JP2009115339A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2009115339A
JP2009115339A JP2007286394A JP2007286394A JP2009115339A JP 2009115339 A JP2009115339 A JP 2009115339A JP 2007286394 A JP2007286394 A JP 2007286394A JP 2007286394 A JP2007286394 A JP 2007286394A JP 2009115339 A JP2009115339 A JP 2009115339A
Authority
JP
Japan
Prior art keywords
corrugated fin
leeward
fin
windward
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007286394A
Other languages
Japanese (ja)
Other versions
JP4275182B2 (en
Inventor
Takahiro Hashimoto
隆弘 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007286394A priority Critical patent/JP4275182B2/en
Priority to PCT/JP2008/063948 priority patent/WO2009057364A1/en
Priority to CN2008801094441A priority patent/CN101809400B/en
Priority to EP08792152.4A priority patent/EP2233874B1/en
Publication of JP2009115339A publication Critical patent/JP2009115339A/en
Application granted granted Critical
Publication of JP4275182B2 publication Critical patent/JP4275182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators

Abstract

<P>PROBLEM TO BE SOLVED: To provide a parallel flow type heat exchanger in which the heat exchange performance is enhanced and defrosted water or condensate can be drained smoothly. <P>SOLUTION: This heat exchanger 1 includes horizontal header pipes 2, 3 arranged in parallel while spaced apart in the vertical direction, a plurality of vertical flat tubes 4 arranged between the header pipes 2, 3 while spaced apart in the horizontal direction and communicating a vertical refrigerant passage 5 internally provided with the interior of the header pipe, and a corrugated fin 6 arranged between the flat tubes 4. The corrugate fin 6 consists of a windward side corrugated fin 6U having a fin surface of down grade toward the leeward side, and a leeward side corrugated fin 6D having a fin surface of up grade toward the leeward side. On the side face of the flat tube 4, a vertical rib 12 is formed for making the leeward side end of the windward side corrugated fin 6U abut on the windward side end of the leeward side corrugated fin 6U. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はパラレルフロー型の熱交換器に関する。   The present invention relates to a parallel flow type heat exchanger.

2本のヘッダパイプの間に複数の偏平チューブを配置して偏平チューブ内部の冷媒通路をヘッダパイプの内部に連通させるとともに、偏平チューブ間にコルゲートフィンを配置したパラレルフロー型の熱交換器はカーエアコンなどに広く利用されている。その例を特許文献1、2に見ることができる。   A parallel flow type heat exchanger in which a plurality of flat tubes are arranged between two header pipes so that a refrigerant passage inside the flat tubes communicates with the inside of the header pipe and corrugated fins are arranged between the flat tubes is a car. Widely used for air conditioners. Examples thereof can be seen in Patent Documents 1 and 2.

特許文献1記載の熱交換器は、ヘッダパイプが水平に配置され、偏平チューブが垂直に配置されており、コルゲートフィンは熱交換器の奥行き方向中央部を底とする谷型形状とされている。コルゲートフィンの谷底部分で偏平チューブに接合する箇所には貫通穴が設けられ、除霜運転を行って熱交換器に付着した霜を溶かすと、霜が溶けた水は貫通穴から排水される。   The heat exchanger described in Patent Document 1 has a header pipe arranged horizontally and a flat tube arranged vertically, and the corrugated fin has a valley shape with the center in the depth direction of the heat exchanger as the bottom. . A through-hole is provided at a location where the corrugated fin is joined to the flat tube at the bottom of the corrugated fin. When defrosting operation is performed to melt the frost adhering to the heat exchanger, the melted water is drained from the through-hole.

特許文献2には、コルゲートフィンの平板部の一面側と他面側に複数の舌片を切り起こし、フィンでの熱交換効率を向上させた熱交換器が記載されている。
特開2005−24187号公報 特開2001−66083号公報
Patent Document 2 describes a heat exchanger in which a plurality of tongue pieces are cut and raised on one surface side and the other surface side of a flat plate portion of a corrugated fin to improve heat exchange efficiency at the fin.
JP 2005-24187 A JP 2001-66083 A

本発明は、パラレルフロー型熱交換器において、コルゲートフィンの形状に改良を加えて熱交換性能の向上を図ることを目的とする。また、除霜水や結露水をスムーズに排水できるようにすることを目的とする。   An object of the present invention is to improve heat exchange performance by improving the shape of a corrugated fin in a parallel flow type heat exchanger. Moreover, it aims at enabling it to drain defrost water and dew condensation water smoothly.

上記目的を達成するために本発明は、間隔を置いて平行に配置された複数の水平なヘッダパイプと、前記複数のヘッダパイプの間に所定ピッチで複数配置され、内部に設けた垂直な冷媒通路を前記ヘッダパイプの内部に連通させた垂直な偏平チューブと、前記偏平チューブ間に配置されたコルゲートフィンとを備えた熱交換器において、前記コルゲートフィンは、フィン表面が風下側に向かい下り勾配となった風上側コルゲートフィンと、フィン表面が風下側に向かい上り勾配となった風下側コルゲートフィンからなり、前記偏平チューブの側面に形成されたリブに前記風上側コルゲートフィンの風下側端と前記風下側コルゲートフィンの風上側端を当接させることを特徴としている。   In order to achieve the above object, the present invention provides a plurality of horizontal header pipes arranged in parallel at intervals, and a plurality of vertical refrigerants arranged at a predetermined pitch between the plurality of header pipes. In the heat exchanger comprising a vertical flat tube having a passage communicating with the inside of the header pipe, and a corrugated fin disposed between the flat tubes, the corrugated fin has a fin surface with a downward slope toward the leeward side. The leeward corrugated fin and the leeward corrugated fin whose fin surface is inclined upward toward the leeward side, and the leeward side end of the leeward corrugated fin and the rib The leeward side corrugated fin is in contact with the leeward side end.

この構成によると、風上側コルゲートフィンは下り勾配、風下側コルゲートフィンは上り勾配にしたことにより、風上側コルゲートフィンと風下側コルゲートフィンの空気に触れる長さを、偏平チューブの奥行きに比較して大きくとり、熱交換能力を向上させることができる。また偏平チューブの側面に形成されたリブに風上側コルゲートフィンの風下側端と風下側コルゲートフィンの風上側端を当接させるので、偏平チューブ、風上側コルゲートフィン、及び風下側コルゲートフィンを正確に位置決めし、組立誤差を少なくすることができる。   According to this configuration, the windward corrugated fin has a downward slope, and the leeward corrugated fin has an upward slope, so that the length of the windward corrugated fin and the leeward corrugated fin touching the air is compared with the depth of the flat tube. Larger, heat exchange capacity can be improved. Also, because the leeward side corrugated fin end and the leeward side corrugated fin end are in contact with the ribs formed on the side of the flat tube, the flat tube, windward side corrugated fin, and leeward side corrugated fin can be accurately Positioning and assembly errors can be reduced.

上記構成の熱交換器において、前記リブは垂直方向に連続することが好ましい。   In the heat exchanger configured as described above, it is preferable that the ribs are continuous in a vertical direction.

このような構成にすれば、リブと偏平チューブを押し出し成型により同時に形成することができる。   With such a configuration, the rib and the flat tube can be simultaneously formed by extrusion molding.

上記構成の熱交換器において、前記風上側コルゲートフィンと前記風下側コルゲートフィンが前記リブに当接することにより、前記風上側コルゲートフィンと前記風下側コルゲートフィンの間に所定の間隙が形成されることが好ましい。   In the heat exchanger configured as described above, a predetermined gap is formed between the windward corrugated fin and the leeward corrugated fin by the windward corrugated fin and the leeward corrugated fin coming into contact with the rib. Is preferred.

このような構成にすれば、除霜水や結露水を風上側コルゲートフィンと風下側コルゲートフィンの合わせ目の間隙から効率よく排水することができる。   With such a configuration, the defrost water and the dew condensation water can be efficiently drained from the gap between the seam of the leeward corrugated fin and the leeward corrugated fin.

本発明によると、コルゲートフィンの空気に触れる長さを長くして熱交換が十分に行われるようにするとともに、偏平チューブとコルゲートフィンを正確に位置決めして組み立てることができる。また、除霜水や結露水が速やかに排水されるようにすることができる。   According to the present invention, the length of the corrugated fin that is in contact with the air is increased so that the heat exchange is sufficiently performed, and the flat tube and the corrugated fin can be accurately positioned and assembled. Moreover, defrost water and dew condensation water can be drained quickly.

以下本発明の一実施形態を図1から図4に基づき説明する。図1は熱交換器の概略構造を示す模型的垂直断面図、図2は図1のA−A線に沿って切断した断面図、図3は拡大部分水平断面図、図4は図3のB−B線に沿って切断した断面図である。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 is a schematic vertical sectional view showing a schematic structure of a heat exchanger, FIG. 2 is a sectional view taken along line AA in FIG. 1, FIG. 3 is an enlarged partial horizontal sectional view, and FIG. It is sectional drawing cut | disconnected along the BB line.

熱交換器1は、2本の水平なヘッダパイプ2、3を上下に間隔を置いて平行に配置し、ヘッダパイプ2、3の間に垂直な偏平チューブ4を所定ピッチで複数配置する。偏平チューブ4はアルミニウム等熱伝導の良い金属を押出成型した細長い成型品であり、内部には冷媒を流通させる冷媒通路5が形成されている。図3に示すように、偏平チューブ4の内部には、断面形状及び断面面積の等しい冷媒通路5が複数個並び、そのため偏平チューブ4はハーモニカのような断面を呈している。なお冷媒通路5は断面形状と断面面積が均一である必要はなく、断面形状や断面面積の異なるものが混在していても構わない。   In the heat exchanger 1, two horizontal header pipes 2 and 3 are arranged in parallel with an interval in the vertical direction, and a plurality of vertical flat tubes 4 are arranged between the header pipes 2 and 3 at a predetermined pitch. The flat tube 4 is an elongated molded product obtained by extruding a metal having good heat conductivity such as aluminum, and a refrigerant passage 5 through which a refrigerant flows is formed inside. As shown in FIG. 3, a plurality of refrigerant passages 5 having the same cross-sectional shape and the same cross-sectional area are arranged inside the flat tube 4, so that the flat tube 4 has a harmonica-like cross section. The refrigerant passage 5 does not have to have a uniform cross-sectional shape and cross-sectional area, and may have a mixture of cross-sectional shapes and cross-sectional areas.

偏平チューブ4は押出成型方向を垂直にする形で配置されるので、冷媒通路5の冷媒流通方向も垂直になる。各冷媒通路5はヘッダパイプ2、3の内部に連通する。なお図1において紙面上側が垂直方向の上側、紙面下側が垂直方向の下側であり、上側のヘッダパイプ2と下側のヘッダパイプ3の間に複数の偏平チューブ4が長手方向を垂直にして所定ピッチで配置された構成となっている。   Since the flat tube 4 is disposed so that the extrusion molding direction is vertical, the refrigerant flow direction of the refrigerant passage 5 is also vertical. Each refrigerant passage 5 communicates with the inside of the header pipes 2 and 3. In FIG. 1, the upper side of the drawing is the upper side in the vertical direction, the lower side of the drawing is the lower side in the vertical direction, and a plurality of flat tubes 4 are arranged between the upper header pipe 2 and the lower header pipe 3 in the longitudinal direction. The configuration is arranged at a predetermined pitch.

ヘッダパイプ2、3と偏平チューブ4は溶着により固定される。偏平チューブ4同士の間にはコルゲートフィン6が配置され、偏平チューブ4とコルゲートフィン6も溶着により固定される。偏平チューブ4と同様、ヘッダパイプ2、3及びコルゲートフィン6も熱伝導の良い金属(例えば、アルミニウム)からなる。   The header pipes 2 and 3 and the flat tube 4 are fixed by welding. Corrugated fins 6 are disposed between the flat tubes 4, and the flat tubes 4 and the corrugated fins 6 are also fixed by welding. Similar to the flat tube 4, the header pipes 2 and 3 and the corrugated fin 6 are also made of a metal (for example, aluminum) having good heat conduction.

下側のヘッダパイプ3の一端には冷媒流入口7が設けられ、上側のヘッダパイプ2の一
端には、冷媒流入口7と対角をなす位置に冷媒流出口8が設けられている。
A refrigerant inlet 7 is provided at one end of the lower header pipe 3, and a refrigerant outlet 8 is provided at one end of the upper header pipe 2 at a position opposite to the refrigerant inlet 7.

このように、ヘッダパイプ2、3の間に多数の偏平チューブ4を設け、偏平チューブ4の間にコルゲートフィン6を設けた構造であるから、熱交換器1の放熱(吸熱)面積は大きく、効率的に熱交換を行うことができる。   As described above, since the flat tubes 4 are provided between the header pipes 2 and 3 and the corrugated fins 6 are provided between the flat tubes 4, the heat dissipation (heat absorption) area of the heat exchanger 1 is large. Heat exchange can be performed efficiently.

続いてコルゲートフィン6の構造を図2、図3、図4に基づき説明する。図2及び図3では紙面左側が風上側、紙面右側が風下側となる。   Next, the structure of the corrugated fin 6 will be described with reference to FIGS. 2 and 3, the left side of the drawing is the windward side, and the right side of the drawing is the leeward side.

図2及び図3に示すように、コルゲートフィン6は風上側コルゲートフィン6Uと風下側コルゲートフィン6Dに分割されている。風上側コルゲートフィン6Uはフィン表面が風下側に向かい下り勾配となっている。風下側コルゲートフィン6Dはフィン表面が風下側に向かい上り勾配となっている。風上側コルゲートフィン6Uの下り勾配と風下側コルゲートフィン6Dの上り勾配は同じ角度である。空気の流れ方向における風上側コルゲートフィン6Uと風下側コルゲートフィン6Dの長さは互いに等しい。   As shown in FIGS. 2 and 3, the corrugated fin 6 is divided into an upwind corrugated fin 6U and a downwind corrugated fin 6D. The windward corrugated fin 6U has a downward slope toward the leeward side of the fin surface. The leeward side corrugated fin 6 </ b> D has a fin surface with an upward slope toward the leeward side. The descending slope of the leeward corrugated fin 6U and the ascending slope of the leeward corrugated fin 6D have the same angle. The lengths of the windward corrugated fins 6U and the leeward corrugated fins 6D in the air flow direction are equal to each other.

風上側コルゲートフィン6Uの下り勾配と風下側コルゲートフィン6Dの上り勾配は必ずしも同じ角度である必要はなく、異なっていても構わない。空気の流れ方向における風上側コルゲートフィン6Uの長さと風下側コルゲートフィン6Dの長さも、等しいことが必須ではなく、異なる長さであってもよい。   The descending slope of the windward corrugated fin 6U and the ascending slope of the leeward corrugated fin 6D are not necessarily at the same angle, and may be different. The length of the windward corrugated fin 6U and the length of the leeward corrugated fin 6D in the air flow direction are not necessarily equal, and may be different lengths.

風上側コルゲートフィン6Uと風下側コルゲートフィン6Dを空気の流れと直角の方向から見ると、多数のV字形状が上下に並ぶように見える。但しVの字の底部は閉じているのではなく開いている。すなわち風上側コルゲートフィン6Uと風下側コルゲートフィン6Dは密着するのでなく間隙9を隔てて配置されている。間隙9は、風上側コルゲートフィン6Uの風下側端部に付着した水滴と風下側コルゲートフィン6Dの風上側端部に付着した水滴の合体が生じ得る大きさに設定されている。   When the windward corrugated fin 6U and the leeward corrugated fin 6D are viewed from a direction perpendicular to the air flow, a large number of V-shaped shapes appear to be lined up and down. However, the bottom of the V shape is not closed but open. That is, the leeward corrugated fin 6U and the leeward corrugated fin 6D are not in close contact with each other but are disposed with a gap 9 therebetween. The gap 9 is set to such a size that the water droplets attached to the leeward end of the leeward corrugated fin 6U and the water droplets attached to the leeward end of the leeward corrugated fin 6D can be combined.

偏平チューブ4の風上側端部には、空気の流通方向と平行に(言い換えれば、風上側に向かって)突出するうね状のリブ10Uが設けられており、風下側端部には、空気の流通方向と平行に(言い換えれば、風下側に向かって)突出するうね状のリブ10Dが設けられている。なお、本実施形態では、リブ10U、10Dは偏平チューブ4に押出成型で一体成型され、垂直に配置された偏平チューブの長手方向に沿って、偏平チューブ上端より少し低い位置から偏平チューブ下端より少し高い位置まで連続している。   The leeward end of the flat tube 4 is provided with a ridge-like rib 10U that protrudes in parallel with the air flow direction (in other words, toward the leeward side). Ridge-shaped rib 10D which protrudes in parallel with the flow direction (in other words, toward the leeward side) is provided. In the present embodiment, the ribs 10U and 10D are integrally formed with the flat tube 4 by extrusion molding, and a little lower than the flat tube lower end from a position slightly lower than the flat tube upper end along the longitudinal direction of the flat tube arranged vertically. It continues to a high position.

上記のように、リブ10U、10Dの長さを偏平チューブ4の長さと同じとせず、偏平チューブ4の上端及び下端とリブ10U、10Dの上端及び下端との間にそれぞれ少し距離を置くものとしたことにより、ヘッダパイプ2、3の直径は、偏平チューブ4の本体部分を受け入れられる大きさとすれば足り、リブ10U、10Dまで受け入れることとした場合に比べ、ヘッダパイプ2、3の直径を小さくすることができる。   As described above, the length of the ribs 10U and 10D is not the same as the length of the flat tube 4, and a little distance is placed between the upper and lower ends of the flat tube 4 and the upper and lower ends of the ribs 10U and 10D. As a result, the diameter of the header pipes 2 and 3 need only be large enough to accept the main body portion of the flat tube 4, and the diameter of the header pipes 2 and 3 is smaller than when the ribs 10 </ b> U and 10 </ b> D are accepted. can do.

なお、風上側コルゲートフィン6Uの風上側端部は、偏平チューブ4の風上側端部に設けられたリブ10Uの先端に並ぶ位置近傍(本実施形態では、風上側コルゲートフィン6Uの風上側端部はリブ10Uの先端にほぼ並んでいる)まで延出され、風下側コルゲートフィン6Dの風下側端部は、偏平チューブ4の風下側端部に設けられたリブ10Dの先端に並ぶ位置近傍(本実施形態では、風下側コルゲートフィン6Dの風下側端部はリブ10Dの先端にほぼ並んでいる)まで延出されている。   Note that the windward end of the windward corrugated fin 6U is near the position aligned with the tip of the rib 10U provided at the windward end of the flat tube 4 (in this embodiment, the windward end of the windward corrugated fin 6U Is substantially aligned with the tip of the rib 10U), and the leeward end of the leeward corrugated fin 6D is near the position aligned with the tip of the rib 10D provided at the leeward end of the flat tube 4 (this In the embodiment, the leeward side end portion of the leeward side corrugated fin 6D is extended to the end of the rib 10D.

このように、風上側コルゲートフィン6Uの風上側端部がリブ10Uの先端に並び、風下側コルゲートフィン6Dの風下側端部がリブ10Dの先端に並ぶ(面一になる)構成の他、風上側コルゲートフィン6Uの風上側端部がリブ10Uの先端に並ぶ位置に届かず、風下側コルゲートフィン6Dの風下側端部もリブ10Dの先端に並ぶ位置に届かないという構成も可能であり、風上側コルゲートフィン6Uの風上側端部がリブ10Uの先端に並ぶ位置からはみ出し、風下側コルゲートフィン6Dの風下側端部もリブ10Dの先端に並ぶ位置からはみ出すという構成も可能である。このような構成をいろいろ組み合わせてもよい。   As described above, the windward end portion of the windward corrugated fin 6U is aligned with the tip of the rib 10U, and the windward side end portion of the leeward corrugated fin 6D is aligned with the tip of the rib 10D (becomes flush). A configuration is also possible in which the leeward end of the upper corrugated fin 6U does not reach the position aligned with the tip of the rib 10U, and the leeward end of the leeward corrugated fin 6D does not reach the position aligned with the tip of the rib 10D. A configuration is also possible in which the leeward end of the upper corrugated fin 6U protrudes from the position aligned with the tip of the rib 10U, and the leeward end of the leeward corrugated fin 6D protrudes from the position aligned with the distal end of the rib 10D. Various combinations of such configurations may be used.

正面から見たリブ10U、10Dの幅は偏平チューブ4の幅より狭い。そのため、リブ10Uと風上側コルゲートフィン6Uの間には間隙が生じ、この間隙が垂直な排水溝11Uを構成する。リブ10Dと風下側コルゲートフィン6Dの間にも間隙が生じ、この間隙が垂直な排水溝11Dを構成する。   The width of the ribs 10U and 10D viewed from the front is narrower than the width of the flat tube 4. Therefore, a gap is formed between the rib 10U and the windward corrugated fin 6U, and this gap constitutes a vertical drainage groove 11U. A gap is also generated between the rib 10D and the leeward corrugated fin 6D, and this gap constitutes a vertical drain groove 11D.

偏平チューブ4の側面には、その中央に、偏平チューブ4の長手方向(本実施形態では垂直方向)に連続するリブ12が形成される。このリブ12に、風上側コルゲートフィン6Uの風下側端と風下側コルゲートフィン6Dの風上側端が当接する。これにより、リブ12の厚みだけの幅を持つ間隙9が形成される。なお、リブ12も偏平チューブ4に押出成型で一体成型されており、垂直に配置された偏平チューブの長手方向に沿って、偏平チューブ上端より少し低い位置から偏平チューブ下端より少し高い位置まで連続している。これにより、リブ12を挿入するための孔部をヘッダパイプ2、3に形成する必要がなくなり、ヘッダパイプ2、3に偏平チューブ4を挿入するための孔部を設ける工程が簡単になる。   On the side surface of the flat tube 4, a rib 12 that is continuous in the longitudinal direction (vertical direction in the present embodiment) of the flat tube 4 is formed at the center. The rib 12 is in contact with the leeward side end of the leeward corrugated fin 6U and the leeward side end of the leeward corrugated fin 6D. Thereby, the gap 9 having a width corresponding to the thickness of the rib 12 is formed. The rib 12 is also integrally formed with the flat tube 4 by extrusion molding, and continues from a position slightly lower than the upper end of the flat tube to a position slightly higher than the lower end of the flat tube along the longitudinal direction of the vertically arranged flat tube. ing. This eliminates the need for forming holes for inserting the ribs 12 in the header pipes 2 and 3, and simplifies the process of providing holes for inserting the flat tubes 4 in the header pipes 2 and 3.

リブ12の位置は、偏平チューブ4の側面中央位置に一致していることが必須ではなく、そこからずれていても構わない。この場合、風上側コルゲートフィン6Uと風下側コルゲートフィン6Dとを偏平チューブ4の空気の流れ方向の幅内に収めるのであれば、それぞれの空気の流れ方向における長さを調整する。偏平チューブ4の空気の流れ方向の幅からはみ出してもよいのであれば、それぞれの空気の流れ方向における長さは互いに等しくてもよく、異なっていてもよい。   The position of the rib 12 does not necessarily coincide with the center position of the side surface of the flat tube 4 and may be deviated therefrom. In this case, if the leeward corrugated fin 6U and the leeward corrugated fin 6D are accommodated within the width of the flat tube 4 in the air flow direction, the lengths of the respective air flow directions are adjusted. If the flat tube 4 may protrude from the width in the air flow direction, the lengths in the air flow direction may be equal to or different from each other.

また本実施形態ではリブ12が垂直方向に連続するよう形成されているが、断続的なリブであってもよいし、数箇所(例えばコルゲートフィンの上部、中部、下部に対応する計3箇所、あるいはコルゲートフィンの上部と下部に対応する計2箇所)のみに設けてもよい。この場合、リブは偏平チューブ本体に溶着して取り付けたり、押出成型で偏平チューブ4と一体成型されて連続しているリブ12を切断して形成したり、あるいは削って形成することが考えられる。   Further, in the present embodiment, the ribs 12 are formed so as to be continuous in the vertical direction, but may be intermittent ribs, or several locations (for example, a total of three locations corresponding to the upper, middle, and lower portions of the corrugated fin, Or you may provide only in a total of two places corresponding to the upper part and the lower part of a corrugated fin. In this case, it is conceivable that the rib is welded and attached to the flat tube main body, or the rib 12 which is integrally formed with the flat tube 4 by extrusion molding is cut or formed by cutting.

図示しないファンで送風を行いつつ熱交換器1に冷媒を流すと、熱交換器1を蒸発器として使用する運転モード(例えば、室内機と室外機とからなるセパレート型空気調和機の室外機で熱交換器1を用い、暖房運転を行うと、熱交換器1は蒸発器として作用する)の場合、熱交換器1は空気から温熱を奪い、逆に冷熱を空気中に放出する。風上側コルゲートフィン6Uと風下側コルゲートフィン6Dのフィン表面にはそれぞれ勾配がついているので、コルゲートフィンに勾配をつけずに水平とした場合に比べると、コルゲートフィン6全体として空気の流れ方向に長く延びる形で存在することになり、高い熱交換性能を得ることができる。   When the refrigerant flows through the heat exchanger 1 while blowing with a fan (not shown), an operation mode in which the heat exchanger 1 is used as an evaporator (for example, an outdoor unit of a separate air conditioner composed of an indoor unit and an outdoor unit). In the case of heating operation using the heat exchanger 1, the heat exchanger 1 acts as an evaporator), the heat exchanger 1 takes heat from the air and conversely releases cold energy into the air. Since the fin surfaces of the windward corrugated fin 6U and the leeward corrugated fin 6D are respectively inclined, the corrugated fin 6 as a whole is longer in the air flow direction than the case where the corrugated fin is horizontal without being inclined. It exists in the extended form, and high heat exchange performance can be obtained.

空気から温熱を奪う運転を続けていると、風上側コルゲートフィン6Uの表面にも風下側コルゲートフィン6Dの表面にも、また偏平チューブ4の表面にも、空気中の水分が結露する。当初は微細だった水滴が結集して大きな水滴になると、それは偏平チューブ4の風上側の排水溝11Uと、風下側の排水溝11Dから排水される。これらの箇所では空気の流れが水の表面張力の破壊を後押しするので、水が表面張力で膜を張るいわゆるブリッジ現象が起きにくく、水を速やかに流し去ることができる。   When the operation of taking the heat from the air is continued, moisture in the air is condensed on the surface of the windward corrugated fin 6U, the surface of the leeward corrugated fin 6D, and the surface of the flat tube 4. When water droplets that were initially finely gathered into large water droplets, they are drained from the drainage groove 11U on the windward side of the flat tube 4 and the drainage groove 11D on the leeward side. In these places, the flow of air boosts the destruction of the surface tension of the water, so that the so-called bridge phenomenon in which the water stretches the film with the surface tension hardly occurs, and the water can be quickly washed away.

水滴の一部は風上側コルゲートフィン6Uまたは風下側コルゲートフィン6Dの斜面を伝って流下し、間隙9で出会う。間隙9は風上側コルゲートフィン6Uの風下側端部に付着した水滴と風下側コルゲートフィン6Dの風上側端部に付着した水滴の合体が生じ得る大きさに設定されているので、風上側コルゲートフィン6Uの水滴と風下側コルゲートフィン6Dの水滴は、間隙9で出会うと互いに表面張力を破壊し合って合体し、ブリッジ現象を生じることなく速やかに間隙9から流れ出る。   Some of the water droplets flow down along the slope of the leeward corrugated fin 6U or the leeward corrugated fin 6D and meet at the gap 9. The gap 9 is set to such a size that the water droplets adhering to the leeward side end portion of the leeward corrugated fin 6U and the water droplets adhering to the leeward side corrugated fin 6D can be combined. When the water droplets of 6U and the leeward corrugated fins 6D meet at the gap 9, the surface tensions of the 6U water droplet and the water droplets are merged together and quickly flow out of the gap 9 without causing a bridging phenomenon.

熱交換器1を蒸発器として使用する運転モード(熱交換器1が室外空気から温熱を奪う運転モード)において、周囲の空気温度条件や、運転条件によっては、偏平チューブ4やコルゲートフィン6の表面に空気中の水分が霜として付着する場合がある。時間が経つにつれ霜は厚みを増し、熱交換性能を低下させるので、時々は熱交換器1を凝縮器に転換する除霜運転を行って霜を溶かさねばならない。霜が溶けた除霜水も、結露水と同様、排水溝11U、11D及び間隙9からスムーズに排水される。このため、除霜運転から通常運転に復帰したとき、排水されないまま残留した水滴が凍結して熱交換性能を損なうということがない。このように、除霜水や結露水をスムーズに排水できるようにするという目的も達成することができる。   In the operation mode in which the heat exchanger 1 is used as an evaporator (the operation mode in which the heat exchanger 1 takes heat from the outdoor air), the surface of the flat tube 4 and the corrugated fin 6 depending on the ambient air temperature condition and the operation condition. In some cases, moisture in the air adheres as frost. As time passes, the frost increases in thickness and reduces the heat exchange performance, so sometimes the frost must be melted by performing a defrosting operation that converts the heat exchanger 1 into a condenser. The defrost water in which the frost has melted is also smoothly drained from the drain grooves 11U and 11D and the gap 9 like the dew condensation water. For this reason, when returning from the defrosting operation to the normal operation, water droplets remaining without being drained are not frozen and the heat exchange performance is not impaired. Thus, the object of enabling smooth defrosted water and condensed water to be drained can also be achieved.

偏平チューブ4に風上側コルゲートフィン6Uと風下側コルゲートフィン6Dを溶着する際、偏平チューブ4の側面のリブ12に風上側コルゲートフィン6Uの風下側端と風下側コルゲートフィン6Dの風上側端を当接させることにより、偏平チューブ4、風上側コルゲートフィン6U、及び風下側コルゲートフィン6Dを正確に位置決めし、組立誤差を少なくすることができる。また、生産効率が向上する。   When welding the windward corrugated fin 6U and the leeward corrugated fin 6D to the flat tube 4, the leeward side end of the windward corrugated fin 6U and the windward side end of the leeward corrugated fin 6D are brought into contact with the ribs 12 on the side surface of the flat tube 4. By making contact, the flat tube 4, the windward corrugated fin 6U, and the leeward corrugated fin 6D can be accurately positioned, and assembly errors can be reduced. Moreover, production efficiency is improved.

風上側コルゲートフィン6Uの下り勾配と風下側コルゲートフィン6Dの上り勾配は5°〜40°の範囲で選択することができる。勾配が急になると、熱交換面積が増え、排水しやすくなる一方、空気の流通に対しては抵抗となるので、実験を通じて適切な値を決めるとよい。その他、偏平チューブ4同士の間隔が5.5mm、偏平チューブ4の厚みが1.3mm、空気の流れ方向における風上側コルゲートフィン6Uと風下側コルゲートフィン6Dの水平方向長さがそれぞれ18mm、風上側コルゲートフィン6Uと風下側コルゲートフィン6Dのそれぞれの山−谷ピッチが2mm〜3mm、間隙9の大きさが最大0.5mmといった数値を例示することができる。言うまでもないが、これらの数値は単なる例示であり、発明の内容を限定するものではない。例えば、間隙9は、風上側コルゲートフィン6Uの風下側端部に付着した水滴と風下側コルゲートフィン6Dの風上側端部に付着した水滴の合体が生じ得る大きさに設定されていればよいので、最大4mmまでの範囲で設定可能である。   The descending slope of the windward corrugated fin 6U and the ascending slope of the leeward corrugated fin 6D can be selected in the range of 5 ° to 40 °. If the gradient becomes steep, the heat exchange area increases and drainage becomes easier, while resistance to air flow is good. In addition, the distance between the flat tubes 4 is 5.5 mm, the thickness of the flat tubes 4 is 1.3 mm, the horizontal length of the windward corrugated fin 6U and the leeward corrugated fin 6D in the air flow direction is 18 mm, respectively, and the windward side. Examples are numerical values such that the peak-to-valley pitches of the corrugated fins 6U and the leeward corrugated fins 6D are 2 mm to 3 mm, and the size of the gap 9 is 0.5 mm at the maximum. Needless to say, these numerical values are merely examples and do not limit the content of the invention. For example, the gap 9 only needs to be set to a size that can cause a combination of water droplets attached to the leeward side end portion of the leeward corrugated fin 6U and water droplets attached to the leeward side corrugated fin 6D. It can be set in the range up to 4mm.

本発明の第2実施形態を図5に示す。図5は図3と同様の拡大部分水平断面図である。図5でも紙面左側が風上側、紙面右側が風下側となる。   A second embodiment of the present invention is shown in FIG. FIG. 5 is an enlarged partial horizontal sectional view similar to FIG. In FIG. 5, the left side of the drawing is the windward side and the right side of the drawing is the leeward side.

第1実施形態では、リブ12の厚みがそのまま間隙9の幅となっていたため、間隙9の大きさを最大0.5mmとするためには、リブ12の厚みを0.5mm以下とする必要があっ
た。第2実施形態では、風上側コルゲートフィン6Uの風下側の角と風下側コルゲートフィン6Dの風上側の角に、リブ12を受け入れる切り欠き部13を形成した。これにより、間隙9の幅をリブ12の厚みより小さくすることができるので、金型製作の都合でリブ12の厚みが大きくなったとしても、間隙9を、風上側コルゲートフィン6Uの風下側端部に付着した水滴と風下側コルゲートフィン6Dの風上側端部に付着した水滴の合体が生じ得る大きさにすることができる。
In the first embodiment, since the thickness of the rib 12 is the width of the gap 9 as it is, the thickness of the rib 12 needs to be 0.5 mm or less in order to make the size of the gap 9 maximum 0.5 mm. there were. In the second embodiment, the notch portions 13 that receive the ribs 12 are formed at the leeward corner of the leeward corrugated fin 6U and the leeward corner of the leeward corrugated fin 6D. Thereby, since the width of the gap 9 can be made smaller than the thickness of the rib 12, even if the thickness of the rib 12 is increased due to the manufacture of the mold, the gap 9 is connected to the leeward side end of the windward corrugated fin 6U. The size of the water droplets attached to the portion and the water droplets attached to the windward side end portion of the leeward corrugated fin 6D can be made large.

なお、リブ12は厚みがある程度大きい(例えば2mm)方が押出成型により形成しやす
い。間隙9を大きく(例えば2mm)できる場合には、リブ12の厚みをそのまま利用する
ことができるので、切り欠き部13を設ける必要はない。
The rib 12 is more easily formed by extrusion molding if the thickness is somewhat large (for example, 2 mm). When the gap 9 can be increased (for example, 2 mm), the thickness of the rib 12 can be used as it is, so that the notch portion 13 does not need to be provided.

以上、本発明の各実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   As mentioned above, although each embodiment of the present invention was described, the scope of the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention.

本発明はパラレルフロー型熱交換器に広く利用可能である。     The present invention is widely applicable to parallel flow heat exchangers.

熱交換器の概略構造を示す模型的垂直断面図Model vertical cross section showing the schematic structure of the heat exchanger 図1のA−A線に沿って切断した断面図Sectional drawing cut | disconnected along the AA line of FIG. 熱交換器の拡大部分水平断面図Expanded horizontal sectional view of heat exchanger 図3の部分をB−B線の箇所で見た正面図The front view which looked at the part of FIG. 3 in the location of the BB line 第2実施形態を示す図3と同様の拡大部分水平断面図The same expanded partial horizontal sectional view as FIG. 3 which shows 2nd Embodiment.

符号の説明Explanation of symbols

1 熱交換器
2、3 ヘッダパイプ
4 偏平チューブ
5 冷媒通路
6 コルゲートフィン
6U 風上側コルゲートフィン
6D 風下側コルゲートフィン
9 間隙
12 リブ
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2, 3 Header pipe 4 Flat tube 5 Refrigerant passage 6 Corrugated fin 6U Upwind side corrugated fin 6D Downward side corrugated fin 9 Gap 12 Rib

上記目的を達成するために本発明は、間隔を置いて平行に配置された複数の水平なヘッダパイプと、前記複数のヘッダパイプの間に所定ピッチで複数配置され、内部に設けた垂直な冷媒通路を前記ヘッダパイプの内部に連通させた垂直な偏平チューブと、前記偏平チューブ間に配置されたコルゲートフィンとを備えた熱交換器において、前記コルゲートフィンは、フィン表面が風下側に向かい下り勾配となった風上側コルゲートフィンと、フィン表面が風下側に向かい上り勾配となった風下側コルゲートフィンからなり、前記偏平チューブの側面に形成されたリブに前記風上側コルゲートフィンの風下側端と前記風下側コルゲートフィンの風上側端を当接させることにより、前記風上側コルゲートフィンと前記風下側コルゲートフィンとの間に所定の間隙が形成されることを特徴としている。 In order to achieve the above object, the present invention provides a plurality of horizontal header pipes arranged in parallel at intervals, and a plurality of vertical refrigerants arranged at a predetermined pitch between the plurality of header pipes. In the heat exchanger comprising a vertical flat tube having a passage communicating with the inside of the header pipe, and a corrugated fin disposed between the flat tubes, the corrugated fin has a fin surface with a downward slope toward the leeward side. A leeward corrugated fin, and a leeward corrugated fin whose fin surface is inclined upward toward the leeward side, and a rib formed on a side surface of the flat tube has a leeward side end of the windward corrugated fin. by abutting the windward end of the downwind-side corrugated fins, and the windward corrugated fin between the downwind-side corrugated fins It is characterized in that a predetermined gap is formed.

この構成によると、風上側コルゲートフィンは下り勾配、風下側コルゲートフィンは上り勾配にしたことにより、風上側コルゲートフィンと風下側コルゲートフィンの空気に触れる長さを、偏平チューブの奥行きに比較して大きくとり、熱交換能力を向上させることができる。また偏平チューブの側面に形成されたリブに風上側コルゲートフィンの風下側端と風下側コルゲートフィンの風上側端を当接させるので、偏平チューブ、風上側コルゲートフィン、及び風下側コルゲートフィンを正確に位置決めし、組立誤差を少なくすることができる。また、除霜水や結露水を風上側コルゲートフィンと風下側コルゲートフィンの合わせ目の間隙から効率よく排水することができる。 According to this configuration, the windward corrugated fin has a downward slope, and the leeward corrugated fin has an upward slope, so that the length of the windward corrugated fin and the leeward corrugated fin touching the air is compared with the depth of the flat tube. Larger, heat exchange capacity can be improved. In addition, the leeward end of the leeward corrugated fin and the leeward end of the leeward corrugated fin are brought into contact with the rib formed on the side surface of the flat tube, so that the flat tube, the windward corrugated fin and the leeward corrugated fin can be accurately connected. Positioning and assembly errors can be reduced. Moreover, defrost water and dew condensation water can be efficiently drained from the gap between the seam of the leeward corrugated fin and the leeward corrugated fin.

上記構成の熱交換器において、前記所定の間隙は、前記風上側コルゲートフィンの風下側端部に付着した水滴と前記風下側コルゲートフィンの風上側端部に付着した水滴の合体が生じ得る大きさに設定されていることが好ましい。 In the heat exchanger configured as described above, the predetermined gap may have a size such that water droplets attached to the leeward end of the leeward corrugated fin and water droplets attached to the leeward end of the leeward corrugated fin may be combined. It is preferable that it is set to .

Claims (3)

間隔を置いて平行に配置された複数の水平なヘッダパイプと、前記複数のヘッダパイプの間に所定ピッチで複数配置され、内部に設けた垂直な冷媒通路を前記ヘッダパイプの内部に連通させた垂直な偏平チューブと、前記偏平チューブ間に配置されたコルゲートフィンとを備えた熱交換器において、
前記コルゲートフィンは、フィン表面が風下側に向かい下り勾配となった風上側コルゲートフィンと、フィン表面が風下側に向かい上り勾配となった風下側コルゲートフィンからなり、前記偏平チューブの側面に形成されたリブに前記風上側コルゲートフィンの風下側端と前記風下側コルゲートフィンの風上側端を当接させることを特徴とする熱交換器。
A plurality of horizontal header pipes arranged in parallel at intervals and a plurality of horizontal header pipes arranged at a predetermined pitch between the plurality of header pipes, and vertical refrigerant passages provided therein are communicated with the inside of the header pipes. In a heat exchanger comprising a vertical flat tube and a corrugated fin disposed between the flat tubes,
The corrugated fin is composed of a windward corrugated fin whose fin surface is inclined downward toward the leeward side and a leeward corrugated fin whose fin surface is inclined upwardly toward the leeward side, and is formed on a side surface of the flat tube. A heat exchanger, wherein the leeward side end of the leeward corrugated fin and the leeward side end of the leeward corrugated fin are brought into contact with the rib.
前記リブは垂直方向に連続することを特徴とする請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the ribs are continuous in a vertical direction. 前記風上側コルゲートフィンと前記風下側コルゲートフィンが前記リブに当接することにより、前記風上側コルゲートフィンと前記風下側コルゲートフィンの間に所定の間隙が形成されることを特徴とする請求項1または2に記載の熱交換器。 2. The predetermined gap is formed between the windward corrugated fin and the leeward corrugated fin when the windward corrugated fin and the leeward corrugated fin come into contact with the rib. 2. The heat exchanger according to 2.
JP2007286394A 2007-11-02 2007-11-02 Heat exchanger Expired - Fee Related JP4275182B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007286394A JP4275182B2 (en) 2007-11-02 2007-11-02 Heat exchanger
PCT/JP2008/063948 WO2009057364A1 (en) 2007-11-02 2008-08-04 Heat exchanger
CN2008801094441A CN101809400B (en) 2007-11-02 2008-08-04 Heat exchanger
EP08792152.4A EP2233874B1 (en) 2007-11-02 2008-08-04 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286394A JP4275182B2 (en) 2007-11-02 2007-11-02 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2009115339A true JP2009115339A (en) 2009-05-28
JP4275182B2 JP4275182B2 (en) 2009-06-10

Family

ID=40590766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286394A Expired - Fee Related JP4275182B2 (en) 2007-11-02 2007-11-02 Heat exchanger

Country Status (4)

Country Link
EP (1) EP2233874B1 (en)
JP (1) JP4275182B2 (en)
CN (1) CN101809400B (en)
WO (1) WO2009057364A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148786A1 (en) * 2010-05-24 2011-12-01 サンデン株式会社 Tube for heat exchanger, heat exchanger, and method for manufacturing tube for heat exchanger
JP2012072955A (en) * 2010-09-29 2012-04-12 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2013213603A (en) * 2012-04-02 2013-10-17 Nippon Light Metal Co Ltd Drain structure of corrugated fin type heat exchanger
JP2017511461A (en) * 2014-04-16 2017-04-20 杭州三花▲微▼通道▲換▼▲熱▼▲器▼有限公司 Folding heat exchanger with fins and fins
CN108253834A (en) * 2016-12-28 2018-07-06 丹佛斯微通道换热器(嘉兴)有限公司 Flat tube for heat exchanger and the heat exchanger with the flat tube
WO2020230268A1 (en) * 2019-05-14 2020-11-19 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2882519B1 (en) 2005-02-28 2008-12-26 Oreal COLORING OF PARTICULAR HUMAN KERATINIC MATERIALS BY DRY THERMAL TRANSFER OF AZOMETHINIC DIRECT COLORANT COMPOSITION COMPRISING SAID COLORING DYE AND PROCESS FOR PREPARING THE SAME
JP4334588B2 (en) * 2007-10-04 2009-09-30 シャープ株式会社 Heat exchanger
US20120291476A1 (en) * 2011-05-16 2012-11-22 Whirlpool Corporation Cooling system integration enabling platform architecture
CN106459076B (en) 2014-05-13 2019-01-04 诺华股份有限公司 Compound and composition for inducing cartilage to occur
CN105987540A (en) * 2015-02-10 2016-10-05 上海交通大学 Tube-fin type parallel flow heat exchanger
EP3330637B1 (en) * 2015-07-29 2021-08-25 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
CN107726884A (en) * 2017-09-19 2018-02-23 东莞市丰瑞德温控技术有限公司 Inclining fin formula parallel-flow heat exchanger and its manufacture craft

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217195A (en) * 1982-06-10 1983-12-17 Mitsubishi Electric Corp Heat exchanger
JP2001066083A (en) 1993-11-08 2001-03-16 Sharp Corp Heat exchanger
JPH09196583A (en) * 1996-01-23 1997-07-31 Calsonic Corp Heat exchanger core and its manufacturing method
JP4122608B2 (en) * 1998-12-10 2008-07-23 株式会社デンソー Refrigerant evaporator
DE20118511U1 (en) * 2000-11-01 2002-02-14 Autokuehler Gmbh & Co Kg Heat exchanger network and heat exchanger produced therewith
US6397939B1 (en) * 2000-12-13 2002-06-04 Modine Manufacturing Company Tube for use in serpentine fin heat exchangers
JP2002257433A (en) * 2001-02-28 2002-09-11 Toyo Radiator Co Ltd Multiple plate vaporizer
KR20040017957A (en) * 2002-08-23 2004-03-02 엘지전자 주식회사 Exhauster for condensate of heat exchanger
JP2004317002A (en) * 2003-04-15 2004-11-11 Matsushita Electric Ind Co Ltd Heat exchanger
CN1566889A (en) * 2003-06-17 2005-01-19 乐金电子(天津)电器有限公司 Condensed water draining apparatus for heat exchanger
JP2005024187A (en) 2003-07-03 2005-01-27 Matsushita Electric Ind Co Ltd Outdoor heat exchanger for heat pump
AU2004254508A1 (en) * 2003-07-08 2005-01-13 Showa Denko K.K. Evaporator
CN100483046C (en) * 2003-07-08 2009-04-29 昭和电工株式会社 Evaporator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148786A1 (en) * 2010-05-24 2011-12-01 サンデン株式会社 Tube for heat exchanger, heat exchanger, and method for manufacturing tube for heat exchanger
JP2011247449A (en) * 2010-05-24 2011-12-08 Sanden Corp Tube for heat exchanger, heat exchanger and method of manufacturing the tube for heat exchanger
JP2012072955A (en) * 2010-09-29 2012-04-12 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2013213603A (en) * 2012-04-02 2013-10-17 Nippon Light Metal Co Ltd Drain structure of corrugated fin type heat exchanger
JP2017511461A (en) * 2014-04-16 2017-04-20 杭州三花▲微▼通道▲換▼▲熱▼▲器▼有限公司 Folding heat exchanger with fins and fins
US10539374B2 (en) 2014-04-16 2020-01-21 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Fin and bending type heat exchanger having the fin
CN108253834A (en) * 2016-12-28 2018-07-06 丹佛斯微通道换热器(嘉兴)有限公司 Flat tube for heat exchanger and the heat exchanger with the flat tube
WO2020230268A1 (en) * 2019-05-14 2020-11-19 三菱電機株式会社 Heat exchanger and refrigeration cycle device

Also Published As

Publication number Publication date
CN101809400A (en) 2010-08-18
JP4275182B2 (en) 2009-06-10
EP2233874A1 (en) 2010-09-29
EP2233874A4 (en) 2013-12-18
WO2009057364A1 (en) 2009-05-07
EP2233874B1 (en) 2017-07-05
CN101809400B (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP4275182B2 (en) Heat exchanger
CN103314267B (en) Heat exchanger and air conditioner
CN103299149B (en) Heat exchanger and air conditioner
CN103403487B (en) Heat exchanger and air conditioner
WO2012098914A1 (en) Heat exchanger and air conditioner
US20110036550A1 (en) Fin and heat exchanger having the same
JP4334588B2 (en) Heat exchanger
CN103518116B (en) Heat exchanger
JP4856044B2 (en) Heat exchanger
WO2010106757A1 (en) Drainage structure of corrugated fin-type heat exchanger
JP5042927B2 (en) Heat exchanger
JP2010139166A (en) Air conditioner
US6435268B1 (en) Evaporator with improved condensate drainage
JPWO2019026239A1 (en) Heat exchanger and refrigeration cycle apparatus
CN102893118A (en) Tube for heat exchanger, heat exchanger, and method for manufacturing tube for heat exchanger
US9429373B2 (en) Heat exchanger
JP5020886B2 (en) Heat exchanger
JP2010048473A (en) Heat exchanger unit and air conditioner equipped therewith
JP2010091145A (en) Heat exchanger
JP2009074733A (en) Heat exchanger
JP2010139115A (en) Heat exchanger and heat exchanger unit
JP2010127510A (en) Heat exchanger
JP2009092316A (en) Heat exchanger
JP2010107130A (en) Heat exchanger unit and indoor unit of air conditioner using the same
JP2005201467A (en) Heat exchanger

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090303

R150 Certificate of patent or registration of utility model

Ref document number: 4275182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

LAPS Cancellation because of no payment of annual fees