JP2009117658A - 太陽光発電制御装置及び太陽光発電制御における電力評価方法 - Google Patents

太陽光発電制御装置及び太陽光発電制御における電力評価方法 Download PDF

Info

Publication number
JP2009117658A
JP2009117658A JP2007289858A JP2007289858A JP2009117658A JP 2009117658 A JP2009117658 A JP 2009117658A JP 2007289858 A JP2007289858 A JP 2007289858A JP 2007289858 A JP2007289858 A JP 2007289858A JP 2009117658 A JP2009117658 A JP 2009117658A
Authority
JP
Japan
Prior art keywords
power
voltage
current
value
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007289858A
Other languages
English (en)
Other versions
JP5322256B2 (ja
Inventor
Toshiya Yoshida
俊哉 吉田
Katsumi Oba
勝實 大庭
Michio Otsubo
道雄 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denki University
Original Assignee
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denki University filed Critical Tokyo Denki University
Priority to JP2007289858A priority Critical patent/JP5322256B2/ja
Priority to US12/191,900 priority patent/US7859241B2/en
Publication of JP2009117658A publication Critical patent/JP2009117658A/ja
Application granted granted Critical
Publication of JP5322256B2 publication Critical patent/JP5322256B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/906Solar cell systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】低分解能なAD変換器であっても微小な電力変化を検出して最大電力点追従制御が高精度で行える太陽光発電制御装置を提供する。
【解決手段】本発明の太陽光発電制御装置は、制御回路44がスイッチ41を電圧検出器8及び電流検出器9の出力A側にし、変調度Dを所定の変化幅dで増加させながら太陽電池1の動作電圧に低周波のリプル成分を与えることで開放電圧側から最大電力点探査を開始し、最大電力点近傍で動作点が振動し、変調度更新前の電力検出器43の出力する電力値よりも変調度更新後の電力値の方が小さくなれば最大電力点通過と判断し、スイッチ41を増幅器23,24の出力側に切り替えて最大電力点追従制御を継続することを特徴とする。
【選択図】図2

Description

本発明は、太陽光発電制御装置及び太陽光発電制御における電力評価方法に関する。
太陽電池から効率よく電力を取り出すためには、太陽電池を常に最大電力点(Maximum Power Point:MPP)で動作させる必要がある。このため一般的な太陽光発電システムでは、最大電力点追従制御回路(Maximum Power Point Tracking:MPPT)が実装されている。
既に多くのMPPT手法が報告されており、その一つに山登り法と称する制御法がある。この制御法はチョッパ回路などの電力変換器を用いて、太陽電池の動作電圧に低周波で一定変化幅の揺動成分(以下、「リプル成分」と称する。)を与え、これに伴う電力の傾きを算出し、動作点をMPPに移動させる方法である。この制御法は外部環境変化に対する高い適応能力があり、広く用いられている。
この山登り法はMPPまでの追従速度の向上と、MPP収束後の出力電力の振動抑制がトレードオフの関係にある。この問題点に対して、変化幅を最適値に自動調整し、MPPへの速やかな追従を実現しながらも、MPP付近での振動を抑えた適応山登り法が提案されている(高原、山之内、川口、「適応山登り法による太陽光発電システムの最大電力取得制御」、電学論D、121巻6号、689−693ページ、平成13年―非特許文献1)。この適応山登り法を含め、山登り法はMPP収束後の精度を上げるために変化幅をできるだけ小さくする必要がある。しかし、マイクロコンピュータ(以下、「マイコン」と称する。)を用いて山登り法を行う場合、リプル成分の変化幅はAD変換器(以下、「ADC」と略記する。)の分解能を考慮して決める必要がある。安価なマイコンに搭載されているADCは低分解能で、内部雑音が多く精度が期待できないものが多い。そのため、山登り法でMPP収束後の精度を上げるために変化幅を小さくするためには、高分解能のADCが必要となるが、その場合には製品コストの増加につながる。
他方、山登り法だけに限らず多くのMPPT制御回路では、低日射時にMPPTの精度が悪化することが知られている。一般的に制御回路のパラメータを選定する場合、使用する太陽電池の最大定格に合わせて選定される。しかし、太陽電池は外部環境の変化に伴いその出力が大幅に変化するため、低日射時は制御回路に入力される信号レベルが大幅に減少してしまう。このためADCの分解能等の問題で制御の精度が悪くなってしまうのである。
低分解能なADCで微小な出力変化を検出するためには、太陽電池の電圧、電流を高ゲインで検出すればよい。しかし高ゲイン化すると、電流、電圧のリプル成分だけでなく直流成分も拡大してしまい、計測系の飽和(サチュレーション)が問題となる。
そこで、山登り法の特徴である、リプル成分による電力変化を評価してMPPTを行っている点に着目し、直流成分を除去しリプル成分のみのゲインを上げることが考えられる。しかし、直流成分を除去した電流、電圧から電力を求めると、本来の太陽電池による発電電力値とはまったく異なるものになる。
本願発明者らは、直流成分を除去した場合においても正確なMPPT制御が行える条件を見出し、これを応用することで、MPP近傍においては直流成分を完全に除去した場合においてもリプル成分のみで正しい電力評価が行えることも見出した。直流成分を除去したリプル成分のみであれば増幅器が飽和する恐れが小さくなるのでそのゲインを非常に高くすることができ、低分解能なADCで微小な電力変化を検出することができる。これを利用することで、MPPTの高精度化、低日射での精度向上が図れる。
従来、太陽光発電装置におけるMPPT制御技術については、例えば、特開2005−70890号公報(特許文献1)、特開平9−91050号公報(特許文献2)等があげられる。しかしながら、これらはいずれも上記のようなMPP点付近で直流成分を除去しあるいは抑制し、直流リプルを利用し、かつゲインを切替ることでMPPTの高精度化、低日射での精度向上をはかる技術については知られていない。
特開2005−70890号公報 特開平9−91050号公報 高原、山之内、川口、「適応山登り法による太陽光発電システムの最大電力取得制御」、電学論D、121巻6号、689−693ページ、平成13年
本発明は、上述した技術背景の下に発明されたもので、MPP近傍において直流成分を除去したリプル成分のみで電力評価するように切り替えることにより、MPPT制御のための増幅器にゲインの非常に高いものを利用することができ、広い日射量範囲で高精度なMPPTが行える太陽光発電制御技術を提供することを目的とする。
本発明の基本原理は、次の通りである。太陽電池の電圧、電流のリプル成分のみを検出して最大電力点追従制御MPPTを行うことを考える。ここでは、直流成分を除去した場合に正確な電力評価が行える条件を理論的に解明する。
リプル成分を含んだ太陽電池の出力電圧eに対する出力電流がi(e)で表せるとすると、出力電力は次のように表すことができる。
Figure 2009117658
従来の制御法ではこの電力を評価してMPPTを行っている。一方、e,i(e)から直流値E,I(E,Iの値は任意)を除いて電力評価を行うと、次のようになる。
Figure 2009117658
式(1)と式(2)とを比較すると、式(2)には右辺第2項と第3項が付加されていることがわかる。山登り法のように電力の大小を比較して最大電力点を探査するMPPT法では、必ずしも電力の絶対値を計測する必要はない。よって式(2)の右辺第2項と第3項が零又は定数であるならばp′(e)を評価することでもMPPTは可能である。右辺第3項は言うまでもなく定数である。したがって、右辺第2項が実質的に定数又は零となる条件下であればp′(e)によるMPPTが可能となる。
いま、eとi(e)の変化を微小とし、この時のdi/deをα(αは太陽電池の特性から常に負)とすると、微小変動区間では出力電流i(e)を
Figure 2009117658
と近似することができる。式(3)を式(2)の右辺第2項に代入すると、
Figure 2009117658
となる。ここで直流値EとIを
Figure 2009117658
の関係を持って定めると式(4)は次のように定数と考えることができる。
Figure 2009117658
つまり、式(5)の関係になるようにEとIを選定することで式(2)の第2項を定数とみなすことができる。したがって、式(1)と同様に式(2)を用いてMPPTを実施することができる。
ところで、最大電力点MPPの近傍においては一般に、
Figure 2009117658
が成り立つ。よって、動作点がMPP近傍にある場合はEとIをMPP近傍の直流成分E,I(ただし、E≒Eopt[最適動作電圧]、I≒Iopt[最適動作電流])に選べば、
Figure 2009117658
となる。したがって、
Figure 2009117658
によりMPPTが行えると言える。(e−E)及び(i(e)−I)は電圧、電流のリプル成分のみを表しているので、リプル成分のみの計測でよいことがわかる。
MPP近傍においては直流成分を完全に除去することができるが、その他の動作点では動作点に応じて除去できる直流電圧値Eと直流電流値Iを操作する必要がある。しかし、精度を上げるべき動作点はMPP近傍なので、本発明ではMPP近傍のみで用いる。直流成分を除去すると信号レベルが大幅に下がるため、増幅器のゲインを上げても計測系が飽和することはない。つまり、高ゲイン化できてMPPTの精度を高めることができる。
本発明は、このような原理を応用した太陽光発電制御装置であって、光を受けて発電する太陽電池と、前記太陽電池の発電電力を所定の電力形式に変換する電力変換装置と、前記電力変換装置の変調度を制御する制御回路と、前記太陽電池の出力電圧を検出する電圧検出器と、前記太陽電池の出力電流を検出する電流検出器と、前記電圧検出器及び電流検出器の直流成分を除去するハイパスフィルタと、前記ハイパスフィルタの電圧出力、電流出力それぞれを増幅する増幅器と、前記電圧検出器及び電流検出器の出力信号若しくは前記増幅器の出力信号を切り替えて出力するスイッチと、前記スイッチを経て出力される電圧信号及び電流信号から電力値を求め、前記制御回路に入力する電力検出器とを備え、前記制御回路は、前記スイッチを前記電圧検出器及び電流検出器の出力側にし、前記変調度を変化させながら前記電力値を観測して前記電力値が最大となる動作点を探査する最大電力点追跡制御を行った後に、前記スイッチを前記増幅器の出力側に切り替えて前記最大電力点追従制御を継続することを特徴とする。
上記発明の太陽光発電制御装置においては、前記制御回路における前記変調度の変化を離散的とし、前記スイッチを前記電圧検出器及び電流検出器の出力側にした場合の前記変調度の変化幅より、前記スイッチを前記増幅器の出力側にした場合の変化幅を小さくすることができる。
また、上記発明の太陽光発電制御装置においては、前記電力変換装置は、前記太陽電池の発電電力を所定の直流電力に変換するDC・DCコンバータであり、前記制御回路は、前記変調度として前記DC・DCコンバータの変調度を制御するものであって、前記スイッチを前記電圧検出器及び電流検出器の出力側にし、前記変調度を所定の変化幅で増加させながら前記太陽電池の動作電圧に低周波のリプル成分を与えることで開放電圧側から最大電力点探査を開始し、前記最大電力点近傍で動作点が振動し、変調度更新前の前記電力検出器の出力する電力値よりも変調度更新後の電力値の方が小さくなれば最大電力点通過と判断し、前記スイッチを前記増幅器の出力側に切り替えて最大電力点追従制御を継続するものとすることができる。
また、上記発明の太陽光発電制御装置においては、前記制御回路は、当初の所定の第1の変化幅にて最大電力点探査を開始し、前記最大電力点通過後は、前記第1の変化幅よりも小さい値の第2の変化幅にて前記最大電力点追従制御を継続するものとすることができる。
さらに、上記発明の太陽光発電制御装置においては、電圧、電流及び電圧電流特性上の傾きを計測し、それに応じて電流オフセット、電圧オフセットを生成するオフセット設定部を備え、前記制御回路は前記オフセット設定部の生成した電流オフセットを前記電流に加算し、電圧オフセットを前記電圧に加算し、このオフセット加算後の電流値、電圧値を用いて電力値を算出し、前記最大電力点追従制御を行うものとすることができる。 本発明の太陽光発電制御における電力評価方法は、太陽電池の出力電圧検出信号と出力電流検出信号から求めた電力検出値に対して、電力変換装置に与える変調度を変化させながら前記電力値が最大となる動作点を探査する最大電力点追跡制御を行う第1のステップと、前記第1のステップにて前記電力値が最大となる動作点を探査した後に、ハイパスフィルタにて前記出力電圧検出信号と出力電流検出信号から直流成分を除去した後のリプル電圧信号成分、リプル電流信号成分に対して所定のゲインにて増幅した信号に対して前記最大電力点追従制御を継続する第2のステップとを有することを特徴とする。
上記発明の太陽光発電制御における電力評価方法においては、前記変調度の変化を離散的とし、前記第1のステップにて用いる変調度の変化幅より、前記第2のステップにて用いる変調度の変化幅を小さくすることができる。
また、上記発明の太陽光発電制御における電力評価方法においては、前記第1のステップでは、前記太陽電池の出力電圧検出信号と出力電流検出信号から求めた電力検出値に対して、変調度を所定の変化幅で増加させながら前記太陽電池の動作電圧に低周波のリプル成分を与えることで開放電圧側から最大電力点探査を開始し、前記第2のステップでは、前記最大電力点近傍で動作点が振動し、変調度更新前の電力検出値よりも変調度更新後の電力検出値の方が小さくなれば最大電力点通過と判断し、ハイパスフィルタにて直流成分を除去した後のリプル電圧信号成分、リプル電流信号成分に対して所定のゲインをかけた信号に対して前記最大電力点追従制御を継続するものとすることができる。
また、上記発明の太陽光発電制御における電力評価方法においては、当初は所定の第1の変化幅にて最大電力点探査を開始し、前記最大電力点通過後は、前記第1の変化幅よりも小さい値の第2の変化幅にて前記最大電力点追従制御を継続するものとすることができる。
さらに、上記発明の太陽光発電制御における電力評価方法においては、電圧、電流及び電圧電流特性上の傾きを計測し、それに応じて電流オフセット、電圧オフセットを求め、前記電流オフセットを前記電流に加算し、前記電圧オフセットを前記電圧に加算し、このオフセット加算後の電流値、電圧値を用いて電力値を算出し、前記最大電力点追従制御を継続するものとすることができる。
本発明の太陽光発電制御技術によれば、電力変換装置の変調度に所定の変化幅を与えながらMPPT制御を開始し、MPP近傍において直流成分を除去したリプル成分のみで電力評価するように切り替えることにより、MPPT制御のための増幅器にゲインの非常に高いものを利用することができ、広い日射量範囲で高精度なMPPTが行える。さらに、この結果として、MPPTをマイコンにて行う場合には、低分解能なADCであっても微小な電力変化を検出して最大電力点追従制御が高精度で行え、また低日射での精度向上も図れることになる。
また、本発明において、変調度に与える変化幅として、当初は比較的粗い第1の変化幅にてMPPT制御を開始し、MPP近傍においては第1の変化幅よりも小さな第2の変化幅を用いてMPPT制御を継続することで、MPP到達速度を速め、応答性を良くすることができる。
以下、本発明の実施の形態を図に基づいて詳説する。
(第1の実施の形態)図1は、本発明の第1の実施の形態の太陽光発電制御装置のシステム構成を示している。本実施の形態の太陽光発電制御装置は、太陽電池1、昇圧チョッパ回路2、負荷としての二次電池であるバッテリ3、制御回路4、ゲートドライブ回路5から構成されている。尚、太陽電池1とチョッパ回路2との間には平滑コンデンサ6を設け、また、チョッパ回路2と負荷としてのバッテリ3との間にも平滑コンデンサ7を設けている。また、太陽電池1の出力電圧を検出する電圧検出器8、出力電流を検出する電流検出器9も設けてある。そして、これら電圧検出器8の検出電圧信号、電流検出器9の検出電流信号はローパスフィルタ(LPF)21を経て制御回路4に入力するようにしてある。
制御回路4は、ハイパスフィルタ(HPF)22、ゲイン係数Kiの電流増幅器23、ゲイン係数Kvの電圧増幅器24、スイッチ41、AD変換器(ADC)42、掛算器43、そしてMPPT制御部44を備えている。制御回路4におけるスイッチ41、ADC42、掛算器43、そしてMPPT制御部44にはワンチップマイコンを使用している。
次に、上記構成の太陽光発電制御装置の動作を説明する。本実施の形態の太陽光発電制御装置は、昇圧チョッパ回路2の変調度Dを制御回路4にて制御して、太陽電池1の動作電圧を決定する。変調度Dをある一定の変化幅dで変化させ、太陽電池1の動作電圧に低周波のリプル成分を与える。太陽電池1から検出した出力電圧、電流信号は、一度LPF21に入力される。これは、チョッパ回路2のスイッチングによって発生する高周波のスイッチングリプルを除去するためである。HPF22は直流成分を除去するためのものであり、MPP近傍で(e−E)及び(i(e)−I)を求める。尚、LPF21、HPF22のカットオフ周波数はリプル成分の信号に影響が出ないように設定してある。
MPPT制御部44の実行するMPPTアルゴリズムを図2のフローチャートに示してある。基本的な制御アルゴリズムは山登り法に基づいている。図2のフローチャート中の変数Dは変調度、dは変調度Dの変化幅、Paは変調度更新前の電力、Pbは変調度更新後の電力である。
MPPT制御部44は、スイッチ41をA側にしてMPPTを開放電圧Pa側から開始し、大きな変化幅d1でMPPを探査する(ステップS1〜S7)。
MPP近傍で動作点が振動し、変調度更新前の電力Paよりも変調度更新後の電力Pbが小さくなれば、ステップS6でNOに分岐し、1回前の変調度Dに戻し、スイッチ41をA側からB側に切り替える(ステップS6,S8,S9)。そして変調度Dの変化幅を粗いd1から細かいd2に切り替えてMPPT制御を継続する(ステップS10)。
MPP探査では、変調度Dを小刻みな変化幅dだけ増減させ、変調度更新前の電力Paが変調度更新後の電力Pbよりも小さければ変調度を小刻みに増加させながら同じ制御を繰り返す。そして電力がピークを超え、変調度Dを変化幅dだけ増加させることで変調度更新前の電力Paよりも変調度更新後の電力Pbが小さくなれば、最大電力点MPPを通過したとみなし、変調度D−2dに戻し、また変調度Dをより細かな変化幅d(=d<d)にて小刻みに増加させながら同じ制御を繰り返すことで、変調度Dをピーク電力をもたらす値に維持する。
太陽電池1の出力電流、電圧からHPF22を通して直流成分を除去した後は大幅に信号レベルが下がる。しかしながら、本実施の形態では、この場合にADC42の分解能を最大限に活かすために電流、電圧にゲイン係数Ki,Kvを乗じてゲインを上げて変化幅dを小さくすることで、低分解能のマイコンであってもMPPTの精度を上げることができる。
本実施の形態によれば、太陽電池1の直流成分を除去し、電力変化を評価するために与えるリプル成分のみでMPPTを行うので、低分解能なADC42を用いた場合においても非常に微小な電力変化を検出することができ、また、広範囲な日射量範囲において高いMPPT精度が得られる。加えて、本実施の形態によれば、低分解能ADCを内蔵した安価なマイクロコンピュータで非常に高精度なMPPTが実現できるため、コストの低減に貢献できる。
尚、上記実施の形態では、変調度Dに与える変化幅dは、MPP到達までは比較的粗い値dを用い、MPP到達後はより細かい値d(d<d)を用いることでMPP到達までの時間を速くなるようにしている。しかしながら、変調度Dに与える変化幅dには一定値を用いてもかまわない。その場合には制御ロジックがより簡素化されることになる。ただし、その場合にdを細かくしすぎるとMPP到達までの所要時間が上記実施の形態の場合よりも長くなることが避けられない。
(第2の実施の形態)本発明の第2の実施の形態を、図3を用いて説明する。本実施の形態の特徴は、MPPT制御部44が増幅器23,24の飽和の有無を判断し、飽和発生時には山登り法を最初からやり直し、飽和発生無しの場合には第1の実施の形態と同様に改良山登り法でMPPT制御を継続する点にある。したがって、本実施の形態のシステム構成は第1の実施の形態と同様に図1に示すものであるが、MPPT制御が図3のフローチャートに示すものとなる。
本実施の形態にあっては、MPPT制御部44は、スイッチ41をA側にしてMPPTを開放電圧Pa側から開始し、大きな変化幅dでMPPを探査する(ステップS1〜S7)。そして、増幅器23,24の飽和発生の有無を、ADC42が出力し得る最大値のデジタル出力を出力したか否かにより判断する(ステップS11)。尚、増幅器23,24の飽和発生の判定は、このようなADC42の飽和を検出する方法に代えて、例えば増幅器23,24の出力が例えば3回以上連続してPa=Pbであったか否かにより判断する方法を採用することもできる。また、上記ADC42の飽和の判定はそれが出力し得る最大値に基づくものである必要はなく、例えば「最大出力範囲の90%を超えたら」飽和と判定する方法を採用することもできる。このように飽和発生の判定方法は特に限定されることはない。
そして、ステップS11で飽和発生無しと判定すれば、以降、第1の実施の形態と同様にMPPT制御を継続する。すなわち、MPP近傍で動作点が振動し、変調度更新前の電力Paよりも変調度更新後の電力Pbが小さくなれば、ステップS6でNOに分岐し、1回前の変調度Dに戻し、スイッチ41をA側からB側に切り替える(ステップS6,S8,S9)。そして変調度Dの変化幅を粗いd1から細かいd2に切り替えてMPPT制御を継続する(ステップS10)。
他方、ステップS11で飽和発生有りと判断すれば、ステップS1に戻り、変調度Dの変化幅dを大きい値dに戻し、山登り法を継続する(ステップS11,S1)。
この実施の形態によれば、変調度Dの変化幅dを小さな値dに切り替えることで飽和が発生すれば、変化幅dを再び大きい値dに戻してMPPTを再開することで飽和から自動的に回復できる。
尚、上記の両実施の形態において、増幅器23,24のゲインは50〜60倍から500〜600倍に設定することができる。また、MPPT制御には、山登り法に限定されず、例えば、遺伝的アルゴリズム等各種の最大値探索法を利用することもできる。
また、電力変換装置には、上記実施の形態で示したチョッパ回路2その他のDC−DCコンバータだけではなく、太陽発電の直流電力を交流電力に変換して交流電力系統に連系するインバータを採用することもできる。
さらに、上記実施の形態の場合、MPPT制御において変調度を一定の変化幅だけ増加させながらMPP探索を行うようにしたが、MPPT制御方式はこれに限らない。例えば,変調度を減少させながら行う方式、あるいは変調度を揺動させながら行う方式であってもよい。さらに、山登り方式に代えて、動作点を広範囲に動かして電力を計測し,結果として最大電力点を見つけ出すという方法でもよい。
つまり、本発明の特徴は、MPP付近であればハイパスフィルタ22を通した電流検出信号、電圧検出信号から求められる電力値を用いてMPPT制御する点にあり、MPPTそのものの手法は限定されるものではない。また、ADC42を用いず、アナログ回路にて同様のMPPT制御を行うことも可能である。
(第3の実施の形態)本発明の第3の実施の形態について説明する。太陽電池1の電圧・電流特性の任意の動作点においてdi/de、すなわちαが既知であるとすると、すでに述べたように(5)式の関係を持ったE,Iを(2)式のように電圧・電流の計測値から減じてその積から電力を求めた値を使ってもMPPT制御は可能である。
動作点が(E,I)にあるときに直流分を除去して電力を求める場合を考える。ハイパスフィルタで直流分を除去するということは(2)式において、
Figure 2009117658
Figure 2009117658
としたことに相当する。一方、電圧値からEを除去した場合、(5)式より、電流値から減算できる値Iは、
Figure 2009117658
となる。(E,I)がMPP近傍にある場合は(8)式の関係があるので、(12)式の値と(11)式の値はほぼ一致する。しかしながらMPP近傍以外では一致しないので、(2)式による電力では正しいMPPT制御が不可能になる。すなわち電流から減じた値、つまり(11)式の値が適切でないことを意味する。そこでハイパスフィルタを通して計測する場合においては、ハイパスフィルタで除去されてしまった電流の直流値Iをマイコン内部で加算し、その後、(12)式で与えられる適切な減算値を減じれば、(5)式の関係を保つことができ、(2)式の電力でMPPT制御が可能となる。ここで直流値を除去した太陽電池の電圧、電流をそれぞれ
Figure 2009117658
とすると、
Figure 2009117658
で与えられる電力値を用いればMPPT制御が可能となる。つまり、直流値を除去した電流にI+αEなるオフセットを加えてから乗じればよい。
逆に電流値からIを除去した場合、電圧値から減算できる値Eは同様に、
Figure 2009117658
となる。このときは、
Figure 2009117658
で与えられる電力値を用いればMPPT制御が可能となる。つまり、直流値を除去した電圧にE+(1/α)Iなるオフセットを加えてから乗じればよい。
このように、動作点がMPP付近でない場合であっても、電流・電圧特性の傾きαに応じたオフセットを加算すれば、ハイパスフィルタを介して求めた電力でMPPT制御が可能となる。なお、EとIは図1においてスイッチをA側とすれば計測が可能である。この場合A/D変換器の分解能が高いとはいえないが、近似的なEとIは十分知ることができる。また、傾きαについてはスイッチをB側にして揺動しながら計測すれば精度よく求めることができる。
図5は本発明の第3の実施の形態の太陽光発電制御装置のブロック図、図6は本実施の形態の太陽光発電制御装置による最大点追従制御のフローチャートである。本実施の形態の太陽光発電制御装置では、制御回路4内においてADC42と乗算器43との間に電流、電圧オフセット値を算出して加算するオフセット設定部46を設けたことを特徴としている。尚、図5において、その他の構成要素については図1に示した第1の実施の形態の構成要素と共通するものに同一の符号を付して示してある。
図6のフローチャートに示すように、本実施の形態の太陽光発電制御装置では、先ずスイッチ41をA側(ハイパスなし、低ゲイン)にして従来のMPPT制御を施し、収束後、現在の動作点における電圧値Ep、電流値Ipを得る(ステップS21〜S24)。
次いでスイッチ41をB側(ハイパスあり、高ゲイン)に切り替え、精度よく傾きαを計測する(ステップS24,S25)。このようにして得た電圧値E、電流値I、αよりオフセット値を演算し、オフセット設定部46でオフセット値を設定する(ステップS26)。そして、このオフセット値を用いて第1の実施の形態と同様に乗算器43にて電力を演算し、MPPT制御を継続する(ステップS27〜S29,S23)。これにより高精度なMPPT制御が可能となる。
このMPPT制御中に、ADC42に前述の飽和が発生した場合には再びスイッチ41をA側に切り替えて、これらの手順を繰り返す(ステップS28でYES,S21〜S27)。
次に、本実施の形態の太陽光発電制御装置を用いて行った実験結果について説明する。本実施の形態の太陽光発電制御装置による電力評価法の有用性を、従来の山登り法との比較により確認した。実験装置には図1の構成のものを用いた。実験に使用した太陽電池の定格を図4の表1に示してある。制御回路4のマイコンにはH8/3052Fを用いた。ADC42はマイコンに内蔵されている分解能10ビットのものを使用したが、より低分解能なADCで検証するために上位8ビットのみを参照している。太陽電池1から検出した出力電圧、電流は定格開放電圧、短絡電流がADC42の入力電圧レンジに納まるようにスケーリングしている。電力評価用のリプル成分は、スイッチングリプル(スイッチング周波数10kHz)除去の影響を受けないように低周波に選んだ。変調度Dの更新周期は10msにした。
尚、実験では再現性を得るために白熱電球を光源とし、その電球電圧VLを記録した。
[定常時の電力波形の比較]
この実験では最大電力点に収束後、本実施の形態による電力評価法に切り替えた場合に安定した制御が行えるかどうかを検証した。測定条件として日射量、温度は一定とした。
図7に最大電力点収束後の電力波形を示してある。図7(a)は従来の山登り法において、MPP収束後に変調度の変化幅を0.04%とした電力波形である。8ビットADCの1LSBはフルスケールの約0.39%であり、設定した変化幅に対する電力変化を正確に評価できないために制御不能となっている。
図7(b)は変調度の変化幅を2.6%に設定した電力波形である。8ビットのADCで十分電力変化を検出できるため、安定して最大電力点近傍に収束している。しかし、変化幅を図7(a)と比べ65倍にしているため最大電力点収束後に大きく振動し、定常時に静特性上での最大電力に対して約3%の電力損失がある。
図7(c)は図7(a)と同条件で、本実施の形態により最大電力点収束後MPPTを行った結果である。本実施の形態によれば、実験で使用したADCの分解能で電力変化を検出できる程度までリプル成分のゲインを上げているため、安定して最大電力点に収束し、電力の振動もほぼないことが確認できた。
[広い日射量範囲におけるMPPT精度の比較]
この実験では広い日射量範囲において、本実施の形態による電力評価法を用いた山登り法と従来法のMPPT精度を比較し、その有用性を検証した。尚、実験システムのパラメータは定格最大出力時に最適になるように選定した。しかし、実験で使用した光源では定格最大出力時の約三分の一程度の電力しか発電できないため、実験結果は低日射領域によるものである。しかしながら、MPPT精度が低下するのは低日射領域であるため、この日射量範囲のみの評価で十分である。表面温度は50°一定とした。
図8に低日射領域におけるMPPTの結果を示してある。図8に示す理想出力(Desired output)は各測定条件下での静特性における最大電力である。MPPT効率μは理想出力に対してどれだけ電力を回収できたかを表し、MPPTの精度を意味する。図8(a)は従来の山登り法を用いて、定常状態での電力の振動が比較的少なく、高日射時に安定してMPPTが可能な変調度の変化幅(0.8%)に設定した場合である。高日射時においては非常に高いMPPT効率を持っているが、低日射になるにつれMPPTの精度が悪くなっているのが確認できる。低日射時は太陽電池1から検出した出力電圧、電流信号のレベルが大幅に低下するため電力変化を正確に評価できないためである。
図8(b)は変化幅を2.6%に設定した場合のMPPTの結果である。先ほどより変化幅を3.25倍にし、低日射時において電力変化を検出できるようにした結果である。低日射時のMPPT効率は上がったが、変化幅を大きくしたために高日射時のMPPT効率が約3%程度減少した。
図8(c)は本実施の形態により変化幅を0.04%に設定して行ったMPPTの結果である。低日射時においてもリプル成分のゲインを上げているため非常に高いMPPT効率を持っている。また、高日射時においてもリプル成分の振動が小さいため、ほぼ理想出力と変わらないことが確認できる。
以上の実験結果より、本発明の太陽光発電制御装置によれば、広い日射量範囲において高いMPPT精度が得られることが実証できた。
本発明の第1の実施の形態の太陽光発電制御装置の回路図。 上記実施の形態において電力最大点追従制御部が行う電力最大点追従制御のフローチャート。 本発明の第2の実施の形態の太陽光発電制御装置において電力最大点追従制御部が行う電力最大点追従制御のフローチャート。 上記実施の形態において用いられる太陽電池の定格を示す表。 本発明の第3の実施の形態の太陽光発電制御装置のブロック図。 上記実施の形態の太陽光発電制御装置において最大点追従制御部が行う電力最大点追従制御のフローチャート。 従来例と本発明の実施の形態の太陽光発電制御装置による定常時の電力波形図であり、(a)は従来の山登り法による例1(変調度の変化幅0.04%の場合)の電力波形図、(b)は従来の山登り法による例2(変調度の変化幅2.6%の場合)の電力波形図、(c)本発明の実施例による電力評価法を用いた山登り法(最大電力点近傍での変調度の変化幅0.04%)による電力波形図。 従来例と本発明の実施例の太陽光発電制御装置による低日射領域における電力最大点追従制御の精度特性を示すグラフであり、(a)は従来の山登り法による例3(変調度の変化幅0.8%の場合)の精度特性のグラフ、(b)は従来の山登り法による例4(変調度の変化幅2.6%の場合)の精度特性のグラフ、(c)本発明の実施例による電力評価法を用いた山登り法(最大電力点近傍での変調度の変化幅0.04%)による精度特性のグラフ。
符号の説明
1 太陽電池
2 チョッパ回路
3 バッテリ
4 制御回路
5 ドライブ回路
8 電圧検出器
9 電流検出器
22 ハイパスフィルタ
23 電流増幅器
24 電圧増幅器
41 スイッチ
42 AD変換器
43 掛算器
44 最大電力点追従制御部

Claims (10)

  1. 光を受けて発電する太陽電池と、
    前記太陽電池の発電電力を所定の電力形式に変換する電力変換装置と、
    前記電力変換装置の変調度を制御する制御回路と、
    前記太陽電池の出力電圧を検出する電圧検出器と、
    前記太陽電池の出力電流を検出する電流検出器と、
    前記電圧検出器及び電流検出器の直流成分を除去するハイパスフィルタと、
    前記ハイパスフィルタの電圧出力、電流出力それぞれを増幅する増幅器と、
    前記電圧検出器及び電流検出器の出力信号若しくは前記増幅器の出力信号を切り替えて出力するスイッチと、
    前記スイッチを経て出力される電圧信号及び電流信号から電力値を求め、前記制御回路に入力する電力検出器とを備え、
    前記制御回路は、前記スイッチを前記電圧検出器及び電流検出器の出力側にし、前記変調度を変化させながら前記電力値を観測して前記電力値が最大となる動作点を探査する最大電力点追跡制御を行った後に、前記スイッチを前記増幅器の出力側に切り替えて前記最大電力点追従制御を継続することを特徴とする太陽光発電制御装置。
  2. 前記制御回路において、前記変調度の変化を離散的とし、前記スイッチを前記電圧検出器及び電流検出器の出力側にした場合の前記変調度の変化幅より、前記スイッチを前記増幅器の出力側にした場合の変化幅を小さくしたことを特徴とする請求項1に記載の太陽光発電制御装置。
  3. 前記電力変換装置は、前記太陽電池の発電電力を所定の直流電力に変換するDC・DCコンバータであり、
    前記制御回路は、前記変調度として前記DC・DCコンバータの変調度を制御するものであって、前記スイッチを前記電圧検出器及び電流検出器の出力側にし、前記変調度を所定の変化幅で増加させながら前記太陽電池の動作電圧に低周波のリプル成分を与えることで開放電圧側から最大電力点探査を開始し、前記最大電力点近傍で動作点が振動し、変調度更新前の前記電力検出器の出力する電力値よりも変調度更新後の電力値の方が小さくなれば最大電力点通過と判断し、前記スイッチを前記増幅器の出力側に切り替えて最大電力点追従制御を継続することを特徴とする請求項1に記載の太陽光発電制御装置。
  4. 前記制御回路は、当初の所定の第1の変化幅にて最大電力点探査を開始し、前記最大電力点通過後は、前記第1の変化幅よりも小さい値の第2の変化幅にて前記最大電力点追従制御を継続することを特徴とする請求項3に記載の太陽光発電制御装置。
  5. 電圧、電流及び電圧電流特性上の傾きを計測し、それに応じて電流オフセット、電圧オフセットを生成するオフセット設定部を備え、
    前記制御回路は前記オフセット設定部の生成した電流オフセットを前記電流に加算し、電圧オフセットを前記電圧に加算し、このオフセット加算後の電流値、電圧値を用いて電力値を算出し、前記最大電力点追従制御を行うことを特徴とする請求項1〜4のいずれかに記載の太陽光発電制御装置。
  6. 太陽電池の出力電圧検出信号と出力電流検出信号から求めた電力検出値に対して、電力変換装置に与える変調度を変化させながら前記電力値が最大となる動作点を探査する最大電力点追跡制御を行う第1のステップと、
    前記第1のステップにて前記電力値が最大となる動作点を探査した後に、ハイパスフィルタにて前記出力電圧検出信号と出力電流検出信号から直流成分を除去した後のリプル電圧信号成分、リプル電流信号成分に対して所定のゲインにて増幅した信号に対して前記最大電力点追従制御を継続する第2のステップとを有する太陽光発電制御における電力評価方法。
  7. 前記変調度の変化を離散的とし、前記第1のステップにて用いる変調度の変化幅より、前記第2のステップにて用いる変調度の変化幅を小さくすることを特徴とする請求項6に記載の太陽光発電制御における電力評価方法。
  8. 前記第1のステップでは、前記太陽電池の出力電圧検出信号と出力電流検出信号から求めた電力検出値に対して、変調度を所定の変化幅で増加させながら前記太陽電池の動作電圧に低周波のリプル成分を与えることで開放電圧側から最大電力点探査を開始し、
    前記第2のステップでは、前記最大電力点近傍で動作点が振動し、変調度更新前の電力検出値よりも変調度更新後の電力検出値の方が小さくなれば最大電力点通過と判断し、ハイパスフィルタにて直流成分を除去した後のリプル電圧信号成分、リプル電流信号成分に対して所定のゲインをかけた信号に対して前記最大電力点追従制御を継続することを特徴とする請求項6に記載の太陽光発電制御における電力評価方法。
  9. 当初は所定の第1の変化幅にて最大電力点探査を開始し、前記最大電力点通過後は、前記第1の変化幅よりも小さい値の第2の変化幅にて前記最大電力点追従制御を継続することを特徴とする請求項8に記載の太陽光発電制御における電力評価方法。
  10. 電圧、電流及び電圧電流特性上の傾きを計測し、それに応じて電流オフセット、電圧オフセットを求め、
    前記電流オフセットを前記電流に加算し、前記電圧オフセットを前記電圧に加算し、このオフセット加算後の電流値、電圧値を用いて電力値を算出し、前記最大電力点追従制御を継続することを特徴とする請求項6〜9のいずれかに記載の太陽光発電制御における電力評価方法。
JP2007289858A 2007-11-07 2007-11-07 太陽光発電制御装置及び太陽光発電制御における電力評価方法 Expired - Fee Related JP5322256B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007289858A JP5322256B2 (ja) 2007-11-07 2007-11-07 太陽光発電制御装置及び太陽光発電制御における電力評価方法
US12/191,900 US7859241B2 (en) 2007-11-07 2008-08-14 Photovoltaic power generation controller and power evaluation method in photovoltaic power generation control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007289858A JP5322256B2 (ja) 2007-11-07 2007-11-07 太陽光発電制御装置及び太陽光発電制御における電力評価方法

Publications (2)

Publication Number Publication Date
JP2009117658A true JP2009117658A (ja) 2009-05-28
JP5322256B2 JP5322256B2 (ja) 2013-10-23

Family

ID=40587442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007289858A Expired - Fee Related JP5322256B2 (ja) 2007-11-07 2007-11-07 太陽光発電制御装置及び太陽光発電制御における電力評価方法

Country Status (2)

Country Link
US (1) US7859241B2 (ja)
JP (1) JP5322256B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142799A (ja) * 2009-12-10 2011-07-21 Canon Inc 高圧電源装置およびそれを備えた画像形成装置
CN102445948A (zh) * 2010-10-08 2012-05-09 河南森源电气股份有限公司 光伏发电系统中的太阳跟踪器
CN102667659A (zh) * 2009-12-14 2012-09-12 三菱电机研发中心欧洲有限公司 用于获取使能电源特性的确定的信息的方法
CN102707697A (zh) * 2012-06-12 2012-10-03 南京中德保护控制系统有限公司 光伏电站的超大容量极速智能控制方法
KR20140067004A (ko) 2011-09-26 2014-06-03 미노루 무라노 직류 전원 이용 시스템 및 상기 시스템을 이용한 직류형 마이크로 그리드 네트워크
US8901860B2 (en) 2012-03-19 2014-12-02 Sharp Kabushiki Kaisha Photovoltaic apparatus, maximum power point tracking control method and computer program in the same, and moving body including the same
JP2015138398A (ja) * 2014-01-22 2015-07-30 株式会社デンソー 充電装置
WO2015181983A1 (ja) * 2014-05-30 2015-12-03 株式会社安川電機 電力変換装置、発電システム、制御装置および制御方法
US9532282B2 (en) 2010-06-18 2016-12-27 Interdigital Patent Holdings, Inc. Home nodeB (HNB) mobility in a cell forward access channel (Cell—FACH)state

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010070952A1 (ja) * 2008-12-18 2010-06-24 株式会社田原電機製作所 太陽電池の特性測定装置
ES2385912T3 (es) * 2009-04-17 2012-08-03 Sma Solar Technology Ag Procedimiento y dispositivo para conectar una planta fotovoltaica a una red de corriente alterna
FR2945684B1 (fr) * 2009-05-14 2011-06-17 Commissariat Energie Atomique Circuit convertisseur et systeme electronique comportant un tel circuit
US8810215B2 (en) * 2009-07-01 2014-08-19 Telefonaktiebolaget L M Ericsson (Publ) Power supply with dynamic input current suppression
US8975783B2 (en) * 2010-01-20 2015-03-10 Draker, Inc. Dual-loop dynamic fast-tracking MPPT control method, device, and system
US9142960B2 (en) * 2010-02-03 2015-09-22 Draker, Inc. Constraint weighted regulation of DC/DC converters
US8243446B2 (en) * 2010-03-11 2012-08-14 First Solar, Inc. Photovoltaic inverter
CN101877559A (zh) * 2010-06-29 2010-11-03 苏州市职业大学 光伏发电系统最大功率点快速准确跟踪控制的复合控制方法
JP5503745B2 (ja) * 2010-08-27 2014-05-28 学校法人幾徳学園 太陽光発電システム、太陽光発電システムに用いる制御装置、並びに、制御方法およびそのプログラム
EP2431832B1 (en) * 2010-09-21 2013-05-15 ABB Research Ltd Method and arrangement for tracking the maximum power point of a photovoltaic module
CN102118122B (zh) * 2010-12-02 2013-06-05 艾默生网络能源有限公司 实现最大功率点跟踪方法、发电模块、控制模块及系统
US8970068B2 (en) 2011-02-10 2015-03-03 Draker, Inc. Pseudo-random bit sequence generation for maximum power point tracking in photovoltaic arrays
US20120256490A1 (en) * 2011-04-07 2012-10-11 Yongchun Zheng Integrated Expandable Grid-Ready Solar Electrical Generator
CN102891521B (zh) * 2011-07-18 2016-01-20 富泰华工业(深圳)有限公司 蓄电池充电电路
TWI461882B (zh) * 2012-09-18 2014-11-21 Univ Nat Taiwan 太陽能模組系統之多點直接預測最大功率點追蹤方法及太陽能模組陣列之控制裝置
GB201312621D0 (en) * 2013-07-15 2013-08-28 Univ Plymouth Control arrangement
CN104596473A (zh) * 2014-11-28 2015-05-06 刘尚爱 一种光伏发电垂直方向跟踪监测电路
TWI545418B (zh) * 2014-11-28 2016-08-11 財團法人工業技術研究院 功率轉換器之控制電路及最大功率點的追蹤方法
CN105573401B (zh) * 2016-03-18 2017-03-01 康奋威科技(杭州)有限公司 太阳能光伏系统mppt控制方法
US10488879B2 (en) 2017-03-09 2019-11-26 Ecole Polytechnique Federale De Lausanne (Epfl) Device and method for performing maximum power point tracking for photovoltaic devices in presence of hysteresis
US10587120B1 (en) * 2017-07-24 2020-03-10 Manhal Aboudi Solar energy harvest
CN115053429A (zh) 2019-10-28 2022-09-13 恩菲斯能源公司 包括能量管理系统的方法和设备
BR112022013474A2 (pt) 2020-01-10 2022-09-13 Enphase Energy Inc Sistema de gerenciamento de energia e sistema de armazenamento configurado para uso com este
CN111831042B (zh) * 2020-07-13 2022-07-05 南方电网数字电网研究院有限公司 能量收集调理系统
CN114679070B (zh) * 2022-04-13 2023-02-03 深圳市京泉华科技股份有限公司 一种潮汐能控制系统及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297516A (ja) * 1995-04-26 1996-11-12 Kyocera Corp 太陽光発電装置
JP2001169535A (ja) * 1999-12-07 2001-06-22 Akihiko Yonetani 最大電力運転コンバータ制御装置
JP2001178145A (ja) * 1999-12-20 2001-06-29 Akihiko Yonetani 最大電力運転インバータシステム
JP2002272094A (ja) * 2001-03-09 2002-09-20 National Institute Of Advanced Industrial & Technology 最大電力動作点追尾方法及びその装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2771096B2 (ja) * 1993-06-11 1998-07-02 キヤノン株式会社 電力制御装置、電力制御方法及び電力発生装置
JP3516077B2 (ja) 1995-09-25 2004-04-05 オムロン株式会社 最大電力点追従装置
JP3571860B2 (ja) * 1996-08-23 2004-09-29 キヤノン株式会社 非安定電源を電源とする電動機運転装置
JP3809316B2 (ja) * 1999-01-28 2006-08-16 キヤノン株式会社 太陽光発電装置
US6914418B2 (en) * 2003-04-21 2005-07-05 Phoenixtec Power Co., Ltd. Multi-mode renewable power converter system
US7269036B2 (en) * 2003-05-12 2007-09-11 Siemens Vdo Automotive Corporation Method and apparatus for adjusting wakeup time in electrical power converter systems and transformer isolation
JP4491622B2 (ja) * 2003-11-10 2010-06-30 学校法人東京電機大学 太陽光発電装置
JP2005151662A (ja) * 2003-11-13 2005-06-09 Sharp Corp インバータ装置および分散電源システム
JP4606935B2 (ja) * 2004-09-13 2011-01-05 株式会社ダイヘン 太陽光発電システムの制御方法
US20060132102A1 (en) * 2004-11-10 2006-06-22 Harvey Troy A Maximum power point tracking charge controller for double layer capacitors
KR100757320B1 (ko) * 2006-05-09 2007-09-11 창원대학교 산학협력단 태양광 발전 시스템의 센스리스 엠피피티(mppt)제어장치 및 그 방법
KR100809443B1 (ko) * 2006-07-26 2008-03-07 창원대학교 산학협력단 태양광 발전 시스템용 단상 전력변환기의 제어장치
FR2910141B1 (fr) * 2006-12-18 2009-02-20 Agence Spatiale Europeenne Systeme de generation d'energie electrique avec maximisation de la puissance
US20090079385A1 (en) * 2007-09-21 2009-03-26 Msr Innovations Inc. Solar powered battery charger using switch capacitor voltage converters
US8598741B2 (en) * 2008-12-23 2013-12-03 Samsung Electro-Mechanics Co, Ltd. Photovoltaic and fuel cell hybrid generation system using single converter and single inverter, and method of controlling the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297516A (ja) * 1995-04-26 1996-11-12 Kyocera Corp 太陽光発電装置
JP2001169535A (ja) * 1999-12-07 2001-06-22 Akihiko Yonetani 最大電力運転コンバータ制御装置
JP2001178145A (ja) * 1999-12-20 2001-06-29 Akihiko Yonetani 最大電力運転インバータシステム
JP2002272094A (ja) * 2001-03-09 2002-09-20 National Institute Of Advanced Industrial & Technology 最大電力動作点追尾方法及びその装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142799A (ja) * 2009-12-10 2011-07-21 Canon Inc 高圧電源装置およびそれを備えた画像形成装置
CN102667659B (zh) * 2009-12-14 2015-10-14 三菱电机研发中心欧洲有限公司 用于获取使能电源特性的确定的信息的方法
CN102667659A (zh) * 2009-12-14 2012-09-12 三菱电机研发中心欧洲有限公司 用于获取使能电源特性的确定的信息的方法
US9532282B2 (en) 2010-06-18 2016-12-27 Interdigital Patent Holdings, Inc. Home nodeB (HNB) mobility in a cell forward access channel (Cell—FACH)state
CN102445948A (zh) * 2010-10-08 2012-05-09 河南森源电气股份有限公司 光伏发电系统中的太阳跟踪器
KR20140067004A (ko) 2011-09-26 2014-06-03 미노루 무라노 직류 전원 이용 시스템 및 상기 시스템을 이용한 직류형 마이크로 그리드 네트워크
US9477248B2 (en) 2011-09-26 2016-10-25 Sion Electric Co., Ltd. Direct-current power supply utilizing system and direct-current microgrid network utilizing same
US8901860B2 (en) 2012-03-19 2014-12-02 Sharp Kabushiki Kaisha Photovoltaic apparatus, maximum power point tracking control method and computer program in the same, and moving body including the same
CN102707697A (zh) * 2012-06-12 2012-10-03 南京中德保护控制系统有限公司 光伏电站的超大容量极速智能控制方法
CN102707697B (zh) * 2012-06-12 2014-07-09 国电南瑞南京控制系统有限公司 光伏电站的控制方法
JP2015138398A (ja) * 2014-01-22 2015-07-30 株式会社デンソー 充電装置
WO2015181983A1 (ja) * 2014-05-30 2015-12-03 株式会社安川電機 電力変換装置、発電システム、制御装置および制御方法
JPWO2015181983A1 (ja) * 2014-05-30 2017-04-20 株式会社安川電機 電力変換装置、発電システム、制御装置および制御方法
US10574058B2 (en) 2014-05-30 2020-02-25 Kabushiki Kaisha Yaskawa Denki Power conversion apparatus, power generation system, controller, and method for performing control

Also Published As

Publication number Publication date
JP5322256B2 (ja) 2013-10-23
US20090115393A1 (en) 2009-05-07
US7859241B2 (en) 2010-12-28

Similar Documents

Publication Publication Date Title
JP5322256B2 (ja) 太陽光発電制御装置及び太陽光発電制御における電力評価方法
US9484839B2 (en) Power converter, power generating system, apparatus for controlling power converter, and method for controlling power converter
JP6024188B2 (ja) 電源装置の制御回路
JP6153144B1 (ja) Dc/dcコンバータの制御装置および制御方法
US9001531B2 (en) Control device for DC-DC converter and control method controlling the same
JP6468342B1 (ja) 電力変換装置
US11381185B2 (en) Power control circuit and power generation system including the same
JP4923938B2 (ja) 直流チョッパ
JPWO2003065560A1 (ja) 電源装置およびこの電源装置を構成するコンバータ部のスイッチング素子をオン/オフ制御するスイッチング信号の作成方法
JP5814653B2 (ja) ゼロ電圧スイッチングモードで動作する、インターリーブされた複数の出力ステージを有するdc−dc電圧コンバータの閉ループ制御方法
Taeed et al. A novel high performance and robust digital peak current mode controller for DC-DC converters in CCM
JP2014010587A (ja) 太陽光発電システム
JP6837576B2 (ja) 電力変換装置
JP2018137840A (ja) 力率改善回路
JP2018088073A (ja) 太陽光発電制御装置
TWI381263B (zh) Maximum power tracking device
JP6437807B2 (ja) インバータ回路を制御する制御回路、および、当該制御回路を備えたインバータ装置
JP2015203904A (ja) Pvパワーコンディショナ
JP2014235566A (ja) 太陽電池制御装置および太陽電池制御方法
US20120013312A1 (en) Power Control Device and Method thereof
Deng et al. Inductance sensitivity analysis of model predictive direct current control strategies for single-phase PWM converters
JP5894870B2 (ja) 太陽光発電システム
Yang et al. An improved model-free finite control set predictive power control for PWM rectifiers
JP2015197870A (ja) 太陽光発電システム
JP2014016690A (ja) 太陽光発電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees