JP2009092316A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2009092316A
JP2009092316A JP2007263956A JP2007263956A JP2009092316A JP 2009092316 A JP2009092316 A JP 2009092316A JP 2007263956 A JP2007263956 A JP 2007263956A JP 2007263956 A JP2007263956 A JP 2007263956A JP 2009092316 A JP2009092316 A JP 2009092316A
Authority
JP
Japan
Prior art keywords
corrugated fin
leeward
heat exchanger
windward
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007263956A
Other languages
Japanese (ja)
Inventor
Kazuhisa Mishiro
一寿 三代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007263956A priority Critical patent/JP2009092316A/en
Publication of JP2009092316A publication Critical patent/JP2009092316A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Abstract

<P>PROBLEM TO BE SOLVED: To uniformize a frost formation state and to extend a time of clogging by frost in a parallel flow type heat exchanger. <P>SOLUTION: This heat exchanger 1 comprises horizontal header pipes 2, 3 disposed in parallel with each other at an interval in the vertical direction, a plurality of vertical flat tubes 4 disposed at intervals in the horizontal direction between the header pipes 2, 3 in a state that refrigerant passages 5 inside thereof are respectively communicated with the inside of the header pipes, and corrugated fins 6 disposed among the flat tubes 4. The corrugated fins 6 are divided into windward-side corrugated fins 6U and leeward-side corrugated fins 6D, and a heat exchanging capacity of the leeward-side corrugated fins 6D is higher than that of the windward-side corrugated fins 6U. The heat exchanging capacities are differentiated by making a crest-trough pitch P2 of the leeward-side corrugated fin 6D smaller than a crest-trough pitch P1 of the windward-side corrugated fin 6U. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はパラレルフロー型の熱交換器に関する。   The present invention relates to a parallel flow type heat exchanger.

2本のヘッダパイプの間に複数の偏平チューブを配置して偏平チューブ内部の冷媒通路をヘッダパイプの内部に連通させるとともに、偏平チューブ間にコルゲートフィンを配置したパラレルフロー型の熱交換器はカーエアコンなどに広く利用されている。その例を特許文献1、2に見ることができる。   A parallel flow type heat exchanger in which a plurality of flat tubes are arranged between two header pipes so that a refrigerant passage inside the flat tubes communicates with the inside of the header pipe and corrugated fins are arranged between the flat tubes is a car. Widely used for air conditioners. Examples thereof can be seen in Patent Documents 1 and 2.

特許文献1記載の熱交換器は、ヘッダパイプが水平に配置され、偏平チューブが垂直に配置されており、コルゲートフィンは熱交換器の奥行き方向中央部を底とする谷型形状とされている。コルゲートフィンの谷底部分で偏平チューブに接合する箇所には貫通穴が設けられ、除霜運転を行って熱交換器に付着した霜を溶かすと、霜が溶けた水は貫通穴から排水される。   The heat exchanger described in Patent Document 1 has a header pipe arranged horizontally and a flat tube arranged vertically, and the corrugated fin has a valley shape with the center in the depth direction of the heat exchanger as the bottom. . A through-hole is provided at a location where the corrugated fin is joined to the flat tube at the bottom of the corrugated fin. When defrosting operation is performed to melt the frost adhering to the heat exchanger, the melted water is drained from the through-hole.

特許文献2記載の熱交換器は、偏平チューブの少なくとも前後一方の端面が上下に亘ってコルゲートフィン端部より突出している。あるいは、偏平チューブの少なくとも前後一方の端面からコルゲートフィン端部が突出している。
特開2005−24187号公報 特開2004−177082号公報
In the heat exchanger described in Patent Document 2, at least one of the front and rear end surfaces of the flat tube protrudes from the corrugated fin end portion in the vertical direction. Alternatively, the corrugated fin end protrudes from at least one of the front and rear end faces of the flat tube.
JP 2005-24187 A JP 2004-177082 A

パラレルフロー型熱交換器を蒸発器として使用すると、周囲の空気温度条件や、運転条件によっては、偏平チューブやコルゲートフィンに霜が付着する。本発明は、霜の付き具合を均一化して、霜で目詰まり状態となる時期を延ばすことを目的とする。   When a parallel flow type heat exchanger is used as an evaporator, frost adheres to the flat tubes and corrugated fins depending on the ambient air temperature conditions and operating conditions. An object of this invention is to lengthen the time which becomes a clogged state with frost by equalizing the condition of frost.

上記目的を達成するために本発明は、間隔を置いて平行に配置された2本の水平なヘッダパイプと、前記2本のヘッダパイプの間に所定ピッチで複数配置され、内部に設けた垂直な冷媒通路を前記ヘッダパイプの内部に連通させた垂直な偏平チューブと、前記偏平チューブ間に配置されたコルゲートフィンとを備えた熱交換器において、前記コルゲートフィンを風上側コルゲートフィンと風下側コルゲートフィンに区分し、前記風下側コルゲートフィンの熱交換能力を前記風上側コルゲートフィンの熱交換能力よりも大としたことを特徴としている。   In order to achieve the above-mentioned object, the present invention provides two horizontal header pipes arranged in parallel at intervals, and a plurality of vertical header pipes arranged at a predetermined pitch between the two header pipes. A heat exchanger comprising a vertical flat tube having a refrigerant passage communicating with the inside of the header pipe and a corrugated fin disposed between the flat tubes, wherein the corrugated fin is connected to the windward corrugated fin and the leeward corrugated fin The heat exchange capacity of the leeward corrugated fin is made larger than the heat exchange capacity of the windward corrugated fin.

熱交換能力が高ければそれだけ空気中の水分を霜にしやすい。上記構成では、着霜を生じやすい領域が風下側にシフトしているので、コルゲートフィンを通過する空気から見れば、含有水分量の多いうちに熱交換能力比較的小の風上側コルゲートフィンを通り、含有水分量が減ってから熱交換能力比較的大の風下側コルゲートフィンを通ることになり、風上側コルゲートフィンにおける着霜と風下側コルゲートフィンにおける着霜はバランスのとれたものになる。その結果、風上側に着霜が集中するといった事態が避けられ、霜で目詰まり状態となる時期が延びるので、除霜運転のインターバルを長くとることができ、稼働効率が向上する。   The higher the heat exchange capacity, the easier it is to frost moisture in the air. In the above configuration, since the region where frost formation is likely to occur is shifted to the leeward side, when viewed from the air passing through the corrugated fins, it passes through the windward corrugated fins with a relatively small heat exchange capacity while the moisture content is large. After the moisture content is reduced, the leeward corrugated fin having a relatively large heat exchanging capacity is passed through, and the frost formation on the leeward corrugated fin and the frost formation on the leeward corrugated fin are balanced. As a result, a situation in which frost is concentrated on the windward side is avoided, and the time when the frost is clogged is extended, so that the interval of the defrosting operation can be increased and the operation efficiency is improved.

上記構成の熱交換器において、前記風下側コルゲートフィンの山−谷ピッチを前記風上側コルゲートフィンの山−谷ピッチより小とすることにより、前記熱交換能力の差を生じさせることが好ましい。   In the heat exchanger configured as described above, it is preferable that the difference in the heat exchange capacity is generated by setting the peak-valley pitch of the leeward corrugated fin smaller than the peak-valley pitch of the windward corrugated fin.

このような構成によると、コルゲートフィンのサイズを大きくすることなく、風下側コルゲートフィンの熱交換能力を風上側コルゲートフィンの熱交換能力よりも大とすることができる。   According to such a configuration, the heat exchange capability of the leeward corrugated fin can be made larger than the heat exchange capability of the leeward corrugated fin without increasing the size of the corrugated fin.

上記構成の熱交換器において、空気の流れ方向における前記風上側コルゲートフィンの長さよりも、同方向における前記風下側コルゲートフィンの長さを大とすることにより、前記熱交換能力の差を生じさせることが好ましい。   In the heat exchanger having the above-described configuration, the length of the leeward corrugated fin in the same direction is larger than the length of the leeward corrugated fin in the air flow direction, thereby causing a difference in the heat exchange capacity. It is preferable.

このような構成によると、コルゲートフィンの通風抵抗に大きな影響を与えることなく、風下側コルゲートフィンの熱交換能力を風上側コルゲートフィンの熱交換能力よりも大とすることができる。   According to such a configuration, the heat exchange capability of the leeward corrugated fin can be made larger than the heat exchange capability of the upwind corrugated fin without significantly affecting the ventilation resistance of the corrugated fin.

上記構成の熱交換器において、前記風上側コルゲートフィンのフィン表面は風下側に向かい下り勾配となっており、前記風下側コルゲートフィンのフィン表面は風下側に向かい上り勾配になっていることが好ましい。   In the heat exchanger configured as described above, it is preferable that the fin surface of the leeward corrugated fin has a downward slope toward the leeward side, and the fin surface of the leeward corrugated fin has an upward slope toward the leeward side. .

このような構成によると、水平にコルゲートフィンを配置した場合よりも、熱交換器全体としての熱交換効率が向上する。   According to such a structure, the heat exchange efficiency as the whole heat exchanger improves rather than the case where a corrugated fin is arrange | positioned horizontally.

上記構成の熱交換器において、前記風上側コルゲートフィンの勾配よりも、前記風下側コルゲートフィンの勾配が急であることが好ましい。   In the heat exchanger configured as described above, it is preferable that the slope of the leeward corrugated fin is steeper than the slope of the leeward corrugated fin.

このような構成によると、風下側コルゲートフィンの空気抵抗が大きくなり、風下側コルゲートフィンの熱交換効率が向上する。   According to such a configuration, the air resistance of the leeward corrugated fin is increased, and the heat exchange efficiency of the leeward corrugated fin is improved.

上記構成の熱交換器において、前記風上側コルゲートフィンの風上側端部が、前記偏平チューブの風上側端部からはみ出していることが好ましい。   In the heat exchanger configured as described above, it is preferable that the windward end portion of the windward corrugated fin protrudes from the windward end portion of the flat tube.

このような構成によると、流れる空気は偏平チューブに接触する前に風上側コルゲートフィンに接触するので、偏平チューブへの着霜を少なくすることができる。   According to such a configuration, since the flowing air contacts the windward corrugated fin before contacting the flat tube, frost formation on the flat tube can be reduced.

本発明によると、偏平チューブやコルゲートフィンの風上側と風下側とで霜の付き具合を均一化し、霜で目詰まり状態となる時期を延ばすことができる。そしてこれにより除霜運転のインターバルを長くとり、稼働効率を向上させることができる。   According to the present invention, the degree of frosting can be made uniform on the windward side and the leeward side of the flat tubes and corrugated fins, and the time when the frost is clogged can be extended. And thereby, the interval of a defrost operation can be taken long and operating efficiency can be improved.

以下本発明の第1実施形態を図1から図7に基づき説明する。図1は熱交換器の概略構造を示す模型的垂直断面図、図2は図1のA−A線に沿って切断した断面図、図3は拡大部分水平断面図、図4は図3のB−B線に沿って切断した断面図、図5は図3のC−C線に沿って切断した断面図、図6はひと揃いの偏平チューブとコルゲートフィンの斜視図、図7はひと揃いの偏平チューブとコルゲートフィンの側面図である。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 is a schematic vertical sectional view showing a schematic structure of a heat exchanger, FIG. 2 is a sectional view taken along the line AA in FIG. 1, FIG. 3 is an enlarged partial horizontal sectional view, and FIG. FIG. 5 is a cross-sectional view taken along the line CC in FIG. 3, FIG. 6 is a perspective view of a flat tube and corrugated fins, and FIG. 7 is a complete set. It is a side view of a flat tube and a corrugated fin.

熱交換器1は、2本の水平なヘッダパイプ2、3を上下に間隔を置いて平行に配置し、ヘッダパイプ2、3の間に垂直な偏平チューブ4を所定ピッチで複数配置する。偏平チューブ4はアルミニウム等熱伝導の良い金属を押出成型した細長い成型品であり、内部には冷媒を流通させる冷媒通路5が形成されている。偏平チューブ4は押出成型方向を垂直にする形で配置されるので、冷媒通路5の冷媒流通方向も垂直になる。各冷媒通路5はヘッダパイプ2、3の内部に連通する。なお図1において紙面上側が垂直方向の上側、紙面下側が垂直方向の下側であり、上側のヘッダパイプ2と下側のヘッダパイプ3の間に複数の偏平チューブ4が長手方向を垂直にして所定ピッチで配置された構成となっている。   In the heat exchanger 1, two horizontal header pipes 2 and 3 are arranged in parallel with an interval in the vertical direction, and a plurality of vertical flat tubes 4 are arranged between the header pipes 2 and 3 at a predetermined pitch. The flat tube 4 is an elongated molded product obtained by extruding a metal having good heat conductivity such as aluminum, and a refrigerant passage 5 through which a refrigerant flows is formed inside. Since the flat tube 4 is disposed so that the extrusion molding direction is vertical, the refrigerant flow direction of the refrigerant passage 5 is also vertical. Each refrigerant passage 5 communicates with the inside of the header pipes 2 and 3. In FIG. 1, the upper side of the drawing is the upper side in the vertical direction, the lower side of the drawing is the lower side in the vertical direction, and a plurality of flat tubes 4 are arranged between the upper header pipe 2 and the lower header pipe 3 in the longitudinal direction. The configuration is arranged at a predetermined pitch.

ヘッダパイプ2、3と偏平チューブ4は溶着により固定される。冷媒通路5は図3及び図6に示すように断面形状及び断面面積の等しいものが複数個並び、そのため偏平チューブ4はハーモニカのような断面を呈している。偏平チューブ4同士の間にはコルゲートフィン6が配置される。偏平チューブ4とコルゲートフィン6は溶着により固定される。偏平チューブ4の他、ヘッダパイプ2、3及びコルゲートフィン6も熱伝導の良い金属(例えば、アルミニウム)からなる。   The header pipes 2 and 3 and the flat tube 4 are fixed by welding. As shown in FIGS. 3 and 6, a plurality of refrigerant passages 5 having the same cross-sectional shape and the same cross-sectional area are arranged, so that the flat tube 4 has a harmonica-like cross section. Corrugated fins 6 are disposed between the flat tubes 4. The flat tube 4 and the corrugated fin 6 are fixed by welding. In addition to the flat tube 4, the header pipes 2 and 3 and the corrugated fin 6 are also made of a metal (for example, aluminum) having good heat conduction.

ヘッダパイプ2、3の間に多数の偏平チューブ4を設け、偏平チューブ4間にコルゲートフィン6を設けた構造であるから、熱交換器1の放熱(吸熱)面積は大きく、効率的に熱交換を行うことができる。下側のヘッダパイプ3の一端には冷媒流入口7が設けられ、上側のヘッダパイプ2の一端には、冷媒流入口7と対角をなす位置に冷媒流出口8が設けられている。   Since many flat tubes 4 are provided between the header pipes 2 and 3 and corrugated fins 6 are provided between the flat tubes 4, the heat exchanger 1 has a large heat radiation (heat absorption) area, and efficiently exchanges heat. It can be performed. A refrigerant inlet 7 is provided at one end of the lower header pipe 3, and a refrigerant outlet 8 is provided at one end of the upper header pipe 2 at a position diagonal to the refrigerant inlet 7.

続いてコルゲートフィン6の構造を図2、図3、図6、及び図7に基づき説明する。図2、図3、及び図7では紙面左側が風上側、紙面右側が風下側であり、図6では紙面左手前側が風上側、紙面右奥側が風下側となる。   Subsequently, the structure of the corrugated fin 6 will be described with reference to FIGS. 2, 3, 6, and 7. 2, 3, and 7, the left side of the drawing is the leeward side, and the right side of the drawing is the leeward side. In FIG.

図2及び図3に示すように、コルゲートフィン6は風上側コルゲートフィン6Uと風下側コルゲートフィン6Dに区分され、それぞれが偏平チューブ4に溶着されている。風上側コルゲートフィン6Uはフィン表面が風下側に向かい下り勾配となっている。風下側コルゲートフィン6Dはフィン表面が風下側に向かい上り勾配となっている。風上側コルゲートフィン6Uの下り勾配と風下側コルゲートフィン6Dの上り勾配は同じ角度である。空気の流れ方向における風上側コルゲートフィン6Uと風下側コルゲートフィン6Dの長さは互いに等しい。   As shown in FIGS. 2 and 3, the corrugated fin 6 is divided into an upwind corrugated fin 6 </ b> U and a downwind corrugated fin 6 </ b> D, and each is welded to the flat tube 4. The windward corrugated fin 6U has a downward slope toward the leeward side of the fin surface. The leeward side corrugated fin 6 </ b> D has a fin surface with an upward slope toward the leeward side. The descending slope of the leeward corrugated fin 6U and the ascending slope of the leeward corrugated fin 6D have the same angle. The lengths of the windward corrugated fins 6U and the leeward corrugated fins 6D in the air flow direction are equal to each other.

図2及び図4、5に示すように、風下側コルゲートフィン6Dの山−谷ピッチは風上側コルゲートフィン6Uの山−谷ピッチより小さい。すなわち風下側コルゲートフィン6Dの山−谷ピッチP2は風上側コルゲートフィン6Uの山−谷ピッチP1の1/2となっている。なお風下側コルゲートフィン6Dの山−谷ピッチP2が風上側コルゲートフィン6Uの山−谷ピッチP1の1/2というのは一つの設計例であって、発明の内容を規定するものではない。   As shown in FIGS. 2, 4, and 5, the peak-valley pitch of the leeward corrugated fin 6 </ b> D is smaller than the peak-valley pitch of the leeward corrugated fin 6 </ b> U. That is, the peak-valley pitch P2 of the leeward corrugated fin 6D is ½ of the peak-valley pitch P1 of the leeward corrugated fin 6U. Note that the peak-valley pitch P2 of the leeward corrugated fin 6D is ½ of the peak-valley pitch P1 of the leeward corrugated fin 6U is one design example and does not define the content of the invention.

風上側コルゲートフィン6Uと風下側コルゲートフィン6Dは密着するのでなく、風上側コルゲートフィン6Uの風下側端部と風下側コルゲートフィン6Dの風下側端部との間に間隙9が生じるように配置されている。風上側コルゲートフィン6Uの風下側端部と風下側コルゲートフィン6Dの風上側端部を突き合わせて部分的に接触させることにより、接触部以外の箇所に間隙9を生じさせる構成であっても構わない。間隙9は、風上側コルゲートフィン6Uの風下側端部に付着した水滴と風下側コルゲートフィン6Dの風上側端部に付着した水滴の合体が生じ得る大きさに設定されている。   The leeward corrugated fin 6U and the leeward corrugated fin 6D are not in close contact with each other, but are arranged so that a gap 9 is formed between the leeward end of the leeward corrugated fin 6U and the leeward end of the leeward corrugated fin 6D. ing. A configuration may be adopted in which a gap 9 is generated in a portion other than the contact portion by causing the leeward side end portion of the windward side corrugated fin 6U and the windward side end portion of the leeward side corrugated fin 6D to face each other and partially contact each other. . The gap 9 is set to such a size that the water droplets attached to the leeward end of the leeward corrugated fin 6U and the water droplets attached to the leeward end of the leeward corrugated fin 6D can be combined.

図示しないファンで送風を行いつつ熱交換器1に冷媒を流すと、熱交換器1を蒸発器として使用する運転モードの場合(例えば、室内機と室外機とからなるセパレート型空気調和機の室外機で熱交換器1を用い、暖房運転を行うと、熱交換器1は蒸発器として作用する)、熱交換器1は空気から温熱を奪い、逆に冷熱を空気中に放出する。風上側コルゲートフィン6Uと風下側コルゲートフィン6Dのフィン表面にはそれぞれ勾配がついているので、コルゲートフィンに勾配をつけずに水平とした場合に比べると、コルゲートフィン6全体として空気の流れ方向に長く延びる形で存在することになり、高い熱交換性能を得ることができる。   When the refrigerant flows through the heat exchanger 1 while blowing air with a fan (not shown), in the operation mode in which the heat exchanger 1 is used as an evaporator (for example, outdoor of a separate air conditioner composed of an indoor unit and an outdoor unit) When the heat exchanger 1 is used to perform a heating operation, the heat exchanger 1 acts as an evaporator.) The heat exchanger 1 takes heat from the air and conversely releases cold energy into the air. Since the fin surfaces of the windward corrugated fin 6U and the leeward corrugated fin 6D are respectively inclined, the corrugated fin 6 as a whole is longer in the air flow direction than the case where the corrugated fin is horizontal without being inclined. It exists in the extended form, and high heat exchange performance can be obtained.

風上側コルゲートフィン6Uと風下側コルゲートフィン6Dを比較した場合、風下側コルゲートフィン6Dは山−谷ピッチP2が小さいので風上側コルゲートフィン6Uよりも表面積が大きく、それだけ熱交換能力が大きい。   When comparing the windward side corrugated fin 6U and the leeward side corrugated fin 6D, the leeward side corrugated fin 6D has a smaller peak-to-valley pitch P2, and therefore has a larger surface area than the windward side corrugated fin 6U, and thus has a larger heat exchange capability.

空気から温熱を奪う運転を続けていると、風上側コルゲートフィン6Uの表面にも風下側コルゲートフィン6Dの表面にも、また偏平チューブ4の表面にも、空気中の水分が結露する。当初は微細だった水滴が結集して大きな水滴になると、それは風上側コルゲートフィン6Uまたは風下側コルゲートフィン6Dの勾配面を伝って流下し、間隙9に達する。間隙9が広ければ、水滴は風上側コルゲートフィン6Uの風下側端部または風下側コルゲートフィン6Dの風上側端部でブリッジ現象を生じるだけに終わる。しかしながら間隙9は風上側コルゲートフィン6Uの風下側端部に付着した水滴と風下側コルゲートフィン6Dの風上側端部に付着した水滴の合体が生じ得る大きさに設定されているので、風上側コルゲートフィン6Uの水滴と風下側コルゲートフィン6Dの水滴は、間隙9で出会うと互いに表面張力を破壊し合って合体し、ブリッジ現象を生じることなく間隙9から流れ出る。   When the operation of taking the heat from the air is continued, moisture in the air is condensed on the surface of the windward corrugated fin 6U, the surface of the leeward corrugated fin 6D, and the surface of the flat tube 4. When water droplets that were initially finely gathered into large water droplets, they flow down along the slope surface of the windward corrugated fin 6U or the leeward corrugated fin 6D and reach the gap 9. If the gap 9 is wide, the water droplets will only cause a bridging phenomenon at the leeward end of the leeward corrugated fin 6U or the leeward end of the leeward corrugated fin 6D. However, the gap 9 is set to such a size that the water droplets attached to the leeward end of the leeward corrugated fin 6U and the water droplets attached to the leeward end of the leeward corrugated fin 6D can be combined. When the water droplets on the fins 6U and the water droplets on the leeward side corrugated fin 6D meet at the gap 9, they break up and merge with each other, and flow out of the gap 9 without causing a bridging phenomenon.

熱交換器1を蒸発器として使用する運転モード(熱交換器1が室外空気から温熱を奪う運転モード)において、周囲の空気温度条件や、運転条件によっては、偏平チューブ4やコルゲートフィン6の表面に空気中の水分が霜として付着する場合がある。時間が経つにつれ霜は厚みを増し、熱交換性能を低下させるので、時々は除霜運転を行って霜を溶かさねばならない。霜が溶けた除霜水も、間隙9で出会うと互いに表面張力を破壊し合って合体し、ブリッジ現象を生じることなく間隙9から流れ出る。このため、除霜運転から通常運転に復帰したとき、排水されないまま残留した水滴が凍結して熱交換性能を損なうということがない。   In the operation mode in which the heat exchanger 1 is used as an evaporator (the operation mode in which the heat exchanger 1 takes heat from the outdoor air), the surface of the flat tube 4 and the corrugated fin 6 depending on the ambient air temperature condition and the operation condition. In some cases, moisture in the air adheres as frost. As time goes on, frost increases in thickness and reduces heat exchange performance, so it must sometimes be defrosted to melt the frost. When defrosted water in which frost has melted also meets in the gap 9, the surface tensions of the defrosted water break apart and coalesce and flow out of the gap 9 without causing a bridging phenomenon. For this reason, when returning from the defrosting operation to the normal operation, water droplets remaining without being drained are not frozen and the heat exchange performance is not impaired.

空気中の水分が霜となってコルゲートフィン6に付着する場合、コルゲートフィン6を通過する空気は、含有水分量の多いうちに熱交換能力比較的小の風上側コルゲートフィン6Uを通り、含有水分量が減ってから熱交換能力比較的大の風下側コルゲートフィン6Dを通るので、風上側コルゲートフィン6Uにおける着霜と風下側コルゲートフィン6Dにおける着霜はバランスのとれたものになる。その結果、風上側に着霜が集中するといった事態が避けられ、霜で目詰まり状態となる時期が延びるので、除霜運転のインターバルを長くとることができ、稼働効率が向上する。   When the moisture in the air becomes frost and adheres to the corrugated fins 6, the air passing through the corrugated fins 6 passes through the windward corrugated fins 6 U having a relatively small heat exchange capacity while the moisture content is large, Since the leeward corrugated fin 6D having a relatively large heat exchange capacity passes through the leeward corrugated fin 6D after the amount is reduced, the frost formation on the upwind corrugated fin 6U and the frost formation on the leeward corrugated fin 6D are balanced. As a result, a situation in which frost is concentrated on the windward side is avoided, and the time when the frost is clogged is extended, so that the interval of the defrosting operation can be increased and the operation efficiency is improved.

また、風下側コルゲートフィン6Dの山−谷ピッチP2を風上側コルゲートフィン6Uの山−谷ピッチP1より小とすることにより、コルゲートフィン6のサイズを大きくすることなく、風下側コルゲートフィン6Dの熱交換能力を風上側コルゲートフィン6Uの熱交換能力よりも大とすることができる。   Further, by making the peak-valley pitch P2 of the leeward corrugated fin 6D smaller than the peak-valley pitch P1 of the leeward corrugated fin 6U, the heat of the leeward corrugated fin 6D can be increased without increasing the size of the corrugated fin 6. The exchange capacity can be made larger than the heat exchange capacity of the windward corrugated fin 6U.

風上側コルゲートフィン6Uの下り勾配と風下側コルゲートフィン6Dの上り勾配は5°〜40°の範囲で選択することができる。勾配が急になると、熱交換面積が増え、排水しやすくなる一方、空気の流通に対しては抵抗となるので、実験を通じて適切な値を決めるとよい。その他、偏平チューブ4同士の間隔が5.5mm、偏平チューブ4の厚みが1.3mm、空気の流れ方向における風上側コルゲートフィン6Uと風下側コルゲートフィン6Dの水平方向長さがそれぞれ18mm、風上側コルゲートフィン6Uと風下側コルゲートフィン6Dのそれぞれの山−谷ピッチが2mm〜3mm、間隙9の大きさが最大0.5mmといった数値を例示することができる。言うまでもないが、これらの数値は単なる例示であり、発明の内容を規定するものではない。   The descending slope of the windward corrugated fin 6U and the ascending slope of the leeward corrugated fin 6D can be selected in the range of 5 ° to 40 °. If the gradient becomes steep, the heat exchange area increases and drainage becomes easier, while resistance to air flow is good. In addition, the distance between the flat tubes 4 is 5.5 mm, the thickness of the flat tubes 4 is 1.3 mm, the horizontal length of the windward corrugated fin 6U and the leeward corrugated fin 6D in the air flow direction is 18 mm, respectively, and the windward side. Examples are numerical values such that the peak-to-valley pitches of the corrugated fins 6U and the leeward corrugated fins 6D are 2 mm to 3 mm, and the size of the gap 9 is 0.5 mm at the maximum. Needless to say, these numerical values are merely examples, and do not define the contents of the invention.

続いて本発明のその他の実施形態を説明する。   Next, other embodiments of the present invention will be described.

本発明の第2実施形態を図8に示す。図8は図2と同様の断面図である。図8では紙面左側が風上側、紙面右側が風下側となる。   A second embodiment of the present invention is shown in FIG. FIG. 8 is a cross-sectional view similar to FIG. In FIG. 8, the left side of the drawing is the windward side, and the right side of the drawing is the leeward side.

第2実施形態が第1実施形態と異なる点は風上側コルゲートフィン6Uの長さである。
すなわち風上側コルゲートフィン6Uの空気の流れ方向における長さは第1実施形態よりも長く、風上側コルゲートフィン6Uの風上側端部は偏平チューブ4の風上側端部からはみ出している。
The second embodiment differs from the first embodiment in the length of the windward corrugated fin 6U.
That is, the length of the windward corrugated fin 6U in the air flow direction is longer than that of the first embodiment, and the windward end of the windward corrugated fin 6U protrudes from the windward end of the flat tube 4.

上記のように構成すると、流れる空気は偏平チューブ4に接触する前に風上側コルゲートフィン6Uに接触してそこで着霜を生じるので、偏平チューブ4への着霜を少なくすることができる。   If comprised as mentioned above, since the flowing air contacts the windward corrugated fin 6U and contacts there with frost before contacting the flat tube 4, frost formation to the flat tube 4 can be decreased.

風上側コルゲートフィン6Uが長くなり、少し面積が増えたとは言え、風上側コルゲートフィン6Uの熱交換能力が風下側コルゲートフィン6Dの熱交換能力を上回るには至らない。そのため、風上側コルゲートフィン6Uにおける着霜と風下側コルゲートフィン6Dにおける着霜のバランスはほぼ第1実施形態と同様に維持される。   Although the windward corrugated fin 6U becomes longer and the area is slightly increased, the heat exchange capability of the windward corrugated fin 6U does not exceed the heat exchange capability of the leeward corrugated fin 6D. Therefore, the balance between frost formation on the windward side corrugated fin 6U and frost formation on the leeward side corrugated fin 6D is maintained in substantially the same manner as in the first embodiment.

本発明の第3実施形態を図9に示す。図9は図2と同様の断面図である。図9では紙面左側が風上側、紙面右側が風下側となる。   A third embodiment of the present invention is shown in FIG. FIG. 9 is a cross-sectional view similar to FIG. In FIG. 9, the left side of the paper is the windward side, and the right side of the paper is the leeward side.

第3実施形態が第1実施形態と異なる点は、風上側コルゲートフィン6Uと風下側コルゲートフィン6Dの空気の流れ方向における長さの比率である。すなわち第3実施形態では、空気の流れ方向における長さを比較した場合、風下側コルゲートフィン6Dの方が風上側コルゲートフィン6Uよりも大となっている。   The third embodiment differs from the first embodiment in the ratio of the length of the windward corrugated fin 6U and the leeward corrugated fin 6D in the air flow direction. That is, in the third embodiment, when the lengths in the air flow direction are compared, the leeward corrugated fin 6D is larger than the windward corrugated fin 6U.

上記のように空気の流れ方向における風上側コルゲートフィン6Uと風下側コルゲートフィン6Dの長さの比率を変えると、コルゲートフィン6の通風抵抗に大きな影響を与えることなく、風下側コルゲートフィン6Dの熱交換能力を風上側コルゲートフィン6Uの熱交換能力よりも大とすることができる。この構成は、山−谷ピッチの違いで既に風下側コルゲートフィン6Dの熱交換能力の方が風上側コルゲートフィン6Uの熱交換能力よりも大となっている状態では、その熱交換能力の差を拡大するのに役立つ。   When the ratio of the lengths of the windward corrugated fins 6U and the leeward corrugated fins 6D in the air flow direction is changed as described above, the heat of the leeward corrugated fins 6D is not greatly affected by the ventilation resistance of the corrugated fins 6. The exchange capacity can be made larger than the heat exchange capacity of the windward corrugated fin 6U. In this configuration, when the heat exchange capacity of the leeward corrugated fin 6D is already greater than the heat exchange capacity of the leeward corrugated fin 6U due to the difference between the peak and valley pitches, the difference in the heat exchange capacity is reduced. Helps to expand.

本発明の第4実施形態を図10と図11に示す。図10はひと揃いの偏平チューブとコルゲートフィンの斜視図、図11はひと揃いの偏平チューブとコルゲートフィンの側面図である。なお、図10では紙面左手前側が風上側、紙面右奥側が風下側となり、図11では紙面左側が風上側、紙面右側が風下側となる。   A fourth embodiment of the present invention is shown in FIGS. FIG. 10 is a perspective view of a set of flat tubes and corrugated fins, and FIG. 11 is a side view of the set of flat tubes and corrugated fins. In FIG. 10, the left front side of the drawing is the windward side, the right back side of the drawing is the leeward side, and the left side of the drawing is the upwind side and the right side of the drawing is the leeward side in FIG.

第4実施形態が第1実施形態と異なる点は、風上側コルゲートフィン6Uの山−谷ピッチと風下側コルゲートフィン6Dの山−谷ピッチが同じであり、且つ、風上側コルゲートフィン6Uの下り勾配よりも、風下側コルゲートフィン6Dの上り勾配の方が急になっている点である。このように構成することにより、風下側コルゲートフィン6Dの空気抵抗が大きくなり、風下側コルゲートフィン6Dの熱交換効率が向上する。   The fourth embodiment differs from the first embodiment in that the peak-valley pitch of the windward corrugated fin 6U and the peak-valley pitch of the leeward corrugated fin 6D are the same, and the downhill slope of the windward corrugated fin 6U. Rather than that, the upward slope of the leeward corrugated fin 6D is steeper. By comprising in this way, the air resistance of the leeward corrugated fin 6D becomes large, and the heat exchange efficiency of the leeward corrugated fin 6D improves.

上記各実施形態において、風上側コルゲートフィン6Uと風下側コルゲートフィン6Dはそれぞれ勾配を有する構成となっていたが、風上側コルゲートフィン6Uと風下側コルゲートフィン6Dが勾配ゼロ、すなわち水平である場合にも本発明は適用可能である。   In each of the above embodiments, the windward corrugated fin 6U and the leeward corrugated fin 6D are configured to have gradients. However, when the windward corrugated fin 6U and the leeward corrugated fin 6D have no gradient, that is, horizontal. The present invention is also applicable.

以上、本発明の各実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   As mentioned above, although each embodiment of the present invention was described, the scope of the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention.

本発明はパラレルフロー型熱交換器に広く利用可能である。     The present invention is widely applicable to parallel flow heat exchangers.

熱交換器の概略構造を示す模型的垂直断面図Model vertical cross section showing the schematic structure of the heat exchanger 図1のA−A線に沿って切断した断面図Sectional drawing cut | disconnected along the AA line of FIG. 熱交換器の拡大部分水平断面図Expanded horizontal sectional view of heat exchanger 図3のB−B線に沿って切断した断面図Sectional drawing cut | disconnected along the BB line of FIG. 図3のC−C線に沿って切断した断面図Sectional drawing cut | disconnected along CC line of FIG. ひと揃いの偏平チューブとコルゲートフィンの斜視図Perspective view of a set of flat tubes and corrugated fins ひと揃いの偏平チューブとコルゲートフィンの側面図Side view of a set of flat tubes and corrugated fins 第2実施形態に係る図2と同様の断面図Sectional view similar to FIG. 2 according to the second embodiment 第3実施形態に係る図2と同様の断面図Sectional view similar to FIG. 2 according to the third embodiment 第4実施形態に係る図6と同様の斜視図A perspective view similar to FIG. 6 according to the fourth embodiment 第4実施形態に係る図7と同様の側面図Side view similar to FIG. 7 according to the fourth embodiment

符号の説明Explanation of symbols

1 熱交換器
2、3 ヘッダパイプ
4 偏平チューブ
5 冷媒通路
6 コルゲートフィン
6U 風上側コルゲートフィン
6D 風下側コルゲートフィン
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2, 3 Header pipe 4 Flat tube 5 Refrigerant passage 6 Corrugated fin 6U Upwind side corrugated fin 6D Downward side corrugated fin

Claims (6)

間隔を置いて平行に配置された2本の水平なヘッダパイプと、前記2本のヘッダパイプの間に所定ピッチで複数配置され、内部に設けた垂直な冷媒通路を前記ヘッダパイプの内部に連通させた垂直な偏平チューブと、前記偏平チューブ間に配置されたコルゲートフィンとを備えた熱交換器において、
前記コルゲートフィンを風上側コルゲートフィンと風下側コルゲートフィンに区分し、前記風下側コルゲートフィンの熱交換能力を前記風上側コルゲートフィンの熱交換能力よりも大としたことを特徴とする熱交換器。
Two horizontal header pipes arranged parallel to each other at a distance from each other, and a plurality of vertical header pipes arranged at a predetermined pitch between the two header pipes, communicated with the interior of the header pipe through a vertical refrigerant passage provided therein. In a heat exchanger comprising a vertical flat tube and corrugated fins disposed between the flat tubes,
The heat exchanger according to claim 1, wherein the corrugated fin is divided into a leeward corrugated fin and a leeward corrugated fin, and the heat exchange capacity of the leeward corrugated fin is made larger than the heat exchange capacity of the windward corrugated fin.
前記風下側コルゲートフィンの山−谷ピッチを前記風上側コルゲートフィンの山−谷ピッチより小とすることにより、前記熱交換能力の差を生じさせることを特徴とする請求項1に記載の熱交換器。 2. The heat exchange according to claim 1, wherein a difference in the heat exchange capacity is generated by setting a peak-valley pitch of the leeward corrugated fin smaller than a peak-valley pitch of the windward corrugated fin. vessel. 空気の流れ方向における前記風上側コルゲートフィンの長さよりも、同方向における前記風下側コルゲートフィンの長さを大とすることにより、前記熱交換能力の差を生じさせることを特徴とする請求項1に記載の熱交換器。 The heat exchange capacity difference is generated by making the length of the leeward corrugated fin in the same direction larger than the length of the leeward corrugated fin in the air flow direction. The heat exchanger as described in. 前記風上側コルゲートフィンのフィン表面は風下側に向かい下り勾配となっており、前記風下側コルゲートフィンのフィン表面は風下側に向かい上り勾配になっていることを特徴とする請求項1から3までのいずれか1項に記載の熱交換器。 The fin surface of the leeward corrugated fin has a downward slope toward the leeward side, and the fin surface of the leeward corrugated fin has an upward slope toward the leeward side. The heat exchanger according to any one of the above. 前記風上側コルゲートフィンの勾配よりも、前記風下側コルゲートフィンの勾配が急であることを特徴とする請求項4に記載の熱交換器。 The heat exchanger according to claim 4, wherein the slope of the leeward corrugated fin is steeper than the slope of the leeward corrugated fin. 前記風上側コルゲートフィンの風上側端部が、前記偏平チューブの風上側端部からはみ出していることを特徴とする請求項1から5までのいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 5, wherein an upwind end portion of the upwind corrugated fin protrudes from an upwind end portion of the flat tube.
JP2007263956A 2007-10-10 2007-10-10 Heat exchanger Pending JP2009092316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007263956A JP2009092316A (en) 2007-10-10 2007-10-10 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007263956A JP2009092316A (en) 2007-10-10 2007-10-10 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2009092316A true JP2009092316A (en) 2009-04-30

Family

ID=40664469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007263956A Pending JP2009092316A (en) 2007-10-10 2007-10-10 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2009092316A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2770289A4 (en) * 2011-10-19 2015-03-04 Panasonic Corp Heat exchange apparatus
CN109945552A (en) * 2017-12-21 2019-06-28 盾安环境技术有限公司 Micro-channel heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2770289A4 (en) * 2011-10-19 2015-03-04 Panasonic Corp Heat exchange apparatus
CN109945552A (en) * 2017-12-21 2019-06-28 盾安环境技术有限公司 Micro-channel heat exchanger

Similar Documents

Publication Publication Date Title
JP4275182B2 (en) Heat exchanger
CN103403487B (en) Heat exchanger and air conditioner
CN103299149B (en) Heat exchanger and air conditioner
CN103314267B (en) Heat exchanger and air conditioner
EP2236972B1 (en) Fin for heat exchanger and heat exchanger using the fin
JP4856044B2 (en) Heat exchanger
CN103518116B (en) Heat exchanger
WO2014207785A1 (en) Heat exchanger, heat exchanger structure, and fin for heat exchanger
JP4659863B2 (en) Heat exchanger unit and air conditioner indoor unit using the same
EP2196758B1 (en) Heat exchanger
JP5042927B2 (en) Heat exchanger
CN207816049U (en) A kind of micro-channel heat exchanger and air-conditioning
US6435268B1 (en) Evaporator with improved condensate drainage
JP5020886B2 (en) Heat exchanger
JPH04177091A (en) Heat exchanger
WO2013035436A1 (en) Parallel flow heat exchanger and air conditioner wherein same is installed
JP2012072955A (en) Heat exchanger
JP2010025478A (en) Heat exchanger
JP2010048473A (en) Heat exchanger unit and air conditioner equipped therewith
JP2010127510A (en) Heat exchanger
JP2009092316A (en) Heat exchanger
JP2010091145A (en) Heat exchanger
JP2010139115A (en) Heat exchanger and heat exchanger unit
JP2009074733A (en) Heat exchanger
JP2010107130A (en) Heat exchanger unit and indoor unit of air conditioner using the same