵抗値は大きい。従って、組C1においては、電源端子19から接続点Sに至るまでの電流経路の抵抗値が大きいほど、その接続点Sに対応する電流源トランジスタTgに供給されるゲート電位は低い。
同様にして、互いに隣り合う組Cのゲート電位供給線23同士を全て接続すると、各接続点Eにおいて電位差が生じるため、相互に接続されたゲート電位供給線23に電流が流れる。従って、高位側電源線16における電位降下に対応するように、相互に接続されたゲート電位供給線23においても電位降下が発生する。本実施形態の構成によれば、図7に示すように、各電流源トランジスタTgに供給される電源電位VELの減少に応じて各電流源トランジスタTgに供給されるゲート電位が減少する。すなわち、各組C間における電流源トランジスタTgのゲート・ソース間電圧Vgsのばらつきは勿論、1つの組C内における電流源トランジスタTgのゲート・ソース間電圧Vgsのばらつきも抑制できる。
なお、本形態のように互いに隣り合う組Cのゲート電位供給配線23を全て接続するという態様でもよいし、互いに隣り合う組Cのゲート電位供給配線23の一部を接続するという態様であってもよい。要するに、高位側電源線16における電位降下に対応するように各組Cにおけるゲート電位を変化させることができる態様であればよい。
また、各電流源トランジスタTgのゲートに流れる電流を低減するために、接続されたゲート電位供給線23に抵抗体を設けるという態様とすることもできる。
<D:変形例>
本発明は上述した各実施形態に限定されるものではなく、例えば、以下の変形が可能である。また、以下に示す変形例のうちの2以上の変形例を組み合わせることもできる。
(1)変形例1
上述の各実施形態においては、発光素子23の一例として、OLED素子を取り上げたが、無機発光ダイオードやLED(Light Emitting Diode)であってもよい。要は、駆動電流に応じた発光輝度で発光するのであれば、どのような素子であってもよい。
(2)変形例2
上述の各実施形態においては、電源電位VELを降圧してゲート電位を生成したが、これに限らず、電源電位VELとは独立してゲート電位を生成する電源回路をゲート電位生成手段として採用してもよい。
例えば図8に示すように、ゲート電位を生成するための電源回路24が各単位回路U〜U毎に設けられるという態様が採用される。図8において、単位回路Uに対応して設けられた電源回路24は、接続点Sにおける電位よりも△Vだけ低いゲート電位を生成し、そのゲート電位を単位回路Uにおける電流源トランジスタTgのゲートに供給する。単位回路U〜Uにおいても同様である。
また、例えば図9に示すように、n個の単位回路U〜Uを所定個毎に区分した複数の組Cの各々について電源回路24が設けられるという第2実施形態と同様の態様であってもよい。また、例えば図10に示すように、互いに隣り合う組Cのゲート電位供給線23同士を接続するという第3実施形態と同様の態様であってもよい。
(3)変形例3
第2実施形態においては、n個の単位回路U〜Uを2個毎に区分して複数の組Cとしたが、これに限らず、n個の単位回路U〜Uは、1以上の単位回路を1組とする複数の組で構成されるという態様であればよく、種々の変更が可能である。例えば、図11に示すように1つの組Cを構成する単位回路Uの数が、各組C毎に異なるという態様であってもよい。図11の態様においては、各組Cにおける単位回路Uの数を適宜設定することにより、各ゲート電位を高位側電源線16における電位降下に対応させて設定することができる。これによって、各電流源トランジスタTgにおけるゲート・ソース間電圧Vgsのばらつきを一層抑制できる。
(4)変形例4
上述の各実施形態においては、複数の組Cの各々において電流源トランジスタTgに供給されるゲート電位は、電源端子20から当該組Cにおける電流源トランジスタTgに至る電流経路の抵抗値が大きいほど低く設定されるが、これに限らず、本発明は、電源端子を介して第1電位を供給する第1電源線と、第2電位を供給する第2電源線と、複数の単位回路U〜Uと、を備えた発光装置10であって、複数の組Cの各々における電流源トランジスタTgのゲートに供給される電位は、電源端子から当該組Cにおける電流源トランジスタTgに至る電流経路の抵抗値が大きいほど第2電位に近いという態様であればよい。
上述の各実施形態においては、高位側電源線16が「第1電源線」に対応し、低位側電源線17が「第2電源線」に対応する。また、電源電位VELが「第1電位」に対応し、接地電位VCTが「第2電位」に対応する。
ところで、上述の各実施形態における電流源トランジスタTgは、Pチャネル型のトランジスタであるが、電流源トランジスタTgをNチャネル型のトランジスタで構成することもできる。そのような場合の態様について、以下に説明する。
図12は、電流源トランジスタTgがNチャネル型のトランジスタで構成された発光装置10の電気的な構成を示すブロック図である。図12に示すように、各単位回路U〜Uにおける電流源トランジスタTgは、発光素子21と低位側電源線17との間に配置され、電流源トランジスタTgのソースは低位側電源線17に接続される。各単位回路U〜Uにおける電流源トランジスタTgと低位側電源線17との接続点をそれぞれK〜Kとする。図12の構成においては、各単位回路U〜Uには、電流源トランジスタTgのゲートに供給するゲート電位を生成する昇圧回路25(ゲート電位生成手段)がそれぞれ設けられている。図12に示すように、各昇圧回路25と低位側電源線17との接続点をそれぞれF〜Fとする。各昇圧回路25は、低位側電源線17から供給される電位を一定の電位△Vだけ昇圧させ、その昇圧させた電位を各電流源トランジスタTgのゲートに供給する。
図12の構成では、昇圧回路25と低位側電源線17との接続点Fは、その昇圧回路からゲート電位が供給される電流源トランジスタTgと低位側電源線17との接続点Kの近傍に設けられる。従って、その接続点Kの電位と接続点Fの電位はほぼ同電位である(図12において、例えば接続点Kと接続点Fはほぼ同電位である)。電源端子20から接続点Fまでの電流経路の抵抗値は、電源端子20から、当該昇圧回路25からゲート電位が供給される電流源トランジスタTgまでの電流経路の抵抗値が大きいほど大きい。
それ以外の構成は上述の第1実施形態の構成と同じであるため、重複する部分については説明を省略する。
上述の各実施形態において説明したように、トランジスタTrがオン状態になると、電流源トランジスタTgで生成される駆動電流Idsが発光素子21に供給される。これによって、発光素子21が発光する。
このとき、発光素子21に供給された電流は、低位側電源線17を通って電源端子20に向かって流れる。低位側電源線17は抵抗体であるため、低位側電源線17に電流が流れると、低位側電源線17において電位降下が生じる。低位側電源線17における電位は、電源端子20に近いほど接地電位VCTに近づく。
図13は、低位側電源線17における各接続点K〜Kの位置と、その位置における電位と、の関係を示す図である。図13に示すように、接続点Kの位置が低位側電源線17の両方の端部からその延在方向の中央に向かうにつれて当該接続点Kにおける電位は高くなる。すなわち、電源端子20から電流源トランジスタTgに至るまでの電流経路の抵抗値が大きいほど当該電流源トランジスタTgのソース電位は高いということが分かる。
なお、図13では、各接続点K〜Kのうち最も電源端子20に近い接続点であるKおよびKにおける電位を便宜上VCTとして表している。
上述の各実施形態において説明したように、各単位回路U〜Uにおける電流源トランジスタTgで生成される駆動電流Idsを等しくするためには、各電流源トランジスタTgのゲート・ソース間電圧Vgsのばらつきを抑制することが必要である。
そこで、図12に示す構成においては、各単位回路U〜Uにおける電流源トランジスタTgで生成される駆動電流Idsを等しくするために、電源端子20から電流源トランジスタTgに至るまでの電流経路の抵抗値が大きいほど当該電流源トランジスタTgに供給されるゲート電位が高いように設定されている。
図12の構成では、各昇圧回路25の各々における電位上昇量△Vは等しいので、接続点K(接続点F)における電位が高いほど、すなわち、電源端子20から電流源トランジスタTgに至るまでの電流経路の抵抗値が大きいほど、当該電流源トランジスタTgに供給されるゲート電位は高く、当該接続点Kにおける電位を△Vだけ上昇させた値となる。図12の構成によれば、各電流源トランジスタTgにおけるゲート・ソース間電圧Vgsは、各接続点Kにおける電位に関わらず昇圧回路25での電位上昇量△Vに均一化される。これにより、各電流源トランジスタTgで生成される駆動電流Idsのばらつき(発光素子21の発光強度のばらつき)が抑制される。
図12の構成においては、低位側電源線17が「第1電源線」に対応し、高位側電源線16が「第2電源線」に対応する。また、電源電位VELが「第2電位」に対応し、接地電位VCTが「第1電位」に対応する。すなわち、図12の構成は、複数の組Cの各々における電流源トランジスタTgのゲートに供給される電位は、電源端子20から当該組Cにおける電流源トランジスタTgに至る電流経路の抵抗値が大きいほど第2電位に近いという態様の一例を示すものである。
なお、図12の構成については、上述の第2実施形態のように、n個の単位回路U〜Uを所定個毎に区分した複数の組Cの各々について昇圧回路25が配置されるという態様とすることもできる。また、上述の第3実施形態のように、互いに隣り合う組Cのゲート電位供給線23同士が接続されるという態様とすることもできる。
また、図12の構成では、トランジスタTrは高位側電源線16と発光素子21との間に配置されているが、これに限らず、例えば高位側電源線16とトランジスタTrとの間に発光素子21を配置するという態様とすることもできる。
(5)変形例5
上述の各実施形態においては、高位側電源線16の両端から電源電位VELが供給されるという態様であるが、これに限らず、例えば高位側電源線16の一方の端部のみに電源端子19が設けられ、高位側電源線16の一方の端部のみから電源電位VELが供給されるという態様であってもよい。
(6)変形例6
上述の各実施形態においては、各単位回路U〜Uは、電流源トランジスタTgと、電流源トランジスタTgで生成された電流を発光素子23に供給するか否かを切り替えるトランジスタTrと、発光素子23と、を備えているが、これに限らず、例えば単位回路UはトランジスタTrを備えずに、電流源トランジスタTgと発光素子23とを備えるという態様であってもよい。かかる態様の発光装置10は、原稿などの読取対象に光を照射するライン型の光ヘッド(照明装置)としてスキャナなどの画像読取装置に採用することもできる。
(7)変形例7
上述の各実施形態においては、電流源トランジスタTg及びトランジスタTrは、高位側電源線16と発光素子23との間に配置されているが、これに限らず、例えば電流源トランジスタTg及びトランジスタTrの両方又は何れか一方を発光素子23と低位側電源線17との間に配置してもよい。また、上述の各実施形態においては、トランジスタTrは、電流源トランジスタTgと発光素子23との間に配置されているが、これに限らず、例えば高位側電源線16と電流源トランジスタTgとの間にトランジスタTrを配置してもよい。また、発光素子23と低位側電源線17との間に電流源トランジスタTg及びトランジスタTrの両方を配置した態様において、トランジスタTrは、発光素子23と電流源トランジスタTgとの間に配置してもよいし、電流源トランジスタTgと低位側電源線17との間に配置してもよい。
<E:電子機器>
次に、図14を参照して、本発明に係る電子機器のひとつの態様である画像形成装置について説明する。この画像形成装置は、ベルト中間転写体方式を利用したタンデム型のフルカラー画像形成装置である。
この画像形成装置では、各々が同様の構成である4個の発光装置10K,10C,10M,10Yが、各々の構成が同様である4個の感光体ドラム(像担持体)110K,110C,110M,110Yの像形成面110に対向する位置にそれぞれ配置されている。発光装置10K,10C,10M,10Yは、上記の各形態に係る発光装置10と同様の構成である。
図14に示すように、この画像形成装置には、駆動ローラ121と従動ローラ122とが設けられており、これらのローラ121,122には無端の中間転写ベルト120が巻回されて、矢印に示すようにローラ121,122の周囲を回転させられる。図示しないが、中間転写ベルト120に張力を与えるテンションローラなどの張力付与手段を設けてもよい。
この中間転写ベルト120の周囲には、外周面に感光層を有する4個の感光体ドラム110K,110C,110M,110Yが互いに所定の間隔をおいて配置される。添字「K」,「C」,「M」,「Y」はそれぞれ黒、シアン、マゼンタ、イエローの顕像を形成するために使用されることを意味している。他の部材についても同様である。感光体ドラム110K,110C,110M,110Yは、中間転写ベルト120の駆動と同期して回転駆動される。
各感光体ドラム110(K,C,M,Y)の周囲には、コロナ帯電器111(K,C,M,Y)と、発光装置10(K,C,M,Y)と、現像器114(K,C,M,Y)とが配置されている。コロナ帯電器111(K,C,M,Y)は、これに対応する感光体ドラム110(K,C,M,Y)の像形成面110A(外周面)を一様に帯電させる。発光装置10A(K,C,M,Y)は、各感光体ドラムの帯電した像形成面110Aに静電潜像を書き込む。各発光装置10A(K,C,M,Y)においては、感光体ドラム110(K,C,M,Y)の母線(主走査方向)に沿って複数の発光素子20が配列する。静電潜像の書き込みは、複数の発光素子20によって感光体ドラム110(K,C,M,Y)に光を照射することにより行う。現像器114(K,C,M,Y)は、静電潜像に現像剤としてのトナーを付着させることにより感光体ドラム110(K,C,M,Y)に顕像(すなわち可視像)を形成する。
このような4色の単色顕像形成ステーションにより形成された黒、シアン、マゼンタ、イエローの各顕像は、中間転写ベルト120上に順次に一次転写されることによって中間転写ベルト120上で重ね合わされ、この結果としてフルカラーの顕像が形成される。中間転写ベルト120の内側には、4つの一次転写コロトロン(転写器)112(K,C,M,Y)が配置されている。一次転写コロトロン112(K,C,M,Y)は、感光体ドラム110(K,C,M,Y)の近傍にそれぞれ配置されており、感光体ドラム110(K,C,M,Y)から顕像を静電的に吸引することにより、感光体ドラムと一次転写コロトロンの間を通過する中間転写ベルト120に顕像を転写する。
最終的に画像を形成する対象(記録材)としてのシート102は、ピックアップローラ103によって、給紙カセット101から1枚ずつ給送されて、駆動ローラ121に接した中間転写ベルト120と二次転写ローラ126の間のニップに送られる。中間転写ベルト120上のフルカラーの顕像は、二次転写ローラ126によってシート102の片面に一括して二次転写され、定着部である定着ローラ対127を通ることでシート102上に定着される。この後、シート102は、排紙ローラ対128によって、装置上部に形成された排紙カセット上へ排出される。
次に、図15を参照して、本発明に係る画像形成装置の他の形態について説明する。この画像形成装置は、ベルト中間転写体方式を利用したロータリ現像式のフルカラー画像形成装置である。図15に示すように、感光体ドラム110の周囲には、コロナ帯電器168と、ロータリ式の現像ユニット161と、上記の実施形態に係る発光装置10と、中間転写ベルト169とが設けられている。
コロナ帯電器168は、感光体ドラム110の外周面を一様に帯電させる。発光装置10は、感光体ドラム110の帯電させられた像形成面(外周面)に静電潜像を書き込む。この発光装置10においては、感光体ドラム110の母線(主走査方向)に沿って複数の発光素子32が配列する。静電潜像の書き込みは、これらの発光素子32から感光体ドラム110に光を照射することにより行う。
現像ユニット161は、4つの現像器163Y,163C,163M,163Kが90°の角間隔をおいて配置されたドラムであり、軸161aを中心にして反時計回りに回転可能である。現像器163Y,163C,163M,163Kは、それぞれイエロー、シアン、マゼンタ、黒のトナーを感光体ドラム110に供給して、静電潜像に現像剤としてのトナーを付着させることにより感光体ドラム110に顕像(すなわち可視像)を形成する。
無端の中間転写ベルト169は、駆動ローラ170a、従動ローラ170b、一次転写ローラ166およびテンションローラに巻回されて、これらのローラの周囲を矢印に示す向きに回転させられる。一次転写ローラ166は、感光体ドラム110から顕像を静電的に吸引することにより、感光体ドラム110と一次転写ローラ166の間を通過する中間転写ベルト169に顕像を転写する。
具体的には、感光体ドラム110の最初の1回転で、発光装置10によりイエロー(Y)像のための静電潜像が書き込まれて現像器163Yにより同色の顕像が形成され、さらに中間転写ベルト169に転写される。また、次の1回転で、発光装置10Aによりシアン(C)像のための静電潜像が書き込まれて現像器163Cにより同色の顕像が形成され、イエローの顕像に重なり合うように中間転写ベルト169に転写される。そして、このようにして感光体ドラム110が4回転する間に、イエロー、シアン、マゼンタ、黒の顕像が中間転写ベルト169に順次に重ね合わせられ、この結果としてフルカラーの顕像が転写ベルト169上に形成される。最終的に画像を形成する対象としてのシートの両面に画像を形成する場合には、中間転写ベルト169に表面と裏面の同色の顕像を転写し、次に中間転写ベルト169に表面と裏面の次の色の顕像を転写する形式で、フルカラーの顕像を中間転写ベルト169上に形成する。
画像形成装置には、シートが通過させられるシート搬送路174が設けられている。シートは、給紙カセット178から、ピックアップローラ179によって1枚ずつ取り出され、搬送ローラによってシート搬送路174を進行させられ、駆動ローラ170aに接した中間転写ベルト169と二次転写ローラ171の間のニップを通過する。二次転写ローラ171は、中間転写ベルト169からフルカラーの顕像を一括して静電的に吸引することにより、シートの片面に顕像を転写する。二次転写ローラ171は、図示しないクラッチにより中間転写ベルト169に接近および離間させられるようになっている。そして、シートにフルカラーの顕像を転写する時に二次転写ローラ171は中間転写ベルト169に当接させられ、中間転写ベルト169に顕像を重ねている間は二次転写ローラ171から離される。
以上のようにして画像が転写されたシートは定着器172に搬送され、定着器172の加熱ローラ172aと加圧ローラ172bの間を通過させられることにより、シート上の顕像が定着する。定着処理後のシートは、排紙ローラ対176に引き込まれて矢印Fの向きに進行する。両面印刷の場合には、シートの大部分が排紙ローラ対176を通過した後、排紙ローラ対176が逆方向に回転させられ、矢印Gで示すように両面印刷用搬送路175に導入される。そして、二次転写ローラ171により顕像がシートの他面に転写され、再び定着器172で定着処理が行われた後、排紙ローラ対176でシートが排出される。
図14および図15に例示した画像形成装置は、OLED素子を発光素子23として採用した光源(露光手段)を利用しているので、レーザ走査光学系を用いた場合よりも装置が小型化される。なお、以上に例示した以外の電子写真方式の画像形成装置にも本発明の発光装置10を採用することができる。例えば、中間転写ベルトを使用せずに感光体ドラムからシートに対して直接的に顕像を転写するタイプの画像形成装置や、モノクロの画像を形成する画像形成装置にも本発明に係る発光装置10を応用することが可能である。
本発明に係る発光装置の用途は感光体の露光に限定されない。例えば、本発明の発光装置は、原稿などの読取対象に光を照射するライン型の光ヘッド(照明装置)としてスキャナなどの画像読取装置に採用される。この種の画像読取装置としては、スキャナ、複写機やファクシミリの読取部分、バーコードリーダ、あるいはQRコード(登録商標)のような二次元画像コードを読む二次元画像コードリーダがある。また、複数の発光素子(特に発光素子)を面状に配列した発光装置は、液晶パネルの背面側に配置されるバックライトユニットとしても採用される。また、複数の単位回路を行列状に配列した発光装置は各種の電子機器の表示装置として採用される。
第1実施形態に係る画像形成装置の部分的な構成を示す斜視図である。 第1実施形態に係る発光装置10の電気的な構成を示すブロック図である。 高位側電源線16の位置と、各単位回路U〜Uの電流源トランジスタTgに供給される電源電位VEL及びゲート電位と、の関係を示す図である。 第2実施形態に係る発光装置10の電気的な構成を示すブロック図である。 高位側電源線16における各接続点Sの位置と、各単位回路U〜Uの電流源トランジスタTgに供給される電源電位VEL及びゲート電位と、の関係を示す図である。 第3実施形態に係る発光装置10の電気的な構成を示すブロック図である。 第3実施形態における、高位側電源線16の位置と、各単位回路U〜Uの電流源トランジスタTgに供給される電源電位VEL及びゲート電位と、の関係を示す図である。 変形例2の一例に係る発光装置10の電気的な構成を示すブロック図である。 変形例2の一例に係る発光装置10の他の態様を示すブロック図である。 変形例2の一例に係る発光装置10の他の態様を示すブロック図である。 変形例3に係る発光装置10の電気的な構成を示すブロック図である。 変形例4に係る発光装置10の電気的な構成を示すブロック図である。 低位側電源線17における接続点Kの位置と電位との関係を示す図である。 本発明に係る電子機器の具体例(画像形成装置)を示す斜視図である。 本発明に係る電子機器の具体例(画像形成装置)を示す斜視図である。
符号の説明
10……発光装置、16……高位側電源線、17……低位側電源線、19……電源端子、21……発光素子、22……降圧回路、23……ゲート電位供給線、24……電源回路、25……昇圧回路、U〜U……単位回路、Tg……電流源トランジスタ、Tr……トランジスタ(スイッチ)、C……組、D〜D……接続点、E……接続点、F〜F……接続点、K〜K……接続点、S〜S……接続点、Ids……駆動電流。

Claims (7)

  1. 電源端子を介して第1電位を供給する第1電源線と、第2電位を供給する第2電源線と、複数の単位回路とを備えた発光装置であって、
    前記複数の単位回路の各々は、
    前記第1電源線と接続され、前記発光素子に駆動電流を生成する電流源トランジスタと、
    前記電流源トランジスタによって生成される駆動電流に応じた輝度で発光する発光素子と、を備え、
    前記複数の単位回路は、
    前記第1及び第2電源線の延在方向に沿って前記第1及び第2電源線の間に順に接続された1以上の単位回路を1組とする複数の組で構成され、
    各組毎に、当該組における前記電流源トランジスタのゲートに供給する電位を生成するゲート電位生成手段が設けられ、
    前記複数の組の各々において前記電流源トランジスタのゲートに供給される電位は、前記電源端子から当該組における前記電流源トランジスタに至る電流経路の抵抗値が大きいほど前記第2電位に近い、
    ことを特徴とする発光装置。
  2. 前記電流源トランジスタはPチャネルのトランジスタであり、
    前記第1電位は前記第2電位より高く、
    前記複数の組の各々において前記電流源トランジスタのゲートに供給される電位は、前記電源端子から当該組における前記電流源トランジスタに至る電流経路の抵抗値が大きいほど低い、
    ことを特徴とする請求項1に記載の発光装置。
  3. 前記ゲート電位生成手段は、前記第1電源線から供給される第1電位を一定の電位だけ降下させ、その降下させた電位を前記電流源トランジスタのゲートに供給する降圧回路で構成され、
    前記電源端子から前記第1電源線と前記降圧回路との接続点に至る電流経路の抵抗値は、前記電源端子から、ゲートに当該降圧回路で降下された電位が供給される前記電流源トランジスタに至るまでの抵抗値が大きいほど大きい
    ことを特徴とする請求項2に記載の発光装置。
  4. 前記電流源トランジスタはNチャネルのトランジスタであり、
    前記第2電位は前記第1電位より高く、
    前記複数の組の各々において前記電流源トランジスタのゲートに供給される電位は、前記電源端子から当該組における前記電流源トランジスタに至る電流経路の抵抗値が大きいほど高い、
    ことを特徴とする請求項1に記載の発光装置。
  5. 前記ゲート電位生成手段は、前記第1電源線から供給される第1電位を一定の電位だけ昇圧させ、その昇圧させた電位を前記電流源トランジスタのゲートに供給する昇圧回路で構成され、
    前記電源端子から前記第1電源線と前記昇圧回路との接続点に至る電流経路の抵抗値は、前記電源端子から、ゲートに当該昇圧回路で昇圧された電位が供給される前記電流源トランジスタに至るまでの抵抗値が大きいほど大きい
    ことを特徴とする請求項4に記載の発光装置。
  6. 前記複数の組の各々において、前記ゲート電位生成手段から当該組における前記電流源トランジスタのゲートへ延びるゲート電位供給線が設けられ、
    互いに隣り合う組の前記ゲート電位供給線同士が接続される
    ことを特徴とする請求項1乃至5のうちいずれか1項に記載の発光装置。
  7. 請求項1乃至6のうちいずれか1項に記載の発光装置を具備する電子機器。
JP2007290463A 2007-11-08 2007-11-08 発光装置および電子機器 Withdrawn JP2009117689A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007290463A JP2009117689A (ja) 2007-11-08 2007-11-08 発光装置および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007290463A JP2009117689A (ja) 2007-11-08 2007-11-08 発光装置および電子機器

Publications (1)

Publication Number Publication Date
JP2009117689A true JP2009117689A (ja) 2009-05-28

Family

ID=40784461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007290463A Withdrawn JP2009117689A (ja) 2007-11-08 2007-11-08 発光装置および電子機器

Country Status (1)

Country Link
JP (1) JP2009117689A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013640A (ja) * 2014-07-01 2016-01-28 コニカミノルタ株式会社 光書込み装置および画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013640A (ja) * 2014-07-01 2016-01-28 コニカミノルタ株式会社 光書込み装置および画像形成装置

Similar Documents

Publication Publication Date Title
US20090141113A1 (en) Line Head and Image Forming Device Using the Same
JP2007237529A (ja) 信号伝送方法、駆動回路、電気光学装置及び電子機器
US20070273295A1 (en) Electro-optical device and image forming apparatus
JP6036936B2 (ja) 光書込装置および画像形成装置
JP4360375B2 (ja) 電気光学装置、電子機器、及び駆動方法
JP2009158477A (ja) 発光装置および電子機器
JP5130804B2 (ja) 発光装置および画像形成装置
JP4371138B2 (ja) 光ヘッド、その制御方法、および画像形成装置。
JP4192987B2 (ja) 光ヘッド、露光装置、および画像形成装置。
JP2008087196A (ja) 光ヘッドの駆動方法、光ヘッドの制御装置、露光装置および画像形成装置
JP2009116148A (ja) 発光装置および電子機器
JP2009117689A (ja) 発光装置および電子機器
JP4752412B2 (ja) 光ヘッド、その駆動方法および画像形成装置
JP2009115888A (ja) 発光装置および電子機器
JP5515336B2 (ja) 発光装置および電子機器
JP2009111212A (ja) 発光装置及び電子機器
JP2010093048A (ja) 発光装置及び画像形成装置
JP2009204794A (ja) 電気光学装置および電子機器。
JP2008238633A (ja) 光ヘッド、その駆動方法、および画像形成装置
JP2007253501A (ja) 発光素子用駆動回路及びその駆動制御方法並びに、その発光素子用駆動回路を備えた表示装置及びその表示装置を備えた電子機器
JP2007230004A (ja) 電気光学装置及び電子機器
JP2010188534A (ja) 発光装置とその駆動方法と画像形成装置と電子機器
JP2007030234A (ja) 露光方法、発光装置、および画像形成装置
JP2007212912A (ja) 発光装置および電子機器
JP2011000844A (ja) 発光装置、駆動回路、駆動方法、電子機器および画像形成装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110201