JP2009114430A - 光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置 - Google Patents

光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置 Download PDF

Info

Publication number
JP2009114430A
JP2009114430A JP2008247597A JP2008247597A JP2009114430A JP 2009114430 A JP2009114430 A JP 2009114430A JP 2008247597 A JP2008247597 A JP 2008247597A JP 2008247597 A JP2008247597 A JP 2008247597A JP 2009114430 A JP2009114430 A JP 2009114430A
Authority
JP
Japan
Prior art keywords
group
film
optical film
acid
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008247597A
Other languages
English (en)
Inventor
Takayuki Suzuki
隆行 鈴木
Takashi Suzuki
隆嗣 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2008247597A priority Critical patent/JP2009114430A/ja
Publication of JP2009114430A publication Critical patent/JP2009114430A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】本発明の目的は、溶融流延可能なセルロースエステルフィルムであり、かつレターデーション値の小さい、面品質、物理特性に優れたセルロースエステル系光学フィルムを提供することにある。
【解決手段】下記式(1)〜(3)の置換度を同時に満たすセルロースエステルおよび紫外線吸収性ポリマーを含む組成物を溶融流延製膜してウェブを形成し、面内のレターデーション(Ro)が0≦Ro≦10nm、厚み方向のレターデーション(Rth)が−20≦Rth≦20nmの範囲を同時に満たすように、該ウェブを少なくとも1方向に1.2倍以上5.0倍以下で延伸処理することを特徴とする光学フィルムの製造方法。
2.50≦X+Y≦3.00 … 式(1)
1.20≦X≦1.75 … 式(2)
1.00≦Y≦1.50 … 式(3)
(式中、Xはアセチル基の置換度を示す。Yはプロピオニル基の置換度を示す。)
【選択図】なし

Description

本発明は、光学フィルムの製造方法及びその製造方法により製造された光学フィルム、並びに、これを用いた偏光板及び表示装置に関する。
表示要素として広く用いられている液晶表示装置は、液晶層を挟持する一対の基板からなる液晶セルと、当該液晶セルの両側に直交状態に配置される一対の偏光板等から構成され、IPS(In−Plane Switching)、TN(Twisted Nematic)、VA(Vertically Aligned)のような様々な表示モードが提案されている。
IPSモードの場合、液晶分子は主に基板に対して平行な面内で回転するので、斜めから見た場合の電界印加時と非印加時における複屈折率の度合の相違が小さく、視野角が広がることが知られている。
IPSモードは、水平方向にホモジニアスな配向をした液晶分子と、透過軸が画面正面に対して上下と左右の方向を指して直交するように配置した2枚の偏光板を用いており、上下左右の方向から画面を斜めに見るときには、十分なコントラストが得られる。
これに対して、方位角45度の方向から画面を斜めに見るときには、2枚の偏光板の透過軸のなす角が90度からずれるように見える位置関係にあることから、透過光が複屈折を生じ、光が漏れるために十分な黒が得られず、コントラストが低下してしまう。
すなわち、一般的に用いられているセルロースエステルフィルムを保護フィルムとして用いた偏光板では、フィルムの有する複屈折性により視野角が狭くなるという問題があり、これを改良するため、面内および厚み方向のレターデーション値がゼロに近い光学フィルムが求められていた。
溶液流延製膜においては、もともとレターデーションの小さなセルローストリアセテートフィルムやフィルムの有するレターデーションを相殺するような特定ポリマーをセルロースエステルに添加することにより、面内および厚み方向のレターデーション値がゼロに近い光学フィルムを得る技術が開示されている。
しかしながらこの技術は、今後環境的に有用なセルロースエステルフィルムの溶融流延法に適用した場合、製膜時の粘度調整の困難さからそのままの適用は非常に困難であった。溶融流延法に適用した例も開示されている(例えば、特許文献1参照)。しかしながらこの技術は、延伸倍率を大きくした場合にはレターデーションが発生するため、延伸処理をすることが難しく、未延伸または低延伸倍率で処理されたものを使用するため、フィルム表面品質や、寸法変化等の物理特性が不十分で、実用化には改良が求められていた。
特開2007−231157号公報
特許文献1に開示された技術は、溶融流延製膜のために、セルローストリアセテートフィルムのアセテートの代わりにプロピオニル基等のアシル基の導入されたセルロースエステルと特定の分子量を有するポリマーの組み合わせが検討されている。しかしながら、セルロースエステルのアシル基の置換度の影響でセルロースエステルフィルムの面内および厚み方向のレターデーションの発生を抑えることは難しく、特許文献1に示されているように、レターデーションを小さく抑える場合は延伸倍率を小さくせざるを得ないのが現状である。従って、このフィルムは、延伸倍率が小さいため物理特性、特に寸法安定性が湿熱に依存して大きく劣化し、液晶ディスプレイの表示品位、つまりVA(垂直配向)、TN(ツイステッドネマチック)方式ではみられない特有のざらつき感と呼ばれる画素のブラックマトリックスや細かい透明電極形状に由来する粒状感が見られることが発生する。
本発明の目的は、溶融流延可能なセルロースエステルからなるレターデーションの小さい、面品質、物理特性に優れた光学フィルムを提供することである。
本発明者は、セルロースエステルのある特定の置換基組成領域において、紫外線吸収性ポリマーと併用することで延伸処理しても特異的にレターデーションの発生が小さいことを見出した。
即ち、本発明者は、上記の課題解決のために鋭意検討する過程において、セルロースエステルを構成する1グルコース単位の2位、3位及び6位の水酸基がアセチル基及びプロピオニル基で置換されたセルロースエステルを検討したところ、アセチル基及びプロピオニル基の置換状態(平均置換度)が特異的なものであり、かつ紫外線吸収性ポリマーと組み合わせた場合、上記の課題がすべて解決できることを見出し、本発明を完成するに至った。
紫外線吸収性ポリマーを添加することで延伸によるレターデーション値変化が小さくなることについて、理由に関しては明らかではないが、セルロースエステルと絡み合った紫外線吸収性ポリマーがその特定構造により、セルロースエステルの配向を阻害し、延伸してもレターデーション値変化を起こさないものと推測される。
従って本発明の目的は、溶融流延可能であり、かつレターデーション値の小さく、面品質、物理特性に優れたセルロースエステル系光学フィルムの製造方法を提供することにある。
本発明の上記課題は以下の構成により達成される。
1.下記式(1)〜(3)の置換度を同時に満たすセルロースエステルおよび紫外線吸収性ポリマーを含む組成物を溶融流延製膜してウェブを形成し、面内のレターデーション(Ro)が0≦Ro≦10nm、厚み方向のレターデーション(Rth)が−20≦Rth≦20nmの範囲を同時に満たすように、該ウェブを少なくとも1方向に1.2倍以上5.0倍以下で延伸処理することを特徴とする光学フィルムの製造方法。
2.50≦X+Y≦3.00 … 式(1)
1.20≦X≦1.75 … 式(2)
1.00≦Y≦1.50 … 式(3)
(式中、Xはアセチル基の置換度を示す。Yはプロピオニル基の置換度を示す。)
2.前記紫外線吸収性ポリマーが下記一般式(A)で表されるモノマーから誘導される紫外線吸収性ポリマーであることを特徴とする前記1に記載の光学フィルムの製造方法。
Figure 2009114430
(式中、R〜Rは各々水素原子、ハロゲン原子、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、または置換基を有していてもよい複素環基を表す。但し、R〜Rで表される基のいずれか1つはエチレン性不飽和結合を部分構造として有する。)
3.前記紫外線吸収性ポリマーが前記一般式(A)で表されるモノマーと分子内に下記一般式(B)で表される部分構造を有するエチレン性不飽和モノマーの少なくとも2種以上のモノマーを共重合させて得られる紫外線吸収性ポリマーであることを特徴とする前記1または2に記載の光学フィルムの製造方法。
Figure 2009114430
(式中、R、R10、及びR11は、それぞれ独立して置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、または置換基を有していてもよい複素環基を表す。またR、R10、及びR11の何れか二つが互いに結合してそれらが結合している窒素原子、或いは窒素原子及び炭素原子と一緒になって、環状構造を形成していてもよい。)
4.前記組成物に更に炭素ラジカル捕捉剤、フェノール系化合物、またはリン系化合物の少なくとも1種を含有させることを特徴とする前記1〜3のいずれか1項に記載の光学フィルムの製造方法。
5.前記1〜4のいずれか1項に記載の光学フィルムの製造方法による製造されたことを特徴とする光学フィルム。
6.前記5に記載の光学フィルムを用いることを特徴とする偏光板。
7.前記5に記載の光学フィルムまたは前記6に記載の偏光板を用いることを特徴とする表示装置。
本発明により、溶融流延可能であり、かつレターデーションの小さい、面品質、物理特性に優れたセルロースエステル系光学フィルムの製造方法を提供することができる。
以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
(光学フィルム)
まず、本発明の光学フィルムの詳細について説明する。
本発明において光学フィルムとは、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ等の各種表示装置に用いられる機能性フィルムのことであり、詳しくは液晶表示装置用の偏光板保護フィルム、位相差フィルム、反射防止フィルム、輝度向上フィルム、ハードコートフィルム、防眩フィルム、帯電防止フィルム、視野角拡大等の光学補償フィルム等を含む。
本発明に係る光学フィルムは、特に、偏光板保護フィルム、位相差フィルム、光学補償フィルム、ハードコートフィルム、反射防止フィルムに好ましく用いられる。
(レターデーション)
本発明のセルロースエステルフィルムのフィルムの面内のレターデーション(Ro)は、0≦Ro≦10nm、厚み方向のレターデーション(Rth)は、−20≦Rth≦20nmであることが好ましい。
フィルムの遅相軸方向の屈折率nx、進相軸方向の屈折率ny、厚み方向の屈折率nz、フィルムの膜厚をd(nm)とすると、
Ro=(nx−ny)×d
Rth={(nx+ny)/2−nz}×d
として表される。
なお、レターデーションRo、Rthは、自動複屈折計KOBRA−21ADH(王子計測機器(株)製)を用いて、23℃、55%RHの環境下24時間放置したフィルム試料において、同環境下、波長が590nmにおけるフィルムのレターデーション測定を行った。上述の平均屈折率と市販のマイクロメーターを用いて測定したフィルム膜厚を入力して得られる。
レターデーションのフィルム面内でのバラツキは小さいほど好ましく、通常±5nm以内、好ましくは±より好ましくは±2nm以下である。
遅相軸方向の均一性も重要であり、フィルム巾方向に対して、角度が−5〜+5°であることが好ましく、更に−1〜+1°の範囲にあることが好ましく、特に−0.5〜+0.5°の範囲にあることが好ましく、特に−0.1〜+0.1°の範囲にあることが好ましい。これらのばらつきは延伸条件を最適化することで達成できる。
上記レターデーションを達成するために、本発明の光学フィルムは、下記のようなセルロースエステル、及び紫外線吸収性ポリマーを主成分とし、そこに可塑剤、各種添加剤、粒子等の添加剤を含有するという構成を有している。
(セルロースエステル)
セルロースには、1グルコース単位の2位、3位、6位に1個ずつ、計3個の水酸基があり、置換度とは、1グルコース単位に平均してアシル基がどのような位置にどれだけ結合しているかを示す数値である。従って、最大の置換度は3.00であり、上記アシル基で置換されていない部分は通常水酸基として存在しているものである。このようなセルロースの水酸基の一部またはすべてがアシル基で置換されたものをセルロースエステルと称している。
本発明の溶融流延法に用いるセルロースエステルは、2位、3位、及び6位のアセチル基による平均置換度の合計をXとし、2位、3位、及び6位のプロピオニル基による平均置換度の合計をYとしたときに、下記式(1)〜(3)を同時に満たすセルロースエステルである(以下、平均置換度を単に置換度と称する。)。
式(1)は、置換されたアシル基の総置換度を表している。
このようなセルロースエステルは、通常、高置換度セルロースアセテートプロピオネートと呼ばれる。
なお、下記式の何れか一つ、あるいは何れか二つを満たしているだけでは上記課題のすべての解決にはならず、三つすべてを同時に満たすことが重要である。
2.50≦X+Y≦3.00 … 式(1)
1.20≦X≦1.75 … 式(2)
1.00≦Y≦1.50 … 式(3)
(式中、Xはアセチル基の置換度を示す。Yはプロピオニル基の置換度を示す。)
中でも、式(1)においては2.70≦X+Y≦3.00とするのが、本発明の効果をより奏する点で好ましい。
式(2)においては1.30≦X≦1.70とするのが本発明の効果をより奏する点で好ましい。
式(3)においては1.00≦Y≦1.35とするのが本発明の効果をより奏する点で好ましい。
なお、アセチル基とプロピオニル基の置換度と置換位置に関する情報は下記に説明する方法によって求めることができる。
本発明に用いられるセルロースエステルのアシル基(アセチル基とプロピオニル基)の置換度と置換位置の測定法について説明する。本発明のアシル基のグルコース単位の各位置への置換度の測定方法については、Y.Tezuka & Y.Tsuchiyaの論文(Carbohydrate Research、第273巻、83〜91頁(1995年))に記載されている13C−NMR法により行うことが出来る。この方法を用いると、アセチル基の13C−NMRのシグナルとプロピオニル基のシグナルが明瞭に分かれ、しかも2位、3位及び6位のシグナルも近接した3つのピークに分かれ各々の識別と、ピークの高さから置換度がわかる。
なお、アセチル基とプロピオニル基の置換度に関しては、ASTM D817−96に規定の方法により求めることもでき、前記方法と一致する。
次に、課題解決のための上記3つの式、(1)〜(3)のすべてを満たす必要性について説明する。
溶融製膜したフィルムの延伸による面内および厚み方向のレターデーション値変化に関して、セルロースエステルの1グルコース単位あたりに置換されたアシル基の総置換度(X+Y 以下、単に総置換度と称する。)とプロピオニルの置換度が大きく関係し、総置換度とプロピオニルの置換度が高くなるほど、延伸によるレターデーション値変化が小さくなることが分かった。
この理由に関しては明らかではないが、セルロースエステル中に残存している水酸基による水素結合が減少することにより、延伸されても分子の配向性と屈折率が変化しなくなるためと思われる。なお特許文献1では、この現象について示唆されていない。
更に本発明は、特定量のアセチル基とプロピオニル基のバランスをとることにより、膜物性の劣化を抑え、しかも溶融流延可能な溶融粘度を達成できる範囲を見出したものである。また本発明では、更に紫外線吸収性ポリマーを加えることで、少なくとも1方向に1.2倍以上の延伸倍率で延伸しても面内および厚み方向のレターデーション値がゼロ近い光学フィルムを得られることを見出した。
次に、本発明で用いられるセルロースエステルの合成法について説明する。
本発明で用いられるセルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは綿花リンターが好ましく用いられる。これらから作られたセルロースエステルは適宜混合して、或いは単独で使用することができる。
例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることができる。
本発明のセルロースエステルは、公知の方法を参考にして合成することができる。例えば、原料セルロースの水酸基を無水酢酸、及び無水プロピオン酸を用いて常法によりアセチル化、及びプロピオニル化し、アセチル基、プロピオニル基を置換させることができ、更に用いる無水酢酸、及び無水プロピオン酸の使用量を適宜変化させることによって、アセチル基の置換度、プロピオニル基の置換度、総置換度を調整することは可能である。
以上のような方法を用いて、前記式(1)〜(3)を同時に満たす本発明のセルロースエステルを合成することができる。
本発明のセルロースエステルは、特に限定はないが、15万〜25万の重量平均分子量(Mw)を有することが好ましく、18万〜23万の重量平均分子量を有することが更に好ましく、19万〜22万の重量平均分子量を有することが最も好ましい。
重量平均分子量が上記好ましい範囲内においては、溶融粘度が高くなりすぎたり、得られるフィルムの強度が低下したりするなどの不具合が生じず、好ましい。更に、本発明に用いられるセルロースエステルは、重量平均分子量(Mw)/数平均分子量(Mn)比が1.3〜5.5のものが好ましく用いられ、特に好ましくは1.5〜5.0であり、更に好ましくは1.7〜4.0であり、更に好ましくは2.0〜3.5のセルロースエステルが好ましく用いられる。Mw/Mnが5.5を超えると、粘度が高くなり、溶融濾過性が低下する傾向があり好ましくない。一方、工業上の製造特性の点から、1.3以上であることが好ましい。
なお、Mw及びMw/Mnは下記の要領で、ゲルパーミエーションクロマトグラフィー(GPC)により算出できる。
測定条件は以下の通りである。
溶媒:テトヒドロフラン
装置:HLC−8220(東ソー(株)製)
カラム:TSKgel SuperHM−M(東ソー(株)製)
カラム温度:40℃
試料温度:0.1質量%
注入量:10μl
流量:0.6ml/min
校正曲線:標準ポリスチレン:PS−1(Polymer Laboratories社製)Mw=2,560,000〜580までの9サンプルによる校正曲線を使用した。
本発明のセルロースエステルのアルカリ土類金属含有量は、1〜50ppmの範囲であることが好ましい。
セルロースエステルのアルカリ土類金属含有量の範囲が1〜50ppmであると、リップ付着汚れの増加がなく、熱延伸時や熱延伸後でのスリッティング部で破断がなくなり、本発明の効果をより奏する点で好ましい。更に、本発明では、セルロースエステルのアルカリ土類金属含有量が1〜30ppmの範囲が好ましい。ここでいうアルカリ土類金属とはCa、Mgの総含有量のことであり、X線光電子分光分析装置(XPS)を用いて測定することができる。
本発明のセルロースエステル中の残留硫酸含有量は、硫黄元素換算で0.1〜45ppmの範囲であることが好ましい。これらは塩の形で含有していると考えられる。残留硫酸含有量が45ppmを超えると熱溶融時のダイリップ部の付着物が増加する傾向がある。また、熱延伸時や熱延伸後でのスリッティングの際に破断しやすくなる傾向がある。従って1〜30ppmの範囲がより好ましい。残留硫酸含有量は、ASTM D817−96に規定の方法により測定することができる。
本発明のセルロースエステル中の遊離酸含有量は、1〜500ppmであることが好ましい。上記の範囲であると、ダイリップ部の付着物が増加がなく、また破断しにくい。更に、本発明については、1〜100ppmの範囲であることが好ましく、更に破断しにくくなる。特に1〜70ppmの範囲が好ましい。遊離酸含有量はASTM D817−96に規定の方法により測定することができる。
合成したセルロースエステルの洗浄を、溶液流延法に用いられる場合に比べて、更に十分に行うことによって、残留アルカリ土類金属含有量、残留硫酸含有量、及び残留酸含有量を上記の範囲とすることができ好ましい。
また、セルロースエステルの洗浄は、水に加えて、メタノール、エタノールのような貧溶媒、或いは結果として貧溶媒であれば貧溶媒と良溶媒の混合溶媒を用いることができ、残留酸以外の無機物、低分子の有機不純物を除去することができる。
更に、セルロースエステルの洗浄は、劣化防止剤の存在下で行うことも好ましく、セルロースエステルの耐熱性、製膜安定性が向上する。
使用される劣化防止剤は、セルロースエステルに発生したラジカルを不活性化する、或いはセルロースエステルに発生したラジカルに酸素が付加したことが起因のセルロースエステルの劣化を抑制する化合物であれば制限なく用いることができるが、ヒンダードフェノール系化合物、ヒンダードアミン系化合物、リン系化合物が好ましい。
また、セルロースエステルの耐熱性、機械特性、光学特性等を向上させるため、セルロースエステルの良溶媒に溶解後、貧溶媒中に再沈殿、濾過することによって、或いは、貧溶媒中に撹拌懸濁させ、濾過することによって、セルロースエステルの低分子量成分、その他不純物を除去することができる。この時、前述のセルロースエステルの洗浄同様に、劣化防止剤の存在下で行うことが好ましい。セルロースエステルの洗浄に使用する劣化防止剤は、洗浄後セルロースエステル中に残存していてもよい。残存量は0.01〜2000ppmがよく、より好ましくは0.05〜1000ppmである。更に好ましくは0.1〜100ppmである。更に、セルロースエステルの再沈殿処理の後、別のポリマー或いは低分子化合物を添加してもよい。本発明の光学フィルムにおいて、セルロースエステルフィルム中に含まれるセルロースエステルは、60〜99質量%であることが好ましい。
また、本発明のセルロースエステルはフィルムにした時の輝点異物が少ないものであることが好ましい。輝点異物とは、2枚の偏光板を直交に配置し(クロスニコル)、この間にセルロースエステル光学フィルムを配置して、一方の面から光源の光を当てて、もう一方の面からセルロースエステル光学フィルムを観察した時に、光源の光が漏れて見える点のことである。このとき評価に用いる偏光板は輝点異物がない保護フィルムで構成されたものであることが望ましく、偏光子の保護にガラス板を使用したものが好ましく用いられる。輝点異物はセルロースエステルに含まれる未アシル化若しくは低アシル度のセルロースがその原因の1つと考えられ、輝点異物の少ないセルロースエステルを用いる(置換度の分散の小さいセルロースエステルを用いる)ことと、溶融したセルロースエステルを濾過すること、或いはセルロースエステルの合成後期の過程や沈殿物を得る過程の少なくともいずれかにおいて、一度溶液状態として同様に濾過工程を経由して輝点異物を除去することもできる。
フィルム膜厚が薄くなるほど単位面積当たりの輝点異物数は少なくなり、フィルムに含まれるセルロースエステルの含有量が少なくなるほど輝点異物は少なくなる傾向があるが、輝点異物は、輝点の直径0.01mm以上が200個/cm以下であることが好ましく、更に100個/cm以下であることが好ましく、50個/cm以下であることが好ましく、30個/cm以下であることが好ましく、10個/cm以下であることが好ましいが、皆無であることが最も好ましい。また、0.005〜0.01mm以下の輝点についても200個/cm以下であることが好ましく、更に100個/cm以下であることが好ましく、50個/cm以下であることが好ましく、30個/cm以下であることが好ましく、10個/cm以下であることが好ましいが、皆無であることが最も好ましい。
輝点異物を溶融濾過によって除去する場合、セルロースエステルを単独で溶融させたものを濾過するよりも可塑剤、劣化防止剤等を添加混合した組成物を濾過することが輝点異物の除去効率が高く好ましい。もちろん、セルロースエステルの合成の際に溶媒に溶解させて濾過により低減させてもよい。紫外線吸収剤、その他の添加物も適宜混合したものを濾過することができる。溶融濾過はセルロースエステルを含む溶融物の粘度が10000Pa・s以下で濾過されるこが好ましく、更に好ましくは5000Pa・s以下が好ましく、1000Pa・s以下であることが更に好ましく、500Pa・s以下であることが更に好ましい。濾材としては、ガラス繊維、セルロース繊維、濾紙、四フッ化エチレン樹脂などの弗素樹脂等の従来公知のものが好ましく用いられるが、特にセラミックス、金属等が好ましく用いられる。絶対濾過精度としては50μm以下のものが好ましく用いられ、30μm以下のものが更に好ましく、10μm以下のものが更に好ましく、5μm以下のものが更に好ましく用いられる。これらは適宜組み合わせて使用することもできる。濾材はサーフェースタイプでもデプスタイプでも用いることができるが、デプスタイプの方が比較的目詰まりしにくく好ましく用いられる。
別の実施態様では、原料のセルロースエステルは少なくとも一度溶媒に溶解させる、または、溶媒中で懸濁洗浄した後、溶媒を乾燥させたセルロースエステルを用いても良い。その際には可塑剤、紫外線吸収剤、劣化防止剤、酸化防止剤及びマット剤の少なくとも1つ以上と共に溶媒に溶解させてもよい。溶媒としては、メチレンクロライド、酢酸メチル、ジオキソラン等の溶液流延法で用いられる良溶媒を用いてもよく、またメタノール、エタノール、ブタノール等の貧溶媒を用いてもよく、これらの混合溶媒でも良い。溶解の過程で−20℃以下に冷却したり、80℃以上に加熱したりしても良い。このようなセルロースエステルを用いると、溶融状態にした時の各添加物を均一にしやすく、光学特性を均一にできることがある。
次に、本発明に用いられる各種化合物について詳述する。
(紫外線吸収性ポリマー)
本発明の光学フィルムに含有する紫外線吸収性ポリマーは紫外線吸収性モノマーの1種以上の重合体またはエチレン性不飽和モノマー1種以上との共重合体が好ましく、ポリマーの重量平均分子量が1000〜100000の範囲内であることが、本発明の効果を呈する上で好ましい。分子量が大きくなるとセルロースエステルとの相溶性が劣化する傾向が見られ、重量平均分子量が1000未満である場合は、フィルム表面への滲出が起こる傾向が見られる。
また、本発明に係る紫外線吸収モノマーの少なくとも1種が380nmにおけるモル吸光係数が4000以上であることが好ましい。380nmに於けるモル吸光係数が4000以上である場合、少量でも紫外線吸収性能が良好であることを示し、紫外光を遮断しうるのに充分な効果が得られ、よって光学フィルム自身が黄色く着色してしまうことの改善や偏光板保護フィルムとして用いた場合には偏光子や液晶表示装置の紫外線に対する劣化防止性が向上する。380nmに於けるモル吸光係数が4000未満の場合、所望のUV吸収性能を得るために多量の添加が必要となり、コストの上昇或いは透明性等のフィルム性能が低下する原因となる場合がある。
(紫外線吸収性モノマー)
前記、紫外線吸収性モノマーとしては、例えばサリチル酸系紫外線吸収剤(フェニルサリシレート、p−tert−ブチルサリシレート等)或いはベンゾフェノン系紫外線吸収剤(2,4−ジヒドロキシベンゾフェノン、2,2′−ジヒドロキシ−4,4′−ジメトキシベンゾフェノン等)、ベンゾトリアゾール系紫外線吸収剤(2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−アミル−フェニル)ベンゾトリアゾール等)、シアノアクリレート系紫外線吸収剤(2′−エチルヘキシル−2−シアノ−3,3−ジフェニルアクリレート、エチル−2−シアノ−3−(3′,4′−メチレンジオキシフェニル)−アクリレート等)、トリアジン系紫外線吸収剤(2−(2′−ヒドロキシ−4′−ヘキシルオキシフェニル)−4,6−ジフェニルトリアジン等)或いは特開昭58−185677号、同59−149350号記載の化合物等の公知の様々なタイプの紫外線吸収性化合物の中から適宜基本骨格を選択し、エチレン性不飽和結合を含む置換基を導入し、重合可能な化合物とした上で用いることが好ましい。例えば、特開平6−148430号記載の紫外線吸収性ポリマー等が挙げられる。
本発明の光学フィルムに含有する紫外線吸収性ポリマーとしては、ベンゾトリアゾール系のタイプを用いることが好ましい。特に好ましい紫外線吸収性ポリマーは、前記一般式(A)で表されるモノマーの少なくとも1種以上から誘導される紫外線吸収性ポリマーである。一般式(A)の式中、R〜Rは各々水素原子、ハロゲン原子、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、または置換基を有していてもよい複素環基を表す。但し、R〜Rで表される基のいずれか1つはエチレン性不飽和結合を部分構造として有する。
前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられ、好ましくはフッ素原子、塩素原子である。また、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、または置換基を有していてもよい複素環基としては、例えば、アルキル基(例えば、メチル基、エチル基、イソプロピル基、ヒドロキシエチル基、メトキシメチル基、トリフルオロメチル基、t−ブチル基など)、アルケニル基(例えば、ビニル基、アリル基、3−ブテン−1−イル基など)、アリール基(例えば、フェニル基、ナフチル基、p−トリル基、p−クロロフェニル基など)、複素環基(例えば、ピリジル基、ベンズイミダゾリル基、ベンズチアゾリル基、ベンズオキサゾリル基など)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、n−ブトキシ基など)、アリールオキシ基(例えば、フェノキシ基など)、複素環オキシ基(例えば、1−フェニルテトラゾール−5−オキシ基、2−テトラヒドロピラニルオキシ基など)、アシルオキシ基(例えば、アセトキシ基、ピバロイルオキシ基、ベンゾイルオキシ基など)、アシル基(例えば、アセチル基、プロパノイル基、ブチロイル基など)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基など)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基など)、カルバモイル基(例えば、メチルカルバモイル基、エチルカルバモイル基、ジメチルカルバモイル基など)、アミノ基、アルキルアミノ基(例えば、メチルアミノ基、エチルアミノ基、ジエチルアミノ基など)、アニリノ基(例えば、アニリノ基、N−メチルアニリノ基など)、アシルアミノ基(例えば、アセチルアミノ基、プロピオニルアミノ基など)、ヒドロキシル基、シアノ基、ニトロ基、スルホンアミド基(例えば、メタンスルホンアミド基、ベンゼンスルホンアミド基など)、スルファモイルアミノ基(例えば、ジメチルスルファモイルアミノ基など)、スルホニル基(例えば、メタンスルホニル基、ブタンスルホニル基、フェニルスルホニル基など)、スルファモイル基(例えば、エチルスルファモイル基、ジメチルスルファモイル基など)、スルホニルアミノ基(例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基など)、ウレイド基(例えば、3−メチルウレイド基、3,3−ジメチルウレイド基、1,3−ジメチルウレイド基など)、イミド基(例えば、フタルイミド基など)、シリル基(例えば、トリメチルシリル基、トリエチルシリル基、t−ブチルジメチルシリル基など)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、n−ブチルチオ基など)、アリールチオ基(例えば、フェニルチオ基など)等が挙げられるが、好ましくは、アルキル基、アリール基である。R〜Rで表される各基が、更に置換可能な基である場合、更に置換基を有していてもよく、置換基としては前記R〜Rと同様の基を挙げることができる。また、隣接するR〜RまたはR〜Rが互いに連結して5〜7員の環を形成していてもよい。
〜Rで表される基のいずれか1つはエチレン性不飽和結合を部分構造として有するが、エチレン性不飽和結合の具体例としては、ビニル基、アリル基、アクリロイル基、メタクリロイル基、スチリル基、アクリルアミド基、メタクリルアミド基、シアン化ビニル基、2−シアノアクリルオキシ基、1,2−エポキシ基、ビニルベンジル基、ビニルエーテル基などが挙げられるが、好ましくは、ビニル基、アクリロイル基、メタクリロイル基アクリルアミド基、メタクリルアミド基である。また、エチレン性不飽和結合を部分構造として有するとは、上記エチレン性不飽和結合が直接、若しくは2価以上の連結基によって結合していることを意味し、2価以上の連結基とは、例えば、アルキレン基(例えば、メチレン、1,2−エチレン、1,3−プロピレン、1,4−ブチレン、シクロヘキサン−1,4−ジイルなど)、アルケニレン基(例えば、エテン−1,2−ジイル、ブタジエン−1,4−ジイルなど)、アルキニレン基(例えば、エチン−1,2−ジイル、ブタン−1,3−ジイン−1,4−ジイルなど)、少なくとも一つの芳香族基を含む化合物から誘導される連結基(例えば、置換若しくは無置換のベンゼン、縮合多環炭化水素、芳香族複素環、芳香族炭化水素環集合、芳香族複素環集合など)、ヘテロ原子連結基(酸素、硫黄、窒素、ケイ素、リン原子など)が挙げられるが、好ましくは、アルキレン基、及び、ヘテロ原子で連結する基である。これらの連結基は更に組み合わせて複合基を形成してもよい。
以下に本発明で用いられる前記一般式(A)で表されるモノマーの好ましい具体例を例示するが、これらに限定されるものではない。
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
前記一般式(A)で表されるモノマーは1種或いは2種以上組み合わせて用いることができる。本発明に用いられる前記一般式(A)で表されるモノマー及びその中間体は公知の文献を参照して合成することができる。例えば、米国特許第3,072,585号、同3,159,646号、同3,399,173号、同3,761,272号、同4,028,331号、同5,683,861号、ヨーロッパ特許第86,300,416号、特開昭63−227575号、同63−185969号、Polymer Bulletin.V.20(2)、169−176及びChemical Abstracts V.109、No.191389などを参照して合成することができる。
また本発明の光学フィルムに含有する紫外線吸収性ポリマーは前記一般式(A)で表されるモノマーの少なくとも1種以上と前記一般式(B)で表される部分構造を有するエチレン性不飽和モノマー1種以上との共重合体が好ましい。
一般式(B)の式中、R、R10、及びR11は、それぞれ独立して置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、または置換基を有していてもよい複素環基を表す。またR、R10、及びR11の何れか二つが互いに結合してそれらが結合している窒素原子、或いは窒素原子及び炭素原子と一緒になって、環状構造を形成していてもよい。
、R10、及びR11で表される置換基としては、特に制限はないが、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリフルオロメチル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アリール基(例えば、フェニル基、ナフチル基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルケニル基(例えば、ビニル基、2−プロペニル基、3−ブテニル基、1−メチル−3−プロペニル基、3−ペンテニル基、1−メチル−3−ブテニル基、4−ヘキセニル基、シクロヘキセニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、沃素原子等)、アルキニル基(例えば、プロパルギル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基等)、アルキルスルフィニル基(例えば、メチルスルフィニル基等)、アリールスルフィニル基(例えば、フェニルスルフィニル基等)、ホスホノ基、アシル基(例えば、アセチル基、ピバロイル基、ベンゾイル基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、ブチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、フェニルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、スルホンアミド基(例えば、メタンスルホンアミド基、ベンゼンスルホンアミド基等)、シアノ基、アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、複素環オキシ基、シロキシ基、アシルオキシ基(例えば、アセチルオキシ基、ベンゾイルオキシ基等)、スルホン酸基、スルホン酸の塩、アミノカルボニルオキシ基、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基等)、アニリノ基(例えば、フェニルアミノ基、クロロフェニルアミノ基、トルイジノ基、アニシジノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、イミド基、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、アルコキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ基、フェノキシカルボニルアミノ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、フェノキシカルボニル等)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基等)、複素環チオ基、チオウレイド基、カルボキシル基、カルボン酸の塩、ヒドロキシル基、メルカプト基、ニトロ基等の各基が挙げられる。これらの置換基は同様の置換基によって更に置換されていてもよい。
、R10、及びR11の何れか二つが互いに結合してそれらが結合している窒素原子、或いは窒素原子及び炭素原子と一緒になって、環状構造を形成している場合の環としては、環中に更に窒素原子、硫黄原子又は酸素原子を有していても良い、飽和又は不飽和の単環、多環又は縮合環式のものが挙げられ、具体例としては、例えば、ピリジン環、チアゾール環、ピペリジン環、ピペラジン環、ピロール環、モルホリン環、イミダゾール環、インドール環、キノリン環、ピリミジン環、イソインドリン環等の複素環が挙げられる。
また分子内にはエチレン性不飽和結合を有するが、具体例としては、例えば、ビニル基、アリル基、アクリロイル基、メタクリロイル基、スチリル基、アクリルアミド基、メタクリルアミド基、シアン化ビニル基、2−シアノアクリルオキシ基、1,2−エポキシ基、ビニルベンジル基、ビニルエーテル基などが挙げられるが、好ましくは、ビニル基、アクリロイル基、メタクリロイル基、アクリルアミド基、メタクリルアミド基である。
以下に本発明で用いられる前記分子内に前記一般式(B)で表される部分構造を有するエチレン性不飽和モノマーの好ましい具体例を例示するが、これらに限定されるものではない。
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
前記分子内に前記一般式(B)で表される部分構造を有するエチレン性不飽和モノマーは1種或いは2種以上組み合わせて用いることができる。また前記一般式(B)で表される部分構造を有するエチレン性不飽和モノマーとして特に好ましくはN−アクリロイルモルホリンである。
本発明に用いられる前記分子内に前記一般式(B)で表される部分構造を有するエチレン性不飽和モノマーは市販品として入手または公知の文献を参照して合成することができる。
本発明の光学フィルムに含有する紫外線吸収性ポリマーは、更に他の重合性モノマーとの共重合体でもよく、共重合可能な他の重合性モノマーとしては、例えば、スチレン誘導体(例えば、スチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ビニルナフタレンなど)、アクリル酸エステル誘導体(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸i−ブチル、アクリル酸t−ブチル、アクリル酸オクチル、アクリル酸シクロヘキシル、アクリル酸ベンジルなど)、メタクリル酸エステル誘導体(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸i−ブチル、メタクリル酸t−ブチル、メタクリル酸オクチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル等)、アルキルビニルエーテル(例えば、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテルなど)、アルキルビニルエステル(例えば、ギ酸ビニル、酢酸ビニル、酪酸ビニル、カプロン酸ビニル、ステアリン酸ビニルなど)、クロトン酸、マレイン酸、フマル酸、イタコン酸、アクリロニトリル、メタクリロニトリル、塩化ビニル、塩化ビニリデン、アクリルアミド、メタクリルアミドなどの不飽和化合物が挙げられる。好ましくは、アクリル酸メチル、メタクリル酸メチル、酢酸ビニルである。
本発明の光学フィルムに含有する紫外線吸収性ポリマー中の低分子量成分は少ない方が好ましく、分子量1000未満の低分子量成分の比率が5質量%以下であることが好ましく、更に好ましくは1質量%以下である。また本発明の紫外線吸収性ポリマーの重量平均分子量Mw/数平均分子量Mn比が1.5〜4.0のものが好ましく用いられ、特に好ましくは1.5〜3.0である。
本発明の光学フィルムに含有する紫外線吸収性ポリマーを重合する方法は特に問わないが、従来公知の方法を広く採用することができ、例えばラジカル重合、アニオン重合、カチオン重合などが挙げられる。ラジカル重合法の開始剤としては、例えば、アゾ化合物、過酸化物等が挙げられ、アゾビスイソブチロニトリル(AIBN)、アゾビスイソブチル酸ジエステル誘導体、過酸化ベンゾイル、ジラウロイルパーオキサイドなどが挙げられる。重合溶媒は特に問わないが、例えば、トルエン、クロロベンゼン等の芳香族炭化水素系溶媒、ジクロロエタン、クロロホルムなどのハロゲン化炭化水素系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、ジメチルホルムアミド等のアミド系溶媒、メタノール等のアルコール系溶媒、酢酸メチル、酢酸エチル等のエステル系溶媒、アセトン、シクロヘキサノン、メチルエチルケトンなどのケトン系溶媒、水溶媒等が挙げられる。溶媒の選択により、均一系で重合する溶液重合、生成したポリマーが沈澱する沈澱重合、ミセル状態で重合する乳化重合を行うこともできる。
本発明に用いられる紫外線吸収性ポリマーの重量平均分子量は、公知の分子量調節方法で調整することができる。そのような分子量調節方法としては、例えば四塩化炭素、ラウリルメルカプタン、チオグリコール酸オクチル等の連鎖移動剤を添加する方法等が挙げられる。重合温度は通常室温から130℃、好ましくは50℃から110℃で行われる。
上記各モノマーの使用割合は、得られる紫外線吸収性ポリマーとセルロースエステルとの相溶性、光学フィルムの透明性や機械的強度に対する影響を考慮して適宜選択される。
本発明の光学フィルムに含有する紫外線吸収性ポリマー中の前記分子内に前記一般式(B)で表される部分構造を有するエチレン性不飽和モノマーの含有比率は全体の10〜90質量%であることが好ましく、より好ましくは、30〜65質量%である。本発明の光学フィルムに含有する紫外線吸収性ポリマー中の前記一般式(A)で表されるモノマーの含有比率は全体の1〜70質量%であることが好ましく、より好ましくは、5〜50質量%である。本発明の光学フィルムに含有する紫外線吸収性ポリマーは、セルロースエステルに対し、0.1〜50質量%の割合で混ぜることが好ましく、更に好ましくは0.5〜30質量%の割合で混ぜることが好ましい。この時、光学フィルムを形成したときのヘイズが1.0以下であれば特に制限はされないが、好ましくはヘイズが0.5以下である。更に好ましくは、光学フィルムを形成したときのヘイズが0.3以下である。
更に前述したように、偏光子や液晶表示装置の劣化防止の観点から波長380nm以下の紫外線吸収性能に優れ、かつ、良好な液晶表示性の観点から400nm以上の可視光吸収が少ないものが好ましい。本発明においては、特に、波長380nmでの透過率が8%以下であることが好ましく、4%以下が更に好ましく、1%以下であることが特に好ましい。
(炭素ラジカル捕捉剤)
本発明に用いられる「炭素ラジカル捕捉剤」とは、炭素ラジカルが速やかに付加反応しうる基(例えば2重結合、3重結合等の不飽和基)を有し、かつ炭素ラジカル付加後に重合等の後続反応が起こらない安定な生成物を与える化合物を意味する。上記炭素ラジカル捕捉剤としては分子内に速やかに炭素ラジカルと反応する基((メタ)アクリロイル基、アリール基等の不飽和基)およびフェノール系、ラクトン系化合物等のラジカル重合禁止能を有する化合物が有用であり、特に下記一般式(1)または下記一般式(2)で表わされる化合物が好ましい。
Figure 2009114430
一般式(1)において、R31は水素原子または炭素数1〜10のアルキル基を表し、好ましくは水素原子または炭素数1〜4のアルキル基であり、特に好ましくは水素原子またはメチル基である。R32およびR33は、それぞれ独立して炭素数1〜8のアルキル基を表し、直鎖でも、分岐構造または環構造を有してもよい。R32およびR33は、好ましくは4級炭素を含む「*−C(CH−R′」で表される構造(*は芳香環への連結部位を表し、R′は炭素数1〜5のアルキル基を表す。)である。R32は、より好ましくはtert−ブチル基、tert−アミル基またはtert−オクチル基である。R33は、より好ましくはtert−ブチル基、tert−アミル基である。上記一般式(1)で表される化合物として、市販のものでは「SumilizerGM、SumilizerGS」(共に商品名、住友化学(株)製)等が挙げられる。以下に上記一般式(2)で表わされる化合物の具体例(I−1〜I−18)を例示するが、本発明はこれらに限定されるものではない。
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
一般式(2)において、R42〜R45はおのおの互いに独立して水素原子または置換基を表し、R42〜R45で表される置換基としては特に制限はないが、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリフルオロメチル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アリール基(例えば、フェニル基、ナフチル基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルケニル基(例えば、ビニル基、2−プロペニル基、3−ブテニル基、1−メチル−3−プロペニル基、3−ペンテニル基、1−メチル−3−ブテニル基、4−ヘキセニル基、シクロヘキセニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、沃素原子等)、アルキニル基(例えば、プロパルギル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基等)、アルキルスルフィニル基(例えば、メチルスルフィニル基等)、アリールスルフィニル基(例えば、フェニルスルフィニル基等)、ホスホノ基、アシル基(例えば、アセチル基、ピバロイル基、ベンゾイル基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、ブチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、フェニルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、スルホンアミド基(例えば、メタンスルホンアミド基、ベンゼンスルホンアミド基等)、シアノ基、アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、複素環オキシ基、シロキシ基、アシルオキシ基(例えば、アセチルオキシ基、ベンゾイルオキシ基等)、スルホン酸基、スルホン酸の塩、アミノカルボニルオキシ基、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基等)、アニリノ基(例えば、フェニルアミノ基、クロロフェニルアミノ基、トルイジノ基、アニシジノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、イミド基、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、アルコキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ基、フェノキシカルボニルアミノ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、フェノキシカルボニル等)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基等)、複素環チオ基、チオウレイド基、カルボキシル基、カルボン酸の塩、ヒドロキシル基、メルカプト基、ニトロ基等の各基が挙げられる。これらの置換基は同様の置換基によって更に置換されていてもよい。
前記一般式(2)において、R46は水素原子または置換基を表し、R46で表される置換基は、前記R42〜R45で表される置換基と同様な基を挙げることができる。
前記一般式(2)において、nは1または2を表す。
前記一般式(2)において、nが1であるとき、R41は置換基を表し、nが2であるとき、R41は2価の連結基を表す。R41が置換基を表すとき、置換基としては、前記R42〜R45で表される置換基と同様な基を挙げることができる。
41は2価の連結基を表すとき、2価の連結基として例えば、置換基を有しても良いアルキレン基、置換基を有しても良いアリーレン基、酸素原子、窒素原子、硫黄原子、或いはこれらの連結基の組み合わせを挙げることができる。
前記一般式(2)において、nは1が好ましい。
次に、本発明における前記一般式(2)で表される化合物の具体例を示すが、本発明は以下の具体例によって限定されるものではない。
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
上記、炭素ラジカル捕捉剤は、それぞれ1種或いは2種以上組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、セルロースエステル100質量部に対して、通常0.001〜10.0質量部、好ましくは0.01〜5.0質量部、更に好ましくは、0.1〜1.0質量部である。
(フェノール系化合物)
本発明に用いられるフェノール系化合物は、例えば、米国特許第4,839,405号明細書の第12〜14欄に記載されているもの等の、2,6−ジアルキルフェノール誘導体化合物が好ましく、特に下記一般式(3)で表される化合物が好ましい。
Figure 2009114430
式中、R51、R52及びR53は、さらに置換されているかまたは置換されていないアルキル置換基を表す。フェノール系化合物の具体例としては、n−オクタデシル3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート、n−オクタデシル3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−アセテート、n−オクタデシル3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、n−ヘキシル3,5−ジ−t−ブチル−4−ヒドロキシフェニルベンゾエート、n−ドデシル3,5−ジ−t−ブチル−4−ヒドロキシフェニルベンゾエート、ネオ−ドデシル3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、ドデシルβ(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、エチルα−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)イソブチレート、オクタデシルα−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)イソブチレート、オクタデシルα−(4−ヒドロキシ−3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2−(n−オクチルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシ−ベンゾエート、2−(n−オクチルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシ−フェニルアセテート、2−(n−オクタデシルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート、2−(n−オクタデシルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシ−ベンゾエート、2−(2−ヒドロキシエチルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、ジエチルグリコールビス−(3,5−ジ−t−ブチル−4−ヒドロキシ−フェニル)プロピオネート、2−(n−オクタデシルチオ)エチル3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、ステアルアミドN,N−ビス−[エチレン3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、n−ブチルイミノN,N−ビス−[エチレン3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2−(2−ステアロイルオキシエチルチオ)エチル3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、2−(2−ステアロイルオキシエチルチオ)エチル7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)ヘプタノエート、1,2−プロピレングリコールビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、エチレングリコールビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ネオペンチルグリコールビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、エチレングリコールビス−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート)、グリセリン−l−n−オクタデカノエート−2,3−ビス−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート)、ペンタエリトリトール−テトラキス−[3−(3′,5′−ジ−t−ブチル−4′−ヒドロキシフェニル)プロピオネート]、1,1,1−トリメチロールエタン−トリス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ソルビトールヘキサ−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2−ヒドロキシエチル7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2−ステアロイルオキシエチル7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)ヘプタノエート、1,6−n−ヘキサンジオール−ビス[(3′,5′−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリトリトール−テトラキス(3,5−ジ−t−ブチル−4−ヒドロキシヒドロシンナメート)が挙げられる。上記タイプのフェノール系化合物は、例えば、CibaSpecialtyChemicalsから、“Irganox1076”及び“Irganox1010”という商品名で市販されている。
上記、フェノール系化合物は、それぞれ1種或いは2種以上組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、セルロースエステル100質量部に対して、通常0.001〜10.0質量部、好ましくは0.05〜5.0質量部、更に好ましくは、0.2〜2.0質量部である。
(リン系化合物)
本発明に用いられるリン系化合物は、従来公知のものを用いることができる。好ましくはホスファイト(phosphite)、ホスホナイト(phosphonite)、ホスフィナイト(phosphinite)、または第3級ホスファン(phosphane)からなる群より選ばれる化合物であり、例えば、特開2002−138188号、特開2005−344044号段落番号0022〜0027、特開2004−182979号段落番号0023〜0039、特開平10−306175号、特開平1−254744号、特開平2−270892号、特開平5−202078号、特開平5−178870号、特表2004−504435号、特表2004−530759号、および特願2005−353229号の明細書中に記載されているものが好ましい。更に好ましいリン系化合物としては下記一般式(4)または(5)で表されるホスホナイト化合物である。
一般式(4) R61P(OR62
一般式(5) (R64O)2PR63−R63P(OR64
前記一般式(4)において、R61は置換基を有していてもよいフェニル基、または置換基を有していてもよいチエニル基を、R62は置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基、または置換基を有していてもよいチエニル基を表す。複数のR62は互いに結合して環を形成してもよいが、R62として好ましくは置換フェニル基である。置換フェニル基の、置換基の炭素数の合計は、好ましくは9〜14であり、より好ましくは9〜11である。
前記、置換基としては特に制限はないが、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリフルオロメチル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アリール基(例えば、フェニル基、ナフチル基等)、アシルアミノ基(例えば、アセチルアミノ基、ベンゾイルアミノ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルケニル基(例えば、ビニル基、2−プロペニル基、3−ブテニル基、1−メチル−3−プロペニル基、3−ペンテニル基、1−メチル−3−ブテニル基、4−ヘキセニル基、シクロヘキセニル基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、沃素原子等)、アルキニル基(例えば、プロパルギル基等)、複素環基(例えば、ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基等)、アルキルスルフィニル基(例えば、メチルスルフィニル基等)、アリールスルフィニル基(例えば、フェニルスルフィニル基等)、ホスホノ基、アシル基(例えば、アセチル基、ピバロイル基、ベンゾイル基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、ブチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、フェニルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、スルホンアミド基(例えば、メタンスルホンアミド基、ベンゼンスルホンアミド基等)、シアノ基、アルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、複素環オキシ基、シロキシ基、アシルオキシ基(例えば、アセチルオキシ基、ベンゾイルオキシ基等)、スルホン酸基、スルホン酸の塩、アミノカルボニルオキシ基、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基等)、アニリノ基(例えば、フェニルアミノ基、クロロフェニルアミノ基、トルイジノ基、アニシジノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、イミド基、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、アルコキシカルボニルアミノ基(例えば、メトキシカルボニルアミノ基、フェノキシカルボニルアミノ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、フェノキシカルボニル等)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基等)、複素環チオ基、チオウレイド基、カルボキシル基、カルボン酸の塩、ヒドロキシル基、メルカプト基、ニトロ基等の各基が挙げられる。これらの置換基は同様の置換基によって更に置換されていてもよい。
前記一般式(5)において、R63は置換基を有していてもよいフェニレン基、または置換基を有していてもよいチエニレン基を、R64は置換基を有していてもよいアルキル基、置換基を有していてもよいフェニル基、または置換基を有していてもよいチエニル基を表す。複数のR64は互いに結合して環を形成してもよいが、R64として好ましくは置換フェニル基である。置換フェニル基の、置換基の炭素数の合計は、好ましくは9〜14であり、より好ましくは9〜11である。前記置換基としては、R62において、述べたものと同じである。
具体的には、一般式(4)で表されるホスホナイト化合物としては、ジメチル−フェニルホスホナイト、ジ−t−ブチル−フェニルホスホナイト等のジアルキル−フェニルホスホナイト類、ジフェニル−フェニルホスホナイト、ジ−(4−ペンチル−フェニル)−フェニルホスホナイト、ジ−(2−t−ブチル−フェニル)−フェニルホスホナイト、ジ−(2−メチル−3−ペンチル−フェニル)−フェニルホスホナイト、ジ−(2−メチル−4−オクチル−フェニル)−フェニルホスホナイト、ジ−(3−ブチル−4−メチル−フェニル)−フェニルホスホナイト、ジ−(3−ヘキシル−4−エチル−フェニル)−フェニルホスホナイト、ジ−(2,4,6−トリメチルフェニル)−フェニルホスホナイト、ジ−(2,3−ジメチル−4−エチル−フェニル)−フェニルホスホナイト、ジ−(2,6−ジエチル−3−ブチルフェニル)−フェニルホスホナイト、ジ−(2,3−ジプロピル−5−ブチルフェニル)−フェニルホスホナイト、ジ−(2,4,6−トリ−t−ブチルフェニル)−フェニルホスホナイト、等のジ−フェニル誘導体−フェニルホスホナイト類が挙げられる。
また、一般式(5)で表されるホスホナイト化合物としては、テトラキス(2,4−ジ−t−ブチル−フェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジ−t−ブチル−フェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(3,5−ジ−t−ブチル−フェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3,4−トリメチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジメチル−5−エチル−フェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジメチル−4−プロピルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジメチル−5−t−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジメチル−4−t−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジエチル−5−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジエチル−4−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4,5−トリエチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジエチル−4−プロピルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジエチル−6−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジエチル−5−t−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジエチル−6−t−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジプロピル−5−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジプロピル−4−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジプロピル−5−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジプロピル−6−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジプロピル−5−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジブチル−4−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジブチル−3−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジブチル−4−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチル−3−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチル−5−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチル−6−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジ−t−ブチル−3−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジ−t−ブチル−4−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジ−t−ブチル−6−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−t−ブチル−3−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−t−ブチル−4−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−t−ブチル−5−メチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3−ジブチル−4−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4−ジブチル−3−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジブチル−4−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチル−3−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチル−5−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−t−ブチル−6−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジ−t−ブチル−3−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジ−t−ブチル−4−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,5−ジ−t−ブチル−6−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−t−ブチル−3−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−t−ブチル−4−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−t−ブチル−5−エチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,3,4−トリブチルフェニル)−4,4′−ビフェニレンジホスホナイト、テトラキス(2,4,6−トリ−t−ブチルフェニル)−4,4′−ビフェニレンジホスホナイト等が挙げられる。
本発明においては、一般式(5)で表されるホスホナイト化合物が好ましい。中でも、テトラキス(2,4−ジ−t−ブチル−フェニル)−4,4′−ビフェニレンジホスホナイト等の4,4′−ビフェニレンジホスホナイト化合物が好ましく、特に好ましいものはテトラキス(2,4−ジ−t−ブチル−5−メチルフェニル)−4,4′−ビフェニレンジホスホナイトが好適である。
特に好ましいホスホナイト化合物を次に示す。
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
リン系化合物の含有量は、セルロースエステル100質量部に対して、通常0.001〜10.0質量部、好ましくは0.01〜5.0質量部、さらに好ましくは0.1〜1.0質量部である。
前記、炭素ラジカル捕捉剤、フェノール系化合物、及びリン系化合物は3種類併用することが好ましく、それぞれの添加量のより好ましい範囲はセルロースエステル100質量部に対して、炭素ラジカル捕捉剤が0.1〜1.0質量部、フェノール系化合物が0.2〜2.0質量部、リン系化合物が0.1〜1.0質量部であり、3種の化合物の添加量が前記範囲内であれば、各化合物同士で相乗効果をもたらし、性能が向上することが明らかとなった。
(可塑剤)
本発明の光学フィルムは、可塑剤として、多価アルコールと1価のカルボン酸からなるエステル系可塑剤の少なくとも1種を含有させることが好ましく、特に下記一般式(6)で表される有機酸と3価以上のアルコールが縮合した構造を有するエステル化合物を、可塑剤として1〜25質量%含有することが好ましい。1質量%よりも少ないと可塑剤を添加する効果が認められず、25質量%よりも多いとブリードアウトが発生しやすくなり、フィルムの経時安定性が低下するために好ましくない。より好ましくは上記可塑剤を3〜20質量%含有する光学フィルムであり、さらに好ましくは5〜15質量%含有する光学フィルムである。
可塑剤とは、一般的には高分子中に添加することによって脆弱性を改良したり、柔軟性を付与したりする効果のある添加剤であるが、本発明においては、セルロースエステル単独での溶融温度よりも溶融温度を低下させるため、また同じ加熱温度においてセルロース樹脂単独よりも可塑剤を含むフィルム組成物の溶融粘度を低下させるために、可塑剤を添加する。また、セルロースエステルの親水性を改善し、光学フィルムの透湿度改善するためにも添加されるため透湿防止剤としての機能を有する。
ここで、フィルム組成物の溶融温度とは、該材料が加熱され流動性が発現された状態の温度を意味する。セルロースエステルを溶融流動させるためには、少なくともガラス転移温度よりも高い温度に加熱する必要がある。ガラス転移温度以上においては、熱量の吸収により弾性率或いは粘度が低下し、流動性が発現される。しかしセルロースエステルでは高温下では溶融と同時に熱分解によってセルロースエステルの分子量の低下が発生し、得られるフィルムの力学特性等に悪影響を及ぼすことがあるため、なるべく低い温度でセルロースエステルを溶融させる必要がある。フィルム組成物の溶融温度を低下させるためには、セルロースエステルのガラス転移温度よりも低い融点またはガラス転移温度をもつ可塑剤を添加することで達成することができる。本発明に用いられる、下記一般式(6)で表される有機酸と多価アルコールが縮合した構造を有する多価アルコールエステル系可塑剤は、セルロースエステルの溶融温度を低下させ、溶融製膜プロセスや製造後にも揮発性が小さく工程適性が良好であり、かつ得られるセルロースエステルフィルムの光学特性・寸法安定性・平面性が良好となる点で優れている。
Figure 2009114430
一般式(6)において、R71〜R75は水素原子またはシクロアルキル基、アラルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基、アシル基、カルボニルオキシ基、オキシカルボニル基、オキシカルボニルオキシ基を表し、これらはさらに置換基を有していて良く、Lは2価の連結基を表し、置換または無置換のアルキレン基、酸素原子、または直接結合を表す。
71〜R75で表されるシクロアルキル基としては、同様に炭素数3〜8のシクロアルキル基が好ましく、具体的にはシクロプロピル、シクロペンチル、シクロヘキシル等の基である。これらの基は置換されていてもよく、好ましい置換基としては、ハロゲン原子、例えば、塩素原子、臭素原子、フッ素原子等、ヒドロキシル基、アルキル基、アルコキシ基、シクロアルコキシ基、アラルキル基(このフェニル基にはアルキル基またはハロゲン原子等によってさらに置換されていてもよい)、ビニル基、アリル基等のアルケニル基、フェニル基(このフェニル基にはアルキル基またはハロゲン原子等によってさらに置換されていてもよい)、フェノキシ基(このフェニル基にはアルキル基またはハロゲン原子等によってさらに置換されていてもよい)、アセチル基、プロピオニル基等の炭素数2〜8のアシル基、またアセチルオキシ基、プロピオニルオキシ基等の炭素数2〜8の無置換のカルボニルオキシ基等が挙げられる。
71〜R75で表されるアラルキル基としては、ベンジル基、フェネチル基、γ−フェニルプロピル基等の基を表し、また、これらの基は置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。
71〜R75で表されるアルコキシ基としては、炭素数1〜8のアルコキシ基が挙げられ、具体的には、メトキシ、エトキシ、n−プロポキシ、n−ブトキシ、n−オクチルオキシ、イソプロポキシ、イソブトキシ、2−エチルヘキシルオキシ、もしくはt−ブトキシ等の各アルコキシ基である。また、これらの基は置換されていてもよく、好ましい置換基としては、ハロゲン原子、例えば、塩素原子、臭素原子、フッ素原子等、ヒドロキシル基、アルコキシ基、シクロアルコキシ基、アラルキル基(このフェニル基にはアルキル基またはハロゲン原子等を置換していてもよい)、アルケニル基、フェニル基(このフェニル基にはアルキル基またはハロゲン原子等によってさらに置換されていてもよい)、アリールオキシ基(例えばフェノキシ基(このフェニル基にはアルキル基またはハロゲン原子等によってさらに置換されていてもよい))、アセチル基、プロピオニル基等のアシル基が、またアセチルオキシ基、プロピオニルオキシ基等の炭素数2〜8の無置換のアシルオキシ基、またベンゾイルオキシ基等のアリールカルボニルオキシ基が挙げられる。
71〜R75で表されるシクロアルコキシ基としては、無置換のシクロアルコキシ基としては炭素数1〜8のシクロアルコキシ基基が挙げられ、具体的には、シクロプロピルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ等の基が挙げられる。また、これらの基は置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。
71〜R75で表されるアリールオキシ基としては、フェノキシ基が挙げられるが、このフェニル基にはアルキル基またはハロゲン原子等前記シクロアルキル基に置換してもよい基として挙げられた置換基で置換されていてもよい。
71〜R75で表されるアラルキルオキシ基としては、ベンジルオキシ基、フェネチルオキシ基等が挙げられ、これらの置換基は更に置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。
71〜R75で表されるアシル基としては、アセチル基、プロピオニル基等の炭素数2〜8の無置換のアシル基が挙げられ(アシル基の炭化水素基としては、アルキル、アルケニル、アルキニル基を含む。)、これらの置換基は更に置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。
71〜R75で表されるカルボニルオキシ基としては、アセチルオキシ基、プロピオニルオキシ基等の炭素数2〜8の無置換のアシルオキシ基(アシル基の炭化水素基としては、アルキル、アルケニル、アルキニル基を含む。)、またベンゾイルオキシ基等のアリールカルボニルオキシ基が挙げられるが、これらの基は更に前記シクロアルキル基に置換してもよい基と同様の基により置換されていてもよい。
71〜R75で表されるオキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、プロピルオキシカルボニル基等のアルコキシカルボニル基、またフェノキシカルボニル基等のアリールオキシカルボニル基を表す。これらの置換基は更に置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。
また、R71〜R75で表されるオキシカルボニルオキシ基としては、メトキシカルボニルオキシ基等の炭素数1〜8のアルコキシカルボニルオキシ基を表し、これらの置換基は更に置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。
なおR71〜R75のうちのいずれか同士で互いに連結し、環構造を形成していても良い。
また、Lで表される連結基としては、置換または無置換のアルキレン基、酸素原子、または直接結合を表すが、アルキレン基としては、メチレン基、エチレン基、プロピレン基等の基であり、これらの基は、更に前記のR71〜R75で表される基に置換してもよい基としてあげられた基で置換されていてもよい。
中でも、Lで表される連結基として特に好ましいのは直接結合であり芳香族カルボン酸である。
なお本発明においては3価以上のアルコールの水酸基を置換する有機酸は単一種であっても複数種であってもよい。
本発明において、前記一般式(6)で表される有機酸と反応して多価アルコールエステル化合物を形成する3価以上のアルコール化合物としては、好ましくは3〜20価の脂肪族多価アルコールであり、本発明おいて3価以上のアルコールは下記の一般式(7)で表されるものが好ましい。
一般式(7) R′−(OH)m
式中、R′はm価の有機基、mは3以上の正の整数、OH基はアルコール性水酸基を表す。特に好ましいのは、mとしては3または4の多価アルコールである。
好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。アドニトール、アラビトール、1,2,4−ブタントリオール、1,2,3−ヘキサントリオール、1,2,6−ヘキサントリオール、グリセリン、ジグリセリン、エリスリトール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ガラクチトール、グルコース、セロビオース、イノシトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。特に、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトールが好ましい。
一般式(6)で表される有機酸と3価以上の多価アルコールのエステルは、公知の方法により合成できる。前記一般式(6)で表される有機酸と、多価アルコールを例えば、酸の存在下縮合させエステル化する方法、また、有機酸を予め酸クロライド或いは酸無水物としておき、多価アルコールと反応させる方法、有機酸のフェニルエステルと多価アルコールを反応させる方法等があり、目的とするエステル化合物により、適宜、収率のよい方法を選択することが好ましい。
一般式(6)で表される有機酸と3価以上の多価アルコールのエステルからなる可塑剤としては、下記一般式(8)で表される化合物が好ましい。
Figure 2009114430
一般式(8)において、R81〜R95は水素原子またはシクロアルキル基、アラルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基、アシル基、カルボニルオキシ基、オキシカルボニル基、オキシカルボニルオキシ基を表し、これらはさらに置換基を有していて良い。また、R86はアルキル基を表す。
81〜R85のシクロアルキル基、アラルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基、アシル基、カルボニルオキシ基、オキシカルボニル基、オキシカルボニルオキシ基については、前記R61〜R65と同様の基が挙げられる。
この様にして得られる多価アルコールエステルの分子量には特に制限はないが、300〜1500であることが好ましく、400〜1000であることが更に好ましい。分子量が大きい方が揮発し難くなるため好ましく、透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい。
以下に、本発明に係わる多価アルコールエステルの具体的化合物を例示する。
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
Figure 2009114430
本発明の光学フィルムは、他の可塑剤と併用してもよい。
本発明に好ましい可塑剤である前記一般式(6)で表される有機酸と3価以上の多価アルコールからなるエステル化合物は、セルロースエステルに対する相溶性が高く、高添加率で添加することができる特徴があるため、他の可塑剤や添加剤を併用してもブリードアウトを発生することがなく、必要に応じて他種の可塑剤や添加剤を容易に併用することができる。
なお他の可塑剤を併用する際には、前記一般式(6)で表される有機酸と3価以上の多価アルコールからなるエステル化合物が、可塑剤全体の少なくとも50質量%以上含有されることが好ましい。より好ましくは70%以上、さらに好ましくは80%以上含有されることが好ましい。このような範囲で用いれば、他の可塑剤との併用によっても、溶融流延時のセルロールエステルフィルムの平面性を向上させることができるという、一定の効果を得ることができる。
好ましい他の可塑剤として下記の可塑剤が挙げられる。
多価アルコールエステル系の一つであるエチレングリコールエステル系の可塑剤:具体的には、エチレングリコールジアセテート、エチレングリコールジブチレート等のエチレングリコールアルキルエステル系の可塑剤、エチレングリコールジシクロプロピルカルボキシレート、エチレングリコールジシクロヘキルカルボキシレート等のエチレングリコールシクロアルキルエステル系の可塑剤、エチレングリコールジベンゾエート、エチレングリコールジ4−メトキシベンゾエート等のエチレングリコールアリールエステル系の可塑剤が挙げられる。これらアルキレート基、シクロアルキレート基、アリレート基は、同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキレート基、シクロアルキレート基、アリレート基のミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にエチレングリコール部も置換されていてもよく、エチレングリコールエステルの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
多価アルコールエステル系の一つであるグリセリンエステル系の可塑剤:具体的にはトリアセチン、トリブチリン、グリセリンジアセテートカプリレート、グリセリンオレートプロピオネート等のグリセリンアルキルエステル、グリセリントリシクロプロピルカルボキシレート、グリセリントリシクロヘキシルカルボキシレート等のグリセリンシクロアルキルエステル、ジグリセリンテトラアセチレート、ジグリセリンテトラプロピオネート、ジグリセリンアセテートトリカプリレート、ジグリセリンテトララウレート、等のジグリセリンアルキルエステル、ジグリセリンテトラシクロブチルカルボキシレート、ジグリセリンテトラシクロペンチルカルボキシレート等のジグリセリンシクロアルキルエステル等が挙げられる。これらアルキレート基、シクロアルキルカルボキシレート基は同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキレート基、シクロアルキルカルボキシレート基、アリレート基のミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にグリセリン、ジグリセリン部も置換されていてもよく、グリセリンエステル、ジグリセリンエステルの部分構造がポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
その他の多価アルコールエステル系の可塑剤としては、具体的には特開2003−12823号公報の段落30〜33記載の多価アルコールエステル系可塑剤が挙げられる。
多価カルボン酸エステル系の一つであるジカルボン酸エステル系の可塑剤:具体的には、ジドデシルマロネート(C1)、ジオクチルアジペート(C4)、ジブチルセバケート(C8)等のアルキルジカルボン酸アルキルエステル系の可塑剤、ジシクロペンチルサクシネート、ジシクロヘキシルアジーペート等のアルキルジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニルサクシネート、ジ4−メチルフェニルグルタレート等のアルキルジカルボン酸アリールエステル系の可塑剤、ジヘキシル−1,4−シクロヘキサンジカルボキシレート、ジデシルビシクロ[2.2.1]ヘプタン−2,3−ジカルボキシレート等のシクロアルキルジカルボン酸アルキルエステル系の可塑剤、ジシクロヘキシル−1,2−シクロブタンジカルボキシレート、ジシクロプロピル−1,2−シクロヘキシルジカルボキシレート等のシクロアルキルジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニル−1,1−シクロプロピルジカルボキシレート、ジ2−ナフチル−1,4−シクロヘキサンジカルボキシレート等のシクロアルキルジカルボン酸アリールエステル系の可塑剤、ジエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート等のアリールジカルボン酸アルキルエステル系の可塑剤、ジシクロプロピルフタレート、ジシクロヘキシルフタレート等のアリールジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニルフタレート、ジ4−メチルフェニルフタレート等のアリールジカルボン酸アリールエステル系の可塑剤が挙げられる。これらアルコキシ基、シクロアルコキシ基は、同一でもあっても異なっていてもよく、また一置換でもよく、これらの置換基は更に置換されていてもよい。アルキル基、シクロアルキル基はミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にフタル酸の芳香環も置換されていてよく、ダイマー、トリマー、テトラマー等の多量体でもよい。またフタル酸エステルの部分構造が、ポリマーの一部、或いは規則的にポリマーへペンダントされていてもよく、酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
その他の多価カルボン酸エステル系の可塑剤としては、具体的にはトリドデシルトリカルバレート、トリブチル−meso−ブタン−1,2,3,4−テトラカルボキシレート等のアルキル多価カルボン酸アルキルエステル系の可塑剤、トリシクロヘキシルトリカルバレート、トリシクロプロピル−2−ヒドロキシ−1,2,3−プロパントリカルボキシレート等のアルキル多価カルボン酸シクロアルキルエステル系の可塑剤、トリフェニル2−ヒドロキシ−1,2,3−プロパントリカルボキシレート、テトラ3−メチルフェニルテトラヒドロフラン−2,3,4,5−テトラカルボキシレート等のアルキル多価カルボン酸アリールエステル系の可塑剤、テトラヘキシル−1,2,3,4−シクロブタンテトラカルボキシレート、テトラブチル−1,2,3,4−シクロペンタンテトラカルボキシレート等のシクロアルキル多価カルボン酸アルキルエステル系の可塑剤、テトラシクロプロピル−1,2,3,4−シクロブタンテトラカルボキシレート、トリシクロヘキシル−1,3,5−シクロヘキシルトリカルボキシレート等のシクロアルキル多価カルボン酸シクロアルキルエステル系の可塑剤、トリフェニル−1,3,5−シクロヘキシルトリカルボキシレート、ヘキサ4−メチルフェニル−1,2,3,4,5,6−シクロヘキシルヘキサカルボキシレート等のシクロアルキル多価カルボン酸アリールエステル系の可塑剤、トリドデシルベンゼン−1,2,4−トリカルボキシレート、テトラオクチルベンゼン−1,2,4,5−テトラカルボキシレート等のアリール多価カルボン酸アルキルエステル系の可塑剤、トリシクロペンチルベンゼン−1,3,5−トリカルボキシレート、テトラシクロヘキシルベンゼン−1,2,3,5−テトラカルボキシレート等のアリール多価カルボン酸シクロアルキルエステル系の可塑剤トリフェニルベンゼン−1,3,5−テトラカルトキシレート、ヘキサ4−メチルフェニルベンゼン−1,2,3,4,5,6−ヘキサカルボキシレート等のアリール多価カルボン酸アリールエステル系の可塑剤が挙げられる。これらアルコキシ基、シクロアルコキシ基は、同一でもあっても異なっていてもよく、また1置換でもよく、これらの置換基は更に置換されていてもよい。アルキル基、シクロアルキル基はミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にフタル酸の芳香環も置換されていてよく、ダイマー、トリマー、テトラマー等の多量体でもよい。またフタル酸エステルの部分構造がポリマーの一部、或いは規則的にポリマーへペンダントされていてもよく、酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。
上記多価カルボン酸と1価のアルコールからなるエステル系可塑剤の中では、ジアルキルカルボン酸アルキルエステルが好ましく、具体的には上記のジオクチルアジペート、トリデシルトリカルバレートが挙げられる。
本発明に用いられる可塑剤としては、更にリン酸エステル系可塑剤、炭水化物エステル系可塑剤、ポリマー可塑剤等が挙げられる。
リン酸エステル系の可塑剤:具体的には、トリアセチルホスフェート、トリブチルホスフェート等のリン酸アルキルエステル、トリシクロベンチルホスフェート、シクロヘキシルホスフェート等のリン酸シクロアルキルエステル、トリフェニルホスフェート、トリクレジルホスフェート、クレジルフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート、トリナフチルホスフェート、トリキシリルオスフェート、トリスオルト−ビフェニルホスフェート等のリン酸アリールエステルが挙げられる。これらの置換基は同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキル基、シクロアルキル基、アリール基のミックスでもよく、また置換基同志が共有結合で結合していてもよい。
またエチレンビス(ジメチルホスフェート)、ブチレンビス(ジエチルホスフェート)等のアルキレンビス(ジアルキルホスフェート)、エチレンビス(ジフェニルホスフェート)、プロピレンビス(ジナフチルホスフェート)等のアルキレンビス(ジアリールホスフェート)、フェニレンビス(ジブチルホスフェート)、ビフェニレンビス(ジオクチルホスフェート)等のアリーレンビス(ジアルキルホスフェート)、フェニレンビス(ジフェニルホスフェート)、ナフチレンビス(ジトルイルホスフェート)等のアリーレンビス(ジアリールホスフェート)等のリン酸エステルが挙げられる。これらの置換基は同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキル基、シクロアルキル基、アリール基のミックスでもよく、また置換基同志が共有結合で結合していてもよい。
更にリン酸エステルの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。上記化合物の中では、リン酸アリールエステル、アリーレンビス(ジアリールホスフェート)が好ましく、具体的にはトリフェニルホスフェート、フェニレンビス(ジフェニルホスフェート)が好ましい。
炭水化物エステル系可塑剤:炭水化物とは、糖類がピラノース又はフラノース(6員環又は5員環)の形態で存在する単糖類、二糖類又は三糖類を意味する。炭水化物の非限定的例としては、グルコース、サッカロース、ラクトース、セロビオース、マンノース、キシロース、リボース、ガラクトース、アラビノース、フルクトース、ソルボース、セロトリオース及びラフィノースなどが挙げられる。炭水化物エステルとは、炭水化物の水酸基とカルボン酸が脱水縮合してエステル化合物を形成したものを指し、詳しくは、炭水化物の脂肪族カルボン酸エステル、或いは芳香族カルボン酸エステルを意味する。脂肪族カルボン酸として、例えば酢酸、プロピオン酸等を挙げることができ、芳香族カルボン酸として、例えば安息香酸、トルイル酸、アニス酸等を挙げることができる。炭水化物は、その種類に応じた水酸基の数を有するが、水酸基の一部とカルボン酸が反応してエステル化合物を形成しても、水酸基の全部とカルボン酸が反応してエステル化合物を形成してもよい。本発明においては、水酸基の全部とカルボン酸が反応してエステル化合物を形成するのが好ましい。
炭水化物エステル系可塑剤として、具体的には、グルコースペンタアセテート、グルコースペンタプロピオネート、グルコースペンタブチレート、サッカロースオクタアセテート、サッカロースオクタベンゾエート等を好ましく挙げることができ、この内、サッカロースオクタベンゾエートがより好ましい。
ポリマー可塑剤:具体的には、脂肪族炭化水素系ポリマー、脂環式炭化水素系ポリマー、ポリアクリル酸エチル、ポリメタクリル酸メチル、メタクリル酸メチルとメタクリル酸−2−ヒドロキシエチルとの共重合体(例えば、共重合比1:99〜99:1の間の任意の比率)等のアクリル系ポリマー、ポリビニルイソブチルエーテル、ポリN−ビニルピロリドン等のビニル系ポリマー、メタクリル酸メチルとN−ビニルピロリドンの共重合体(例えば、共重合比1:99〜99:1の間の任意の比率)、ポリスチレン、ポリ4−ヒドロキシスチレン等のスチレン系ポリマー、メタクリル酸メチルと4−ヒドロキシスチレンの共重合体(例えば、共重合比1:99〜99:1の間の任意の比率)、ポリブチレンサクシネート、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリアミド、ポリウレタン、ポリウレア等が挙げられる。数平均分子量は1,000〜500,000程度が好ましく、特に好ましくは、5000〜200000である。1000以下では揮発性が大きくなり、500000を超えると可塑化能力が低下する傾向があり、セルロースエステル光学フィルムの機械的性質に悪影響を及ぼす可能性がある。これらポリマー可塑剤は1種のモノマーの繰り返し単位からなる単独重合体でも、複数のモノマーの繰り返し構造体を有する共重合体でもよい。また、上記ポリマーを2種以上併用して用いてもよい。
なお本発明のセルロースエステル光学フィルムは、着色すると光学用途として影響を与えるため、好ましくは黄色度(イエローインデックス、YI)が3.0以下、より好ましくは1.0以下である。黄色度はJIS−K7103に基づいて測定することができる。
可塑剤は、前述のセルロースエステル同様に、製造時から持ち越される、或いは保存中に発生する残留酸、無機塩、有機低分子等の不純物を除去することが好ましく、より好ましくは純度99%以上である。残留酸、及び水としては、0.01〜100ppmであることが好ましく、セルロース樹脂を溶融製膜する上で、熱劣化を抑制でき、製膜安定性、フィルムの光学物性、機械物性が向上する。
(紫外線吸収剤)
本発明の光学フィルムには、偏光子や表示装置の紫外線に対する劣化防止のために、本発明に係る紫外線吸収性ポリマー以外の紫外線吸収剤を添加することができる。このような紫外線吸収剤としては、偏光子や表示装置の紫外線に対する劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、且つ液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。
例えば、サリチル酸系紫外線吸収剤(フェニルサリシレート、p−tert−ブチルサリシレート等)或いはベンゾフェノン系紫外線吸収剤(2,4−ジヒドロキシベンゾフェノン、2,2′−ジヒドロキシ−4,4′−ジメトキシベンゾフェノン等)、ベンゾトリアゾール系紫外線吸収剤(2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−tert−アミルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−ドデシル−5′−メチルフェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′−tert−ブチル−5′−(2−オクチルオキシカルボニルエチル)−フェニル)−5−クロロベンゾトリアゾール、2−(2′−ヒドロキシ−3′−(1−メチル−1−フェニルエチル)−5′−(1,1,3,3−テトラメチルブチル)−フェニル)ベンゾトリアゾール、2−(2′−ヒドロキシ−3′,5′−ジ−(1−メチル−1−フェニルエチル)−フェニル)ベンゾトリアゾール等)、シアノアクリレート系紫外線吸収剤(2′−エチルヘキシル−2−シアノ−3,3−ジフェニルアクリレート、エチル−2−シアノ−3−(3′,4′−メチレンジオキシフェニル)−アクリレート等)、トリアジン系紫外線吸収剤、或いは特開昭58−185677号、同59−149350号記載の化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。
本発明に用いられる紫外線吸収剤としては、透明性が高く、偏光板や液晶素子の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やトリアジン系紫外線吸収剤が好ましく、分光吸収スペクトルがより適切なベンゾトリアゾール系紫外線吸収剤が特に好ましい。
本発明に用いられる紫外線吸収剤と共に特に好ましく用いられる従来公知のベンゾトリアゾール系紫外線吸収剤は、ビス化したものであってもよく、例えば、6,6′−メチレンビス(2−(2H−ベンゾ[d][1,2,3]トリアゾール−2−イル))−4−(2,4,4−トリメチルペンタン−2−イル)フェノール、6,6′−メチレンビス(2−(2H−ベンゾ[d][1,2,3]トリアゾール−2−イル))−4−(2−ヒドロキシエチル)フェノール等が挙げられる。
また、本発明においては、紫外線吸収性ポリマーと組み合わせて用いることが好ましい。
市販品としては、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)360、チヌビン(TINUVIN)900、チヌビン(TINUVIN)928(いずれもチバ・ジャパン社製)、LA−31((株)ADEKA製)、RUVA−100(大塚化学社製)、Sumisorb250(住友化学社製)を用いることができる。
ベンゾフェノン系化合物の具体例として、2,4−ジヒドロキシベンゾフェノン、2,2′−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン、ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されるものではない。
本発明においては、紫外線吸収剤は0.1〜20質量%添加することが好ましく、更に0.5〜10質量%添加することが好ましく、更に1〜5質量%添加することが好ましい。これらは2種以上を併用してもよい。
(微粒子)
本発明の光学フィルムには、滑り性を付与するためにマット剤等の微粒子を添加することができ、微粒子としては、無機化合物の微粒子または有機化合物の微粒子が挙げられる。マット剤はできるだけ微粒子のものが好ましく、微粒子としては、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子微粒子を挙げることができる。中でも、二酸化ケイ素がフィルムのヘイズを低くできるので好ましい。二酸化ケイ素のような微粒子は有機物により表面処理されている場合が多いが、このようなものはフィルムのヘイズを低下できるため好ましい。
表面処理で好ましい有機物としては、ハロシラン類、アルコキシシラン類、シラザン、シロキサンなどが挙げられる。微粒子の平均粒径が大きい方が滑り性効果は大きく、反対に平均粒径の小さい方は透明性に優れる。また、微粒子の平均粒径は0.005〜1.0μmの範囲が好ましい。これらは一次粒子であっても二次粒子であってもよい。特に好ましい微粒子の平均粒径は5〜50nmが好ましく、更に好ましくは7〜14nmである。平均粒径は、例えば、走査型電子顕微鏡により観察して無作為に粒子200個の長径を測定し、平均粒径を求めることができる。これらの微粒子はセルロースエステル光学フィルム中では、セルロースエステル光学フィルム表面に0.01〜1.0μmの凹凸を生成させる為に好ましく用いられる。微粒子のセルロースエステル中の含有量はセルロースエステルに対して0.005〜5質量%が好ましい。
二酸化ケイ素の微粒子としては、日本アエロジル(株)製のアエロジル(AEROSIL)200、200V、300、R972、R972V、R974、R202、R812、OX50、TT600、NAX50、日本触媒(株)製のSEAHOSTAR KE−P100、SEAHOSTAR KE−P30等を挙げることができ、好ましくはアエロジル200V、R972、R972V、R974、R202、R812、NAX50、KE−P100、KE−P30である。これらの微粒子は2種以上併用してもよい。2種以上併用する場合、任意の割合で混合して使用することができる。この場合、平均粒径や材質の異なる微粒子、例えば、アエロジル200VとR972Vを質量比で0.1:99.9〜99.9:0.1の範囲で使用できる。
上記マット剤として用いられるフィルム中の微粒子の存在は、別の目的としてフィルムの強度向上のために用いることもできる。また、フィルム中の上記微粒子の存在は、本発明の光学フィルムを構成するセルロースエステル自身の配向性を向上することも可能である。
(その他添加剤)
本発明の光学フィルムは、添加剤として前述の可塑剤、紫外線吸収剤、微粒子以外に、更に粘度低下剤、レターデーション制御剤、酸掃去剤、染料、顔料等を含んでも構わない。
(粘度低下剤)
本発明において、溶融粘度を低減する目的として、水素結合性溶媒を添加することができる。水素結合性溶媒とは、J.N.イスラエルアチビリ著、「分子間力と表面力」(近藤保、大島広行訳、マグロウヒル出版、1991年)に記載されるように、電気的に陰性な原子(酸素、窒素、フッ素、塩素)と電気的に陰性な原子と共有結合した水素原子間に生ずる、水素原子媒介「結合」を生ずることができるような有機溶媒、すなわち、結合モーメントが大きく、かつ水素を含む結合、例えば、O−H(酸素水素結合)、N−H(窒素水素結合)、F−H(フッ素水素結合)を含むことで近接した分子同士が配列できるような有機溶媒をいう。これらは、セルロース樹脂の分子間水素結合よりもセルロースとの間で強い水素結合を形成する能力を有するもので、本発明で行う溶融流延法においては、用いるセルロース樹脂単独のガラス転移温度よりも、水素結合性溶媒の添加によりセルロース樹脂組成物の溶融温度を低下することができる、または同じ溶融温度においてセルロース樹脂よりも水素結合性溶媒を含むセルロース樹脂組成物の溶融粘度を低下することができる。
水素結合性溶媒としては、例えば、アルコール類:例えば、メタノール、エタノール、プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、2−エチルヘキサノール、ヘプタノール、オクタノール、ノナノール、ドデカノール、エチレングリコール、プロピレングリコール、ヘキシレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ヘキシルセロソルブ、グリセリン等、ケトン類:アセトン、メチルエチルケトン等、カルボン酸類:例えば蟻酸、酢酸、プロピオン酸、酪酸等、エーテル類:例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン等、ピロリドン類:例えば、N−メチルピロリドン等、アミン類:例えば、トリメチルアミン、ピリジン等、等を例示することができる。これら水素結合性溶媒は、単独で、又は2種以上混合して用いることができる。これらのうちでも、アルコール、ケトン、エーテル類が好ましく、特にメタノール、エタノール、プロパノール、イソプロパノール、オクタノール、ドデカノール、エチレングリコール、グリセリン、アセトン、テトラヒドロフランが好ましい。さらに、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、グリセリン、アセトン、テトラヒドロフランのような水溶性溶媒が特に好ましい。ここで水溶性とは、水100gに対する溶解度が10g以上のものをいう。
(レターデーション制御剤)
本発明の光学フィルムにおいて配向膜を形成して液晶層を設け、セルロースエステルフィルムと液晶層由来のレターデーションを複合化して光学補償能を付与した偏光板加工を行ってもよい。レターデーションを制御するために添加する化合物は、欧州特許第911,656A2号明細書に記載されているような、二つ以上の芳香族環を有する芳香族化合物をレターデーション制御剤として使用することもできる。また2種類以上の芳香族化合物を併用してもよい。該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に不飽和ヘテロ環である。中でも1,3,5−トリアジン環を有する化合物が特に好ましい。
(酸掃去剤)
酸掃去剤とは製造時から持ち込まれるセルロースエステル中に残留する酸(プロトン酸)をトラップする役割を担う剤である。また、セルロースエステルを溶融するとポリマー中の水分と熱により側鎖の加水分解が促進し、セルロースアセテートプロピオネートならば酢酸やプロピオン酸が生成する。酸と化学的に結合できればよく、エポキシ、3級アミン、エーテル構造等を有する化合物が挙げられるが、これに限定されるものでない。
具体的には、米国特許第4,137,201号明細書に記載されている酸掃去剤としてのエポキシ化合物を含んでなるのが好ましい。このような酸掃去剤としてのエポキシ化合物は当該技術分野において既知であり、種々のポリグリコールのジグリシジルエーテル、特にポリグリコール1モル当たりに約8〜40モルのエチレンオキシドなどの縮合によって誘導されるポリグリコール、グリセロールのジグリシジルエーテルなど、金属エポキシ化合物(例えば、塩化ビニルポリマー組成物において、及び塩化ビニルポリマー組成物と共に、従来から利用されているもの)、エポキシ化エーテル縮合生成物、ビスフェノールAのジグリシジルエーテル(即ち、4,4′−ジヒドロキシジフェニルジメチルメタン)、エポキシ化不飽和脂肪酸エステル(特に、2〜22この炭素原子の脂肪酸の4〜2個程度の炭素原子のアルキルのエステル(例えば、ブチルエポキシステアレート)など)、及び種々のエポキシ化長鎖脂肪酸トリグリセリドなど(例えば、エポキシ化大豆油などの組成物によって代表され、例示され得る、エポキシ化植物油及び他の不飽和天然油(これらは時としてエポキシ化天然グリセリドまたは不飽和脂肪酸と称され、これらの脂肪酸は一般に12〜22個の炭素原子を含有している))が含まれる。特に好ましいのは、市販のエポキシ基含有エポキシド樹脂化合物 EPON 815c、及び一般式(9)の他のエポキシ化エーテルオリゴマー縮合生成物である。
Figure 2009114430
上式中、nは0〜12に等しい。用いることができる更に可能な酸掃去剤としては、特開平5−194788号公報の段落87〜105に記載されているものが含まれる。
酸掃去剤は、前述のセルロースエステル同様に、製造時から持ち越される、或いは保存中に発生する残留酸、無機塩、有機低分子等の不純物を除去することが好ましく、より好ましくは純度99%以上である。残留酸、及び水としては、0.01〜100ppmであることが好ましく、セルロース樹脂を溶融製膜する上で、熱劣化を抑制でき、製膜安定性、フィルムの光学物性、機械物性が向上する。
なお酸掃去剤は酸捕捉剤、酸捕獲剤、酸キャッチャー等と称されることもあるが、本発明においてはこれらの呼称による差異なく用いることができる。
(光学フィルムの製造方法)
セルロースエステル系光学フィルムの製造法は主に二つあり、その一つである溶液流延法は、セルロースエステルを溶媒に溶解した溶液を流延し、溶媒を蒸発、乾燥することによって製膜するものであり、この方法はフィルム内部に残存する溶媒を除去しなければならないため、乾燥ライン、乾燥エネルギー、及び蒸発した溶媒の回収及び再生装置等、製造ラインへの設備投資及び製造コストが膨大になっており、これらを削減することが重要な課題となっている。これに対し溶融流延法による製膜では、溶液流延としてセルロースエステルの溶液を調整するための溶媒を用いないため、前述の乾燥負荷、設備負荷が生じない。従って、本発明では溶融流延法を用いる。
本発明者らは鋭意検討の結果、特定量のアセチル基とプロピオニル基のバランスをとることにより、膜物性の劣化を抑え、しかも溶融流延可能な溶融粘度を達成でき、更に紫外線吸収性ポリマーを加えることで、幅方向(横方向)に1.2倍以上の延伸倍率で延伸しても面内および厚み方向のレターデーション値がゼロ近い光学フィルムを得られることを見出した。
(溶融流延法)
フィルム構成材料は溶融及び製膜工程において、揮発成分が少ないまたは発生しないことが求められる。これは加熱溶融時に発泡して、フィルム内部の欠陥やフィルム表面の平面性劣化を削減または回避するためである。
フィルム構成材料が溶融されるときの揮発成分の含有量は、5質量%以下、好ましくは1.0質量%以下、さらに好ましくは0.5質量%以下、さらにより好ましくは0.2質量%以下であることが望まれる。本発明においては、示差熱質量測定装置(セイコー電子工業社製TG/DTA200)を用いて、30℃から250℃までの加熱減量を求め、その量を揮発成分の含有量としている。
用いるフィルム構成材料は、前記水分や前記溶媒等に代表される揮発成分を、製膜する前に、または加熱時に除去することが好ましい。除去する方法は、所謂公知の乾燥方法が適用でき、加熱法、減圧法、加熱減圧法等の方法で行うことができ、空気中または不活性ガスとして窒素を選択した雰囲気下で行ってもよい。これらの公知の乾燥方法を行うとき、フィルム構成材料が分解しない温度領域で行うことがフィルムの品質上好ましい。
製膜前に乾燥することにより、揮発成分の発生を削減することができ、樹脂単独、または樹脂とフィルム構成材料の内、樹脂以外の少なくとも1種以上の混合物または相溶物に分割して乾燥することもできる。乾燥温度は100℃以上が好ましい。乾燥する材料にガラス転移温度を有する物が存在するときには、そのガラス転移温度よりも高い乾燥温度に加熱すると、材料が融着して取り扱いが困難になることがあるので、乾燥温度は、ガラス転移温度以下であることが好ましい。複数の物質がガラス転移温度を有する場合は、ガラス転移温度が低い方のガラス転移温度を基準とする。より好ましくは100℃以上、(ガラス転移温度−5)℃以下、さらに好ましくは110℃以上、(ガラス転移温度−20)℃以下である。乾燥時間は、好ましくは0.5〜24時間、より好ましくは1〜18時間、さらに好ましくは1.5〜12時間である。乾燥温度が低くなりすぎると揮発成分の除去率が低くなり、また乾燥するのに時間にかかり過ぎることになる。また、乾燥工程は2段階以上にわけてもよく、例えば、乾燥工程が、材料の保管のための予備乾燥工程と、製膜する直前〜1週間前の間に行う直前乾燥工程を含むものであってもよい。
溶融流延製膜法は、加熱溶融する成形法に分類され、溶融押出し成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などを適用できる。これらの中で、機械的強度及び表面精度などに優れる光学フィルムを得るためには、溶融押出し法が優れている。以下、セルロースエステルの溶融押出し法を例にとり本発明のフィルムの製造方法について説明するが、本発明はこれに限定されるものではない。
図1は、本発明の光学フィルムの製造方法を実施する装置の全体構成を示す概略フローシートであり、図2は、流延ダイから冷却ロール部分の拡大図である。
図1と図2において、本発明による光学フィルムの製造方法は、セルロース樹脂などのフィルム材料を混合した後、押出し機1を用いて、流延ダイ4から第1冷却ロール5上に溶融押し出し、第1冷却ロール5に外接させるとともに、さらに、第2冷却ロール7、第3冷却ロール8の合計3本の冷却ロールに順に外接させて、冷却固化してフィルム10とする。ついで、剥離ロール9によって剥離したフィルム10を、ついで延伸装置12によりフィルムの両端部を把持して幅方向に延伸した後、巻取り装置16により巻き取る。また、平面性を矯正するために溶融フィルムを第1冷却ロール5表面に挟圧するタッチロール6が設けられている。このタッチロール6は表面が弾性を有し、第1冷却ロール5との間でニップを形成している。タッチロール6についての詳細は後述する。
本発明による光学フィルムの製造方法において、溶融押し出しの条件は、他のポリエステルなどの熱可塑性樹脂に用いられる条件と同様にして行うことができる。材料は予め乾燥させておくことが好ましい。真空または減圧乾燥機や除湿熱風乾燥機などで水分を1000ppm以下、好ましくは200ppm以下に乾燥させることが望ましい。
例えば、熱風や真空または減圧下で乾燥したセルロースエステル系樹脂を押出し機1を用いて、押し出し温度200〜300℃程度で溶融し、リーフディスクタイプのフィルター2などで濾過し、異物を除去する。
異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、ろ過精度を調整できる。ろ過精度を粗、密と連続的に複数回繰り返した多層体としたものが好ましい。また、ろ過精度を順次上げていく構成としたり、ろ過精度の粗、密を繰り返す方法をとることで、フィルターのろ過寿命が延び、異物やゲル等の補足精度も向上できるので好ましい。
供給ホッパー(図示略)から押出し機1へ導入する際は、真空下または減圧下や不活性ガス雰囲気下にして、酸化分解等を防止することが好ましい。
可塑剤などの添加剤を予め混合しない場合は、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサー3などの混合装置を用いることが好ましい。
本発明において、セルロース樹脂と、その他必要により添加される安定化剤等の添加剤は、溶融する前に混合しておくことが好ましい。セルロース樹脂と安定化剤を最初に混合することがさらに好ましい。混合は、混合機等により行ってもよく、また、前記したようにセルロース樹脂調製過程において混合してもよい。混合機を使用する場合は、V型混合機、円錐スクリュー型混合機、水平円筒型混合機、ヘンシェルミキサー、リボンミキサー等、一般的な混合機を用いることができる。
上記のようにフィルム構成材料を混合した後に、その混合物を押出し機1を用いて直接溶融して製膜するようにしてもよいが、一旦、フィルム構成材料をペレット化した後、該ペレットを押出し機1で溶融して製膜するようにしてもよい。また、フィルム構成材料が、融点の異なる複数の材料を含む場合には、融点の低い材料のみが溶融する温度で一旦、いわゆるおこし状の半溶融物を作製し、半溶融物を押出し機1に投入して製膜することも可能である。フィルム構成材料に熱分解しやすい材料が含まれる場合には、溶融回数を減らす目的で、ペレットを作製せずに直接製膜する方法や、上記のようなおこし状の半溶融物を作ってから製膜する方法が好ましい。
押出し機1は、市場で入手可能な種々の押出し機を使用可能であるが、溶融混練押出し機が好ましく、単軸押出し機でも2軸押出し機でも良い。フィルム構成材料からペレットを作製せずに、直接製膜を行う場合、適当な混練度が必要であるため2軸押出し機を用いることが好ましいが、単軸押出し機でも、スクリューの形状をマドック型、ユニメルト型、ダルメージ等の混練型のスクリューに変更することにより、適度の混練が得られるので、使用可能である。フィルム構成材料として、一旦、ペレットやおこし状の半溶融物を使用する場合は、単軸押出し機でも2軸押出し機でも使用可能である。
押出し機1内および押出した後の冷却工程は、窒素ガス等の不活性ガスで置換するか、或いは減圧することにより、酸素の濃度を下げることが好ましい。
押出し機1内のフィルム構成材料の溶融温度は、フィルム構成材料の粘度や吐出量、製造するシートの厚み等によって好ましい条件が異なるが、一般的には、フィルムのガラス転移温度Tgに対して、Tg以上、Tg+100℃以下、好ましくはTg+10℃以上、Tg+90℃以下である。溶融温度は、通常150〜300℃の範囲、好ましくは180〜270℃、さらに好ましくは200〜270℃の範囲である。押出し時の溶融粘度は、1〜10000Pa・s、好ましくは10〜1000Pa・sである。また、押出し機1内でのフィルム構成材料の滞留時間は短い方が好ましく、10分以内、好ましくは5分以内、より好ましくは3分以内である。滞留時間は、押出し機1の種類、押出す条件にも左右されるが、材料の供給量やL/D、スクリュー回転数、スクリューの溝の深さ等を調整することにより短縮することが可能である。
押出し機1のスクリューの形状や回転数等は、フィルム構成材料の粘度や吐出量等により適宜選択される。本発明において押出し機1でのせん断速度は、1/秒〜10000/秒、好ましくは5/秒〜1000/秒、より好ましくは10/秒〜100/秒である。
本発明に使用できる押出し機1としては、一般的にプラスチック成形機として入手可能である。
押出し機1から押し出されたフィルム構成材料は、流延ダイ4に送られ、流延ダイ4のスリットからフィルム状に押し出される。流延ダイ4はシートやフィルムを製造するために用いられるものであれば特に限定はされない。流延ダイ4の材質としては、ハードクロム、炭化クロム、窒化クロム、炭化チタン、炭窒化チタン、窒化チタン、超鋼、セラミック(タングステンカーバイド、酸化アルミ、酸化クロム)などを溶射もしくはメッキし、表面加工としてバフ、#1000番手以降の砥石を用いるラッピング、#1000番手以上のダイヤモンド砥石を用いる平面切削(切削方向は樹脂の流れ方向に垂直な方向)、電解研磨、電解複合研磨などの加工を施したものなどがあげられる。流延ダイ4のリップ部の好ましい材質は、流延ダイ4と同様である。またリップ部の表面精度は0.5S以下が好ましく、0.2S以下がより好ましい。
この流延ダイ4のスリットは、そのギャップが調整可能なように構成されている。これを図3に示す。流延ダイ4のスリット32を形成する一対のリップのうち、一方は剛性の低い変形しやすいフレキシブルリップ33であり、他方は固定リップ34である。そして、多数のヒートボルト35が流延ダイ4の幅方向すなわちスリット32の長さ方向に一定ピッチで配列されている。各ヒートボルト5には、埋め込み電気ヒータ37と冷却媒体通路とを具えたブロック36が設けられ、各ヒートボルト35が各ブロック36を縦に貫通している。ヒートボルト35の基部はダイ本体31に固定され、先端はフレキシブルリップ33の外面に当接している。そしてブロック36を常時空冷しながら、埋め込み電気ヒータ37の入力を増減してブロック36の温度を上下させ、これによりヒートボルト35を熱伸縮させて、フレキシブルリップ33を変位させてフィルムの厚さを調整する。ダイ後流の所要箇所に厚さ計を設け、これによって検出されたウェブ厚さ情報を制御装置にフィードバックし、この厚さ情報を制御装置で設定厚み情報と比較し、同装置から来る補正制御量の信号によってヒートボルトの発熱体の電力又はオン率を制御するようにすることもできる。ヒートボルトは、好ましくは、長さ20〜40cm、直径7〜14mmを有し、複数、例えば数十本のヒートボルトが、好ましくはピッチ20〜40mmで配列されている。ヒートボルトの代わりに、手動で軸方向に前後動させることによりスリットギャップを調節するボルトを主体とするギャップ調節部材を設けてもよい。ギャップ調節部材によって調節されたスリットギャップは、通常200〜3000μm、好ましくは500〜2000μmである。
第1乃至第3冷却ロールは、肉厚が20〜30mm程度のシームレスな鋼管製で、表面が鏡面に仕上げられている。その内部には、冷却液または加熱媒体を流す配管が配置されており、配管を流れる冷却液または加熱媒体によってロール上のフィルムから熱を吸収または加熱できるように構成されている。
一方、第1冷却ロール5に当接するタッチロール6は、表面が弾性を有し、第1冷却ロール5への押圧力によって第1冷却ロール5の表面に沿って変形し、第1ロール5との間にニップを形成する。
タッチロールは挟圧回転体ともいう。タッチロール6としては、登録特許3194904号公報、登録特許3422798号公報、特開2002−36332号公報、特開2002−36333号公報などで開示されているタッチロールを好ましく用いることができる。これらは市販されているものを用いることもできる。以下これらについて、さらに詳細に説明する。
図4は、挟圧回転体の一例を示す断面図である。(タッチロール6の第1の例(以下、タッチロールA)の概略断面図)を示す。
図に示すように、タッチロールAは、可撓性の金属スリーブ41の内部に弾性ローラ42を配したものである。
金属スリーブ41は厚さ0.3mmのステンレス製であり、可撓性を有する。金属スリーブ41が薄すぎると強度が不足し、逆に厚すぎると弾性が不足する。これらのことから、金属スリーブ41の厚さとしては、0.1mm以上1.5mm以下が好ましい。弾性ローラ42は、軸受を介して回転自在な金属製の内筒43の表面にゴム44を設けてロール状としたものである。そして、タッチロールAが第1冷却ロール5に向けて押圧されると、弾性ローラ42が金属スリーブ41を第1冷却ロール5に押しつけ、金属スリープ41及び弾性ローラ42は第1冷却ロール5の形状になじんだ形状に対応しつつ変形し、第1冷却ロールとの間にニップを形成する。金属スリーブ41の内部で弾性ローラ42との間に形成される空間には、冷却水または加熱媒体45が流される。
図5は挟圧回転体の第2の例(以下、タッチロールB)を示す回転軸に垂直な平面での断面図である。
図6は挟圧回転体の第2の例(タッチロールB)の回転軸を含む平面の一例を示す断面図である。
図5、図6において、タッチロールBは、可撓性を有する、シームレスなステンレス鋼管製(厚さ4mm)の外筒51と、この外筒51の内側に同一軸心状に配置された高剛性の金属内筒52とから概略構成されている。外筒51と内筒52との間の空間53には、冷却液または加熱媒体54が流される。詳しくは、タッチロールBは、両端の回転軸55a,55bに外筒支持フランジ56a,56bが取付けられ、これら両外筒支持フランジ56a,56bの外周部間に薄肉金属外筒51が取付けられている。また、一方の回転軸55aの軸心部に形成されて流体戻り通路57を形成する流体排出孔58内に、流体供給管59が同一軸心状に配設され、この流体供給管59が薄肉金属外筒51内の軸心部に配置された流体軸筒60に接続固定されている。この流体軸筒60の両端部に内筒支持フランジ61a,61bがそれぞれ取り付けられ、これら内筒支持フランジ61a,61bの外周部間から他端側外筒支持フランジ56bにわたって約15〜20mm程度の肉厚を有する金属内筒52が取付けられている。そしてこの金属内筒52と薄肉金属外筒51との間に、たとえば10mm程度の冷却液または加熱媒体の流送空間53が形成され、また金属内筒52に両端部近傍には、流送空間53と内筒支持フランジ61a,61b外側の中間通路62a,62bとを連通する流出口52aおよび流入口52bがそれぞれ形成されている。
また外筒51は、ゴム弾性に近い柔軟性と可撓性、復元性をもたせるために、弾性力学の薄肉円筒理論が適用できる範囲内で薄肉化が図られている。この薄肉円筒理論で評価される可撓性は、肉厚t/ロール半径rで表わされており、t/rが小さいほど可撓性が高まる。このタッチロールBではt/r≦0.03の場合に可撓性が最適の条件となる。通常、一般的に使用されているタッチロールは、ロール径R=200〜500mm(ロール半径r=R/2)、ロール有効幅L=500〜1600mmで、r/L<1で横長の形状である。そして図6に示すように、たとえばロール径R=300mm、ロール有効幅L=1200mmの場合、肉厚tの適正範囲は150×0.03=4.5mm以下であるが、溶融シート幅を1300mmに対して平均線圧を100N/cmで挟圧する場合、同一形状のゴムロールと比較して、外筒51の肉厚を3mmとすることで相当ばね定数も等しく、外筒51と冷却ロールとのニップのロール回転方向のニップ幅kも約9mmで、このゴムロールのニップ幅約12mmとほぼ近い値を示し、同じような条件下で挟圧できることがわかる。なお、このニップ幅kにおけるたわみ量は0.05〜0.1mm程度である。
ここで、t/r≦0.03としたが、一般的なロール径R=200〜500mmの場合では、特に2mm≦t≦5mmの範囲とすると、可撓性も十分に得られ、また機械加工による薄肉化も容易に実施でき、極めて実用的な範囲となる。
この2mm≦t≦5mmの換算値は、一般的なロール径に対して0.008≦t/r≦0.05となるが、実用にあたってはt/r≒0.03の条件下でロール径に比例して肉厚も大きくするとよい。たとえばロール径:R=200ではt=2〜3mm、ロール径:R=500ではt=4〜5mmの範囲で選択する。
このタッチロールA、Bは不図示の付勢手段により第1冷却ロールに向けて付勢される。その付勢手段の付勢力をF、ニップにおけるフィルムの、第1冷却ロール5の回転軸に沿った方向の幅Wを除した値F/W(線圧)は、10N/cm以上150N/cmに設定される。本実施の形態によれば、タッチロールA,Bと第1冷却ロール5との間にニップが形成され、当該ニップをフィルムが通過する間に平面性を矯正すればよい。従って、タッチロールが剛体で構成され、第1冷却ロールとの間にニップが形成されない場合と比べて、小さい線圧で長時間かけてフィルムを挟圧するので、平面性をより確実に矯正することができる。すなわち、線圧が10N/cmよりも小さいと、ダイラインを十分に解消することができなくなる。逆に、線圧が150N/cmよりも大きいと、フィルムがニップを通過しにくくなり、フィルムの厚さにかえってムラができてしまう。
また、タッチロールA,Bの表面を金属で構成することにより、タッチロールの表面がゴムである場合よりもタッチロールA,Bの表面を平滑にすることができるので、平滑性の高いフィルムを得ることができる。なお、弾性ローラ42の弾性体44の材質としては、エチレンプロピレンゴム、ネオプレンゴム、シリコンゴム等を用いることができる。
さて、タッチロール6によってダイラインを良好に解消するためには、タッチロール6がフィルムを挟圧するときのフィルムの粘度が適切な範囲であることが重要となる。また、セルロース樹脂は温度による粘度の変化が比較的大きいことが知られている。従って、タッチロール6が光学フィルムを挟圧するときの粘度を適切な範囲に設定するためには、タッチロール6が光学フィルムを挟圧するときのフィルムの温度を適切な範囲に設定することが重要となる。そして本発明者は、光学フィルムのガラス転移温度をTgとしたとき、フィルムがタッチロール6に挟圧される直前のフィルムの温度Tを、Tg<T<Tg+110℃を満たすように設定すればよいことを見いだした。フィルム温度TがTgよりも低いとフィルムの粘度が高くなり、逆に、フィルムの温度TがTg+110℃よりも高いと、フィルム表面とロールが均一に接着せず、ダイラインを矯正するのが難しくなる可能性がある。好ましくはTg+10℃<T<Tg+90℃、さらに好ましくはTg+20℃<T<Tg+70℃である。タッチロール6がセルロースフィルムを挟圧するときのフィルムの温度を適切な範囲に設定するには、流延ダイ4から押し出された溶融物が第1冷却ロール5に接触する位置P1から第1冷却ロール5とタッチロール6とのニップの位置P2まで、第1冷却ロール5の回転方向に沿った長さLを調整すればよい。またはタッチロール6、第1冷却ロール5、第2冷却ロール7、及び第3冷却ロール8の表面温度をそれぞれ適切に制御すればよい。前記タッチロール6、第1冷却ロール5の表面温度は、通常60〜230℃の範囲が好ましく、より好ましくは100〜150℃の範囲であり、第2冷却ロール7の温度は、通常30〜150℃の範囲が好ましく、より好ましくは60〜130℃の範囲である。
本発明において、第1ロール5、第2ロール6に好ましい材質は、炭素鋼、ステンレス鋼、樹脂、などが挙げられる。また、表面精度は高くすることが好ましく表面粗さとして0.3S以下、より好ましくは0.01S以下とする。
本発明者らは、流延ダイ4の開口部(リップ)から第1ロール5までの部分を70kPa以下に減圧させることにより、上記、ダイラインの矯正効果がより大きく発現することを発見した。好ましくは減圧は50kPa以上70kPa以下である。流延ダイ4の開口部(リップ)から第1ロール5までの部分の圧力を70kPa以下に保つ方法としては、特に制限はないが、流延ダイ4からロール周辺を耐圧部材で覆い、減圧するなどの方法がある。このとき、吸引装置は、装置自体が昇華物の付着場所にならないようヒーターで加熱するなどの処置を施すことが好ましい。本発明では、吸引圧が小さすぎると昇華物を効果的に吸引できないため、適当な吸引圧とする必要がある。
本発明において、Tダイ4から溶融状態のフィルム状のセルロースエステル系樹脂を、第1ロール(第1冷却ロール)5、第2冷却ロール7、及び第3冷却ロール8に順次密着させて搬送しながら冷却固化させ、未延伸のセルロースエステル系樹脂フィルム10を得る。
図1に示す本発明の実施形態では、第3冷却ロール8から剥離ロール9によって剥離した冷却固化された未延伸のフィルム10は、ダンサーロール(フィルム張力調整ロール)11を経て延伸機12に導き、そこでフィルム10を横方向(幅方向)に延伸する。この延伸により、フィルム中の分子が配向される。
フィルムを幅方向に延伸する方法は、公知のテンターなどを好ましく用いることができる。特に延伸方向を幅方向とすることで、偏光フィルムとの積層がロール形態で実施できるので好ましい。幅方向に延伸することで、セルロースエステル系光学フィルムの遅相軸は幅方向になる。
一方、偏光フィルムの透過軸も、通常、幅方向である。偏光フィルムの透過軸とセルロースエステル系光学フィルムの遅相軸とが平行になるように積層した偏光板を液晶表示装置に組み込むことで、液晶表示装置の表示コントラストを高くすることができるとともに、良好な視野角が得られるのである。
フィルム構成材料のガラス転移温度Tgはフィルムを構成する材料種及び構成する材料の比率を異ならしめることにより制御できる。光学フィルムとして位相差フィルムを作製する場合、Tgは110℃以上、好ましくは125℃以上とすることが好ましい。液晶表示装置においては、画像の表示状態において、装置自身の温度上昇、例えば光源由来の温度上昇によってフィルムの温度環境が変化する。このときフィルムの使用環境温度よりもフィルムのTgが低いと、延伸によってフィルム内部に固定された分子の配向状態に由来するレターデーション値及びフィルムとしての寸法形状に大きな変化を与えることとなる。フィルムのTgが高過ぎると、フィルム構成材料をフィルム化するとき温度が高くなるために加熱するエネルギー消費が高くなり、またフィルム化するときの材料自身の分解、それによる着色が生じることがあり、従って、Tgは250℃以下が好ましい。
また延伸工程には公知の熱固定条件、冷却、緩和処理を行ってもよく、目的とする光学フィルムに要求される特性を有するように適宜調整すればよい。
光学フィルムの物性向上と液晶表示装置の視野角拡大のための位相フィルムの機能を付与するために、上記延伸工程、熱固定処理は適宜選択して行われている。このような延伸工程、熱固定処理を含む場合、本発明の加熱加圧工程は、それらの延伸工程、熱固定処理の前に行うようにする。
光学フィルムとして位相差フィルムを製造し、さらに偏光板保護フィルムの機能を複合させる場合、屈折率制御をおこなう必要が生じるが、その屈折率制御は延伸操作により行うことが可能であり、また延伸操作が好ましい方法である。以下、その延伸方法について説明する。
延伸は縦延伸、横延伸、およびこれらの組み合わせによって実施される。縦延伸は、ロール延伸(出口側の周速を速くした2対以上のニップロールを用いて長手方向(MD方向)に延伸)や固定端延伸(フィルムの両端を把持しこれを長手方向に次第に早く搬送して長手方向に延伸)等により行うことができる。また横延伸は、テンター延伸{フィルムの両端をチャックで把持しこれを横方向(長手方向と直角方向、幅方向(TD方向))に広げて延伸}等により行うことができる。
これらの縦延伸と横延伸は、それぞれ単独で行ってもよく(一軸延伸)、組み合わせて行ってもよい(二軸延伸)。二軸延伸の場合、縦、横逐次で実施してもよく(逐次延伸)、同時に実施してもよい(同時延伸)。縦延伸、横延伸の延伸速度は、10%/分〜10000%/分が好ましく、より好ましくは20%/分〜1000%/分、さらに好ましくは30%/分〜800%/分である。多段延伸の場合、延伸速度は各段の延伸速度の平均値を指す。このような延伸に引き続き、縦または横方向に0%〜10%緩和することも好ましい。さらに、延伸に引き続き、150℃〜250℃で1秒〜3分熱固定することも好ましい。
本発明の光学フィルムにおいては、少なくとも1方向に1.2〜5.0倍延伸することで、必要とされるレターデーションRo及びRthを制御することができる。少なくとも1方向に1.2〜5.0倍とは縦延伸、横延伸、およびこれらの組み合わせによって得られた延伸前に対する延伸後の倍率のことを意味する。ここで、Roとは面内レターデーションを示し、面内の長手方向MDの屈折率と幅方向TDの屈折率との差に厚みを乗じたもの、Rthとは厚み方向レターデーションを示し、面内の屈折率(長手方向MDと幅方向TDの平均)と厚み方向の屈折率との差に厚みを乗じたものである。
延伸は、例えばフィルムの長手方向及びそれとフィルム面内で直交する方向、即ち幅方向に対して、逐次または同時に行うことができる。このとき少なくとも1方向に対しての延伸倍率が小さ過ぎると十分な位相差が得られず、大き過ぎると延伸が困難となりフィルム破断が発生してしまう場合がある。
互いに直交する2軸方向に延伸することは、フィルムの屈折率nx、ny、nzを所定の範囲に入れるために有効な方法である。ここで、nxとは長手方向MDの屈折率、nyとは幅方向TDの屈折率、nzとは厚み方向の屈折率である。
例えば長手方向に延伸した場合、幅方向の収縮が大き過ぎると、nzの値が大きくなり過ぎてしまう。この場合、フィルムの幅収縮を抑制、或いは幅方向にも延伸することで改善できる。幅方向に延伸する場合、幅方向で屈折率に分布が生じることがある。この分布は、テンター法を用いた場合に現れることがあり、フィルムを幅方向に延伸したことで、フィルム中央部に収縮力が発生し、端部は固定されていることにより生じる現象で、いわゆるボーイング現象と呼ばれるものと考えられる。この場合でも、長手方向に延伸することで、ボーイング現象を抑制でき、幅方向の位相差の分布を少なくできる。
互いに直行する2軸方向に延伸することにより、得られるフィルムの膜厚変動が減少できる。位相差フィルムの膜厚変動が大き過ぎると位相差のムラとなり、液晶ディスプレイに用いたとき着色等のムラが問題となることがある。
本発明の光学フィルムの膜厚変動は、±3%、さらに±1%の範囲とすることが好ましい。以上のような目的において、互いに直交する2軸方向に延伸する方法は有効であり、互いに直交する2軸方向の延伸倍率は、それぞれ最終的には流延方向に1.1〜4.0倍、幅方向に1.1〜4.0倍の範囲で行うことが必要とされるレターデーション値を得るためにより好ましい。
本発明の光学フィルムの寸法変化率は80℃、90%RHの高温高湿下、50時間の処理において、±1.0%以内であることが好ましく、より好ましくは±0.5%以内、さらに好ましくは±0.4%以内であり、特に好ましくは±0.3%以内であることが特に好ましい。
長手方向に偏光子の吸収軸が存在する場合、幅方向に偏光子の透過軸が一致することになる。長尺状の偏光板を得るためには、位相差フィルムは、幅方向に遅相軸を得るように延伸することが好ましい。
応力に対して、正の複屈折を得るセルロース樹脂を用いる場合、上述の構成から、幅方向に延伸することで、位相差フィルムの遅相軸が幅方向に付与することができる。この場合、表示品質の向上のためには、位相差フィルムの遅相軸が、幅方向にあるほうが好ましく、目的とするレターデーション値を得るためには、式、(幅方向の延伸倍率)>(流延方向の延伸倍率)の条件を満たすことが必要である。
延伸後、フィルムの端部をスリッター13により製品となる幅にスリットして裁ち落とした後、エンボスリング14及びバックロール15よりなるナール加工装置によりナール加工(エンボッシング加工)をフィルム両端部に施し、巻取り機16によって巻き取ることにより、セルロースエステルフィルム(元巻き)F中の貼り付きや、すり傷の発生を防止する。ナール加工の方法は、凸凹のパターンを側面に有する金属リングを加熱や加圧により加工することができる。なお、フィルム両端部のクリップの把持部分は通常、変形しており、フィルム製品として使用できないので、切除されて、原料として再利用される。
一般的に、溶融押出しでは流延ダイの形状により、端部側の滞留時間が長くなる傾向が知られており、それによりフィルム端部の着色が促進されると考えられる。本発明では溶融押出し直後のフィルム幅方向の端部のイエローインデックスYeと、フィルム中央部分のイエローインデックスYcは下式(4)を満たすことが好ましく、より好ましくはYe/Ycが3.0以下である。Ye/Ycが5.0より大きいと、フィルム端部を切除して、原料として再利用した際に、生産したフィルムの着色が増加する。なお、本発明で端部のイエローインデックスとはフィルム幅方向の両端部から30mm以内での最大値と定義する。
式(4) 1.0≦Ye/Yc≦5.0
位相差フィルムを偏光板保護フィルムと兼ねる場合、該保護フィルムの厚さは、10〜500μmが好ましい。特に、下限は20μm以上、好ましくは30μm以上である。上限は150μm以下、好ましくは120μm以下である。特に好ましい範囲は25以上〜90μmである。位相差フィルムが厚いと、偏光板加工後の偏光板が厚くなり過ぎ、ノート型パソコンやモバイル型電子機器に用いる液晶表示においては、特に薄型軽量の目的に適さなくなる。一方、位相差フィルムが薄いと、位相差フィルムとしてのレターデーションの発現が困難となり、加えてフィルムの透湿性が高くなり、偏光子を湿度から保護する能力が低下する傾向がある。
位相差フィルムの遅相軸または進相軸がフィルム面内に存在し、製膜方向とのなす角度をθ1とすると、θ1は−1°以上+1°以下、好ましくは−0.5°以上+0.5°以下となるようにする。
このθ1は配向角として定義でき、θ1の測定は、自動複屈折計KOBRA−21ADH(王子計測機器社製)を用いて行うことができる。
θ1が各々上記関係を満たすことは、表示画像において高い輝度を得ること、光漏れを抑制または防止することに寄与し、カラー液晶表示装置においては忠実な色再現に寄与する。
本発明に係る光学フィルムを位相差フィルムとして用いるとき、例えば図7に示される構成をとることができる。
図7において、21a、21bは保護フィルム、22a、22bは位相差フィルム、25a、25bは偏光子、23a、23bはフィルムの遅相軸方向、24a、24bは偏光子の透過軸方向、26a、26bは偏光板、27は液晶セル、29は液晶表示装置を示している。
光学フィルムの面内方向のレターデーションRo分布は、5%以下に調整することが好ましく、より好ましくは2%以下であり、特に好ましくは、1.5%以下である。また、フィルムの厚み方向のレターデーションRth分布を10%以下に調整することが好ましいが、さらに好ましくは、2.0%以下であり、特に好ましくは、1.5%以下である。
位相差フィルムにおいて、レターデーション値の分布変動が小さい方が好ましく、液晶表示装置に位相差フィルムを含む偏光板を用いるとき、該レターデーション分布変動が小さいことが色ムラ等を防止する観点で好ましい。
上記の面内レターデーションRoは、2枚の偏光板がクロスニコルに配置され、偏光板の間に液晶セルが配置された、例えば図7に示す構成であるときに、表示面の法線方向から観察するときを基準にしてクロスニコル状態にあるとき、表示面の法線から斜めに観察したとき、偏光板のクロスニコル状態からのずれが生じ、これが要因となる光漏れを、主に補償する。厚さ方向のレターデーションは、図7に示すように、液晶表示装置において、液晶セルの上下に偏光板が二枚配置された構成である場合、図中の22a及び22bは、厚み方向レターデーションRthの配分を選択することができる。
(偏光板)
本発明の偏光板について述べる。
偏光板は一般的な方法で作製することができる。本発明の光学フィルムの裏面側をアルカリ鹸化処理し、処理した光学フィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面に本発明の光学フィルムを用いても、別の偏光板保護フィルムを用いてもよい。本発明の光学フィルムに対して、もう一方の面に用いられる偏光板保護フィルムは市販のセルロースエステルフィルムを用いることができる。例えば、市販のセルロースエステルフィルムとして、KC8UX2M、KC4UX、KC5UX、KC4UY、KC8UY、KC12UR、KC8UCR−3、KC8UCR−4(以上、コニカミノルタオプト(株)製)等が好ましく用いられる。或いは更にディスコチック液晶、棒状液晶、コレステリック液晶などの液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを兼ねる偏光板保護フィルムを用いることも好ましい。例えば、特開2003−98348号記載の方法で光学異方性層を形成することができる。本発明の光学フィルムと組み合わせて使用することによって、平面性に優れ、安定した視野角拡大効果を有する偏光板を得ることができる。
偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。該偏光膜の面上に、本発明の光学フィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。
上記アルカリ処理の代わりに特開平6−94915号公報、特開平6−118232号公報に記載されているような易接着加工を施して偏光板加工を行ってもよい。
偏光膜は一軸方向(通常は長手方向)に延伸されているため、偏光板を高温高湿の環境下に置くと延伸方向(通常は長手方向)は縮み、延伸と垂直方向(通常は幅方向)には伸びる。偏光板保護フィルムの膜厚が薄くなるほど偏光板の伸縮率は大きくなり、特に偏光膜の延伸方向の収縮量が大きい。通常、偏光膜の延伸方向は偏光板保護フィルムの長手方向(MD方向)と貼り合わせるため、偏光板保護フィルムを薄膜化する場合は、特に長手方向の伸縮率を抑えることが重要である。本発明の光学フィルムは極めて寸法安定に優れる為、このような偏光板保護フィルムとして好適に使用される。
即ち60℃、90%RHの条件での耐久性試験によっても波打ち状のむらが増加することはなく、裏面側に光学補償フィルムを有する偏光板であっても、耐久性試験後に視野角特性が変動することなく良好な視認性を提供することができる。
偏光板は、更に該偏光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成することができる。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。この場合、プロテクトフィルムは、偏光板の表面を保護する目的で貼合され、偏光板を液晶板へ貼合する面の反対面側に用いられる。また、セパレートフィルムは液晶板へ貼合する接着層をカバーする目的で用いられ、偏光板を液晶セルへ貼合する面側に用いられる。
本発明の偏光板において、偏光子からみて位相差フィルムとは反対側の面には、セルロース誘導体の偏光板保護フィルムが用いられ、汎用のTACフィルムなどを用いることができる。液晶セルから遠い側に位置する偏光板保護フィルムは、表示装置の品質を向上する上で、他の機能性層を配置することも可能である。
例えば、反射防止、防眩、耐キズ、ゴミ付着防止、輝度向上のためにディスプレイとしての公知の機能層を構成物として含むフィルムや、または本発明の偏光板表面に貼付してもよいがこれらに限定されるものではない。
一般に位相差フィルムでは、上述のレターデーション値としてRoまたはRthの変動が少ないことが安定した光学特性を得るために求められている。特に複屈折モードの液晶表示装置は、これらの変動が画像のムラを引き起こす原因となることがある。
本発明に従い溶融流延製膜法により製造される長尺状光学フィルム、または長尺状位相差フィルムは、セルロース樹脂を主体として構成されるため、セルロース樹脂固有のケン化を活用してアルカリ処理工程を活用できる利点がある。これは、偏光子を構成する樹脂がポリビニルアルコールであるとき、従来の偏光板保護フィルムと同様に完全ケン化ポリビニルアルコール水溶液を用いて前記長尺状フィルムと貼合することができる。このために本発明は、従来の偏光板加工方法がそのまま適用できる点で優れており、特に長尺状であるロール偏光板が得られる点で優れている。
本発明により得られる製造的効果は、特に100m以上の長尺の巻物においてより顕著となり、1500m、2500m、5000mとより長尺化する程、偏光板製造の製造的効果を得る。
例えば、位相差フィルム製造において、ロール長さは、生産性と運搬性を考慮すると、10m以上5000m以下、好ましくは50m以上4500m以下であり、このときのフィルムの幅は、偏光子の幅や製造ラインに適した幅を選択することができる。0.5m以上4.0m以下、好ましくは0.6m以上3.0m以下の幅でフィルムを製造してロール状に巻き取り、偏光板加工に供してもよく、また、目的の倍幅以上のフィルムを製造してロールに巻き取った後、断裁して目的の幅のロールを得て、このようなロールを偏光板加工に用いるようにしてもよい。
製膜工程において、カットされたフィルム両端のクリップ把持部分は、粉砕処理された後、或いは必要に応じて造粒処理を行った後、同じ品種のフィルム用原料としてまたは異なる品種のフィルム用原料として再利用してもよい。
前述の可塑剤、紫外線吸収剤、マット剤等の添加物濃度が異なるセルロース樹脂を含む組成物を共押出しして、積層構造の光学フィルムを作製することもできる。例えば、スキン層/コア層/スキン層といった構成の光学フィルムを作ることができる。例えば、マット剤は、スキン層に多く、またはスキン層のみに入れることができる。可塑剤、紫外線吸収剤はスキン層よりもコア層に多く入れることができ、コア層のみに入れてもよい。また、コア層とスキン層で可塑剤、紫外線吸収剤の種類を変更することもでき、例えば、スキン層に低揮発性の可塑剤及び/又は紫外線吸収剤を含ませ、コア層に可塑性に優れた可塑剤、或いは紫外線吸収性に優れた紫外線吸収剤を添加することもできる。スキン層とコア層のガラス転移温度が異なっていても良く、スキン層のガラス転移温度よりコア層のガラス転移温度が低いことが好ましい。このとき、スキンとコアの両者のガラス転移温度を測定し、これらの体積分率より算出した平均値を上記ガラス転移温度Tgと定義して同様に扱うこともできる。また、溶融流延時のセルロースエステルを含む溶融物の粘度もスキン層とコア層で異なっていても良く、スキン層の粘度>コア層の粘度でも、コア層の粘度≧スキン層の粘度でもよい。
(液晶表示装置)
本発明の光学フィルムを含む偏光板は、通常の偏光板と比較して高い表示品質を発現させることができる。
本発明の偏光板は、MVA(Multi−domein Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、CPA(Continuous Pinwheel Alignment)モード、OCB(Optical Compensated Bend)モード、IPS(In−Plane Switching)モード等に用いることができ、特にIPSモードでの使用が有効である。
液晶表示装置はカラー化及び動画表示用の装置としても応用されつつあり、本発明により表示品質が改良され、コントラストの改善や偏光板の耐性が向上したことにより、疲れにくく忠実な動画像表示が可能となる。
位相差フィルムを含む偏光板を少なくとも含む液晶表示装置においては、位相差フィルムを含む偏光板を、液晶セルに対して、一枚配置するか、或いは液晶セルの両側に二枚配置する。このとき偏光板に含まれる位相差フィルム側が液晶表示装置の液晶セルに面するように用いることで表示品質の向上に寄与できる。図7においては22a及び22bのフィルムが液晶表示装置の液晶セルに面することになる。
このような構成において、前記位相差フィルムは、液晶セルを光学的に補償することができる。本発明の偏光板を液晶表示装置に用いる場合は、液晶表示装置の偏光板の内の少なくとも一つの偏光板を、本発明の偏光板とすればよい。本発明の偏光板を用いることで、表示品質が向上し、視野角特性に優れた液晶表示装置が提供できる。
(機能性層の形成)
本発明の光学フィルム製造に際し、延伸の前及び/または後で透明導電層、ハードコート層、反射防止層、易滑性層、易接着層、防眩層、バリアー層、光学補償層等の機能性層を塗設してもよい。特に、透明導電層、ハードコート層、反射防止層、易接着層、防眩層及び光学補償層から選ばれる少なくとも1層を設けることが好ましい。この際、コロナ放電処理、プラズマ処理、薬液処理等の各種表面処理を必要に応じて施すことができる。
〈透明導電層〉
本発明の光学フィルムには、界面活性剤や導電性微粒子分散物などを用いて、透明導電層を設けることも好ましい。光学フィルム自身に導電性を付与しても、透明導電性層を設けてもよい。帯電防止性を付与するには透明導電性層を設けることが好ましい。透明導電性層は、塗布、大気圧プラズマ処理、真空蒸着、スパッタ、イオンプレーティング法などによって設けることもできる。或いは共押出し法で表層或いは内部層のみに導電性微粒子を含有させて、透明導電性層とすることもできる。透明導電層は光学フィルムの一方の面のみに設けても両面に設けてもよい。導電性微粒子を滑り性を付与させるマット剤と併用若しくは兼用することもできる。導電剤としては、下記の導電性を有する金属酸化物粉体を使用することができる。
金属酸化物の例としては、ZnO、TiO、SnO、Al、In、SiO、MgO、BaO、MoO、V等、或いはこれらの複合酸化物が好ましく、特にZnO、TiO及びSnOが好ましい。異種原子を含む例としては、例えばZnOに対してはAl、In等の添加、TiOに対してはNb、Ta等の添加、またSnOに対しては、Sb、Nb、ハロゲン元素等の添加が効果的である。これら異種原子の添加量は0.01〜25mol%の範囲が好ましいが、0.1〜15mol%の範囲が特に好ましい。
また、これらの導電性を有する金属酸化物粉体の体積抵抗率は1×10Ωcm特に1×10Ωcm以下であって、一次粒子径が10nm以上、0.2μm以下で、高次構造の長径が30nm以上、6μm以下である特定の構造を有する粉体を導電層に体積分率で0.01%以上、20%以下含んでいることが好ましい。
透明導電層の形成は、導電性微粒子をバインダーに分散させて基体上に設けてもよいし、基体上に下引処理を施し、その上に導電性微粒子を被着させてもよい。
また、特開平9−203810号公報の段落番号0038〜同0055に記載の一般式(I)〜(V)で表されるアイオネン導電性ポリマーや、同公報の段落番号0056〜同0145に記載の一般式(1)または(2)で表される第4級アンモニウムカチオンポリマーを含有させることができる。
また、金属酸化物からなる透明導電層中に耐熱剤、耐候剤、無機粒子、水溶性樹脂、エマルジョン等をマット化、膜質改良のために添加してもよい。
透明導電層で使用するバインダーは、フィルム形成能を有する物であれば特に限定されるものではないが、例えば、ゼラチン、カゼイン等のタンパク質、カルボキシメチルセルロース、ヒドロキシエチルセルロース、アセチルセルロース、ジアセチルセルロース、トリアセチルセルロース等のセルロース化合物、デキストラン、寒天、アルギン酸ソーダ、デンプン誘導体等の糖類、ポリビニルアルコール、ポリ酢酸ビニル、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリスチレン、ポリアクリルアミド、ポリ−N−ビニルピロリドン、ポリエステル、ポリ塩化ビニル、ポリアクリル酸等の合成ポリマー等を挙げることができる。
特に、ゼラチン(石灰処理ゼラチン、酸処理ゼラチン、酸素分解ゼラチン、フタル化ゼラチン、アセチル化ゼラチン等)、アセチルセルロース、ジアセチルセルロース、トリアセチルセルロース、ポリ酢酸ビニル、ポリビニルアルコール、ポリアクリル酸ブチル、ポリアクリルアミド、デキストラン等が好ましい。
〈反射防止フィルム〉
本発明の光学フィルムは、その表面にハードコート層及び反射防止層を設け、反射防止フィルムとすることも好ましい。
ハードコート層としては、活性線硬化樹脂層または熱硬化樹脂層が好ましく用いられる。ハードコート層は、支持体上に直接設層しても、帯電防止層または下引層等の他の層の上に設層してもよい。
ハードコート層として活性線化樹脂層を設ける場合には、紫外線等光照射により硬化する活性線硬化樹脂を含有することが好ましい。
ハードコート層は、光学設計上の観点から屈折率が1.45〜1.65の範囲にあることが好ましい。また、反射防止フィルムに充分な耐久性、耐衝撃性を付与し、かつ、適度な屈曲性、作製時の経済性等を鑑みた観点から、ハードコート層の膜厚としては、1μm〜20μmの範囲が好ましく、更に好ましくは、1μm〜10μmである。
活性線硬化性樹脂層とは紫外線や電子線のような活性線照射(本発明では、『活性線』とは、電子線、中性子線、X線、アルファ線、紫外線、可視光線、赤外線等、種々の電磁波を全て光と定義する)により架橋反応等を経て硬化した樹脂を主たる成分として含有する層をいう。活性線硬化性樹脂としては、紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線や電子線以外の光照射によって硬化する樹脂でもよい。紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等を挙げることができる。
紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂を挙げることができる。
また、光反応開始剤、光増感剤を含有させることもできる。具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。また、エポキシアクリレート系樹脂の合成に光反応剤を使用する際に、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることができる。塗布乾燥後に揮発する溶媒成分を除いた紫外線硬化性樹脂組成物に含まれる光反応開始剤また光増感剤は、組成物の2.5〜6質量%であることが好ましい。
樹脂モノマーとしては、例えば、不飽和二重結合が1個のモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、酢酸ビニル、ベンジルアクリレート、シクロヘキシルアクリレート、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を2個以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、前述のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。
また、紫外線硬化性樹脂組成物の活性線硬化を妨げない程度に、紫外線吸収剤を紫外線硬化性樹脂組成物に含ませてもよい。紫外線吸収剤としては、前記基材に使用してもよい紫外線吸収剤と同様なものを用いることができる。
また硬化された層の耐熱性を高めるために、活性線硬化反応を抑制しないような酸化防止剤を選んで用いることができる。例えば、ヒンダードフェノール誘導体、チオプロピオン酸誘導体、ホスファイト誘導体等を挙げることができる。具体的には、例えば、4,4′−チオビス(6−t−3−メチルフェノール)、4,4′−ブチリデンビス(6−t−ブチル−3−メチルフェノール)、1,3,5−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)イソシアヌレート、2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)メシチレン、ジ−オクタデシル−4−ヒドロキシ−3,5−ジ−t−ブチルベンジルホスフェート等を挙げることができる。
紫外線硬化性樹脂としては、例えば、アデカオプトマーKR、BYシリーズのKR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(以上、(株)ADEKA製)、コーエイハードのA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(以上、広栄化学工業(株)製)、セイカビームのPHC2210(S)、PHCX−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(以上、大日精化工業(株)製)、KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(以上、ダイセル・ユーシービー(株))、RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(以上、大日本インキ化学工業(株)製)、オーレックスNo.340クリヤ(中国塗料(株)製)、サンラッドH−601(三洋化成工業(株)製)、SP−1509、SP−1507(以上、昭和高分子(株)製)、RCC−15C(グレース・ジャパン(株)製)、アロニックスM−6100、M−8030、M−8060(以上、東亞合成(株)製)、またはその他の市販のものから適宜選択して利用することができる。
活性線硬化性樹脂層の塗布組成物は、固形分濃度は10〜95質量%であることが好ましく、塗布方法により適当な濃度が選ばれる。
活性線硬化性樹脂を活性線硬化反応により硬化被膜層を形成するための光源としては、紫外線を発生する光源であればいずれでも使用できる。具体的には、前記光の項に記載の光源を使用できる。照射条件はそれぞれのランプによって異なるが、照射光量としては20mJ/cm〜10000mJ/cmの範囲が好ましく、更に好ましくは、50mJ/cm〜2000mJ/cmである。近紫外線領域から可視光線領域にかけてはその領域に吸収極大のある増感剤を用いることによって使用できる。
活性線硬化性樹脂層を塗設する際の溶媒は、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール類(ジアセトンアルコール)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、或いはこれらを混合し利用できる。プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)またはプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等を5質量%以上、より好ましくは5〜80質量%以上含有する上記有機溶媒を用いるのが好ましい。
活性線硬化性樹脂組成物塗布液の塗布方法としては、グラビアコータ、スピナーコータ、ワイヤーバーコータ、ロールコータ、リバースコータ、押出コータ、エアードクターコータ等公知の方法を用いることができる。塗布量はウェット膜厚で0.1μm〜30μmが適当で、好ましくは0.5μm〜15μmである。塗布速度は10m/分〜60m/分の範囲が好ましい。
活性線硬化性樹脂組成物は塗布乾燥された後、紫外線を照射するが、照射時間は0.5秒〜5分がよく、紫外線硬化性樹脂の硬化効率、作業効率から3秒〜2分がより好ましい。
こうして硬化被膜層を得ることができるが、液晶表示装置パネルの表面に防眩性を与えるために、また他の物質との対密着性を防ぎ、対擦り傷性等を高めるために、硬化被膜層用の塗布組成物中に無機または有機の微粒子を加えることもできる。
例えば、無機微粒子としては酸化珪素、酸化ジルコニウム酸化チタン、酸化アルミニウム、酸化錫、酸化亜鉛、炭酸カルシウム、硫酸バリウム、タルク、カオリン、硫酸カルシウム等を挙げることができる。
また、有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等を挙げることができる。これらは紫外線硬化性樹脂組成物に加えて用いることができる。これらの微粒子粉末の平均粒径としては、0.01μm〜10μmであり、使用量は紫外線硬化樹脂組成物100質量部に対して、0.1質量部〜20質量部となるように配合することが望ましい。防眩効果を付与するには、平均粒径0.1μm〜1μmの微粒子を紫外線硬化樹脂組成物100質量部に対して1質量部〜15質量部用いるのが好ましい。
このような微粒子を紫外線硬化樹脂に添加することによって、中心線平均表面粗さRaが0.05μm〜0.5μmの好ましい凹凸を有する防眩層を形成することができる。また、このような微粒子を紫外線硬化性樹脂組成物に添加しない場合、中心線平均表面粗さRaは0.05μm未満、より好ましくは0.002μm〜0.04μm未満の良好な平滑面を有するハードコート層を形成することができる。
この他、ブロッキング防止機能を果たすものとして、上述したのと同じ成分で、体積平均粒径0.005μm〜0.1μmの極微粒子を樹脂組成物100質量部に対して0.1質量部〜5質量部を用いることもできる。
反射防止層は上記ハードコート層の上に設けるが、その方法は特に限定されず、塗布、スパッタ、蒸着、CVD(Chemical Vapor Deposition)法、大気圧プラズマ法またはこれらを組み合わせて形成することができる。本発明では、特に塗布によって反射防止層を設けることが好ましい。
反射防止層を塗布により形成する方法としては、溶剤に溶解したバインダー樹脂中に金属酸化物の粉末を分散し、塗布乾燥する方法、架橋構造を有するポリマーをバインダー樹脂として用いる方法、エチレン性不飽和モノマーと光重合開始剤を含有させ、活性線を照射することにより層を形成する方法等の方法を挙げることができる。
本発明においては、紫外線硬化樹脂層を付与した光学フィルムの上に反射防止層を設けることができ、光学フィルムの最上層に低屈折率層を形成し、その間に高屈折率層の金属酸化物層を形成したり、更に光学フィルムと高屈折率層との間に更に中屈折率層(金属酸化物の含有量或いは樹脂バインダーとの比率、金属の種類を変更して屈折率を調整した金属酸化物層)を設けることが、反射率をより低減する上で好ましい。高屈折率層の屈折率は、1.55〜2.30であることが好ましく、1.57〜2.20であることが更に好ましい。中屈折率層の屈折率は、基材であるセルロースエステルフィルムの屈折率(約1.5)と高屈折率層の屈折率との中間の値となるように調整する。中屈折率層の屈折率は、1.55〜1.80であることが好ましい。各層の厚さは、5nm〜0.5μmであることが好ましく、10nm〜0.3μmであることが更に好ましく、30nm〜0.2μmであることが最も好ましい。金属酸化物層のヘイズは、5%以下であることが好ましく、3%以下であることが更に好ましく、1%以下であることが最も好ましい。金属酸化物層の強度は、1kg荷重の鉛筆硬度で3H以上であることが好ましく、4H以上であることが最も好ましい。金属酸化物層を塗布により形成する場合は、無機微粒子とバインダーポリマーとを含むことが好ましい。
中、高屈折率層は下記一般式(T)で表される有機チタン化合物のモノマー、オリゴマーまたはそれらの加水分解物を含有する塗布液を塗布し乾燥させて形成させた屈折率1.55〜2.5の層であることが好ましい。
一般式(T) Ti(OR1)
一般式(T)において、R1としては炭素数1〜8の脂肪族炭化水素基がよいが、好ましくは炭素数1〜4の脂肪族炭化水素基である。また、有機チタン化合物のモノマー、オリゴマーまたはそれらの加水分解物は、アルコキシド基が加水分解を受けて−Ti−O−Ti−のように反応して架橋構造を作り、硬化した層を形成する。
本発明に用いられる有機チタン化合物のモノマー、オリゴマーとしては、Ti(OCH、Ti(OC、Ti(O−n−C、Ti(O−i−C、Ti(O−n−C、Ti(O−n−Cの2〜10量体、Ti(O−i−Cの2〜10量体、Ti(O−n−Cの2〜10量体等が好ましい例として挙げられる。これらは単独で、または2種以上組み合わせて用いることができる。中でもTi(O−n−C、Ti(O−i−C、Ti(O−n−C、Ti(O−n−Cの2〜10量体、Ti(O−n−Cの2〜10量体が特に好ましい。
中、高屈折率層用塗布液は、水と後述する有機溶媒が順次添加された溶液中に上記有機チタン化合物を添加することが好ましい。水を後から添加した場合は、加水分解/重合が均一に進行せず、白濁が発生したり、膜強度が低下することもある。水と有機溶媒は添加された後、良く混合させるために攪拌し混合溶解されていることが好ましい。
また、別法として有機チタン化合物と有機溶媒を混合させておき、この混合溶液を、上記水と有機溶媒の混合攪拌された溶液中に添加することも好ましい態様である。
また、水の量は有機チタン化合物1モルに対して、0.25〜3モルの範囲であることが好ましい。0.25モル未満であると、加水分解、重合の進行が不十分で膜強度が低下することもある。3モルを超えると加水分解、重合が進行し過ぎて、TiOの粗大粒子が発生し白濁することもある。従って水の量は上記範囲で調整することが好ましい。
また、水の含有率は塗布液総量に対して10質量%未満であることが好ましい。水の含有率を塗布液総量に対して10質量%以上にすると、塗布液の経時安定が劣り白濁を生じることもある。
用いられる有機溶媒としては、水混和性の有機溶媒であることが好ましい。水混和性の有機溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、複素環類(例えば、2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価アルコールエーテル類が好ましい。これらの有機溶媒の使用量は、前述したように、水の含有率が塗布液総量に対して10質量%未満であるように、水と有機溶媒のトータルの使用量を調整すればよい。
用いられる有機チタン化合物のモノマー、オリゴマーまたはそれらの加水分解物は、単独で用いる場合は、塗布液に含まれる固形分に対し50.0質量%〜98.0質量%を占めていることが望ましい。固形分比率は50質量%〜90質量%がより好ましく、55質量%〜90質量%が更に好ましい。この他、塗布組成物には有機チタン化合物のポリマー(予め有機チタン化合物の加水分解を行って架橋したもの)或いは酸化チタン微粒子を添加することも好ましい。
高屈折率層及び中屈折率層は、微粒子として金属酸化物粒子を含んでもよく、更にバインダーポリマーを含んでもよい。
上記塗布液調製法で加水分解/重合した有機チタン化合物と金属酸化物粒子を組み合わせると、金属酸化物粒子と加水分解/重合した有機チタン化合物とが強固に接着し、粒子のもつ硬さと均一膜の柔軟性を兼ね備えた強い塗膜を得ることができる。
高屈折率層及び中屈折率層に用いる金属酸化物粒子は、屈折率が1.80〜2.80であることが好ましく、1.90〜2.80であることが更に好ましい。金属酸化物粒子の1次粒子の平均粒径は、1〜150nmであることが好ましく、1〜100nmであることが更に好ましく、1〜80nmであることが最も好ましい。層中での金属酸化物粒子の平均粒径は、1〜200nmであることが好ましく、5〜150nmであることがより好ましく、10〜100nmであることが更に好ましく、10〜80nmであることが最も好ましい。金属酸化物粒子の平均粒径は、例えば、走査型電子顕微鏡により観察して無作為に粒子200個の長径を測定し、平均粒径を求めることができる。金属酸化物粒子の比表面積は、BET法で測定された値として、10〜400m/gであることが好ましく、20〜200m/gであることが更に好ましく、30〜150m/gであることが最も好ましい。
金属酸化物粒子の例としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物であり、具体的には二酸化チタン(例、ルチル、ルチル/アナターゼの混晶、アナターゼ、アモルファス構造)、酸化錫、酸化インジウム、酸化亜鉛、及び酸化ジルコニウムが挙げられる。中でも、酸化チタン、酸化錫及び酸化インジウムが特に好ましい。金属酸化物粒子は、これらの金属の酸化物を主成分とし、更に他の元素を含むことができる。主成分とは、粒子を構成する成分の中で最も含有量(質量%)が多い成分を意味する。他の元素の例としては、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びS等が挙げられる。
金属酸化物粒子は表面処理されていることが好ましい。表面処理は、無機化合物または有機化合物を用いて実施することができる。表面処理に用いる無機化合物の例としては、アルミナ、シリカ、酸化ジルコニウム及び酸化鉄が挙げられる。中でもアルミナ及びシリカが好ましい。表面処理に用いる有機化合物の例としては、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が挙げられる。中でも、シランカップリング剤が最も好ましい。
具体的なシランカップリング剤の例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン及びβ−シアノエチルトリエトキシシランが挙げられる。
また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。
これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。
2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。
カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施できる。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、またはこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。
これらシランカップリング剤は予め必要量の水で加水分解されていることが好ましい。シランカップリング剤が加水分解されていると、前述の有機チタン化合物及び金属酸化物粒子の表面が反応し易く、より強固な膜が形成される。また、加水分解されたシランカップリング剤を予め塗布液中に加えることも好ましい。この加水分解に用いた水も有機チタン化合物の加水分解/重合に用いることができる。
また、2種類以上の表面処理を組み合わせて処理されていても構わない。金属酸化物粒子の形状は、米粒状、球形状、立方体状、紡錘形状或いは不定形状であることが好ましい。2種類以上の金属酸化物粒子を高屈折率層及び中屈折率層に併用してもよい。
高屈折率層及び中屈折率層中の金属酸化物粒子の割合は、5〜90質量%であることが好ましく、より好ましくは10〜85質量%であり、更に好ましくは20〜80質量%である。微粒子を含有する場合に、前述の有機チタン化合物のモノマー、オリゴマーまたはそれらの加水分解物の割合は、塗布液に含まれる固形分に対し1〜50質量%であり、好ましくは1〜40質量%、更に好ましくは1〜30質量%である。
上記金属酸化物粒子は、媒体に分散した分散体の状態で、高屈折率層及び中屈折率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
また金属酸化物粒子は、分散機を用いて媒体中に分散することができる。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。
高屈折率層及び中屈折率層は、架橋構造を有するポリマー(以下、架橋ポリマーともいう)をバインダーポリマーとして用いることが好ましい。架橋ポリマーの例として、ポリオレフィン等の飽和炭化水素鎖を有するポリマー(以下、ポリオレフィンと総称する)、ポリエーテル、ポリウレア、ポリウレタン、ポリエステル、ポリアミン、ポリアミド及びメラミン樹脂等の架橋物が挙げられる。中でも、ポリオレフィン、ポリエーテル及びポリウレタンの架橋物が好ましく、ポリオレフィン及びポリエーテルの架橋物が更に好ましく、ポリオレフィンの架橋物が最も好ましい。また、架橋ポリマーがアニオン性基を有することは更に好ましい。アニオン性基は無機微粒子の分散状態を維持する機能を有し、架橋構造はポリマーに皮膜形成能を付与して皮膜を強化する機能を有する。上記アニオン性基は、ポリマー鎖に直接結合していてもよいし、連結基を介してポリマー鎖に結合していてもよいが、連結基を介して側鎖として主鎖に結合していることが好ましい。
アニオン性基の例としては、カルボン酸基(カルボキシル)、スルホン酸基(スルホ)及びリン酸基(ホスホノ)が挙げられる。中でも、スルホン酸基及びリン酸基が好ましい。ここで、アニオン性基は、塩の状態であってもよい。アニオン性基と塩を形成するカチオンは、アルカリ金属イオンであることが好ましい。また、アニオン性基のプロトンは、解離していてもよい。アニオン性基とポリマー鎖とを結合する連結基は、−CO−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる二価の基であることが好ましい。好ましいバインダーポリマーである架橋ポリマーは、アニオン性基を有する繰り返し単位と、架橋構造を有する繰り返し単位とを有するコポリマーであることが好ましい。この場合、コポリマー中のアニオン性基を有する繰り返し単位の割合は、2〜96質量%であることが好ましく、4〜94質量%であることが更に好ましく、6〜92質量%であることが最も好ましい。繰り返し単位は、2以上のアニオン性基を有していてもよい。
アニオン性基を有する架橋ポリマーには、その他の繰り返し単位(アニオン性基も架橋構造も有しない繰り返し単位)が含まれていてもよい。その他の繰り返し単位としては、アミノ基または4級アンモニウム基を有する繰り返し単位及びベンゼン環を有する繰り返し単位が好ましい。アミノ基または4級アンモニウム基は、アニオン性基と同様に、無機微粒子の分散状態を維持する機能を有する。ベンゼン環は、高屈折率層の屈折率を高くする機能を有する。尚、アミノ基、4級アンモニウム基及びベンゼン環は、アニオン性基を有する繰り返し単位或いは架橋構造を有する繰り返し単位に含まれていても、同様の効果が得られる。
上記アミノ基または4級アンモニウム基を有する繰り返し単位を構成単位として含有する架橋ポリマーにおいて、アミノ基または4級アンモニウム基は、ポリマー鎖に直接結合していてもよいし、或いは連結基を介し側鎖としてポリマー鎖に結合していてもよいが、後者がより好ましい。アミノ基または4級アンモニウム基は、2級アミノ基、3級アミノ基または4級アンモニウム基であることが好ましく、3級アミノ基または4級アンモニウム基であることが更に好ましい。2級アミノ基、3級アミノ基または4級アンモニウム基の窒素原子に結合している基としては、アルキル基が好ましく、より好ましくは炭素数1〜12のアルキル基であり、更に好ましくは炭素数1〜6のアルキル基である。4級アンモニウム基の対イオンは、ハライドイオンであることが好ましい。アミノ基または4級アンモニウム基とポリマー鎖とを結合する連結基は、−CO−、−NH−、−O−、アルキレン基、アリーレン基、及びこれらの組み合わせから選ばれる2価の基であることが好ましい。架橋ポリマーが、アミノ基または4級アンモニウム基を有する繰り返し単位を含む場合、その割合は、0.06〜32質量%であることが好ましく、0.08〜30質量%であることが更に好ましく、0.1〜28質量%であることが最も好ましい。
架橋ポリマーは、架橋ポリマーを生成するためのモノマーを配合して高屈折率層及び中屈折率層形成用の塗布液を調製し、塗布液の塗布と同時または塗布後に、重合反応によって生成させることが好ましい。架橋ポリマーの生成と共に、各層が形成される。アニオン性基を有するモノマーは、塗布液中で無機微粒子の分散剤として機能する。アニオン性基を有するモノマーは、無機微粒子に対して、好ましくは1〜50質量%、より好ましくは5〜40質量%、更に好ましくは10〜30質量%使用される。また、アミノ基または4級アンモニウム基を有するモノマーは、塗布液中で分散助剤として機能する。アミノ基または4級アンモニウム基を有するモノマーは、アニオン性基を有するモノマーに対して、好ましくは3〜33質量%使用される。塗布液の塗布と同時または塗布後に、重合反応によって架橋ポリマーを生成する方法により、塗布液の塗布前にこれらのモノマーを有効に機能させることができる。
用いられるモノマーとしては、2個以上のエチレン性不飽和基を有するモノマーが最も好ましいが、その例としては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)及びメタクリルアミド等が挙げられる。アニオン性基を有するモノマー、及びアミノ基または4級アンモニウム基を有するモノマーは市販のモノマーを用いてもよい。好ましく用いられる市販のアニオン性基を有するモノマーとしては、KAYAMARPM−21、PM−2(日本化薬(株)製)、AntoxMS−60、MS−2N、MS−NH4(日本乳化剤(株)製)、アロニックスM−5000、M−6000、M−8000シリーズ(東亞合成化学工業(株)製)、ビスコート#2000シリーズ(大阪有機化学工業(株)製)、ニューフロンティアGX−8289(第一工業製薬(株)製)、NKエステルCB−1、A−SA(新中村化学工業(株)製)、AR−100、MR−100、MR−200(第八化学工業(株)製)等が挙げられる。また、好ましく用いられる市販のアミノ基または4級アンモニウム基を有するモノマーとしてはDMAA(大阪有機化学工業(株)製)、DMAEA,DMAPAA(興人(株)製)、ブレンマーQA(日本油脂(株)製)、ニューフロンティアC−1615(第一工業製薬(株)製)等が挙げられる。
ポリマーの重合反応は、光重合反応または熱重合反応を用いることができる。特に光重合反応が好ましい。重合反応のため、重合開始剤を使用することが好ましい。例えば、ハードコート層のバインダーポリマーを形成するために用いられる後述する熱重合開始剤、及び光重合開始剤が挙げられる。
重合開始剤として市販の重合開始剤を使用してもよい。重合開始剤に加えて、重合促進剤を使用してもよい。重合開始剤と重合促進剤の添加量は、モノマーの全量の0.2〜10質量%の範囲であることが好ましい。塗布液(モノマーを含む無機微粒子の分散液)を加熱して、モノマー(またはオリゴマー)の重合を促進してもよい。また、塗布後の光重合反応の後に加熱して、形成されたポリマーの熱硬化反応を追加処理してもよい。
中屈折率層及び高屈折率層には、比較的屈折率が高いポリマーを用いることが好ましい。屈折率が高いポリマーの例としては、ポリスチレン、スチレン共重合体、ポリカーボネート、メラミン樹脂、フェノール樹脂、エポキシ樹脂及び環状(脂環式または芳香族)イソシアネートとポリオールとの反応で得られるポリウレタンが挙げられる。その他の環状(芳香族、複素環式、脂環式)基を有するポリマーや、フッ素以外のハロゲン原子を置換基として有するポリマーも、屈折率が高く用いることができる。
低屈折率層は、熱または電離放射線により架橋する含フッ素樹脂(以下、「架橋前の含フッ素樹脂」ともいう)の架橋からなる低屈折率層、ゾルゲル法による低屈折率層、または微粒子とバインダーポリマーを用い、微粒子間または微粒子内部に空隙を有する低屈折率層等が用いられるが、低屈折率層は、主として微粒子とバインダーポリマーを用いる低屈折率層であることが好ましい。特に粒子内部に空隙を有する(中空微粒子ともいう)低屈折率層である場合、より屈折率を低下することができ好ましい。但し、低屈折率層の屈折率は、低ければ反射防止性能が良化するため好ましいが、低屈折率層の強度付与の観点では困難となる。このバランスから、低屈折率層の屈折率は1.45以下であることが好ましく、更に1.30〜1.50であることが好ましく、1.35〜1.49であることがより好ましく、1.35〜1.45であることが特に好ましい。
また、上記低屈折率層の調製方法は適宜組み合わせて用いても構わない。
架橋前の含フッ素樹脂としては、含フッ素ビニルモノマーと架橋性基付与のためのモノマーから形成される含フッ素共重合体を好ましく挙げることができる。上記含フッ素ビニルモノマー単位の具体例としては、例えばフルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えば、ビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等が挙げられる。架橋性基付与のためのモノマーとしては、グリシジルメタクリレートや、ビニルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、ビニルグリシジルエーテル等のように分子内に予め架橋性官能基を有するビニルモノマーの他、カルボキシル基やヒドロキシル基、アミノ基、スルホン酸基等を有するビニルモノマー(例えば、(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシアルキルビニルエーテル、ヒドロキシアルキルアリルエーテル等)が挙げられる。後者は共重合の後、ポリマー中の官能基と反応する基ともう1つ以上の反応性基を持つ化合物を加えることにより、架橋構造を導入できることが特開平10−25388号、同10−147739号に記載されている。架橋性基の例には、アクリロイル、メタクリロイル、イソシアナート、エポキシ、アジリジン、オキサゾリン、アルデヒド、カルボニル、ヒドラジン、カルボキシル、メチロール及び活性メチレン基等が挙げられる。含フッ素共重合体が、加熱により反応する架橋基、若しくは、エチレン性不飽和基と熱ラジカル発生剤若しくはエポキシ基と熱酸発生剤等の組み合わせにより、加熱により架橋する場合、熱硬化型であり、エチレン性不飽和基と光ラジカル発生剤若しくは、エポキシ基と光酸発生剤等の組み合わせにより、光(好ましくは紫外線、電子ビーム等)の照射により架橋する場合、電離放射線硬化型である。
また上記モノマー加えて、含フッ素ビニルモノマー及び架橋性基付与のためのモノマー以外のモノマーを併用して形成された含フッ素共重合体を架橋前の含フッ素樹脂として用いてもよい。併用可能なモノマーには特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることができる。また、含フッ素共重合体中に、滑り性、防汚性付与のため、ポリオルガノシロキサン骨格や、パーフルオロポリエーテル骨格を導入することも好ましい。これは、例えば末端にアクリル基、メタクリル基、ビニルエーテル基、スチリル基等を持つポリオルガノシロキサンやパーフルオロポリエーテルと上記のモノマーとの重合、末端にラジカル発生基を持つポリオルガノシロキサンやパーフルオロポリエーテルによる上記モノマーの重合、官能基を持つポリオルガノシロキサンやパーフルオロポリエーテルと、含フッ素共重合体との反応等によって得られる。
架橋前の含フッ素共重合体を形成するために用いられる上記各モノマーの使用割合は、含フッ素ビニルモノマーが好ましくは20〜70モル%、より好ましくは40〜70モル%、架橋性基付与のためのモノマーが好ましくは1〜20モル%、より好ましくは5〜20モル%、併用されるその他のモノマーが好ましくは10〜70モル%、より好ましくは10〜50モル%の割合である。
含フッ素共重合体は、これらモノマーをラジカル重合開始剤の存在下で、溶液重合、塊状重合、乳化重合、懸濁重合法等の手段により重合することにより得ることができる。
架橋前の含フッ素樹脂は、市販されており使用することができる。市販されている架橋前の含フッ素樹脂の例としては、サイトップ(旭硝子製)、テフロン(登録商標)AF(デュポン製)、ポリフッ化ビニリデン、ルミフロン(旭硝子製)、オプスター(JSR製)等が挙げられる。
架橋した含フッ素樹脂を構成成分とする低屈折率層は、動摩擦係数が0.03〜0.15の範囲、水に対する接触角が90〜120度の範囲にあることが好ましい。
架橋した含フッ素樹脂を構成成分とする低屈折率層が後述する無機粒子を含有することは、屈折率調整の点から好ましい。また無機微粒子は、表面処理を施して用いることも好ましい。表面処理法としてはプラズマ放電処理やコロナ放電処理のような物理的表面処理とカップリング剤を使用する化学的表面処理があるが、カップリング剤の使用が好ましい。カップリング剤としては、オルガノアルコキシ金属化合物(例、チタンカップリング剤、シランカップリング剤等)が好ましく用いられる。無機微粒子がシリカの場合はシランカップリング剤による処理が特に有効である。
また、低屈折率層用の素材として、各種ゾルゲル素材を用いることもできる。この様なゾルゲル素材としては、金属アルコレート(シラン、チタン、アルミニウム、ジルコニウム等のアルコレート)、オルガノアルコキシ金属化合物及びその加水分解物を用いることができる。特に、アルコキシシラン、オルガノアルコキシシラン及びその加水分解物が好ましい。これらの例としては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、アルキルトリアルコキシシラン(メチルトリメトキシシラン、エチルトリメトキシシラン等)、アリールトリアルコキシシラン(フェニルトリメトキシシラン等)、ジアルキルジアルコキシシラン、ジアリールジアルコキシシラン等が挙げられる。また、各種の官能基を有するオルガノアルコキシシラン(ビニルトリアルコキシシラン、メチルビニルジアルコキシシラン、γ−グリシジルオキシプロピルトリアルコキシシラン、γ−グリシジルオキシプロピルメチルジアルコキシシラン、β−(3,4−エポキジシクロヘキシル)エチルトリアルコキシシラン、γ−メタクリロイルオキシプロピルトリアルコキシシラン、γ−アミノプロピルトリアルコキシシラン、γ−メルカプトプロピルトリアルコキシシラン、γ−クロロプロピルトリアルコキシシラン等)、パーフルオロアルキル基含有シラン化合物(例えば、(ヘプタデカフルオロ−1,1,2,2−テトラデシル)トリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン等)を用いることも好ましい。特にフッ素含有のシラン化合物を用いることは、層の低屈折率化及び撥水・撥油性付与の点で好ましい。
低屈折率層として、無機若しくは有機の微粒子を用い、微粒子間または微粒子内のミクロボイドとして形成した層を用いることも好ましい。微粒子の平均粒径は、0.5〜200nmであることが好ましく、1〜100nmであることがより好ましく、3〜70nmであることが更に好ましく、5〜40nmの範囲であることが最も好ましい。微粒子の粒径は、なるべく均一(単分散)であることが好ましい。
機微粒子としては、非晶質であることが好ましい。無機微粒子は、金属の酸化物、窒化物、硫化物またはハロゲン化物からなることが好ましく、金属酸化物または金属ハロゲン化物からなることが更に好ましく、金属酸化物または金属フッ化物からなることが最も好ましい。金属原子としては、Na、K、Mg、Ca、Ba、Al、Zn、Fe、Cu、Ti、Sn、In、W、Y、Sb、Mn、Ga、V、Nb、Ta、Ag、Si、B、Bi、Mo、Ce、Cd、Be、Pb及びNiが好ましく、Mg、Ca、B及びSiが更に好ましい。二種類の金属を含む無機化合物を用いてもよい。好ましい無機化合物の具体例としては、SiO、またはMgFであり、特に好ましくはSiOである。
無機微粒子内にミクロボイドを有する粒子は、例えば、粒子を形成するシリカの分子を架橋させることにより形成することができる。シリカの分子を架橋させると体積が縮小し、粒子が多孔質になる。ミクロボイドを有する(多孔質)無機微粒子は、ゾル−ゲル法(特開昭53−112732号、特公昭57−9051号に記載)または析出法(APPLIED OPTICS,27巻,3356頁(1988)記載)により、分散物として直接合成することができる。また、乾燥・沈澱法で得られた粉体を、機械的に粉砕して分散物を得ることもできる。市販の多孔質無機微粒子(例えば、SiOゾル)を用いてもよい。
これらの無機微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)が好ましい。
有機微粒子も非晶質であることが好ましい。有機微粒子は、モノマーの重合反応(例えば乳化重合法)により合成されるポリマー微粒子であることが好ましい。有機微粒子のポリマーはフッ素原子を含むことが好ましい。ポリマー中のフッ素原子の割合は、35〜80質量%であることが好ましく、45〜75質量%であることが更に好ましい。また、有機微粒子内に、例えば、粒子を形成するポリマーを架橋させ、体積を縮小させることによりミクロボイドを形成させることも好ましい。粒子を形成するポリマーを架橋させるためには、ポリマーを合成するためのモノマーの20モル%以上を多官能モノマーとすることが好ましい。多官能モノマーの割合は、30〜80モル%であることが更に好ましく、35〜50モル%であることが最も好ましい。上記有機微粒子の合成に用いられるモノマーとしては、含フッ素ポリマーを合成するために用いるフッ素原子を含むモノマーの例として、フルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、アクリル酸またはメタクリル酸のフッ素化アルキルエステル類及びフッ素化ビニルエーテル類が挙げられる。フッ素原子を含むモノマーとフッ素原子を含まないモノマーとのコポリマーを用いてもよい。フッ素原子を含まないモノマーの例としては、オレフィン類(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル類(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル)、スチレン類(例えば、スチレン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル類(例えば、メチルビニルエーテル)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル)、アクリルアミド類(例えば、N−tert−ブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド類及びアクリルニトリル類が挙げられる。多官能モノマーの例としては、ジエン類(例えば、ブタジエン、ペンタジエン)、多価アルコールとアクリル酸とのエステル(例えば、エチレングリコールジアクリレート、1,4−シクロヘキサンジアクリレート、ジペンタエリスリトールヘキサアクリレート)、多価アルコールとメタクリル酸とのエステル(例えば、エチレングリコールジメタクリレート、1,2,4−シクロヘキサンテトラメタクリレート、ペンタエリスリトールテトラメタクリレート)、ジビニル化合物(例えば、ジビニルシクロヘキサン、1,4−ジビニルベンゼン)、ジビニルスルホン、ビスアクリルアミド類(例えば、メチレンビスアクリルアミド)及びビスメタクリルアミド類が挙げられる。
粒子間のミクロボイドは、微粒子を少なくとも2個以上積み重ねることにより形成することができる。尚、粒径が等しい(完全な単分散の)球状微粒子を最密充填すると、26体積%の空隙率の微粒子間ミクロボイドが形成される。粒径が等しい球状微粒子を単純立方充填すると、48体積%の空隙率の微粒子間ミクロボイドが形成される。実際の低屈折率層では、微粒子の粒径の分布や粒子内ミクロボイドが存在するため、空隙率は上記の理論値からかなり変動する。空隙率を増加させると、低屈折率層の屈折率が低下する。微粒子を積み重ねてミクロボイドを形成すると、微粒子の粒径を調整することで、粒子間ミクロボイドの大きさも適度の(光を散乱せず、低屈折率層の強度に問題が生じない)値に容易に調節できる。更に、微粒子の粒径を均一にすることで、粒子間ミクロボイドの大きさも均一である光学的に均一な低屈折率層を得ることができる。これにより、低屈折率層は微視的にはミクロボイド含有多孔質膜であるが、光学的或いは巨視的には均一な膜にすることができる。粒子間ミクロボイドは、微粒子及びポリマーによって低屈折率層内で閉じていることが好ましい。閉じている空隙には、低屈折率層表面に開かれた開口と比較して、低屈折率層表面での光の散乱が少ないとの利点もある。
ミクロボイドを形成することにより、低屈折率層の巨視的屈折率は、低屈折率層を構成する成分の屈折率の和よりも低い値になる。層の屈折率は、層の構成要素の体積当たりの屈折率の和になる。微粒子やポリマーのような低屈折率層の構成成分の屈折率は1よりも大きな値であるのに対して、空気の屈折率は1.00である。その為、ミクロボイドを形成することによって、屈折率が非常に低い低屈折率層を得ることができる。
また、低屈折率層はSiOの中空微粒子を用いることも好ましい態様である。
中空微粒子とは、粒子壁を有しその内部が空洞であるような粒子をいい、例えば前述の微粒子内部にミクロボイドを有するSiO粒子を更に有機珪素化合物(テトラエトキシシラン等のアルコキシシラン類)で表面を被覆しその細孔入り口を閉塞して形成された粒子である。或いは前記粒子壁内部の空洞が溶媒または気体で満たされていてもよく、例えば空気の場合は中空微粒子の屈折率は、通常のシリカ(屈折率=1.46)と比較して著しく低くすることができる(屈折率=1.44〜1.34)。この様な中空SiO微粒子を添加することにより、低屈折率層の更なる低屈折率化が可能となる。
上記無機微粒子内にミクロボイドを有する粒子を中空にする調製方法は、特開2001−167637号公報、同2001−233611号公報に記載されている方法に準じればよく、また本発明では市販の中空SiO微粒子を用いることができる。市販の粒子の具体例としては、触媒化成工業社製P−4等が挙げられる。
低屈折率層は、5〜50質量%の量のポリマーを含むことが好ましい。ポリマーは、微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を有する。ポリマーの使用量は、空隙を充填することなく低屈折率層の強度を維持できるように調整する。ポリマーの量は、低屈折率層の全量の10〜30質量%であることが好ましい。ポリマーで微粒子を接着するためには、(1)微粒子の表面処理剤にポリマーを結合させるか、(2)微粒子をコアとして、その周囲にポリマーシェルを形成するか、或いは(3)微粒子間のバインダーとして、ポリマーを使用することが好ましい。(1)の表面処理剤に結合させるポリマーは、(2)のシェルポリマーまたは(3)のバインダーポリマーであることが好ましい。(2)のポリマーは、低屈折率層の塗布液の調製前に、微粒子の周囲に重合反応により形成することが好ましい。(3)のポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に、重合反応により形成することが好ましい。上記(1)〜(3)のうちの二つまたは全てを組み合わせて実施することが好ましく、(1)と(3)の組み合わせ、または(1)〜(3)全ての組み合わせで実施することが特に好ましい。(1)表面処理、(2)シェル及び(3)バインダーについて順次説明する。
(1)表面処理
微粒子(特に無機微粒子)には、表面処理を実施して、ポリマーとの親和性を改善することが好ましい。表面処理は、プラズマ放電処理やコロナ放電処理のような物理的表面処理と、カップリング剤を使用する化学的表面処理に分類できる。化学的表面処理のみ、または物理的表面処理と化学的表面処理の組み合わせで実施することが好ましい。カップリング剤としては、オルガノアルコキシメタル化合物(例、チタンカップリング剤、シランカップリング剤)が好ましく用いられる。微粒子がSiOからなる場合は、シランカップリング剤による表面処理が特に有効に実施できる。具体的なシランカップリング剤の例としては、前記したシランカップリング剤が好ましく用いられる。
カップリング剤による表面処理は、微粒子の分散物に、カップリング剤を加え、室温から60℃までの温度で、数時間から10日間分散物を放置することにより実施できる。表面処理反応を促進するため、無機酸(例えば、硫酸、塩酸、硝酸、クロム酸、次亜塩素酸、ホウ酸、オルトケイ酸、リン酸、炭酸)、有機酸(例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、フェノール、ポリグルタミン酸)、またはこれらの塩(例えば、金属塩、アンモニウム塩)を、分散物に添加してもよい。
(2)シェル
シェルを形成するポリマーは、飽和炭化水素を主鎖として有するポリマーであることが好ましい。フッ素原子を主鎖または側鎖に含むポリマーが好ましく、フッ素原子を側鎖に含むポリマーが更に好ましい。ポリアクリル酸エステルまたはポリメタクリル酸エステルが好ましく、フッ素置換アルコールとポリアクリル酸またはポリメタクリル酸とのエステルが最も好ましい。シェルポリマーの屈折率は、ポリマー中のフッ素原子の含有量の増加に伴い低下する。低屈折率層の屈折率を低下させるため、シェルポリマーは35〜80質量%のフッ素原子を含むことが好ましく、45〜75質量%のフッ素原子を含むことが更に好ましい。フッ素原子を含むポリマーは、フッ素原子を含むエチレン性不飽和モノマーの重合反応により合成することが好ましい。フッ素原子を含むエチレン性不飽和モノマーの例としては、フルオロオレフィン(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール)、フッ素化ビニルエーテル及びフッ素置換アルコールとアクリル酸またはメタクリル酸とのエステルが挙げられる。
シェルを形成するポリマーは、フッ素原子を含む繰り返し単位とフッ素原子を含まない繰り返し単位からなるコポリマーであってもよい。フッ素原子を含まない繰り返し単位は、フッ素原子を含まないエチレン性不飽和モノマーの重合反応により得ることが好ましい。フッ素原子を含まないエチレン性不飽和モノマーの例としては、オレフィン(例えば、エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン)、アクリル酸エステル(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル(例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート)、スチレン及びその誘導体(例えば、スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン)、ビニルエーテル(例えば、メチルビニルエーテル)、ビニルエステル(例えば、酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル)、アクリルアミド(例えば、N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド)、メタクリルアミド及びアクリロニトリルが挙げられる。
後述する(3)のバインダーポリマーを併用する場合は、シェルポリマーに架橋性官能基を導入して、シェルポリマーとバインダーポリマーとを架橋により化学的に結合させてもよい。シェルポリマーは、結晶性を有していてもよい。シェルポリマーのガラス転移温度(Tg)が低屈折率層の形成時の温度よりも高いと、低屈折率層内のミクロボイドの維持が容易である。但し、Tgが低屈折率層の形成時の温度よりも高いと、微粒子が融着せず、低屈折率層が連続層として形成されない(その結果、強度が低下する)場合がある。その場合は、後述する(3)のバインダーポリマーを併用し、バインダーポリマーにより低屈折率層を連続層として形成することが望ましい。微粒子の周囲にポリマーシェルを形成して、コアシェル微粒子が得られる。コアシェル微粒子中に無機微粒子からなるコアが5〜90体積%含まれていることが好ましく、15〜80体積%含まれていることが更に好ましい。二種類以上のコアシェル微粒子を併用してもよい。また、シェルのない無機微粒子とコアシェル粒子とを併用してもよい。
(3)バインダー
バインダーポリマーは、飽和炭化水素またはポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることが更に好ましい。バインダーポリマーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーポリマーを得るためには、二以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。2以上のエチレン性不飽和基を有するモノマーの例としては、多価アルコールと(メタ)アクリル酸とのエステル(例えば、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3−シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼン及びその誘導体(例えば、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例えば、ジビニルスルホン)、アクリルアミド(例えば、メチレンビスアクリルアミド)及びメタクリルアミドが挙げられる。ポリエーテルを主鎖として有するポリマーは、多官能エポシキ化合物の開環重合反応により合成することが好ましい。2以上のエチレン性不飽和基を有するモノマーの代わりまたはそれに加えて、架橋性基の反応により、架橋構造をバインダーポリマーに導入してもよい。架橋性官能基の例としては、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基及び活性メチレン基が挙げられる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタンも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。また、架橋基は、上記化合物に限らず上記官能基が分解した結果反応性を示すものであってもよい。バインダーポリマーの重合反応及び架橋反応に使用する重合開始剤は、熱重合開始剤や、光重合開始剤が用いられるが、光重合開始剤の方がより好ましい。光重合開始剤の例としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類や芳香族スルホニウム類がある。アセトフェノン類の例としては、2,2−ジエトキシアセトフェノン、p−ジメチルアセトフェノン、1−ヒドロキシジメチルフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−4−メチルチオ−2−モルフォリノプロピオフェノン及び2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノンが挙げられる。ベンゾイン類の例としては、ベンゾインメチルエーテル、ベンゾインエチルエーテル及びベンゾインイソプロピルエーテルが挙げられる。ベンゾフェノン類の例としては、ベンゾフェノン、2,4−ジクロロベンゾフェノン、4,4−ジクロロベンゾフェノン及びp−クロロベンゾフェノンが挙げられる。ホスフィンオキシド類の例としては、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキシドが挙げられる。
バインダーポリマーは、低屈折率層の塗布液にモノマーを添加し、低屈折率層の塗布と同時または塗布後に重合反応(必要ならば更に架橋反応)により形成することが好ましい。低屈折率層の塗布液に、少量のポリマー(例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂)を添加してもよい。
また、低屈折率層或いは他の屈折率層には滑り剤を添加することが好ましく、滑り性を付与することによって耐傷性を改善することができる。滑り剤としては、シリコーンオイルまたはワックス状物質が好ましく用いられる。例えば、下記一般式で表される化合物が好ましい。
一般式 RCOR
式中、Rは炭素原子数が12以上の飽和または不飽和の脂肪族炭化水素基を表す。アルキル基またはアルケニル基が好ましく、更に炭素原子数が16以上のアルキル基またはアルケニル基が好ましい。Rは−OM1基(M1はNa、K等のアルカリ金属を表す)、−OH基、−NH基、または−OR基(Rは炭素原子数が12以上の飽和または不飽和の脂肪族炭化水素基、好ましくはアルキル基またはアルケニル基を表す)を表し、Rとしては−OH基、−NH基または−OR基が好ましい。具体的には、ベヘン酸、ステアリン酸アミド、ペンタコ酸等の高級脂肪酸またはその誘導体、天然物としてこれらの成分を多く含んでいるカルナバワックス、蜜蝋、モンタンワックスも好ましく使用できる。特公昭53−292号公報に開示されているようなポリオルガノシロキサン、米国特許第4,275,146号明細書に開示されているような高級脂肪酸アミド、特公昭58−33541号公報、英国特許第927,446号明細書または特開昭55−126238号公報及び同58−90633号公報に開示されているような高級脂肪酸エステル(炭素数が10〜24の脂肪酸と炭素数が10〜24のアルコールのエステル)、そして米国特許第3,933,516号明細書に開示されているような高級脂肪酸金属塩、特開昭51−37217号公報に開示されているような炭素数10までのジカルボン酸と脂肪族または環式脂肪族ジオールからなるポリエステル化合物、特開平7−13292号公報に開示されているジカルボン酸とジオールからのオリゴポリエステル等を挙げることができる。
例えば、低屈折率層に使用する滑り剤の添加量は0.01mg/m〜10mg/mが好ましい。
反射防止フィルムの各層またはその塗布液には、金属酸化物粒子、ポリマー、分散媒体、重合開始剤、重合促進剤等以外に、重合禁止剤、レベリング剤、増粘剤、着色防止剤、紫外線吸収剤、シランカップリング剤、帯電防止剤や接着付与剤を添加してもよい。
反射防止フィルムの各層は、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許2,681,294号)により、塗布により形成することができる。2以上の層を同時に塗布してもよい。同時塗布の方法については、米国特許2,761,791号、同2,941,898号、同3,508,947号、同3,526,528号及び原崎勇次著、コーティング工学、253頁、朝倉書店(1973)に記載がある。
反射防止フィルムの製造において、前記調製した塗布液を支持体に塗布した後乾燥する際に、好ましくは60℃以上で乾燥することが好ましく、80℃以上で乾燥することが更に好ましい。また、露点20℃以下で乾燥することが好ましく、15℃以下で乾燥することが更に好ましい。更に支持体に塗布した後10秒以内に乾燥が開始されることが好ましく、上記条件と組み合わせることが好ましい製造方法である。
本発明の光学フィルムは、上述の如く偏光板保護フィルム、反射防止フィルム、ハードコートフィルム、防眩フィルム、位相差フィルム、光学補償フィルム、帯電防止フィルム、輝度向上フィルム等に好ましく用いられる。
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、実施例中の「部」又は「%」は、特に断りのない限り質量基準である。
実施例1
以下に、本発明に係る紫外線吸収性ポリマーの合成例を示す。
(合成例1)
まず、2(2′−ヒドロキシ−5′−t−ブチル−フェニル)−5−カルボン酸−(2−メタクリロイルオキシ)エチルエステル−2H−ベンゾトリアゾール(例示化合物UVM−14)を、下記に記載の方法に従って合成した。
20.0gの3−ニトロ−4−アミノ−安息香酸を160mlの水に溶かし、濃塩酸43mlを加えた。20mlの水に溶解させた8.0gの亜硝酸ナトリウムを0℃で加えた後、0℃のまま2時間撹拌した。この溶液に、17.3gの4−t−ブチルフェノールを水50mlとエタノール100mlに溶解させた溶液中に、炭酸カリウムで液性をアルカリ性に保ちながら0℃で滴下した。この溶液を0℃に保ちながら1時間、更に室温で1時間撹拌した。反応液を塩酸で酸性にし、生成した沈殿物をろ過した後、よく水洗した。
ろ過した沈殿を500mlの1モル/LのNaOH水溶液に溶解させ、35gの亜鉛粉末を加えた後、40%NaOH水溶液110gを滴下した。滴下後、約2時間撹拌し、ろ過、水洗し、濾液を塩酸で中和して中性とした。析出した沈殿物をろ過、水洗、乾燥後、酢酸エチルとアセトンの混合溶媒で再結晶を行うことにより、2(2′−ヒドロキシ−5′−t−ブチル−フェニル)−5−カルボン酸−2H−ベンゾトリアゾールが得られた。
10.0gの2(2′−ヒドロキシ−5′−t−ブチル−フェニル)−5−カルボン酸−2H−ベンゾトリアゾールと0.1gのハイドロキノン、4.6gの2−ヒドロキシエチルメタクリレート、0.5gのp−トルエンスルホン酸とをトルエン100ml中に加え、エステル管を備えた反応容器で10時間加熱還流を行う。反応溶液を水中に注ぎ、析出した結晶をろ過、水洗、乾燥し、酢酸エチルで再結晶を行うことで、例示化合物UVM−14である2(2′−ヒドロキシ−5′−t−ブチル−フェニル)−5−カルボン酸−(2−メタクリロイルオキシ)エチルエステル−2H−ベンゾトリアゾールが得られた。380nmにおけるモル吸光係数は7400であった。
次に、例示化合物MOL−1と例示化合物UVM−14との共重合体(UVP−1)を下記に示す方法に従って合成した。
トルエン100ml中に、例示化合物MOL−1を6.5gと例示化合物UVM−14を3.5gとを加え、次いで、ジラウロイルパーオキサイド0.1gを加えた。窒素雰囲気下で85℃まで加熱し5時間反応させた。トルエン70mlを減圧留去した後、大過剰のメタノール中に滴下した。析出した沈殿物を濾取し、40℃で真空乾燥して、7.3gの共重合体(UVP−1)を得た。この共重合体は、標準ポリスチレンを基準とするGPC分析により、重量平均分子量は18000であると確認し、Mw/Mnが1.9であった。また分子量1000未満の低分子量成分の比率が0.8質量%であった。分光吸収スペクトル測定により吸収極大λmaxは353nmであった。
NMRスペクトル及び分光吸収スペクトルから、上記共重合体が、例示化合物MOL−1と例示化合物UVM−14との共重合体であることを確認した。上記共重合体の組成比(質量比)は略、MOL−1:UVM−14=65:35であった。
(合成例2)
まず、2(2′−ヒドロキシ−5′−t−ブチル−フェニル)−5−カルボン酸−(2−アクリロイルオキシ)エチルエステル−2H−ベンゾトリアゾール(例示化合物UVM−44)を、下記に記載の方法に従って合成した。
20.0gの3−ニトロ−4−アミノ−安息香酸を160mlの水に溶かし、濃塩酸43mlを加えた。20mlの水に溶解させた8.0gの亜硝酸ナトリウムを0℃で加えた後、0℃のまま2時間撹拌した。この溶液に、17.3gの4−t−ブチルフェノールを水50mlとエタノール100mlに溶解させた溶液中に、炭酸カリウムで液性をアルカリ性に保ちながら0℃で滴下した。この溶液を0℃に保ちながら1時間、更に室温で1時間撹拌した。反応液を塩酸で酸性にし、生成した沈殿物をろ過した後、よく水洗した。
ろ過した沈殿を500mlの1モル/LのNaOH水溶液に溶解させ、35gの亜鉛粉末を加えた後、40%NaOH水溶液110gを滴下した。滴下後、約2時間撹拌し、ろ過、水洗し、濾液を塩酸で中和して中性とした。析出した沈殿物をろ過、水洗、乾燥後、酢酸エチルとアセトンの混合溶媒で再結晶を行うことにより、2(2′−ヒドロキシ−5′−t−ブチル−フェニル)−5−カルボン酸−2H−ベンゾトリアゾールが得られた。
10.0gの2(2′−ヒドロキシ−5′−t−ブチル−フェニル)−5−カルボン酸−2H−ベンゾトリアゾールと0.1gのハイドロキノン、4.1gの2−ヒドロキシエチルアクリレート、0.5gのp−トルエンスルホン酸とをトルエン100ml中に加え、エステル管を備えた反応容器で10時間加熱還流を行う。反応溶液を水中に注ぎ、析出した結晶をろ過、水洗、乾燥し、酢酸エチルで再結晶を行うことで、例示化合物UVM−44である2(2′−ヒドロキシ−5′−t−ブチル−フェニル)−5−カルボン酸−(2−アクリロイルオキシ)エチルエステル−2H−ベンゾトリアゾールが得られた。380nmにおけるモル吸光係数は7300であった。
次に、例示化合物MOL−1と例示化合物UVM−44とメタクリル酸メチルとの共重合体(UVP−2)を下記に示す方法に従って合成した。
トルエン100ml中に、例示化合物MOL−1を5.0gと例示化合物UVM−44を3.0gとメタクリル酸メチル2.0gとを加え、次いで、アゾイソブチロニトリル0.1gを加えた。窒素雰囲気下で80℃まで加熱し3時間反応させた。トルエン70mlを減圧留去した後、大過剰のメタノール中に滴下した。析出した沈殿物を濾取し、40℃で真空乾燥して、7.8gの共重合体(UVP−2)を得た。この共重合体は、標準ポリスチレンを基準とするGPC分析により、重量平均分子量は21000であると確認し、Mw/Mnが2.3であった。また分子量1000未満の低分子量成分の比率が0.9質量%であった。分光吸収スペクトル測定により吸収極大λmaxは353nmであった。
NMRスペクトル及び分光吸収スペクトルから、上記共重合体が、例示化合物MOL−1と例示化合物UVM−44とメタクリル酸メチルとの共重合体であることを確認した。上記共重合体の組成比(質量比)は略、MOL−1:UVM−44:メタクリル酸メチル=50:30:20であった。
(合成例3)
例示化合物MOL−1と例示化合物UVM−44とメタクリル酸メチルと例示化合物UVM−81の共重合体(UVP−3)を下記に示す方法に従って合成した。
トルエン100ml中に、例示化合物MOL−1を4.5gと例示化合物UVM−44を3.0gとメタクリル酸メチル2.0gと例示化合物UVM−81を0.5gとを加え、次いで、ジラウロイルパーオキサイド0.1gを加えた。窒素雰囲気下で85℃まで加熱し3時間反応させた。トルエン70mlを減圧留去した後、大過剰のメタノール中に滴下した。析出した沈殿物を濾取し、40℃で真空乾燥して、7.2gの共重合体(UVP−3)を得た。この共重合体は、標準ポリスチレンを基準とするGPC分析により、重量平均分子量は17000であると確認し、Mw/Mnが2.0であった。また分子量1000未満の低分子量成分の比率が0.9質量%であった。分光吸収スペクトル測定により吸収極大λmaxは350nmであった。
NMRスペクトル及び分光吸収スペクトルから、上記共重合体が、例示化合物MOL−1と例示化合物UVM−44とメタクリル酸メチルと例示化合物UVM−81の共重合体であることを確認した。上記共重合体の組成比(質量比)は略、MOL−1:UVM−44:メタクリル酸メチル:UVM−81=45:30:20:5であった。
(合成例4)
まず、2(2′−ヒドロキシ−5′−メチル−フェニル)−5−メタクリロイルアミノ−2H−ベンゾトリアゾール(例示化合物UVM−2)を、下記に記載の方法に従って合成した。
30.7gの2−アミノ−p−クレゾールを250mlの水に溶かし、濃塩酸83mlを加えた。これに、35mlの水に溶解させた17.2gの亜硝酸ナトリウムを0℃で加えた後、この溶液を、36.1gのm−フェニレンジアミン塩酸塩水溶液500ml中に0℃で加えた。この溶液を0℃に保ちながら、170gの酢酸ナトリウムを250mlの水に溶解させた水溶液を滴下した後、5℃で2時間、更に、室温で2時間撹拌した。反応液のpHをアンモニア水で8に調整した後、沈殿物をろ過し、よく水洗した。
ろ過した沈殿物48.4gを、300mlのメタノールに溶解させ、150gの硫酸銅5水和物を360mlの水と600mlのアンモニア水に溶解させた水溶液を加えた後、95℃で2時間撹拌した。冷却後、沈殿物をろ過し、濾液が透明になるまで水洗した。ろ過した沈殿物を5モル/Lの塩酸水溶液500ml中で1時間撹拌した後、ろ過し、再び200mlの水に溶解させ、アンモニア水でpH8に調整した。これをろ過、水洗、乾燥後、酢酸エチルから再結晶を行うことで、2(2′−ヒドロキシ−5′−メチル−フェニル)−5−アミノ−2H−ベンゾトリアゾールが得られた。
12.0gの2(2′−ヒドロキシ−5′−メチル−フェニル)−5−アミノ−2H−ベンゾトリアゾールと0.1gのハイドロキノンとを、70℃で110mlのテトラヒドロフランに溶かした溶液に6.3gの炭酸水素ナトリウムを加えた。この溶液に、10mlのテトラヒドロフランに溶かしたメタクリル酸クロリドを60℃で30分かけて滴下した。反応溶液を水中に注ぎ、析出した結晶をろ過、水洗、乾燥し、エチレングリコールモノメチルエーテルで再結晶を行うことで例示化合物UVM−2である2(2′−ヒドロキシ−5′−メチル−フェニル)−5−メタクリロイルアミノ−2H−ベンゾトリアゾールが得られた。380nmにおけるモル吸光係数は7200であった。
次に、例示化合物MOL−2と例示化合物UVM−2との共重合体(UVP−4)を下記に示す方法に従って合成した。
トルエン100ml中に、例示化合物MOL−2を6.3gと例示化合物UVM−2を3.7gとを加え、次いで、アゾイソブチロニトリル0.1gを加えた。窒素雰囲気下で80℃まで加熱し5時間反応させた。トルエン70mlを減圧留去した後、大過剰のメタノール中に滴下した。析出した沈殿物を濾取し、40℃で真空乾燥して、5.5gの共重合体(UVP−4)を得た。この共重合体は、標準ポリスチレンを基準とするGPC分析により、重量平均分子量は27000であると確認し、Mw/Mnが2.4であった。また分子量1000未満の低分子量成分の比率が0.8質量%であった。分光吸収スペクトル測定により吸収極大λmaxは353nmであった。
NMRスペクトル及び分光吸収スペクトルから、上記共重合体が、例示化合物MOL−2と例示化合物UVM−2との共重合体であることを確認した。上記共重合体の組成比(質量比)は略、MOL−2:UVM−2:メタクリル酸メチル=63:37であった。
更に、表1に記載の構成モノマーと組成比からなる本発明の紫外線吸収性ポリマーUVP−5〜27を、合成例1〜4と同様に合成した。なお合成したポリマーの重量平均分子量(Mw)、吸収極大λmax、及び組成比(質量比)は合成例1と同様の方法でもとめた。
Figure 2009114430
Figure 2009114430
実施例2
〔光学フィルムの製造〕
セルロースエステルCE−1としてセルロースアセテートプロピオネート(アセチル基置換度=1.41、プロピオニル置換度=1.32、総置換度=2.73、重量平均分子量=20万(ポリスチレン換算)、分散度=2.3)100質量部、可塑剤として前記KA−61の8.0質量部、炭素ラジカル捕捉剤として前記I−16(市販品として、SumilizerGS(住友化学社製))の0.25質量部、フェノール系化合物P−1として、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート](市販品として、Irganox1010(チバ・ジャパン社製))0.5質量部、リン系化合物として前記PN−1、テトラキス(2,4−ジ−t−ブチル−5−メチルフェニル)−4,4′−ビフェニレンジホスホナイト(市販品として、GSY−P101(堺化学工業社製))0.25質量部、紫外線吸収性ポリマーとして前記UVP−1の1.5質量部、更に紫外線吸収剤として下記UV−1の0.7質量部、微粒子(マット剤)M−1として、微粒子シリカ(平均一次粒径16μm)(市販品として、アエロジル200V(日本アエロジル社製))0.3質量部を混合し、60℃ 5時間減圧乾燥した。このセルロースアシレート組成物を、2軸式押出し機を用いて235℃で溶融混合しペレット化した。この際、混錬時のせん断による発熱を抑えるためニーディングディスクは用いずオールスクリュータイプのスクリューを用いた。また、ベント孔から真空引きを行い、混錬中に発生する揮発成分を吸引除去した。なお、押出し機に供給するフィーダーやホッパー、押出し機ダイから冷却槽間は、乾燥窒素ガス雰囲気として、樹脂への水分の吸湿を防止した。
フィルム製膜は図1に示す製造装置で行った。
第1冷却ロール及び第2冷却ロールは直径40cmのステンレス製とし、表面にハードクロムメッキを施した。又、内部には温度調整用のオイルを循環させて、ロール表面温度を制御した。弾性タッチロールは、直径20cmとし、内筒と外筒はステンレス製とし、外筒の表面にはハードクロムメッキを施した。外筒の肉厚は2mmとし、内筒と外筒との間の空間に温度調整用のオイルを循環させて弾性タッチロールの表面温度を制御した。
得られたペレット(水分率50ppm)を、1軸押出し機を用いてTダイからフィルム状に表面温度130℃の第1冷却ロール上に溶融温度250℃でフィルム状に溶融押し出しドロー比20で、キャストフィルムを得た。この際、Tダイのリップクリアランス1.5mm、リップ部平均表面粗さRa0.01μmのTダイを用いた。
更に、第1冷却ロール上でフィルムを2mm厚の金属表面を有する弾性タッチロールを線圧10kg/cmで押圧した。押圧時のタッチロール側のフィルム温度は、180℃±1℃であった。(ここでいう押圧時のタッチロール側のフィルム温度は、第1ロール(冷却ロール)上のタッチロールが接する位置のフィルムの温度を、非接触温度計を用いて、タッチロールを後退させてタッチロールがない状態で50cm離れた位置から幅方向に10点測定したフィルム表面温度の平均値を指す。)このフィルムのガラス転移温度Tgは136℃であった。(セイコー(株)製、DSC6200を用いてDSC法(窒素中、昇温温度10℃/分)によりダイスから押し出されたフィルムのガラス転移温度を測定した。)
なお、弾性タッチロールの表面温度は130℃、第2冷却ロールの表面温度は100℃とした。弾性タッチロール、第1冷却ロール、第2冷却ロールの各ロールの表面温度は、ロールにフィルムが最初に接する位置から回転方向に対して90°手前の位置のロール表面の温度を非接触温度計を用いて幅方向に10点測定した平均値を各ロールの表面温度とした。
得られたフィルムを、160℃加熱してロール延伸により、長手方向に1.01倍延伸し、続いて予熱ゾーン、延伸ゾーン、保持ゾーン、冷却ゾーン(各ゾーン間には各ゾーン間の断熱を確実にするためのニュートラルゾーンも有する)を有するテンターに導入し、幅方向に160℃で1.20倍延伸した後、幅方向に2%緩和しながら70℃まで冷却し、その後クリップから開放し、クリップ把持部を裁ち落として、フィルム両端に幅10mm、高さ5μmのナーリング加工を施し、幅1430mmにスリットした膜厚80μm、Roが1nm、Rthが8nmの光学フィルムF−1を作製した。この際、予熱温度、保持温度を調整し延伸によるボーイング現象を防止した。
同様に以下、表2、表3記載の化合物、製造条件で光学フィルムF−2〜50を作製した。
Figure 2009114430
Figure 2009114430
使用した化合物及び製造条件の詳細を以下に示す。
添加量はセルロースエステル100質量部に対する質量部を表す。
(セルロースエステル)
CE−2:セルロースアセテートプロピオネート、アセチル置換度=1.50、プロピオニル置換度=1.34、総置換度=2.84、重量平均分子量=21万(ポリスチレン換算)、分散度=3.0
CE−3:セルロースアセテートプロピオネート、アセチル基置換度=1.63、プロピオニル置換度=1.21、総置換度=2.84、重量平均分子量=23万(ポリスチレン換算)、分散度=2.8
CE−4:セルロースアセテートプロピオネート、アセチル置換度=1.64、プロピオニル置換度=1.12、総置換度=2.76、重量平均分子量=20万(ポリスチレン換算)、分散度=2.9
CE−5:セルロースアセテートプロピオネート、アセチル置換度=1.30、プロピオニル置換度=1.20、総置換度=2.50、重量平均分子量=21万(ポリスチレン換算)、分散度=3.1
CE−6:セルロースアセテートプロピオネート、アセチル置換度=1.75、プロピオニル置換度=1.20、総置換度=2.95、重量平均分子量=22万(ポリスチレン換算)、分散度=3.3
CE−7:セルロースアセテートプロピオネート、アセチル置換度=1.70、プロピオニル置換度=1.00、総置換度=2.70、重量平均分子量=26万(ポリスチレン換算)、分散度=3.5
CE−8:セルロースアセテートプロピオネート、アセチル置換度=1.20、プロピオニル置換度=1.50、総置換度=2.70、重量平均分子量=20万(ポリスチレン換算)、分散度=3.0
CE−9:セルロースアセテートプロピオネート、アセチル置換度=1.90、プロピオニル置換度=0.75、総置換度=2.65、重量平均分子量=20万(ポリスチレン換算)、分散度=2.5
CE−10:セルロースアセテートプロピオネート、アセチル置換度=2.00、プロピオニル置換度=0.80、総置換度=2.80、重量平均分子量=24万(ポリスチレン換算)、分散度=2.5
CE−11:セルロースアセテートプロピオネート、アセチル置換度=1.35、プロピオニル置換度=1.10、総置換度=2.45、重量平均分子量=20万(ポリスチレン換算)、分散度=3.0
CE−12:セルロースアセテートプロピオネート、アセチル置換度=1.75、プロピオニル置換度=0.90、総置換度=2.65、重量平均分子量=20万(ポリスチレン換算)、分散度=3.0
CE−13:セルロースアセテートプロピオネート、アセチル置換度=1.20、プロピオニル置換度=1.60、総置換度=2.80、重量平均分子量=20万(ポリスチレン換算)、分散度=3.0
上記において、分散度とは、重量平均分子量/数平均分子量をいう。
(フェノール系化合物)
P−2:ヘキサメチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート](市販品として、IRGANOX−259(チバ・ジャパン社製))
P−3:オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート(市販品として、IRGANOX−1076(チバ・ジャパン社製))
(リン系化合物)
PH−1:下記化合物
PH−2:下記化合物
(紫外線吸収剤)
UV−1:下記化合物
UV−2:下記化合物
(微粒子)
M−2:AEROSIL NAX50(日本アエロジル(株)製)
M−3:SEAHOSTAR KE−P100(日本触媒(株)製)
(その他添加剤)
添加剤a:ポリマー添加剤
メチルアクリレート 10質量部
2−ヒドロキシエチルアクリレート 1質量部
アゾビスイソブチロニトリル(AIBN) 1質量部
トルエン 30質量部
上記組成物を四つ口フラスコ(投入口、温度計、環流冷却管、窒素導入口、攪拌機を装着)に投入し、徐々に80℃まで昇温し、攪拌しながら5時間重合を行い、重合終了後ポリマー溶液を多量のメタノールに投入して沈殿させ、更にメタノールで洗浄し、精製して乾燥して得られた、重量平均分子量5000(GPCにて測定)のポリマー。
添加剤b:ヒンダードアミン系添加剤(HALS−1)
添加剤c:エポキシ系添加剤 エポキシ化タル油
Figure 2009114430
(光学フィルムの評価)
上記のようにして作製した試料について、以下に記載した評価を行った。その結果を表4に示す。
(レターデーションの評価)
得られた光学フィルムから200mm角に切り出し、自動複屈折計KOBRA−21−ADH(王子計測機器社製)を用いて温度23℃、湿度55%RHの環境下で、5mmピッチで、波長が590nmにおける屈折率Nx、Ny、Nzを求め、下記の式に従って、フィルム面内方向のレターデーション(Ro)、及び厚み方向のレターデーション(Rth)を算出した。
Ro=(Nx+Ny)×d
Rth=((Nx+Ny)/2−Nz)×d
ここで、Nxはフィルム面内における遅送軸方向の屈折率、Nyはフィルム面内における進送軸方向の屈折率、dはフィルムの厚み(nm)をそれぞれ表す。
(寸法安定性の評価)
作製した光学フィルムについて縦方向及び横方向より30mm幅×120mm長さの試験片を各3枚採取し、試験片の両端に6mmφの穴をパンチで100mm間隔に開けた。これを23±3℃、65±5%RHの室内で3時間以上調湿した。自動ピンゲージ(新東科学(株)製)を用いてパンチ間隔の原寸(L1)を最小目盛り1μmまで測定する。次に試験片を80℃、90%RHの恒温恒湿器に吊して50時間熱処理し、23±3℃、65±5%RHの室内で3時間以上調湿した後、自動ピンゲージで熱処理後のパンチ間隔の寸法(L2)を測定する。そして以下の式により寸法変化率を算出する。
寸法変化率(%)=(L1−L2/L1)×100
Figure 2009114430
(偏光板の作製)
厚さ120μmの長尺ロールポリビニルアルコールフィルムを沃素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸漬し、50℃で5倍に搬送方向に延伸して偏光膜を作った。次に、この偏光膜の片面に下記の条件でアルカリケン化処理した前記光学フィルムF−1を偏光板保護フィルムとして完全ケン化型ポリビニルアルコール5%水溶液を接着剤として貼り、更に偏光膜のもう一方の面に同様にアルカリケン化処理したコニカミノルタオプト社製KC4UXを貼り合わせ、乾燥して偏光板P−1を作製した。同様にして前記光学フィルムF−2〜F−50を用いて偏光板P−2〜P−50を作製した。
(アルカリケン化処理)
ケン化工程 2M−NaOH 50℃ 90秒
水洗工程 水 30℃ 45秒
中和工程 10質量%HCl 30℃ 45秒
水洗工程 水 30℃ 45秒
ケン化処理後、水洗、中和、水洗の順に行い、次いで80℃で乾燥を行った。
(液晶表示装置としての特性評価)
IPSモードの液晶セルを含む液晶表示装置[松下電器産業(株)製パナソニック液晶テレビVIERA TH−26LX60]から液晶パネルを取り出し、液晶セルの上下に配置されていた偏光板を取り除いて、上記作製した各々の偏光板を偏光子の遅相軸が液晶セルの長辺と平行(0±0.2度)となるように液晶セルの両面にアクリル粘着剤(厚み20μm)を用いて貼着した。その際前記光学フィルムF−1〜F−50が液晶セル側になるように貼合した。
光学フィルムの偏光板としての特性を評価した。結果を表5に示す。
<ざらつき感の評価>
液晶表示装置に、白、黒、赤、緑、青、カラーバーの画像を表示させ、画素に対するざらつき感が存在するかどうかを目視官能評価した。
◎・・・ざらつき感が全く気にならない。
○・・・ざらつき感がほとんど気にならない。
×・・・ざらつき感があると感じる。
Figure 2009114430
表4、5から、本発明の光学フィルムは延伸処理を施しても、レターデーションの発現性が小さく、寸法安定性に優れることが確認された。また本発明の光学フィルムを用いた偏光板は、液晶ディスプレイなどの画像表示装置用の偏光板として視認性に優れていることが確認された。
本発明の光学フィルムの製造方法を実施する装置の1つの実施形態を示す概略フローシートである。 図1の製造装置の要部拡大フローシートである。 図3(a)は流延ダイの要部の外観図、図3(b)は流延ダイの要部の断面図である。 挟圧回転体の第1実施形態の断面図である。 挟圧回転体の第2実施形態の回転軸に垂直な平面での断面図である。 挟圧回転体の第2実施形態の回転軸を含む平面での断面図である。 液晶表示装置の構成図の概略を示す分解斜視図である。
符号の説明
1 押出し機
2 フィルター
3 スタチックミキサー
4 流延ダイ
5 回転支持体(第1冷却ロール)
6 挟圧回転体(タッチロール)
7 回転支持体(第2冷却ロール)
8 回転支持体(第3冷却ロール)
9、11、13、14、15 搬送ロール
10 セルロースエステルフィルム
16 巻取り装置
21a、21b 保護フィルム
22a、22b 位相差フィルム
23a、23b フィルムの遅相軸方向
24a、24b 偏光子の透過軸方向
25a、25b 偏光子
26a、26b 偏光板
27 液晶セル
29 液晶表示装置
31 ダイ本体
32 スリット
41 金属スリーブ
42 弾性ローラ
43 金属製の内筒
44 ゴム
45 冷却水または加熱媒体
51 外筒
52 内筒
53 空間
54 冷却液
55a、55b 回転軸
56a、56b 外筒支持フランジ
60 流体軸筒
61a、61b 内筒支持フランジ
62a、62b 中間通路

Claims (7)

  1. 下記式(1)〜(3)の置換度を同時に満たすセルロースエステルおよび紫外線吸収性ポリマーを含む組成物を溶融流延製膜してウェブを形成し、面内のレターデーション(Ro)が0≦Ro≦10nm、厚み方向のレターデーション(Rth)が−20≦Rth≦20nmの範囲を同時に満たすように、該ウェブを少なくとも1方向に1.2倍以上5.0倍以下で延伸処理することを特徴とする光学フィルムの製造方法。
    2.50≦X+Y≦3.00 … 式(1)
    1.20≦X≦1.75 … 式(2)
    1.00≦Y≦1.50 … 式(3)
    (式中、Xはアセチル基の置換度を示す。Yはプロピオニル基の置換度を示す。)
  2. 前記紫外線吸収性ポリマーが下記一般式(A)で表されるモノマーから誘導される紫外線吸収性ポリマーであることを特徴とする請求項1に記載の光学フィルムの製造方法。
    Figure 2009114430
    (式中、R〜Rは各々水素原子、ハロゲン原子、置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、または置換基を有していてもよい複素環基を表す。但し、R〜Rで表される基のいずれか1つはエチレン性不飽和結合を部分構造として有する。)
  3. 前記紫外線吸収性ポリマーが前記一般式(A)で表されるモノマーと分子内に下記一般式(B)で表される部分構造を有するエチレン性不飽和モノマーの少なくとも2種以上のモノマーを共重合させて得られる紫外線吸収性ポリマーであることを特徴とする請求項1または2に記載の光学フィルムの製造方法。
    Figure 2009114430
    (式中、R、R10、及びR11は、それぞれ独立して置換基を有していてもよい脂肪族基、置換基を有していてもよい芳香族基、または置換基を有していてもよい複素環基を表す。またR、R10、及びR11の何れか二つが互いに結合してそれらが結合している窒素原子、或いは窒素原子及び炭素原子と一緒になって、環状構造を形成していてもよい。)
  4. 前記組成物に更に炭素ラジカル捕捉剤、フェノール系化合物、またはリン系化合物の少なくとも1種を含有させることを特徴とする請求項1〜3のいずれか1項に記載の光学フィルムの製造方法。
  5. 請求項1〜4のいずれか1項に記載の光学フィルムの製造方法による製造されたことを特徴とする光学フィルム。
  6. 請求項5に記載の光学フィルムを用いることを特徴とする偏光板。
  7. 請求項5に記載の光学フィルムまたは請求項6に記載の偏光板を用いることを特徴とする表示装置。
JP2008247597A 2007-10-17 2008-09-26 光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置 Pending JP2009114430A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247597A JP2009114430A (ja) 2007-10-17 2008-09-26 光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007269880 2007-10-17
JP2008247597A JP2009114430A (ja) 2007-10-17 2008-09-26 光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置

Publications (1)

Publication Number Publication Date
JP2009114430A true JP2009114430A (ja) 2009-05-28

Family

ID=40781917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247597A Pending JP2009114430A (ja) 2007-10-17 2008-09-26 光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置

Country Status (1)

Country Link
JP (1) JP2009114430A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262533A (ja) * 2008-04-04 2009-11-12 Konica Minolta Opto Inc 光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置
JP2014077129A (ja) * 2012-09-24 2014-05-01 Fujifilm Corp セルロースアシレートフィルム、それを用いた偏光板および液晶表示装置
WO2018181256A1 (ja) * 2017-03-29 2018-10-04 新中村化学工業株式会社 ベンゾトリアゾール系(共)重合体およびこれを含有する紫外線吸収性塗料並びに該塗料がコーティングされたフィルム
WO2018190381A1 (ja) * 2017-04-13 2018-10-18 新中村化学工業株式会社 紫外線吸収性塗料並びに該塗料がコーティングされたフィルム
KR20190033609A (ko) * 2016-08-31 2019-03-29 비아비 솔루션즈 아이엔씨. 각져 있는 반사성 세그먼트를 갖는 물품
JP2019218449A (ja) * 2018-06-19 2019-12-26 日東電工株式会社 樹脂フィルム、導電性フィルム及び積層フィルムの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264312A (ja) * 2005-02-28 2006-10-05 Nippon Shokubai Co Ltd 高耐光性記録材料用紫外線吸収性ポリマー
JP2007041280A (ja) * 2005-08-03 2007-02-15 Konica Minolta Opto Inc 位相差フィルム、偏光板およびこれらを用いた液晶表示装置
WO2007066519A1 (ja) * 2005-12-07 2007-06-14 Konica Minolta Opto, Inc. セルロースエステルフィルム、その製造方法、偏光板及び液晶表示装置
WO2007108347A1 (ja) * 2006-03-20 2007-09-27 Konica Minolta Opto, Inc. セルロースアシレート光学フィルム、その製造方法、それを用いる偏光板及び液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006264312A (ja) * 2005-02-28 2006-10-05 Nippon Shokubai Co Ltd 高耐光性記録材料用紫外線吸収性ポリマー
JP2007041280A (ja) * 2005-08-03 2007-02-15 Konica Minolta Opto Inc 位相差フィルム、偏光板およびこれらを用いた液晶表示装置
WO2007066519A1 (ja) * 2005-12-07 2007-06-14 Konica Minolta Opto, Inc. セルロースエステルフィルム、その製造方法、偏光板及び液晶表示装置
WO2007108347A1 (ja) * 2006-03-20 2007-09-27 Konica Minolta Opto, Inc. セルロースアシレート光学フィルム、その製造方法、それを用いる偏光板及び液晶表示装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262533A (ja) * 2008-04-04 2009-11-12 Konica Minolta Opto Inc 光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置
JP2014077129A (ja) * 2012-09-24 2014-05-01 Fujifilm Corp セルロースアシレートフィルム、それを用いた偏光板および液晶表示装置
KR20190033609A (ko) * 2016-08-31 2019-03-29 비아비 솔루션즈 아이엔씨. 각져 있는 반사성 세그먼트를 갖는 물품
KR102242089B1 (ko) 2016-08-31 2021-04-21 비아비 솔루션즈 아이엔씨. 각져 있는 반사성 세그먼트를 갖는 물품
KR102320539B1 (ko) 2017-03-29 2021-11-01 신나카무라 가가꾸 고교 가부시키가이샤 벤조트리아졸계(공)중합체 및 이를 함유하는 자외선 흡수성 도료 및 상기 도료가 코팅된 필름
KR20190127959A (ko) * 2017-03-29 2019-11-13 신나카무라 가가꾸 고교 가부시키가이샤 벤조트리아졸계(공)중합체 및 이를 함유하는 자외선 흡수성 도료 및 상기 도료가 코팅된 필름
CN110475792A (zh) * 2017-03-29 2019-11-19 新中村化学工业株式会社 苯并三唑系(共)聚合物和含有其的紫外线吸收性涂料以及涂布有该涂料的膜
WO2018181256A1 (ja) * 2017-03-29 2018-10-04 新中村化学工業株式会社 ベンゾトリアゾール系(共)重合体およびこれを含有する紫外線吸収性塗料並びに該塗料がコーティングされたフィルム
KR20190132534A (ko) * 2017-04-13 2019-11-27 신나카무라 가가꾸 고교 가부시키가이샤 자외선 흡수성 도료 및 상기 도료가 코팅된 필름
CN110546172A (zh) * 2017-04-13 2019-12-06 新中村化学工业株式会社 紫外线吸收性涂料以及涂布有该涂料的膜
WO2018190381A1 (ja) * 2017-04-13 2018-10-18 新中村化学工業株式会社 紫外線吸収性塗料並びに該塗料がコーティングされたフィルム
KR102345990B1 (ko) 2017-04-13 2021-12-30 신나카무라 가가꾸 고교 가부시키가이샤 자외선 흡수성 도료 및 상기 도료가 코팅된 필름
CN110546172B (zh) * 2017-04-13 2022-04-15 新中村化学工业株式会社 紫外线吸收性涂料以及涂布有该涂料的膜
JP2019218449A (ja) * 2018-06-19 2019-12-26 日東電工株式会社 樹脂フィルム、導電性フィルム及び積層フィルムの製造方法
CN110614833A (zh) * 2018-06-19 2019-12-27 日东电工株式会社 树脂薄膜、导电性薄膜和层叠薄膜的制造方法
JP7129830B2 (ja) 2018-06-19 2022-09-02 日東電工株式会社 樹脂フィルム、導電性フィルム及び積層フィルムの製造方法

Similar Documents

Publication Publication Date Title
JP5333209B2 (ja) セルロースエステル光学フィルム、該セルロースエステル光学フィルムを用いた偏光板及び液晶表示装置、及びセルロースエステル光学フィルムの製造方法
JP5333210B2 (ja) セルロースエステル光学フィルム、該セルロースエステル光学フィルムを用いた偏光板及び液晶表示装置、及びセルロースエステル光学フィルムの製造方法
JP5604872B2 (ja) セルロースエステルフィルム
JPWO2008126700A1 (ja) 光学フィルム、偏光板、液晶表示装置、及び紫外線吸収性ポリマー
JP5387405B2 (ja) 紫外線吸収性ポリマー、セルロースエステル光学フィルム、セルロースエステル光学フィルムの製造方法、偏光板、及び液晶表示装置
JPWO2008026514A1 (ja) セルロースアシレートフィルムの製造方法、セルロースアシレートフィルム、偏光板及び液晶表示装置
JP2006113175A (ja) 光学フィルム、偏光板及び表示装置
JPWO2007069474A1 (ja) 偏光板の製造方法、偏光板及び液晶表示装置
JPWO2007069465A1 (ja) 光学フィルム、その製造方法及び該光学フィルムを用いた画像表示装置
JPWO2007069473A1 (ja) 偏光板保護フィルム、フィルム製造方法、偏光板及び液晶表示装置
KR101228650B1 (ko) 광학 필름, 그의 제조 방법, 편광판 및 액정 표시 장치
JP2009096955A (ja) 光学フィルム、偏光板、液晶表示装置
JP4947050B2 (ja) 光学フィルム、光学フィルムの製造方法、それを用いた偏光板、及び液晶表示装置
JP2009262533A (ja) 光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置
JP2009114430A (ja) 光学フィルムの製造方法、光学フィルム、偏光板、及び表示装置
JP2008257220A (ja) 光学フィルム、光学フィルムの製造方法、偏光板、及び液晶表示装置
JP5093227B2 (ja) 光学フィルム、光学フィルムの製造方法、偏光板及び液晶表示装置
JP2008145739A (ja) 光学フィルム、その製造方法、偏光板及び液晶表示装置
JP5262182B2 (ja) 光学フィルム、その製造方法、偏光板、及び液晶表示装置
KR20090095576A (ko) 광학 필름, 및 이를 이용한 편광판 및 액정 표시 장치
JP2006117714A (ja) 光学フィルム、偏光板及び表示装置
JP4952587B2 (ja) 光学フィルム、光学フィルムの製造方法、それを用いた偏光板、液晶表示装置及び化合物
JP2010117557A (ja) セルロースエステル光学フィルム、セルロースエステル光学フィルムの製造方法、偏光板及び液晶表示装置
JP2012247789A (ja) 光学フィルム、その製造方法、偏光板、及び液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205