JP2009109137A - Drying device - Google Patents

Drying device Download PDF

Info

Publication number
JP2009109137A
JP2009109137A JP2007284116A JP2007284116A JP2009109137A JP 2009109137 A JP2009109137 A JP 2009109137A JP 2007284116 A JP2007284116 A JP 2007284116A JP 2007284116 A JP2007284116 A JP 2007284116A JP 2009109137 A JP2009109137 A JP 2009109137A
Authority
JP
Japan
Prior art keywords
drying
absolute humidity
exhaust air
air
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007284116A
Other languages
Japanese (ja)
Other versions
JP5125419B2 (en
Inventor
Eiji Nishino
栄治 西野
Naoki Mukoyama
直樹 向山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2007284116A priority Critical patent/JP5125419B2/en
Priority to KR1020070119762A priority patent/KR100967118B1/en
Priority to CN2007101941337A priority patent/CN101424482B/en
Publication of JP2009109137A publication Critical patent/JP2009109137A/en
Application granted granted Critical
Publication of JP5125419B2 publication Critical patent/JP5125419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B9/00Preservation of edible seeds, e.g. cereals
    • A23B9/08Drying; Subsequent reconstitution
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/03Drying; Subsequent reconstitution
    • A23B4/031Apparatus for drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/12Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft
    • F26B17/14Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft the materials moving through a counter-current of gas
    • F26B17/1408Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft the materials moving through a counter-current of gas the gas being supplied and optionally extracted through ducts extending into the moving stack of material
    • F26B17/1425Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed solely by gravity, i.e. the material moving through a substantially vertical drying enclosure, e.g. shaft the materials moving through a counter-current of gas the gas being supplied and optionally extracted through ducts extending into the moving stack of material the ducts being perforated and arranged vertically

Abstract

<P>PROBLEM TO BE SOLVED: To continually and stably carry out a drying method for carrying out high-speed drying and preventing breaking of grains. <P>SOLUTION: A control part (F1) is provided, outputting a signal reducing exhaust air return amounts with respect to adjusting devices (22, 23) when it is detected that an absolute humidity (HD) of drying air has reached an absolute humidity (HF) in a saturated vapor pressure or it has exceeded an upper limit absolute humidity (β×HF) set in a neighborhood of the absolute humidity (HF), and outputting a signal increasing the exhaust air return amounts with respect to the adjusting devices 22, 23 when it is detected that the absolute humidity (HD) of the drying air is lesser than a lower limit absolute humidity (α×HF) set a predetermined value lower than the absolute humidity (HF) in the saturated vapor pressure. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、穀粒や椎茸等の農産物や海産物、若しくは木材等の乾燥装置に関するものである。   The present invention relates to a drying device for agricultural products such as grains and shiitake mushrooms, marine products, or wood.

特許文献1には、排風を戻して熱風と合流させて乾燥する乾燥装置について記載されている。
また、特許文献2及び特許文献3には、乾燥初期における排熱風の混合比が高い値のときには再利用する排熱風の量を少なく、乾燥が進んで乾燥中期、仕上期になるにつれて段階的に利用する排熱風の量を増加させる内容について記載されている。
特開2007-10247号公報 特開昭61−195266号公報 特許2599270号公報
Patent Document 1 describes a drying apparatus that returns exhaust air and joins it with hot air to dry it.
Further, in Patent Document 2 and Patent Document 3, when the mixing ratio of exhaust hot air at the initial stage of drying is high, the amount of exhaust hot air to be reused is small. It describes the contents that increase the amount of exhaust hot air to be used.
JP 2007-10247 A JP-A 61-195266 Japanese Patent No. 2599270

特許文献1においては、目標とする排風絶対湿度になるべく排風量を調節する内容について記載されているが、どのような排風絶対湿度を目標として乾燥を行なえば良いのかについて記載されていない。   Patent Document 1 describes the content of adjusting the amount of exhaust air as much as possible to reach the target exhaust absolute humidity, but does not describe what exhaust air absolute humidity should be used for drying.

また、特許文献2及び特許文献3においては、乾燥時間を短縮する技術については何ら記載が無い。
本発明は、高速で乾燥し、かつ穀粒の胴割れを防止するという乾燥方法を継続して安定して行なうことを課題とする。
Moreover, in patent document 2 and patent document 3, there is no description about the technique which shortens drying time.
It is an object of the present invention to continuously and stably carry out a drying method of drying at high speed and preventing cracking of the grain.

本発明は、上記課題を解決するために以下のような技術的手段を講じた。
すなわち、請求項1に係る発明は、乾燥対象物に乾燥用熱風を作用させて乾燥する乾燥部(3)と、乾燥対象物通過後の排風を前記乾燥用熱風に合流させる戻し通路(41,44)と、排風の戻し量を調節する調節装置(22,23)を備えた乾燥装置において、前記乾燥用熱風と前記排風の合流空気による乾燥風の乾燥室(13)中における絶対湿度(HD)を算出する第一算出部と、該乾燥風の飽和水蒸気圧における絶対湿度(HF)を算出する第二算出部と、乾燥風の絶対湿度(HD)と飽和水蒸気圧における絶対湿度(HF)を比較する比較部と、前記乾燥風の絶対湿度(HD)が飽和水蒸気圧における絶対湿度(HF)に達するか若しくはこの絶対湿度(HF)の近傍に設定した上限絶対湿度(β・HF)を上回ることを検出すると前記調節装置(22,23)に対し排風戻し量を減少させる信号を出力し、前記乾燥風の絶対湿度(HD)が飽和水蒸気圧における絶対湿度(HF)よりも所定値低く設定した下限絶対湿度(α・HF)を下回ることを検出すると前記調節装置(22,23)に対し排風戻し量を増加させる信号を出力する制御部(F1)を設けたことを特徴とする乾燥装置とする。
In order to solve the above problems, the present invention has taken the following technical means.
That is, the invention according to claim 1 includes a drying section (3) that dries hot air for drying on an object to be dried, and a return passage (41) that joins exhaust air that has passed through the drying object with the hot air for drying. 44) and an adjustment device (22, 23) for adjusting the return amount of the exhaust air, the drying air in the drying chamber (13) of the drying hot air and the combined air of the exhaust air in the drying chamber (13) A first calculation unit for calculating humidity (HD), a second calculation unit for calculating absolute humidity (HF) at the saturated water vapor pressure of the dry wind, and absolute humidity at the absolute humidity (HD) of the dry air and the saturated water vapor pressure. A comparison unit for comparing (HF), and an absolute humidity (HD) of the drying wind reaches an absolute humidity (HF) at a saturated water vapor pressure or an upper limit absolute humidity (β · HF) is detected A signal for decreasing the exhaust air return amount is output to the adjusting devices (22, 23), and the absolute lower limit absolute value in which the absolute humidity (HD) of the dry air is set lower than the absolute humidity (HF) at the saturated water vapor pressure. When it is detected that the humidity (α · HF) is lower, the drying device is provided with a control unit (F1) that outputs a signal for increasing the exhaust air return amount to the adjusting devices (22, 23). .

請求項2に係る発明は、乾燥対象物に乾燥用熱風を作用させて乾燥する乾燥部(3)と、乾燥対象物通過後の排風を前記乾燥用熱風に合流させる戻し通路(41,44)と、排風の戻し量を調節する調節装置(22,23)を備えた乾燥装置において、乾燥中の乾燥対象物の水分を検出する水分計(10)と、該水分計(10)で検出した乾燥対象物の水分値に基づき前記排風の仮想絶対湿度(U)を算出する仮想絶対湿度算出部と、この仮想絶対湿度(U)と対応して前記戻し通路(41,44)に排風を戻す排風戻し量又は全排風量に対する排風戻し比率を予め設定する設定部と、設定された排風戻し量又は排風戻し比率に調節装置(22,23)を作動する制御部(F2)を設けたことを特徴とする乾燥装置とする。   The invention according to claim 2 is a drying section (3) for drying by applying a hot air for drying to an object to be dried, and a return passage (41, 44) for combining the exhaust air after passing through the object to be dried with the hot air for drying. ) And an adjustment device (22, 23) for adjusting the return amount of the exhaust air, the moisture meter (10) for detecting the moisture of the drying object being dried, and the moisture meter (10) A virtual absolute humidity calculating unit that calculates the virtual absolute humidity (U) of the exhaust air based on the detected moisture value of the dry object, and the return path (41, 44) corresponding to the virtual absolute humidity (U). A setting unit that presets an exhaust air return amount for returning exhaust air or an exhaust air return ratio with respect to the total exhaust air amount, and a control unit that operates the adjusting devices (22, 23) to the set exhaust air return amount or exhaust air return ratio. A drying apparatus provided with (F2) is provided.

請求項3に係る発明は、請求項2において、制御部(F2)に入力された外気絶対湿度を検出する検出部を設け、この外気絶対湿度の変動に応じて排風戻し量又は排風戻し比率を補正する構成としたものである。また、請求項4に係る発明は、請求項2又は請求項3において、制御部(F2)に入力された乾燥対象物の水分検出結果に基づいて乾燥対象物の乾減率を算出する乾減率算出部を設け、乾減率の変動に応じて排風戻し量又は排風戻し比率を補正する構成としたものである。   According to a third aspect of the present invention, in the second aspect of the present invention, the detection unit for detecting the outside air absolute humidity input to the control unit (F2) is provided, and the exhaust air return amount or the exhaust air return is changed according to the fluctuation of the outside air absolute humidity. The ratio is corrected. According to a fourth aspect of the present invention, in the second or third aspect of the present invention, the dryness of the dry object is calculated based on the moisture detection result of the dry object input to the control unit (F2). A rate calculating unit is provided to correct the exhaust air return amount or exhaust air return ratio in accordance with the fluctuation of the drying rate.

請求項1の発明では、乾燥風の絶対湿度(HD)が飽和水蒸気圧における絶対湿度(HF)に達するか若しくはこの絶対湿度(HF)の近傍に設定した上限絶対湿度(β・HF)を上回ることを検出すると前記調節装置(22,23)に排風戻し量を減少するよう出力するから、飽和水蒸気圧を超えて結露して乾燥対象物が蒸れて品質が損なわない程度に乾燥し、乾燥部(3)内絶対湿度HAが飽和水蒸気圧における絶対湿度(HF)よりも低く設定した絶対湿度(α・HF)を下回ると前記調節装置(22,23)に排風戻し量を増加するよう出力するものであるから、排風中に含まれる熱と水分を乾燥対象物に与えることで、乾燥対象物内部に多くの熱を供給すると共に、乾燥対象物の表面から蒸発しようとする水分を乾燥対象物から吸収した排風中の水分により乾燥対象物の内部に抑止することで、乾燥対象物内部の水分勾配を小さくすることができる。したがって、高速で乾燥させるものでありながら、乾燥対象物の内部に亀裂等を起こし難くすることができる。   In the first aspect of the invention, the absolute humidity (HD) of the dry wind reaches the absolute humidity (HF) at the saturated water vapor pressure or exceeds the upper limit absolute humidity (β · HF) set in the vicinity of the absolute humidity (HF). When it is detected, it outputs to the adjusting device (22, 23) so as to reduce the exhaust air return amount, so that it dehydrates beyond the saturated water vapor pressure and dries so that the quality of the dried object is not impaired and dried. When the absolute humidity HA in the section (3) falls below the absolute humidity (α · HF) set lower than the absolute humidity (HF) at the saturated water vapor pressure, the exhaust air return amount is increased to the adjusting device (22, 23). Because it outputs the heat and moisture contained in the exhaust air to the object to be dried, it supplies a large amount of heat to the inside of the object to be dried, and the moisture to be evaporated from the surface of the object to be dried. Absorb from dry object The moisture gradient inside the dried object can be reduced by suppressing the dried object by the moisture in the exhausted air. Therefore, it is possible to make it difficult to cause cracks or the like inside the object to be dried while being dried at high speed.

請求項2記載の発明においては、乾燥対象物の水分値が高い乾燥初期といえども多くの水分量を含んだ排風量を乾燥部(3)に供給することで、乾燥対象物の表面に必要な水分を与えながら熱を与えることができる。そのため、乾燥対象物内部の水分勾配を小さい状態にしながら、乾燥対象物内部の温度を上昇させるため、胴割れの少ない高速の乾燥を行なうことができる。また、乾燥部(3)に戻す排風量を水分計(10)で検出する穀粒の水分値に対応して調節することで、排風の湿度を検出する湿度センサを必要とせず、コスト高にならず、また、湿度センサが塵埃に晒されて消耗することがなく耐久性が向上する。   In the invention according to claim 2, it is necessary for the surface of the object to be dried by supplying to the drying section (3) the amount of exhaust air containing a large amount of water even in the early stage of drying when the moisture value of the object to be dried is high. Heat can be given while giving proper moisture. Therefore, since the temperature inside the drying object is raised while keeping the moisture gradient inside the drying object small, it is possible to perform high-speed drying with little shell cracking. Moreover, the humidity sensor which detects the humidity of an exhaust wind is not required by adjusting the amount of the exhaust wind returned to a drying part (3) according to the moisture value of the grain detected with a moisture meter (10), and cost is high. In addition, the durability is improved without the humidity sensor being exposed to dust and being consumed.

請求項3に記載の発明においては、外気絶対湿度(HA)の変動に応じて排風戻し量又は排風戻し比率を増・減補正するから、外気の変動に追随し必要な水分の戻し量に補正しながら乾燥処理を継続して行うことができる。なお、請求項4の発明においては、乾減率の変動に応じて排風戻し量又は排風戻し比率を増・減補正するから同様に乾減率の変動があっても、適正な水分の戻し量に補正しながら乾燥処理を継続できる。   In the invention described in claim 3, since the exhaust air return amount or the exhaust air return ratio is increased / decreased according to the change in the outside air absolute humidity (HA), the amount of water return required to follow the change in the outside air It is possible to continue the drying process while correcting to. In the invention of claim 4, since the exhaust air return amount or the exhaust air return ratio is corrected to increase / decrease in accordance with the fluctuation of the drying rate, similarly, even if the drying rate changes, The drying process can be continued while correcting the return amount.

本実施の形態を穀粒乾燥機に用いた場合について説明する。
図1、図2は穀粒乾燥機の全体を示す図、図3は穀粒乾燥機の内部を説明する斜視図で、直方体形状の本体1の内部に上部から穀粒を貯留する貯留部2、貯留部2で貯留した穀粒を下方に流下しながら乾燥する乾燥部3、乾燥部3で乾燥した穀粒が集まる集穀部4を設ける。そして貯留部2に張り込まれた穀粒は乾燥部3で乾燥されて集穀部4に供給され、再度貯留部2に供給され調質される構成のいわゆる循環式の穀粒乾燥機の構成である。
The case where this Embodiment is used for a grain dryer is demonstrated.
1 and 2 are diagrams showing the whole of the grain dryer, and FIG. 3 is a perspective view for explaining the inside of the grain dryer, and a storage unit 2 for storing the grain from above in a rectangular parallelepiped main body 1. The drying unit 3 that dries the grains stored in the storage unit 2 while flowing downward, and the cereal collection unit 4 that collects the dried grains in the drying unit 3 are provided. And the grain stuck in the storage part 2 is dried by the drying part 3 and supplied to the cereal collecting part 4, and the structure of what is called a circulation type grain dryer of the structure supplied to the storage part 2 and tempered again. It is.

なお、本実施の形態では本体1の長手方向sを前後方向、短手方向tを左右方向と呼ぶ。
本体1の前後方向の前側でかつ乾燥部3に対向する左右中央位置に、スリット状の外気取り入れ口50を正面側に多数形成したバーナケース40を取り付け、該バーナケース40内には燃焼バーナ5を収容配置している。そして、燃焼バーナ5の燃焼盤面5dを本体1側と対向するよう燃焼バーナ5を載置している。
In the present embodiment, the longitudinal direction s of the main body 1 is referred to as the front-rear direction, and the short direction t is referred to as the left-right direction.
A burner case 40 having a large number of slit-like outside air intake ports 50 formed on the front side is attached to the front side in the front-rear direction of the main body 1 and in the middle of the left and right sides facing the drying unit 3. Is arranged. The combustion burner 5 is placed so that the combustion disc surface 5d of the combustion burner 5 faces the main body 1 side.

本体1の前後方向の後側には乾燥部3に対向する左右中央位置に排風ファン6を設ける。
また、本体1の前後方向の前側でバーナケース40に隣接する位置には穀粒を揚穀する昇降機7を設け、本体1の上部には移送螺旋(図示せず)を内装し、昇降機7で揚穀した穀粒を貯留部2に搬送する上部搬送装置8及び上部搬送装置8で搬送中の穀粒に混入する藁屑等の夾雑物を吸引除去する吸塵ファン9を設けている。
On the rear side in the front-rear direction of the main body 1, a wind exhaust fan 6 is provided at the left and right center position facing the drying unit 3.
Further, an elevator 7 for raising the grain is provided at a position adjacent to the burner case 40 on the front side in the front-rear direction of the main body 1, and a transfer spiral (not shown) is provided on the upper portion of the main body 1. An upper conveying device 8 that conveys the cerealed grains to the storage unit 2 and a dust suction fan 9 that sucks and removes foreign matters such as scum mixed in the grains being conveyed by the upper conveying device 8 are provided.

10は穀粒の水分を検出する水分計で、昇降機7に取り付け設定時間毎に揚穀中の穀粒のうちサンプル穀粒を取り込み単粒毎の電気抵抗値を検出することにより水分値を算出する。   10 is a moisture meter that detects the moisture of the grain. The moisture meter is attached to the elevator 7 and calculates the moisture value by taking in the sample grain from the grains being grained and detecting the electrical resistance value for each grain every set time. To do.

乾燥部3は、本体1の左右両側に燃焼バーナ5で生成した乾燥熱風が通過する熱風室11を設け、本体1の左右中央部に排風ファン6と連通する排風室12を設け、熱風室11と排風室12との間には穀粒流下通路13を設け、穀粒流下通路13の下端部には穀粒を集穀部4に繰り出すロータリバルブ14を設け、ロータリバルブ14の回転により貯留室2の穀粒が順次通過する構成である。   The drying unit 3 is provided with hot air chambers 11 through which dry hot air generated by the combustion burner 5 passes on both left and right sides of the main body 1, and is provided with exhaust air chambers 12 communicating with the exhaust fan 6 at the left and right central portions of the main body 1. A grain flow passage 13 is provided between the chamber 11 and the air discharge chamber 12, and a rotary valve 14 that feeds the grain to the grain collection unit 4 is provided at the lower end of the grain flow passage 13. Therefore, the grains in the storage chamber 2 pass through sequentially.

集穀部4には穀粒を昇降機7に搬送する下部螺旋15を設けている。
排風ファン6は断面円形のファン胴6a内部に、軸流式のファン羽根6bと、ファン羽根6bで発生させる排風に圧力を与える固定板6cとを内装し、排風ファン6の排風排出側には断面円形の排風ダクト20を連結している。
The cereal collection unit 4 is provided with a lower spiral 15 that conveys the grains to the elevator 7.
The exhaust fan 6 includes an axial flow type fan blade 6b and a fixed plate 6c that applies pressure to the exhaust air generated by the fan blade 6b inside the circular fan body 6a. A discharge duct 20 having a circular cross section is connected to the discharge side.

図6、図7に示すように、排風ダクト20内には排風を排風ダクト20外と排風供給ダクト21に排出する量の割合を調節する第一調節弁23を設けている。
排風ダクト20の上部には排風を本体1内側に供給するための断面方形の排風供給ダクト21を設け、排風供給ダクト21の排風入口には排風供給ダクト21内に供給される排風の量を調節する第二調節弁22を設けている。
As shown in FIGS. 6 and 7, a first control valve 23 is provided in the exhaust duct 20 to adjust the ratio of the amount of exhaust air discharged to the outside of the exhaust duct 20 and the exhaust air supply duct 21.
An exhaust air supply duct 21 having a square cross section for supplying exhaust air to the inside of the main body 1 is provided at the upper part of the exhaust air duct 20, and the exhaust air inlet of the exhaust air supply duct 21 is supplied into the exhaust air supply duct 21. A second control valve 22 is provided for adjusting the amount of exhausted air.

第一調節弁23と第二調節弁22は横軸心の回動軸23a及び回動軸22aでそれぞれ回動する構成とし、このうち回動軸23aには調節弁駆動モータ25を連結している。第一調節弁23と第二調節弁22とは連結ロッド24で連結し、第一調節弁23と第二調節弁22との回動動作が連動する構成としている。第二調節弁22が全閉位置gaにあって排風が排風供給ダクト21内に排出されない時には、第一調節弁23が全開位置faにあって排風を全て機外に排出される。   The first control valve 23 and the second control valve 22 are configured to be rotated by a horizontal axis pivot shaft 23a and a pivot shaft 22a, respectively, of which the control valve drive motor 25 is connected to the pivot shaft 23a. Yes. The 1st control valve 23 and the 2nd control valve 22 are connected with the connection rod 24, and it is set as the structure which the rotation operation of the 1st control valve 23 and the 2nd control valve 22 interlock | cooperates. When the second control valve 22 is in the fully closed position ga and exhaust air is not discharged into the exhaust air supply duct 21, the first control valve 23 is in the fully open position fa and all exhaust air is discharged outside the machine.

反対に第二調節弁22が全開位置gbにあって、排風が最も排風供給ダクト21内に最も多くの排風が排出される時には、第一調節弁23が最も排風の量を排風供給ダクト21側に排風を排出する閉位置fbに位置する。なお、第一調節弁23と第二調節弁22はそれぞれ無段階に開閉調節できる構成とし、排風供給ダクト21に排出する排風量を制御部Fで適宜調節している。   On the other hand, when the second control valve 22 is in the fully open position gb and the exhaust air is discharged most into the exhaust air supply duct 21, the first control valve 23 exhausts the most exhaust air. It is located at the closed position fb for discharging the exhaust air to the wind supply duct 21 side. In addition, the 1st control valve 23 and the 2nd control valve 22 are set as the structure which can be opened / closed steplessly, respectively, and the exhaust_gas | exhaustion amount discharged | emitted to the exhaust_gas | exhaustion supply duct 21 is adjusted with the control part F suitably.

図8,図9に示すように、例えば制御部F1では、以下の演算によって排風戻し量を設定する。すなわち、熱風室11と排風室12との間に形成される前記穀粒流下通路13に、該通路13内穀粒に作用する乾燥風の温度Tを検出する温度センサ30と、該乾燥風の相対湿度Hsを検出する相対湿度センサ31を設け、これらの検出結果を制御部F1に入力する構成とする。   As shown in FIGS. 8 and 9, for example, the control unit F <b> 1 sets the exhaust air return amount by the following calculation. That is, the temperature sensor 30 for detecting the temperature T of the drying air acting on the grains in the passage 13 in the grain flow down passage 13 formed between the hot air chamber 11 and the exhaust air chamber 12, and the drying air The relative humidity sensor 31 for detecting the relative humidity Hs is provided, and these detection results are input to the control unit F1.

上記制御部F1には、記憶部ME1を接続し湿り空気線図に相当するデータ、乾燥風温度毎における飽和水蒸気圧に相当する絶対湿度HFの値、及び飽和水蒸気圧近傍であるか否かの判定を行なうための閾値とする係数α、β及び該係数αに絶対湿度HFを乗じたα・HF(例えばα=0.7)、及び係数βに絶対湿度HFを乗じたβ・HF(例えばβ=0.1)の値を記憶している。該制御部F1には第一、第二算出部、比較部が構成され、このうち第一算出部により上記検出温度Tと検出相対湿度Hsとから絶対湿度HD(=f(T,Hs))を、第二算出部により検出温度T時の飽和水蒸気圧における絶対湿度HFを夫々算出するものである。そして比較部はこれら絶対湿度HDと絶対湿度HFの夫々の値を比較することにより、穀粒が存在する乾燥室としての穀粒流下通路13内における乾燥風の絶対湿度(HD)が、この絶対湿度(HF)の近傍に設定した上限絶対湿度(β・HF)を上回ることを検出すると、排風戻し量を減少側に制御する。また、比較部は該乾燥風の絶対湿度HDが係数αに絶対湿度HFを乗じた下限絶対湿度α・HFの値以下と判定されるときは、排風戻し量を増加側に制御する。   The storage unit ME1 is connected to the control unit F1, and the data corresponding to the wet air diagram, the value of the absolute humidity HF corresponding to the saturated water vapor pressure for each drying air temperature, and whether or not it is near the saturated water vapor pressure The coefficients α and β used as thresholds for the determination, α · HF obtained by multiplying the coefficient α by the absolute humidity HF (for example, α = 0.7), and β · HF obtained by multiplying the coefficient β by the absolute humidity HF (for example, The value of β = 0.1) is stored. The control unit F1 includes a first calculation unit, a second calculation unit, and a comparison unit. Among them, the first calculation unit calculates the absolute humidity HD (= f (T, Hs)) from the detected temperature T and the detected relative humidity Hs. The absolute humidity HF at the saturated water vapor pressure at the detected temperature T is calculated by the second calculation unit. Then, the comparison unit compares the absolute humidity HD and the absolute humidity HF, so that the absolute humidity (HD) of the drying air in the grain flow passage 13 as the drying chamber where the grain exists is the absolute humidity (HD). When it is detected that the upper limit absolute humidity (β · HF) set in the vicinity of the humidity (HF) is exceeded, the exhaust air return amount is controlled to the decreasing side. Further, when it is determined that the absolute humidity HD of the dry wind is equal to or lower than the lower limit absolute humidity α · HF obtained by multiplying the coefficient α by the absolute humidity HF, the comparison unit controls the exhaust air return amount to be increased.

従って、乾燥風の絶対湿度HDが上限絶対湿度β・HF以下で、乾燥風の絶対湿度HAが下限絶対湿度α・HFより大であると判定されると、乾燥風は飽和水蒸気圧近傍でかつ飽和水蒸気圧を超えない程度と判定されて排風循環量はその状態を維持させる。   Therefore, if it is determined that the absolute humidity HD of the dry air is equal to or lower than the upper limit absolute humidity β · HF and the absolute humidity HA of the dry air is greater than the lower limit absolute humidity α · HF, the dry air is close to the saturated water vapor pressure and It is determined that the saturated water vapor pressure is not exceeded, and the exhaust air circulation rate maintains that state.

上記の制御のうち、上限絶対湿度に代えて飽和水蒸気圧における絶対湿度HFに代替し、この絶対湿度HFに達したか否かによっても同様の効果がある。
上記のような制御を行ないながら、適正な排風循環量にフィードバック制御することによって排風循環量を制御することができる。なお、排風戻し量の増減制御によって、例えば前記調節弁駆動モータ25を予め設定した単位ステップ毎に作動して第一調節弁23の回動角度θを単位角度Δθ毎に連動する構成とする。
Among the above controls, the same effect can be obtained by substituting the absolute humidity HF at the saturated water vapor pressure instead of the upper limit absolute humidity and whether or not the absolute humidity HF is reached.
The exhaust air circulation amount can be controlled by performing feedback control to an appropriate exhaust air circulation amount while performing the control as described above. In addition, by the increase / decrease control of the exhaust air return amount, for example, the control valve drive motor 25 is operated for each preset unit step so that the rotation angle θ of the first control valve 23 is interlocked for each unit angle Δθ. .

上記のように、排風戻り量の演算によって、第一調節弁23の回動角度θが決定され、軸23aに組み込んだ角度検出センサ23bにて回動角度θが検出されるまで調節弁駆動モータ25を正逆転連動する構成としている。なお、第二調節弁22は、第一調節弁23に連動するものであるから、その回動角度は検出しない構成としているが、両調節弁を独立的に回動調節するように構成してもよくこの場合には夫々に角度検出センサおよび調節弁駆動モータを設けるものである。   As described above, the rotation angle θ of the first control valve 23 is determined by calculating the exhaust air return amount, and the adjustment valve is driven until the rotation angle θ is detected by the angle detection sensor 23b incorporated in the shaft 23a. The motor 25 is configured to be linked in the forward / reverse direction. Since the second control valve 22 is linked to the first control valve 23, the rotation angle of the second control valve 22 is not detected. However, the second control valve 22 is configured to independently rotate and adjust both control valves. In this case, an angle detection sensor and a control valve drive motor are provided.

ここで、図10により、乾燥用熱風が戻り排風と合流して乾燥室内に作用し、排風として排出される状況を絶対湿度の変化を説明すると、所定絶対湿度の外気はバーナで加熱された後排風と合流する。加熱によっては絶対湿度の変化はないが、排風との合流によって絶対湿度は上昇し、熱風室から乾燥室(穀粒流下通路13)に入ると(本出願では乾燥室内の流通空気を「乾燥風」としている)、乾燥風は穀粒との接触によって絶対湿度は直ちに上昇し以後余り絶対湿度は高くならないままに排風室に抜けていくものである。本発明では、前記の説明のように、図17における上限絶対湿度β・HFから下限絶対湿度α・HFの範囲となるよう戻り排風の量を調節制御するものである。   Here, referring to FIG. 10, a description will be given of the change in absolute humidity when the hot air for drying is combined with the return exhaust air and acts in the drying chamber and is discharged as exhaust air. The outside air of the predetermined absolute humidity is heated by the burner. After that, it merges with the exhaust. Although the absolute humidity does not change due to heating, the absolute humidity rises due to merging with the exhaust air, and enters the drying room (grain flow passage 13) from the hot air chamber (in this application, the circulation air in the drying chamber is “dried”. In the case of dry wind, the absolute humidity immediately rises upon contact with the grain, and thereafter, the absolute humidity does not increase so much and the air passes through the exhaust chamber. In the present invention, as described above, the amount of return exhaust air is adjusted and controlled so as to be in the range of the upper limit absolute humidity β · HF to the lower limit absolute humidity α · HF in FIG.

第一調節弁23が最も排風の量を排風供給ダクト21側に排風を排出する閉位置fbにあるときに、排風ダクト20の下部の内周面20aと第一調節板23の該周縁23aとの間に設定間隔の隙間zができるよう第一調節弁23の回動軸23aから外周までの長さbを排風ダクト20の中心から内周面20aまでの長さより短くし、第一調節弁23の面積を排風ダクト20の開口面積より小さく構成している。jは第一調節弁23の回動軌跡である。   When the first control valve 23 is at the closed position fb for discharging the exhaust air to the exhaust air supply duct 21 side most, the lower inner peripheral surface 20a of the exhaust air duct 20 and the first adjustment plate 23 The length b from the rotating shaft 23a to the outer periphery of the first control valve 23 is shorter than the length from the center of the exhaust duct 20 to the inner peripheral surface 20a so that a gap z with a set interval is formed between the peripheral edge 23a. The area of the first control valve 23 is smaller than the opening area of the exhaust duct 20. j is a turning locus of the first control valve 23;

また、第一調節弁23がもっとも排風の量を排風供給ダクト21側に排風を排出する閉位置fbは、図4に示すように前下がり傾斜に位置する構成とし、第二調節弁22は後ろ下がり傾斜に位置する構成とすることで、排風を排風供給ダクト21内に案内し易くしている。   The closed position fb where the first control valve 23 discharges the most exhausted air to the exhaust air supply duct 21 side is configured to be located at a downward slope as shown in FIG. 22 is configured to be positioned at a rearward downward inclination, so that the exhausted air can be easily guided into the exhausted air supply duct 21.

排風供給ダクト21と本体1との間には排風供給ダクト21内を通過した排風を左右両側に分散する排風分散通路となる排風分散ケース26を排風ファン6の上部から左右両側に亘って設ける。排風分散ケース26の左右両端部と後述する熱風室内貫通通路を形成する戻りダクト27の後端部とを第一排風開口部mで連通する構成としている。   Between the exhaust air supply duct 21 and the main body 1, an exhaust air distribution case 26 serving as an exhaust air distribution passage that distributes the exhaust air that has passed through the exhaust air supply duct 21 to the left and right sides is provided from the top of the exhaust air fan 6 Provided on both sides. The left and right end portions of the exhaust wind dispersion case 26 and the rear end portion of a return duct 27 that forms a hot air chamber through-passage to be described later are configured to communicate with each other through a first exhaust wind opening m.

戻りダクト27は左右の熱風室11内前後方向に沿って備える筒形状の通路で、本実施の形態では断面形状で上部が尖った台形状に形成している。
本体1とバーナケース40の間には本体1内を通過して戻された排風が通過する第一戻し通路41と燃焼バーナ5で生成した熱風が通過する熱風通路42を内部に形成する熱排風通過ケース43を備えている。そして、戻りダクト27の一端と第一戻し通路41とを第二排風開口部pで連通する構成とすると共に、第一戻し通路41とバーナケース40の左右両側に形成する第二戻し通路44とを第三排風開口部rで連通する構成としている。バーナケース40の下方には塵埃貯留ケース45を形成している。塵埃貯留ケース45の左右両側の上端部に第四排風開口部dを形成して第二戻し通路44と連通する構成としている。
The return duct 27 is a cylindrical passage provided along the front-rear direction in the left and right hot air chambers 11 and is formed in a trapezoidal shape with a cross-sectional shape and a sharp upper portion in the present embodiment.
Between the main body 1 and the burner case 40, there is formed a first return passage 41 through which exhaust air returned through the main body 1 passes and a hot air passage 42 through which hot air generated by the combustion burner 5 passes. An exhaust passage case 43 is provided. And while setting it as the structure which connects the end of the return duct 27, and the 1st return path 41 with the 2nd ventilation opening part p, the 2nd return path 44 formed in the left-right both sides of the 1st return path 41 and the burner case 40 And the third exhaust opening r. A dust storage case 45 is formed below the burner case 40. A fourth exhaust opening d is formed at the upper left and right ends of the dust storage case 45 so as to communicate with the second return passage 44.

図11から図13に基づき熱排風通過ケース43の構成について詳述する。
熱排風通過ケース43内の熱風通路42は、バーナケース40と第一熱風開口部cで連通する第一熱風通路46と、第一熱風通路46を通過した熱風を第二熱風開口部vから第三熱風開口部wを経て熱風室11に供給する第二熱風通路47とを設けている。
The structure of the heat exhaust air passage case 43 will be described in detail with reference to FIGS.
The hot air passage 42 in the hot exhaust air passage case 43 includes a first hot air passage 46 communicating with the burner case 40 and the first hot air opening c, and hot air that has passed through the first hot air passage 46 from the second hot air opening v. A second hot air passage 47 that supplies the hot air chamber 11 through the third hot air opening w is provided.

第一戻し通路41と第二熱風通路47とは本体1の正面左右両側にあって上下二段に形成し、第一熱風通路46は左右中央側にあってバーナケース40に対向する位置に設けている。第一熱風開口部cは第一熱風通路46及びバーナケース40の中央部に形成している。   The first return passage 41 and the second hot air passage 47 are formed on the front left and right sides of the main body 1 and are formed in two upper and lower stages, and the first hot air passage 46 is provided at a position facing the burner case 40 on the left and right center side. ing. The first hot air opening c is formed at the center of the first hot air passage 46 and the burner case 40.

なお、本実施の形態では排風供給ダクト21から第二戻し通路44に至るまでの排風が通過する経路を総称して戻し通路と呼ぶ。
燃焼バーナ5の周囲について説明する。
In the present embodiment, a path through which the exhaust air from the exhaust air supply duct 21 to the second return passage 44 passes is collectively referred to as a return passage.
The surroundings of the combustion burner 5 will be described.

バーナケース40内にあって燃焼バーナ5の左右に隣接して設ける第二戻し通路44には排風を排出する第五排風開口部eを設ける。第五排風開口部eの位置は燃焼バーナ5の燃焼盤面位置kより本体1側に向かって設け、多数のスリット状に形成している。そして、第五排風開口部eは燃焼バーナ5の燃焼盤面5dと同様本体1側と対向するよう形成している。   A second return passage 44 provided in the burner case 40 and adjacent to the left and right of the combustion burner 5 is provided with a fifth exhaust opening e for exhausting exhaust air. The position of the fifth exhaust air opening e is provided from the combustion disk surface position k of the combustion burner 5 toward the main body 1 and is formed in a number of slit shapes. And the 5th exhaust wind opening e is formed so that the main body 1 side may be opposed like the combustion disk surface 5d of the combustion burner 5.

そして、第五排風開口部eから排出される排風と燃焼バーナ5で生成した熱風とを燃焼バーナ5の燃焼炎Q側に位置する熱排風混合部40aで混合され、混合された熱排風が熱風通路42、すなわち第一熱風通路46と第二熱風通路47の順に通過し、熱風室11に供給される構成である。   Then, the exhaust air discharged from the fifth exhaust air opening e and the hot air generated by the combustion burner 5 are mixed in the heat exhaust air mixing unit 40a located on the combustion flame Q side of the combustion burner 5 and mixed heat. The exhaust air passes through the hot air passage 42, that is, the first hot air passage 46 and the second hot air passage 47 in this order, and is supplied to the hot air chamber 11.

また、第五排風開口部eは図7及び図8に示すように、本体下側に向かっても多数のスリットが形成されている。
燃焼バーナ5の上方でかつ燃焼盤面位置kより本体1側には燃焼バーナ5の一次空気を吸引して燃焼バーナ5に供給するバーナファン5aを設け、燃焼炎Qの上方に位置することで暖気化して空気ダクト5bを介して燃焼バーナ5に送風できる構成としている。
Moreover, as shown in FIG.7 and FIG.8, many slits are formed in the 5th wind exhaust opening e toward the main body lower side.
A burner fan 5a that sucks the primary air of the combustion burner 5 and supplies it to the combustion burner 5 is provided above the combustion burner 5 and on the main body 1 side from the combustion disk surface position k. And the air can be blown to the combustion burner 5 through the air duct 5b.

70は風の流れの有無を検出する風検知板である。5cは燃焼バーナ5に燃料を供給する燃料ポンプである。
熱排風通過ケース43の側壁に燃焼炎Qの状態を確認するスリット状の燃焼炎確認用開口部43aを設け、燃焼炎の状態を確認できるだけでなく外気を導入できるため熱風が通過する熱排風通過ケース43の熱で側壁を熱くなり難くしている。
Reference numeral 70 denotes a wind detection plate that detects the presence or absence of a wind flow. A fuel pump 5 c supplies fuel to the combustion burner 5.
A slit-like combustion flame confirmation opening 43a for confirming the state of the combustion flame Q is provided on the side wall of the heat exhaust air passage case 43 so that not only the state of the combustion flame can be confirmed but also outside air can be introduced, so that heat exhaust through which the hot air passes. The side walls are not easily heated by the heat of the wind passage case 43.

次に燃焼バーナ5で生成した熱風が排風ファン6の吸引作用を受けて乾燥風として熱風室11から流下通路13の穀粒に作用した後、排風となって排風室12及び戻し通路を経て、熱風と混合して熱風室11に供給されるまでの過程について説明する。   Next, the hot air generated in the combustion burner 5 receives the suction action of the exhaust fan 6 and acts as dry air on the grains in the downstream passage 13 from the hot air chamber 11, and then becomes exhaust air to become the exhaust air chamber 12 and the return passage. The process until the hot air is mixed with the hot air and supplied to the hot air chamber 11 will be described.

燃焼バーナ5で生成した熱風はバーナケース40から第一熱風開口部cを通過し、第一熱風通路46から第二熱風開口部v、第二熱風通路47、第三熱風開口部wを通過して熱風室11に供給される。   The hot air generated by the combustion burner 5 passes from the burner case 40 through the first hot air opening c, and from the first hot air passage 46 through the second hot air opening v, the second hot air passage 47, and the third hot air opening w. And supplied to the hot air chamber 11.

熱風室11内の熱風は多数のスリット(図示省略)を形成する穀粒流下通路13を流下する穀粒内を乾燥風として通過し、穀粒に作用して水分を吸収して排風室12に排出され、排風ファン6にて排風ダクト20に排風として排出される。   The hot air in the hot air chamber 11 passes through the grain flowing down through the grain flow passage 13 forming a number of slits (not shown) as dry air, acts on the grain, absorbs moisture, and exhausts the wind chamber 12. And is discharged as exhaust air to the exhaust duct 20 by the exhaust fan 6.

排風ダクト20内の排風は第一調節弁23及び第二調節弁22の開度の制御により適宜必要な排風量を戻し通路を経て再度熱風室11側に循環すべく排風供給ダクト21に供給される。   Exhaust air in the exhaust duct 20 is supplied to the exhaust air supply duct 21 so that a necessary exhaust air amount is appropriately circulated to the hot air chamber 11 side through the return passage by controlling the opening degree of the first control valve 23 and the second control valve 22. To be supplied.

排風供給ダクト21に供給された排風は排風分散ケース26で左右に分散され、第一排風開口部mから戻りダクト27に供給される。そして、戻りダクト27内の排風は第二排風開口部pから第一戻し通路41、第三排風開口部r、第二戻し通路44を経て第五排風開口部eから燃焼バーナ5の燃焼炎Qの側方から燃焼炎Qの噴出する方向と並行して排出され、燃焼バーナ盤面と対向する位置にある熱排風混合部40aで熱風と混合して第一熱風開口部cから第一熱風通路46に供給される。なお、第二戻し通路44の排風に含まれる塵埃は自重で落下して第四排風開口部dを通過して塵埃貯留ケース45に貯留される。   The exhaust air supplied to the exhaust air supply duct 21 is dispersed left and right by the exhaust air distribution case 26 and supplied to the return duct 27 from the first exhaust air opening m. The exhaust air in the return duct 27 passes through the second exhaust passage opening p, the first return passage 41, the third exhaust passage opening r, the second return passage 44, and the fifth exhaust passage opening e to the combustion burner 5. Is discharged from the side of the combustion flame Q in parallel with the direction in which the combustion flame Q is ejected, and mixed with hot air in the hot exhaust air mixing portion 40a located at the position facing the combustion burner board surface, from the first hot air opening c. It is supplied to the first hot air passage 46. The dust contained in the exhaust air from the second return passage 44 falls by its own weight, passes through the fourth exhaust air opening d, and is stored in the dust storage case 45.

次に本実施の形態の構成に伴う作用及び効果について説明する。
排風ファン20からの排風を熱風室11に供給することによって、燃焼バーナ5で供給する熱風に排風中の熱が加わり、熱風室11ひいては流下通路13の穀粒に作用させ得て短時間で穀温を上昇させることができる。そして、排風の戻し量を制御することによって穀粒流下通路13の穀粒に作用する乾燥熱風の絶対湿度を高くし、穀粒表面からの気化量を抑止することができる。
Next, operations and effects associated with the configuration of the present embodiment will be described.
By supplying the exhaust air from the exhaust fan 20 to the hot air chamber 11, the heat in the exhaust air is added to the hot air supplied by the combustion burner 5, and the hot air chamber 11, and hence the grains in the flow-down passage 13, can be made short. Grain temperature can be increased over time. And the absolute humidity of the dry hot air which acts on the grain of the grain flow down passage 13 can be increased by controlling the return amount of the exhaust air, and the amount of vaporization from the grain surface can be suppressed.

すなわち、排風と混合した乾燥熱風を供給すると、乾燥風は穀粒表面から蒸発しようとする気化量を高くなった穀粒表面の絶対湿度により抑止する一方、穀粒に作用する乾燥風の熱は主に穀温の上昇を促進し、穀粒内の水分流動性を高め、穀粒単位の内部と表面側との水分勾配を小さくでき、胴割れが少なく、かつ高速で乾燥作業を行なえる。   That is, when dry hot air mixed with exhaust air is supplied, the dry air suppresses the amount of vaporization to be evaporated from the grain surface by the absolute humidity on the grain surface, while the heat of the dry wind acting on the grain Mainly promotes the increase in grain temperature, improves the fluidity of moisture in the grain, reduces the moisture gradient between the inside and the surface of the grain unit, reduces torso cracking, and can perform drying at high speed .

戻しダクト27から第一熱風通路46に排風を供給するまでにバーナケース40に隣接する第二戻し通路44を経て第五排風開口部eから燃焼バーナ5の燃焼炎Qの側方において燃焼炎Qの噴出方向と並行状態で熱排風混合部40aに排風を排出することで、燃焼炎Qが乱流せず、安定した燃焼バーナ5の燃焼を行なうことができるものである。しかも燃焼バーナ5の燃焼側で排風を合流させるため、戻し排風量の変化による燃焼バーナ5周辺を通過する風の量の変化を小さくすることができ、燃焼炎Qの変化を小さくすることができる。そして、排風と熱風の混合を促進させることができる。そして、排風を燃焼バーナ5に直接晒さないことにより、塵埃や水分等の作用による燃焼バーナ5の劣化を防止することができる。   Before the exhaust air is supplied from the return duct 27 to the first hot air passage 46, combustion is performed from the fifth exhaust air opening e to the side of the combustion flame Q of the combustion burner 5 through the second return passage 44 adjacent to the burner case 40. By discharging the exhaust air to the heat exhaust air mixing unit 40a in parallel with the jet direction of the flame Q, the combustion flame Q does not flow turbulently and the combustion of the combustion burner 5 can be performed stably. In addition, since the exhaust air is merged on the combustion side of the combustion burner 5, the change in the amount of wind passing around the combustion burner 5 due to the change in the return exhaust air amount can be reduced, and the change in the combustion flame Q can be reduced. it can. And mixing of exhaust air and hot air can be promoted. Further, by not directly exposing the exhaust air to the combustion burner 5, it is possible to prevent the combustion burner 5 from being deteriorated due to the action of dust, moisture, or the like.

また、塵埃貯留ケース45に排風中の塵埃を多く落下堆積させることが可能になり、第一熱風通路46及び熱風室11に供給される塵埃の量を減少させることができる。戻し通路をバーナケース40に隣接して設けることで、排風の保温性を向上させることができる。   Further, a large amount of dust being exhausted can fall and accumulate in the dust storage case 45, and the amount of dust supplied to the first hot air passage 46 and the hot air chamber 11 can be reduced. By providing the return passage adjacent to the burner case 40, the heat retention of the exhaust air can be improved.

本実施の形態のように、外気を直接燃焼バーナ5で加熱して燃焼ガスに含まれた空気を乾燥対象物に供給する乾燥機においては、塵埃の含まれる排風を燃焼バーナ5の燃焼炎Qで加熱すると塵埃が燃焼し、該燃焼した塵埃が穀粒に供給されて穀粒の品質が低下する場合が生じていたが、本実施の形態により、塵埃の燃焼がされ難く穀粒の品質低下を防止することができる。   As in the present embodiment, in a dryer that directly heats the outside air with the combustion burner 5 and supplies the air contained in the combustion gas to the object to be dried, the exhaust air containing dust is discharged from the combustion flame of the combustion burner 5. Dust burns when heated by Q, and the burned dust is supplied to the grain and the quality of the grain has been reduced. According to this embodiment, the quality of the grain is difficult to burn dust. A decrease can be prevented.

次に、本実施の形態の乾燥制御について説明する。
図14は乾燥作業に伴う穀粒温度の変化及び水分値の変化を示すグラフで、L1は本実施の形態の乾燥工程を示し、L2は従来の乾燥行程を示す。また、L3は本実施の形態の水分値の変化を示し、L4は従来の水分値の行程を示す。
Next, the drying control of this embodiment will be described.
FIG. 14 is a graph showing a change in grain temperature and a change in moisture value accompanying a drying operation, L1 shows the drying process of the present embodiment, and L2 shows a conventional drying process. L3 indicates a change in the moisture value of the present embodiment, and L4 indicates a process of the conventional moisture value.

L2は従来の乾燥工程で、燃焼バーナ5が燃焼量を一定にした場合のグラフであるが、燃焼を開始してから次第に穀粒温度が上昇し、仕上げ水分に到達するまで穀粒温度が略一定の傾きで上昇していることを示している。   L2 is a graph in the case where the combustion burner 5 makes the combustion amount constant in the conventional drying process, but the grain temperature gradually rises after the start of combustion, and the grain temperature is approximately until reaching the finish moisture. It shows that it is rising at a certain slope.

それに対して、L1の乾燥行程は以下の行程を行なう。
まず、燃焼バーナ5の燃焼開始後、所定時間(例えば張り込み穀粒が一循環する時間)においては第一調節板23を全開し、排風を略全量を機外に排出し、燃焼開始直後に多く発生する塵埃が再度戻し通路から熱風室11内に供給されることを防止する(乾燥初期全量機外排出工程A1)。
On the other hand, the drying process of L1 performs the following processes.
First, after the combustion of the combustion burner 5 is started, the first adjustment plate 23 is fully opened for a predetermined time (for example, the time during which the cereal grains circulate once), and the exhaust air is discharged almost entirely outside the apparatus. A large amount of generated dust is prevented from being supplied again from the return passage into the hot air chamber 11 (dry initial full amount outside-machine discharge step A1).

所定時間経過すると、戻す排風の割合が所定以上(例えば75%以上)の状態でしばらく一定にするよう第一調節板23と第二調節板22を調節し、排風ファン20から排出された排風の多くを戻し通路側に排出し、熱排風混合部40a内に供給される。そして、排風と燃焼バーナ5で発生した熱風と混合され、熱風室11から流下通路13の穀粒に供給される(乾燥初期全量戻し工程A2)。   When the predetermined time has elapsed, the first adjusting plate 23 and the second adjusting plate 22 are adjusted so that the ratio of the exhausted air to be returned remains constant for a while in a state of a predetermined value or more (for example, 75% or more). Most of the exhaust air is discharged to the return passage side and supplied into the heat exhaust air mixing unit 40a. And it is mixed with the exhaust air and the hot air generated in the combustion burner 5 and supplied from the hot air chamber 11 to the grains in the flow-down passage 13 (dry initial total amount returning step A2).

そのため、供給された熱により水分が穀粒の表面から蒸発しようとするが、熱と共に供給された水分によって抑止され、水分が穀粒内部にとどまる。そして穀粒温度については、燃焼バーナで生成した熱に排風の熱がプラスされて穀粒に付与されることにより、多くの熱が与えられ穀粒温度が急激に上昇する。   For this reason, moisture tends to evaporate from the surface of the grain by the supplied heat, but is suppressed by the moisture supplied together with the heat, and the moisture stays inside the grain. As for the grain temperature, the heat generated by the combustion burner is added to the heat of the exhaust air and applied to the grain, so that a lot of heat is given and the grain temperature rises rapidly.

なお、この工程は外気温度によって戻し量が補正され、外気温が高くなるほど戻す排風の割合を低くするよう第一調節板23と第二調節板22を調節している。また、この工程は全乾燥工程で最も多くの排風を戻す工程である。   In this step, the return amount is corrected by the outside air temperature, and the first adjusting plate 23 and the second adjusting plate 22 are adjusted so that the ratio of the exhaust air to be returned decreases as the outside air temperature increases. Moreover, this process is a process of returning the most exhausted air in the entire drying process.

その後、設定時間毎に水分計10で検出する穀粒水分値に応じた水分量を含む排風絶対湿度Haの排風を戻す調節を行なう(排風絶対湿度戻し工程A3)。そして、穀粒流下通路13内が飽和水蒸気圧を超えて結露しない程度に、すなわち飽和水蒸気圧未満でかつ飽和水蒸気圧近傍になる排風絶対湿度Haの排風を供給する。   Then, the adjustment which returns the exhaust wind of the exhaust wind absolute humidity Ha containing the moisture content according to the grain moisture value detected with the moisture meter 10 for every set time is performed (exhaust wind absolute humidity return process A3). And exhaust air of exhaust air absolute humidity Ha which is below the saturated water vapor pressure and close to the saturated water vapor pressure is supplied to such an extent that the inside of the grain flow passage 13 does not condense beyond the saturated water vapor pressure.

仕上げ水分値に近くなると、第一調節弁23と第二調節弁22は排風を順次機外に排出する割合を高くするよう調節制御することで、穀粒温度を順次低下させ、設定水分に到達して乾燥作業終了した後の籾摺り工程を早く行なえるようにしている(仕上排出工程A4)。   When close to the finishing moisture value, the first control valve 23 and the second control valve 22 are adjusted and controlled to increase the rate of exhaust air exhaust to the outside of the machine in sequence, thereby decreasing the grain temperature sequentially to the set moisture. The hulling process after arriving and finishing the drying operation can be performed quickly (finishing discharge process A4).

ここで、穀粒を例に乾燥理論、すなわち、穀粒に水分と熱を与えるということを図15で説明する。従来の乾燥制御では図15(A)に示すように、燃焼バーナ5で発生して穀粒に供給された乾燥熱風による乾燥熱量を100とすると、乾燥初期には主として穀粒内の水分が蒸発されるための熱量である気化熱量に消費され(例えば95)、残りは穀粒温度の上昇に用いられる。すなわち、乾燥初期は穀粒の水分値が高いために供給された熱量の多くが水分の気化に用いられる。そのため、乾燥熱量を単純に増加させるだけでは穀粒表面側の乾燥が穀粒内部側より促進され、かえって穀粒中の水分勾配が高くなり胴割れがしやすくなってしまう。   Here, the drying theory, that is, giving moisture and heat to the grain will be described with reference to FIG. In the conventional drying control, as shown in FIG. 15 (A), when the amount of drying heat generated by the combustion burner 5 and supplied to the grain is 100, the moisture in the grain mainly evaporates at the beginning of drying. Is consumed in the amount of heat to be vaporized (for example, 95), and the rest is used to increase the grain temperature. That is, since the moisture value of the grain is high at the initial stage of drying, most of the supplied heat is used for vaporization of moisture. Therefore, simply increasing the amount of drying heat promotes drying on the grain surface side from the inside of the grain, and on the contrary, the moisture gradient in the grain becomes high and it becomes easy to crack the trunk.

それに対し、本実施の形態の乾燥制御については、図15(B)で示すように、乾燥初期に排風を戻して所定条件の乾燥熱風を生成することにより、胴割れし難く高速乾燥を可能にするものである。すなわち、燃焼バーナ5で発生した熱量を100とし、さらにこの乾燥熱風の熱量に排風中に含まれる排風の熱量50が加わるとすると、乾燥熱風に排風が合流した熱量全体は150となる。ここで乾燥熱風に排風が合流することによって生じる新たな乾燥風の条件は、絶対湿度が飽和水蒸気圧近傍の上限絶対湿度よりも低く、かつかつ該飽和水蒸気圧に対して所定限度に設定した下限絶対湿度よりも高いことを知見している。例えば、籾の乾燥の場合、上限の飽和水蒸気圧における絶対湿度から下限はこの飽和水蒸気圧の状態から最大で30%程度低い下限絶対湿度の範囲で制御される。上限・下限の絶対湿度の値は、乾燥対象物の種類や環境によって個々に設定されるものである。   On the other hand, with respect to the drying control of the present embodiment, as shown in FIG. 15 (B), by returning the exhaust air at the initial stage of drying and generating dry hot air under predetermined conditions, it is possible to perform high-speed drying that is difficult to crack the body. It is to make. That is, assuming that the amount of heat generated in the combustion burner 5 is 100, and the amount of heat of the exhaust air contained in the exhaust air is added to the amount of heat of the dry hot air, the total amount of heat that the exhaust air merges with the dry hot air is 150. . Here, the condition of the new drying air generated when the exhaust air joins the drying hot air is a lower limit in which the absolute humidity is lower than the upper limit absolute humidity near the saturated water vapor pressure and set to a predetermined limit with respect to the saturated water vapor pressure. We know that it is higher than absolute humidity. For example, in the case of drying cocoons, the lower limit from the absolute humidity at the upper limit saturated water vapor pressure is controlled within the range of the lower limit absolute humidity that is about 30% lower than the saturated water vapor pressure state. The upper and lower absolute humidity values are individually set according to the type and environment of the object to be dried.

そして、新たな乾燥風が穀粒に作用すると熱量を与えられた穀粒中の水分が穀粒表面から気化しようとする一方で、絶対湿度が上記のように飽和水蒸気圧近傍でかつ飽和水蒸気圧以下に調整されることにより穀粒表面からの水分蒸発は抑止され、付与される熱量は穀粒内部に作用し、例えば気化熱量に用いられる熱量は従来の95より低い60となり、穀温上昇に用いられる熱量が90となる。そのため、穀粒温度が急激に上昇するが穀粒中の水分移行が促進され水分勾配が急激に高くならず、胴割れが発生し難いものである。   And when a new dry wind acts on the grain, the moisture in the grain given the heat is going to vaporize from the grain surface, while the absolute humidity is near the saturated water vapor pressure and the saturated water vapor pressure as described above. Moisture evaporation from the grain surface is suppressed by adjusting to the following, and the amount of heat applied acts on the inside of the grain, for example, the amount of heat used for the heat of vaporization is 60 lower than the conventional 95, which increases the grain temperature. The amount of heat used is 90. Therefore, although the grain temperature rises rapidly, the moisture transfer in the grain is promoted, the moisture gradient does not increase rapidly, and the shell crack is unlikely to occur.

そして、戻り排風の排風量を、後述のように、乾燥中に検出する穀粒の水分値に対応して調節することができるため、排風の湿度を検出する湿度センサ等を必要とせず、コスト高にならず、また、適正な水分、すなわち穀粒流下通路13が飽和水蒸気圧未満でかつ飽和水蒸気圧近傍を保つ程度の水分を乾燥対象物に与えながら乾燥することができる。   And since it can adjust according to the moisture value of the grain detected during drying as mentioned below, the amount of exhaust of return exhaust air does not need a humidity sensor etc. which detects the humidity of exhaust air In addition, the cost can be increased, and the drying can be performed while supplying appropriate moisture, that is, moisture enough to keep the grain flow passage 13 below the saturated water vapor pressure and close to the saturated water vapor pressure to the object to be dried.

以上に説明の新たな乾燥風の条件は、燃焼バーナ5による乾燥熱風と排風との合流によって得られることを知見している。すなわち、穀粒に作用する乾燥風は水分を吸収して排風となって排出されるが、この排風の絶対湿度に着目して排風戻し量を調整しようとする。   It has been found that the new dry air condition described above can be obtained by merging the dry hot air and the exhaust air by the combustion burner 5. That is, the dry wind acting on the grain absorbs moisture and is discharged as exhaust air, but the exhaust air return amount is adjusted by paying attention to the absolute humidity of the exhaust air.

ここで、図16のグラフに示すように排風絶対湿度は穀粒の水分値に略対応していることが試験により知見されている。すなわち、穀粒の水分値が高い程排風絶対湿度も高くなっている。なお、これまでに記載のとおり、熱風室11の乾燥熱風は穀粒流下通路13内で乾燥風として穀粒に作用し、排風室12から排風されるが、このうち乾燥風と排風の絶対湿度は略等しいから(図10中、「絶対湿度HD≒仮想排風絶対湿度U」の関係にある)、排風絶対湿度の検出あるいは推定は穀粒流下通路13内乾燥風の絶対湿度が仮想できる。   Here, as shown in the graph of FIG. 16, it has been found by tests that the exhaust wind absolute humidity substantially corresponds to the moisture value of the grain. That is, the higher the moisture value of the grain, the higher the exhaust wind absolute humidity. In addition, as described so far, the dry hot air in the hot air chamber 11 acts on the grain as dry air in the grain flow passage 13 and is exhausted from the exhaust chamber 12. Of these, the dry air and the exhaust air Are substantially equal (in FIG. 10, there is a relationship of “absolute humidity HD≈virtual exhaust wind absolute humidity U”), the detection or estimation of the exhaust wind absolute humidity is the absolute humidity of the dry wind in the grain flow passage 13. Can be virtual.

穀粒水分値が高いほど排風絶対湿度の高いことは、穀粒表面から気化しようとする水蒸気圧が高いため、それを抑止するためにその分多くの排風湿度を必要としているためであり、乾燥作業が進行し、穀粒水分値が下がるほど穀粒から気化する水分量が減り、穀粒中の水分を抑止するための水分量が少なくともよくなるためである。本実施例では、図16の関係グラフを制御部F2の記憶部MEに記憶し、若しくは水分値を変数とした回帰式を求めることによって、仮想絶対湿度Uを算出する仮想絶対湿度算出部を構成し、検出水分値のデータに基づき必要とする排風絶対湿度HDを仮想する構成としている。   The higher the moisture content of the grain, the higher the absolute humidity of the exhaust wind is because the water vapor pressure to be vaporized from the surface of the grain is higher, so that more exhaust air humidity is required to suppress it. This is because, as the drying operation proceeds and the grain moisture value decreases, the amount of moisture vaporized from the grain decreases, and the amount of moisture for suppressing moisture in the grain improves at least. In the present embodiment, a virtual absolute humidity calculating unit that calculates the virtual absolute humidity U is configured by storing the relationship graph of FIG. 16 in the storage unit ME of the control unit F2 or by obtaining a regression equation using the moisture value as a variable. The exhaust air absolute humidity HD required based on the detected moisture value data is virtually assumed.

飽和水蒸気を超えると結露して穀粒が蒸れて品質が損なわれる恐れがあるが、超えない程度に、排風中に含まれる熱と水分を穀粒に与えることで穀粒内部に多くの熱を供給すると共に、穀粒の表面から蒸発しようとする水分を排風中の水分により穀物対象物の内部に抑止する。穀粒内部に熱と供給すると内部水分の表面側の移行が促進されるため、穀粒内部の水分勾配を小さくすることができ、高速で乾燥させるものでありながら穀粒の内部が亀裂等を起こし難くすることができる。   If saturated steam is exceeded, condensation may cause the grain to be steamed and quality may be impaired, but to the extent that it does not exceed it, heat and moisture contained in the exhaust air are given to the grain, so much heat inside the grain. In addition, the moisture that is going to evaporate from the surface of the grain is suppressed inside the grain object by the moisture in the exhaust air. When heat is supplied to the inside of the grain, the surface moisture side transition is promoted, so that the moisture gradient inside the grain can be reduced and the inside of the grain is cracked while being dried at high speed. It can be made difficult to wake up.

そして、上記の仮想排風絶対湿度Uは穀粒の水分値Mnに略対応していること知見をもって穀粒乾燥において排風戻し量を制御するが、その一例について、図17のフローチャート、図18のブロック図に基づき説明する。   And although said virtual exhaust wind absolute humidity U controls the exhaust air return amount in grain drying with knowledge that it substantially corresponds to the moisture value Mn of the grain, the flowchart of FIG. This will be described based on the block diagram.

乾燥運転を開始すると共に、外気温度センサ38、外気湿度センサ39にて外気温度TA・外気湿度HAの検出、穀粒の水分値Mnの検出が行われ、これらの検出データが制御部F2に入力される。制御部F2では、外気温度TAと外気湿度HAに基づき絶対湿度HAを算出し、所定時間毎の水分値の検出結果に基づき乾減率算出部は乾燥速度(乾減率)を算出する。さらに、この制御部F2は、前記図16における検出水分値Mnと仮想排風絶対湿度Uの関係を呼び出す。   In addition to starting the drying operation, the outside air temperature sensor 38 and the outside air humidity sensor 39 detect the outside air temperature TA and the outside air humidity HA, and the grain moisture value Mn, and these detection data are input to the control unit F2. Is done. In the control unit F2, the absolute humidity HA is calculated based on the outside air temperature TA and the outside air humidity HA, and the drying rate calculating unit calculates the drying rate (drying rate) based on the detection result of the moisture value for each predetermined time. Further, the control unit F2 calls the relationship between the detected moisture value Mn and the virtual exhaust wind absolute humidity U in FIG.

制御部F2は上記の仮想絶対湿度U、乾減率、及び予め入力された穀粒の張込量に加え、仮想排風絶対湿度Uを元にして、排風戻し量を算出する。なお、これらの条件に基づく排風戻し量の関係は、穀粒の乾燥風の絶対湿度HDが、前記のように飽和水蒸気圧付近を上限絶対湿度とし、所定値以下を下限絶対湿度とするが、これらは実験等によって予め適当な値を求めておく。   The control unit F2 calculates the exhaust air return amount based on the virtual exhaust air absolute humidity U in addition to the virtual absolute humidity U, the drying rate, and the amount of grain that is input in advance. It should be noted that the relationship between the exhaust air return amount based on these conditions is that the absolute humidity HD of the dry air of the grain is the upper limit absolute humidity near the saturated water vapor pressure as described above, and the lower limit absolute humidity below the predetermined value. These are determined in advance by experiments or the like.

上記の排風戻し量の算出に基づき、第一調節弁23の角度θが設定され、この角度となるよう調節弁駆動モータ25に正逆転連動出力され、第1調節弁23及び第2調節弁22が作動する。   Based on the calculation of the exhaust air return amount, the angle θ of the first control valve 23 is set, and the first control valve 23 and the second control valve are output to the control valve drive motor 25 so as to become this angle. 22 is activated.

また乾燥が継続し、定期的に外気温度TA・外気湿度HA、及び水分値Mnを検出し、その都度絶対湿度Zや乾減率を算出するが、この値が前回の値と異なり変動したときには排風戻し量を補正する。即ち、絶対湿度Zが下ると、予定の乾燥風絶対湿度(略排風絶対湿度Uに等しい)を確保するため、排風の戻し量を増加補正し、逆に絶対湿度Zが上がると排風戻し量を減少補正する。   Also, drying continues, the outside air temperature TA, the outside air humidity HA, and the moisture value Mn are detected periodically, and the absolute humidity Z and the drying rate are calculated each time. When this value fluctuates unlike the previous value, Correct the exhaust air return amount. That is, when the absolute humidity Z decreases, in order to ensure the expected dry wind absolute humidity (approximately equal to the exhausted absolute humidity U), the return amount of exhausted air is corrected to be increased, and conversely when the absolute humidity Z increases, the exhausted air Reduce the return amount.

また、水分値Mnの検出によって、乾減率が変動すると同様に排風戻し量の増・減補正が行われる。即ち、乾減率が高くなると、戻り排風に含まれる水分割合が高くなるので、排風戻し量を減少補正し、逆の場合には増加補正する。   Further, by detecting the moisture value Mn, an increase / decrease correction of the exhaust air return amount is performed in the same manner as the drying rate varies. That is, when the drying rate increases, the moisture ratio contained in the return exhaust air increases, so the exhaust air return amount is corrected to decrease, and vice versa.

なお、図17、図18における例では、絶対湿度Z、乾減率、張込量、及び、仮想排風絶対湿度Uを元に、排風戻し量を第一調節弁23の作動角度θの設定制御を行う構成としたが、第一調節弁23の目標値に対する偏差を補正する前記図9の制御方法によって行ってもよい。この場合には、所定時間間隔をおいて、飽和水上気圧近傍であってこの飽和水蒸気圧相当の絶対湿度HFとの偏差を知ることとなるので、排風の戻し量をきめ細かく制御することができる。   In the examples in FIGS. 17 and 18, the exhaust air return amount is set to the operating angle θ of the first control valve 23 based on the absolute humidity Z, the drying rate, the amount of tension, and the virtual exhaust absolute humidity U. Although the configuration is such that the setting control is performed, it may be performed by the control method of FIG. 9 that corrects the deviation of the first control valve 23 from the target value. In this case, since the deviation from the absolute humidity HF corresponding to the saturated water vapor pressure in the vicinity of the saturated water pressure is known at a predetermined time interval, the return amount of the exhaust air can be finely controlled. .

次に調節弁の開度を調節するための制御例について代表数値を用いて説明する。
外気温度センサで検出された外気温TAが20℃で、外気湿度センサで検出された外気湿度HAが70%で制御部F2で演算された絶対湿度(Z)が13g/mとする。そして、前述の図16で水分計10で検出した穀粒水分値に対応して設定されている制御目標とする排風の仮想排風絶対湿度(U)が25g/mである場合とする。そして、本実施例の排風ファン7の風量は1900kg/hで、穀粒乾燥機に供給された穀粒(籾)量を800kg、乾燥速度を示す乾減率(一時間あたりに乾燥される水分の割合)を1.2%/hとした場合、どの程度の割合の排風を熱風室13に戻すかを以下の式より求める。
Next, an example of control for adjusting the opening of the control valve will be described using representative numerical values.
The outside air temperature TA detected by the outside air temperature sensor is 20 ° C., the outside air humidity HA detected by the outside air humidity sensor is 70%, and the absolute humidity (Z) calculated by the control unit F2 is 13 g / m 3 . Then, it is assumed that the virtual exhaust wind absolute humidity (U) of the exhaust air as the control target set corresponding to the grain moisture value detected by the moisture meter 10 in FIG. 16 is 25 g / m 3. . And the air volume of the exhaust fan 7 of a present Example is 1900 kg / h, the quantity of the grain (rice cake) supplied to the grain dryer is 800 kg, and the drying rate (it is dried per hour) which shows a drying rate. When the ratio of moisture) is 1.2% / h, how much of the exhaust air is returned to the hot air chamber 13 is obtained from the following equation.

仮想排風絶対湿度(U)−絶対湿度(Z)=12(g/m) (式1)
外気が吸水できる最大吸水量は
12×1900/1000≒23(kg) (式2)
そして、一時間あたりに穀粒から除去される水分量は
800(kg)×1.2(%/h)=9.6(kg/h) (式3)
B2の式とB3の式より
23/(9.6+23)≒0.71 →71% (式4)
すなわち、排風ファン7から排出される排風量の71%を熱風室11に戻すべく調節弁駆動モータ25を制御して第一調節弁23のθ角を制御し、これによって第二調節弁22を調節する。すなわち、排風の戻し割合に見合う前記第一調節弁23の回動角度θを予め記憶部MEに記憶しておき、上記計算結果に基づく排風割合71%に対応するよう調節弁駆動モータ25を正・逆転連動する。
Virtual exhaust absolute humidity (U)-absolute humidity (Z) = 12 (g / m 3 ) (Formula 1)
The maximum amount of water that can be absorbed by outside air is 12 x 1900/1000 ≒ 23 (kg) (Formula 2)
The amount of water removed from the grain per hour is 800 (kg) × 1.2 (% / h) = 9.6 (kg / h) (Formula 3)
From the formula of B2 and the formula of B3 23 / (9.6 + 23) ≒ 0.71 → 71% (Formula 4)
That is, the control valve drive motor 25 is controlled so as to return 71% of the exhaust air amount discharged from the exhaust fan 7 to the hot air chamber 11 to control the θ angle of the first control valve 23, and thereby the second control valve 22. Adjust. That is, the rotation angle θ of the first control valve 23 corresponding to the return rate of the exhaust air is stored in the storage unit ME in advance, and the control valve drive motor 25 corresponds to the exhaust air rate 71% based on the calculation result. Are linked forward and backward.

前述の演算式についてさらに詳述すると、前記外気温度センサTAと前記外気湿度センサHAでそれぞれ検出された外気の温度と湿度から制御部F2で外気の絶対湿度(Z)を演算し、外気の絶対湿度(Z)と水分計10で検出された穀粒水分の条件から予め設定する排風の絶対湿度(U)との差異(増加水量)を外気が吸収できる最大の吸水量として演算する(式1と式2)。そして、一方では乾燥作業により穀粒から蒸発する蒸発水量(本実施の形態では前述の一時間あたりに穀粒から除去される水分量)を求め(式3)、増加水量が乾燥作業による蒸発水量と合算された値に対する割合が、排風を戻す割合と考えるものである。   More specifically, the above-described arithmetic expression is calculated by calculating the absolute humidity (Z) of the outside air by the control unit F2 from the temperature and humidity of the outside air detected by the outside air temperature sensor TA and the outside air humidity sensor HA, respectively. The difference (increased water volume) between the humidity (Z) and the absolute humidity (U) of the exhaust wind set in advance from the condition of the grain moisture detected by the moisture meter 10 is calculated as the maximum water absorption amount that can be absorbed by the outside air (formula) 1 and equation 2). On the other hand, the amount of water evaporated from the grain by the drying operation (the amount of water removed from the grain per hour in the present embodiment) is obtained (Equation 3), and the amount of increased water is the amount of water evaporated by the drying operation. The ratio to the sum of the values is considered as the ratio for returning the wind.

すなわち、前記式4は
増加水量/(穀物から蒸発する水量+増加水量)
を示している。この式においては、いわゆる連続的に乾燥対象物に乾燥作用をなす乾燥機について特に有効である。
That is, the above formula 4 is the amount of increased water / (the amount of water evaporated from the grain + the increased amount of water).
Is shown. This formula is particularly effective for a dryer that continuously performs a drying action on an object to be dried.

但し、本実施の形態のように穀粒を貯留部2と乾燥部3とを循環させて乾燥作用と調質作用(いわゆるテンパリング)を交互に行なう穀粒乾燥機においては、前述のように乾燥部で熱と水分を供給した穀粒が貯留部2に循環されると、供給する熱と水分が多すぎた場合に、穀粒内部の水分の移行より穀粒表面からの乾燥が進行し、穀粒の胴割れが増加する場合がある。   However, in this embodiment, in the grain dryer in which the drying operation and the tempering operation (so-called tempering) are alternately performed by circulating the kernel through the storage unit 2 and the drying unit 3, drying is performed as described above. When the grain which supplied heat and moisture in the part is circulated to the storage part 2, when there is too much heat and moisture to be supplied, drying from the grain surface proceeds from the transfer of moisture inside the grain, Grain shell cracking may increase.

そこで、特に穀粒乾燥機の場合には式4に変わって下記の式B5に基づいて乾燥制御を行なっても良い。
増加水量/(穀物から蒸発する水量+排風の絶対湿度(U)) (式5)
23/(9.6+47.5)≒0.42 すなわち、42%の排風を戻すようにする。
Therefore, in the case of a grain dryer, drying control may be performed based on the following formula B5 instead of formula 4.
Increased amount of water / (Amount of water evaporating from grain + Absolute humidity of exhaust air (U)) (Formula 5)
23 / (9.6 + 47.5) ≈0.42 That is, 42% exhaust air is returned.

なお、47.5(kg)とは前述の絶対湿度(U)の25g/mと排風ファンの風量1900kg/hとから算出される。
47.5=25×1900/1000 (式6)
テンパリング方式で乾燥を行なう循環型の乾燥機においては、貯留部2に停留している間の表面乾燥を抑制するために、式5では貯留部2を通過する絶対湿度が設定する排風の絶対湿度になるように、単位時間あたりに穀物内を通過する風が持つ総水量を変更補正する。
Note that 47.5 (kg) is calculated from 25 g / m 3 of the absolute humidity (U) and the air volume of the exhaust fan 1900 kg / h.
47.5 = 25 × 1900/1000 (Formula 6)
In a circulation type dryer that performs drying by the tempering method, in order to suppress surface drying while it is stopped in the storage unit 2, the absolute humidity of the exhaust air that is set by the absolute humidity that passes through the storage unit 2 in Equation 5 The total amount of water that the wind passing through the grain per unit time has to be changed and corrected so that it becomes humidity.

なお、第一調節弁23及び第二調節弁22が排風量の71%より多くの量を熱風室11に戻すよう調節された場合には、多くなればなるほど戻される水分量が多くなるため、穀粒から新たに水分を除去し難くなる。また、第一調節弁23及び第二調節弁22が排風量の71%より少ない量を熱風室11に戻した場合には熱風室11に戻される熱量が少なくなるため、穀粒の温度の上昇がし難くなり乾燥速度が遅くなる。   In addition, when the 1st control valve 23 and the 2nd control valve 22 are adjusted so that more than 71% of the amount of exhausted air may be returned to the hot air chamber 11, the more water is returned, the more water is returned. It becomes difficult to remove moisture from the grain. In addition, when the first control valve 23 and the second control valve 22 return an amount smaller than 71% of the exhausted air amount to the hot air chamber 11, the amount of heat returned to the hot air chamber 11 decreases, so that the temperature of the grain rises. It becomes difficult to peel off and the drying speed becomes slow.

本実施の形態の式から排風を戻す割合を調節することで、排風ファン6から排出された排風が帯びる熱、すなわち吸水力をできる限り適正に利用することで燃焼効率の良い乾燥作業を行うことができる。   By adjusting the ratio of returning the exhaust air from the equation of the present embodiment, the drying operation with good combustion efficiency can be performed by appropriately using the heat generated by the exhaust air discharged from the exhaust air fan 6, that is, the water absorption force as much as possible. It can be performed.

図19は前述の図16に基づく穀粒水分値と仮想排風絶対湿度に基づいて設定する排風を戻す割合を補正することを示す図である。
補正する条件として外気温度と穀粒張込量を示している。すなわち、外気温度が高い程排風を戻す割合を低減させるよう補正する。そして曲線M1,M2,M3,M4,M5は張込量毎による排風戻し率の補正を示し、張込量が多いほど排風を戻す割合を低減させるよう補正する。
FIG. 19 is a diagram illustrating correction of the ratio of returning the exhaust air set based on the grain moisture value and the virtual exhaust air absolute humidity based on FIG. 16 described above.
The outside temperature and the amount of grain filling are shown as conditions for correction. That is, it correct | amends so that the ratio which returns exhaust air may be reduced, so that external temperature is high. Curves M1, M2, M3, M4, and M5 indicate correction of the exhaust wind return rate for each amount of tension, and the correction is performed so that the ratio of returning the exhaust wind is reduced as the amount of tension increases.

外気温度が高くなるほど穀粒の乾燥が促進するのでその分排風を戻す量を低減できる。また、張込量が多いほど最も上昇する穀温が高くなるためその分排風を戻す量を低減できる。   Since the drying of the grain is promoted as the outside air temperature becomes higher, it is possible to reduce the amount to return the exhaust air accordingly. Moreover, since the grain temperature which rises most is so high that there is much tension | tensile_strength, the amount which returns exhaust air by that amount can be reduced.

上記実施例では、排風戻し量を調節弁の回動角度θをもって制御する構成について説明したが、戻し量自体を検出して制御してもよく、あるい全排風量に対する排風戻し割合を制御する形態でもよい。   In the above embodiment, the configuration in which the exhaust air return amount is controlled by the rotation angle θ of the control valve has been described. However, the return amount itself may be detected and controlled, or the exhaust air return ratio with respect to the total exhaust air amount may be set. The form to control may be sufficient.

また、本実施の形態では乾燥速度を示す乾減率を1.2%としたが、乾減率によって排風を戻す割合が変更される。
なお、本実施の形態では外気湿度センサHAから外気の絶対湿度を求めているが、外気湿度センサの代わりに外気温度基準による外気の絶対湿度を定めてこれを代用値としても良い。
In this embodiment, the drying rate indicating the drying rate is 1.2%, but the rate of returning the exhaust air is changed depending on the drying rate.
In this embodiment, the absolute humidity of the outside air is obtained from the outside air humidity sensor HA, but instead of the outside air humidity sensor, the absolute humidity of the outside air based on the outside air temperature reference may be determined and used as a substitute value.

本実施の形態では籾・麦・豆等の穀粒乾燥機について記載したが、そのほかに椎茸や材木や海産物等の自然から採取された物で、乾燥対象物の表面部分と内部中心部分に水分勾配を伴うものを乾燥対象物とする乾燥機の場合にも利用可能である。   In this embodiment, a grain dryer for straw, wheat, beans, etc. has been described. The present invention can also be used in the case of a dryer that uses an object with a gradient as an object to be dried.

穀粒乾燥機全体の正面図Front view of the whole grain dryer 穀粒乾燥機全体の側面図Side view of whole grain dryer 穀粒乾燥機全体の内部を説明する斜視図The perspective view explaining the inside of the whole grain dryer 乾燥部と集穀部の構成を説明する斜視図The perspective view explaining the structure of a drying part and a grain collection part 乾燥部と集穀部の構成を説明する正面図Front view illustrating the configuration of the drying unit and the cereal collecting unit 第一調節弁と第二調節弁の連動構成を説明する排風ファンの側面図(A)及び背面図(B)Side view (A) and rear view (B) of exhaust fan for explaining interlocking configuration of first control valve and second control valve 排風供給ダクトと排風分散ケースと排風ファンを示した斜視図A perspective view showing an exhaust air supply duct, an exhaust air distribution case, and an exhaust fan ブロック図Block Diagram フローチャートflowchart 絶対湿度の変動を示す概要図Schematic diagram showing changes in absolute humidity バーナケース及び熱排風通過ケースの内部を説明する斜視図The perspective view explaining the inside of a burner case and a heat exhaust air passage case バーナケース内部を説明する側面図Side view explaining the inside of the burner case バーナケース内部を説明する斜視図The perspective view explaining the inside of a burner case 乾燥行程と穀粒温度、又は穀粒水分値の関係を示すグラフGraph showing the relationship between drying process and grain temperature or grain moisture value 穀粒に供給する熱について説明する図(A)(B)The figure explaining the heat supplied to a grain (A) (B) 排風絶対湿度と穀粒水分値との関係を示す図Diagram showing the relationship between absolute wind humidity and grain moisture value フローチャートflowchart ブロック図Block Diagram 外気温度及び張込量による排風を還流する割合を変更することを示す図The figure which shows changing the ratio which recirculates the exhaust wind with outside air temperature and tension amount

符号の説明Explanation of symbols

1 本体
5 燃焼バーナ
5a 燃焼バーナの燃焼盤面
6 排風ファン
11 熱風室
13 穀粒流下通路
20 排風ダクト
22 第二調節板
23 第一調節板
23a回動軸
24 ロッド
44 第二戻し通路
k 燃焼バーナの燃焼盤面位置
e 第五排風開口部
Q 燃焼炎
DESCRIPTION OF SYMBOLS 1 Main body 5 Combustion burner 5a Combustion disc surface 6 of combustion burner Exhaust fan 11 Hot air chamber 13 Grain flow passage 20 Exhaust duct 22 Second adjustment plate 23 First adjustment plate 23a Rotating shaft 24 Rod 44 Second return passage k Combustion Burner surface position e 5th exhaust opening Q Combustion flame

Claims (4)

乾燥対象物に乾燥用熱風を作用させて乾燥する乾燥部(3)と、乾燥対象物通過後の排風を前記乾燥用熱風に合流させる戻し通路(41,44)と、排風の戻し量を調節する調節装置(22,23)を備えた乾燥装置において、
前記乾燥用熱風と前記排風の合流空気による乾燥風の乾燥室(13)中における絶対湿度(HD)を算出する第一算出部と、
該乾燥風の飽和水蒸気圧における絶対湿度(HF)を算出する第二算出部と、
乾燥風の絶対湿度(HD)と飽和水蒸気圧における絶対湿度(HF)を比較する比較部と、
前記乾燥風の絶対湿度(HD)が飽和水蒸気圧における絶対湿度(HF)に達するか若しくはこの絶対湿度(HF)の近傍に設定した上限絶対湿度(β・HF)を上回ることを検出すると前記調節装置(22,23)に対し排風戻し量を減少させる信号を出力し、前記乾燥風の絶対湿度(HD)が飽和水蒸気圧における絶対湿度(HF)よりも所定値低く設定した下限絶対湿度(α・HF)を下回ることを検出すると前記調節装置(22,23)に対し排風戻し量を増加させる信号を出力する制御部(F1)
を設けたことを特徴とする乾燥装置。
A drying section (3) for drying by applying a hot air for drying to an object to be dried, a return passage (41, 44) for joining the exhaust air after passing through the object to be dried to the hot air for drying, and a return amount of the exhaust air In the drying apparatus provided with the adjusting device (22, 23) for adjusting
A first calculation unit for calculating an absolute humidity (HD) in a drying chamber (13) of the drying air by the combined air of the hot air for drying and the exhaust air;
A second calculation unit for calculating an absolute humidity (HF) at a saturated water vapor pressure of the dry air;
A comparison unit for comparing the absolute humidity (HD) of the dry wind and the absolute humidity (HF) at the saturated water vapor pressure;
When it is detected that the absolute humidity (HD) of the dry wind reaches the absolute humidity (HF) at the saturated water vapor pressure or exceeds the upper limit absolute humidity (β · HF) set in the vicinity of the absolute humidity (HF), the adjustment is performed. A signal for decreasing the exhaust air return amount is output to the devices (22, 23), and the absolute humidity (HD) of the dry air is lower than the absolute humidity (HF) at the saturated water vapor pressure by a predetermined lower limit absolute humidity ( Control unit (F1) which outputs a signal for increasing the exhaust air return amount to the adjusting device (22, 23) when it is detected that the value is below α · HF)
A drying apparatus characterized by comprising:
乾燥対象物に乾燥用熱風を作用させて乾燥する乾燥部(3)と、
乾燥対象物通過後の排風を前記乾燥用熱風に合流させる戻し通路(41,44)と、
排風の戻し量を調節する調節装置(22,23)を備えた乾燥装置において、
乾燥中の乾燥対象物の水分を検出する水分計(10)と、
該水分計(10)で検出した乾燥対象物の水分値に基づき前記排風の仮想絶対湿度(U)を算出する仮想絶対湿度算出部と、
この仮想絶対湿度(U)と対応して前記戻し通路(41,44)に排風を戻す排風戻し量又は全排風量に対する排風戻し比率を予め設定する設定部と、
設定された排風戻し量又は排風戻し比率に調節装置(22,23)を作動する制御部(F2)
を設けたことを特徴とする乾燥装置。
A drying section (3) for drying by applying a hot air for drying to an object to be dried;
A return passage (41, 44) for joining the exhausted air after passing through the drying object to the hot air for drying;
In the drying apparatus provided with the adjusting device (22, 23) for adjusting the return amount of the exhaust air,
A moisture meter (10) for detecting the moisture of an object to be dried during drying;
A virtual absolute humidity calculating unit that calculates the virtual absolute humidity (U) of the exhaust air based on the moisture value of the dry object detected by the moisture meter (10);
A setting unit that presets an exhaust air return amount that returns exhaust air to the return passage (41, 44) or a total exhaust air amount in correspondence with the virtual absolute humidity (U);
Control unit (F2) for operating the adjusting device (22, 23) to the set exhaust air return amount or exhaust air return ratio
A drying apparatus characterized by comprising:
制御部(F2)に入力された外気絶対湿度を検出する検出部を設け、この外気絶対湿度の変動に応じて排風戻し量又は排風戻し比率を補正する構成とした請求項2に記載の乾燥装置。 The detection part which detects the outside air absolute humidity input into the control part (F2) is provided, and it was set as the structure which correct | amends an exhaust air return amount or an exhaust air return ratio according to the fluctuation | variation of this outdoor air absolute humidity. Drying equipment. 制御部(F2)に入力された乾燥対象物の水分検出結果に基づいて乾燥対象物の乾減率を算出する乾減率算出部を設け、乾減率の変動に応じて排風戻し量又は排風戻し比率を補正する構成とした請求項2又は請求項3に記載の乾燥装置。 A drying rate calculation unit that calculates the drying rate of the drying object based on the moisture detection result of the drying object input to the control unit (F2) is provided, and the exhaust air return amount or The drying apparatus according to claim 2 or 3, wherein the exhaust air return ratio is corrected.
JP2007284116A 2007-10-31 2007-10-31 Drying equipment Active JP5125419B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007284116A JP5125419B2 (en) 2007-10-31 2007-10-31 Drying equipment
KR1020070119762A KR100967118B1 (en) 2007-10-31 2007-11-22 Drying device
CN2007101941337A CN101424482B (en) 2007-10-31 2007-12-05 Dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007284116A JP5125419B2 (en) 2007-10-31 2007-10-31 Drying equipment

Publications (2)

Publication Number Publication Date
JP2009109137A true JP2009109137A (en) 2009-05-21
JP5125419B2 JP5125419B2 (en) 2013-01-23

Family

ID=40615252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007284116A Active JP5125419B2 (en) 2007-10-31 2007-10-31 Drying equipment

Country Status (3)

Country Link
JP (1) JP5125419B2 (en)
KR (1) KR100967118B1 (en)
CN (1) CN101424482B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225625A (en) * 2011-04-22 2012-11-15 Iseki & Co Ltd Drying control device of circulating grain dryer
CN103399563A (en) * 2013-08-16 2013-11-20 安徽科技学院 Drying tower controller
US8726535B2 (en) 2008-12-16 2014-05-20 Pioneer Hi Bred International Inc Method, apparatus and system for controlling heated air drying
CN105996846A (en) * 2016-07-08 2016-10-12 宁波方太厨具有限公司 Dry cargo storage device and control method thereof
JP2019211176A (en) * 2018-06-07 2019-12-12 井関農機株式会社 Grain dryer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384339B1 (en) * 2012-06-21 2014-04-14 주식회사 부성엔지니어링 A mesuring and control apparatus of air volume for ventilation dry
DE102017106887A1 (en) * 2017-03-30 2018-10-04 Reifenhäuser GmbH & Co. KG Maschinenfabrik Dryer for a textile web with a device for determining the residual moisture of a web and method, module and system for this purpose
WO2019131882A1 (en) * 2017-12-28 2019-07-04 株式会社クボタ Agricultural management system and agricultural management device
CN108444240B (en) * 2018-06-28 2023-08-04 佳木斯大学 Intelligent combined crop airing device and control method thereof
CN109579451A (en) * 2018-11-27 2019-04-05 宁夏百乐杞智汇科技有限公司 A kind of alkali-free fructus lycii drying machine remote monitoring system and its control method
CN110332765B (en) * 2019-06-29 2021-06-18 汕尾市索思电子封装材料有限公司 Drying method and drying device for electroplating product
CN112460940A (en) * 2020-11-27 2021-03-09 丹阳市慧天新能源有限公司 Agricultural product heat pump drying system and control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200179A (en) * 1983-04-27 1984-11-13 株式会社 サタケ Automatic controller for hot air for cereal drier
JPS61195266A (en) * 1985-02-22 1986-08-29 井関農機株式会社 Cereal grain drier
JPS62293080A (en) * 1986-06-11 1987-12-19 井関農機株式会社 Drying controller in cereal grain drier
JP3075775U (en) * 2000-08-21 2001-03-06 ニチワ電機株式会社 Food humidifying heating cabinet with refrigeration function
JP2006226573A (en) * 2005-02-16 2006-08-31 National Agriculture & Food Research Organization Grain drying device and method
JP2007010247A (en) * 2005-06-30 2007-01-18 Iseki & Co Ltd Grain drier
JP2007205600A (en) * 2006-01-31 2007-08-16 Iseki & Co Ltd Grain dryer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2599270B2 (en) * 1987-09-07 1997-04-09 金子農機株式会社 Grain drying method
CN1006933B (en) * 1987-10-24 1990-02-21 国家机械工业委员会沈阳真空技术研究所 Closed vacuum hot-air dry system
JPH01155184A (en) * 1987-12-11 1989-06-19 Kubota Ltd Controller for speed of drying of circulation type cereal drier
JPH03113281A (en) * 1989-09-27 1991-05-14 Iseki & Co Ltd Dry control system for grain dryer
JP4172002B2 (en) * 1999-08-24 2008-10-29 株式会社サタケ Circulating grain dryer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200179A (en) * 1983-04-27 1984-11-13 株式会社 サタケ Automatic controller for hot air for cereal drier
JPS61195266A (en) * 1985-02-22 1986-08-29 井関農機株式会社 Cereal grain drier
JPS62293080A (en) * 1986-06-11 1987-12-19 井関農機株式会社 Drying controller in cereal grain drier
JP3075775U (en) * 2000-08-21 2001-03-06 ニチワ電機株式会社 Food humidifying heating cabinet with refrigeration function
JP2006226573A (en) * 2005-02-16 2006-08-31 National Agriculture & Food Research Organization Grain drying device and method
JP2007010247A (en) * 2005-06-30 2007-01-18 Iseki & Co Ltd Grain drier
JP2007205600A (en) * 2006-01-31 2007-08-16 Iseki & Co Ltd Grain dryer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8726535B2 (en) 2008-12-16 2014-05-20 Pioneer Hi Bred International Inc Method, apparatus and system for controlling heated air drying
JP2012225625A (en) * 2011-04-22 2012-11-15 Iseki & Co Ltd Drying control device of circulating grain dryer
CN103399563A (en) * 2013-08-16 2013-11-20 安徽科技学院 Drying tower controller
CN105996846A (en) * 2016-07-08 2016-10-12 宁波方太厨具有限公司 Dry cargo storage device and control method thereof
JP2019211176A (en) * 2018-06-07 2019-12-12 井関農機株式会社 Grain dryer
JP7063127B2 (en) 2018-06-07 2022-05-09 井関農機株式会社 Grain dryer

Also Published As

Publication number Publication date
JP5125419B2 (en) 2013-01-23
KR100967118B1 (en) 2010-07-05
CN101424482B (en) 2010-12-22
CN101424482A (en) 2009-05-06
KR20090044945A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP5125419B2 (en) Drying equipment
JP5573913B2 (en) Crop dryer
JP5151289B2 (en) Dryer
JP2009024948A5 (en)
JP2010144969A (en) Exhaust air circulation type grain dryer
JP4172002B2 (en) Circulating grain dryer
JP4379388B2 (en) Grain dryer
JP2007010247A5 (en)
JP5310786B2 (en) Dryer
JP5245317B2 (en) Agricultural dryer
JP2007205600A (en) Grain dryer
JP2009024955A (en) Dryer
JP2009036465A5 (en)
JP5422965B2 (en) Exhaust air circulation type grain dryer
JP2007205600A5 (en)
JP5267634B2 (en) Grain dryer
JP4992442B2 (en) Grain dryer
JP2014149116A (en) Drying machine for agricultural product
JP5040384B2 (en) Exhaust circulation type grain dryer
JP2014149116A5 (en)
JP2008185311A5 (en)
JP5152283B2 (en) Grain dryer
JP4362673B2 (en) Discharge valve control device for circulating grain dryer
US20070062059A1 (en) Deflector plate for kilns
JP2599270B2 (en) Grain drying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5125419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3