JP2009102969A - Heat insulation method - Google Patents
Heat insulation method Download PDFInfo
- Publication number
- JP2009102969A JP2009102969A JP2007299811A JP2007299811A JP2009102969A JP 2009102969 A JP2009102969 A JP 2009102969A JP 2007299811 A JP2007299811 A JP 2007299811A JP 2007299811 A JP2007299811 A JP 2007299811A JP 2009102969 A JP2009102969 A JP 2009102969A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- closed space
- space
- heat insulation
- heat recovery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Building Environments (AREA)
Abstract
Description
本発明は閉鎖空間から非閉鎖空間に放出される熱エネルギーを回収し、回収された熱エネルギーを閉鎖空間に戻して閉鎖空間から非閉鎖空間に放出される熱エネルギーを低減させる断熱方法に関する。 The present invention relates to a heat insulating method for recovering thermal energy released from a closed space to a non-closed space and returning the recovered thermal energy to the closed space to reduce the heat energy released from the closed space to the non-closed space.
従来、閉鎖空間の冷暖房を実施する際に、閉鎖空間内の冷暖房された空気は閉鎖空間と非閉鎖空間を遮蔽する隔壁から冷暖房エネルギーが非閉鎖空間に伝達されて熱ロスが発生している。その熱ロスを防止するために二重サッシやペアーガラスを用いたり、隔壁内部に断熱材を設けて熱抵抗を高める工夫が行われている。
しかしながら、住宅の隔壁の断熱処理や、窓ガラスの二重化や、住宅全体の断熱性能を向上させる「高気密高断熱」工法も考案されているが建築コストが高くなる欠点がある。2. Description of the Related Art Conventionally, when air-conditioning in a closed space is performed, air that has been air-conditioned in the closed space is transmitted with air-conditioning energy from a partition that shields the closed space and the non-closed space to generate heat loss. In order to prevent the heat loss, a double sash or a pair glass is used, or a heat insulating material is provided inside the partition wall to increase the heat resistance.
However, although the heat insulation treatment of the partition walls of the house, the double glazing, and the “highly airtight high heat insulation” method for improving the heat insulation performance of the whole house have been devised, there are drawbacks in that the construction cost becomes high.
また、建築壁は断熱処理し熱抵抗を上昇させることは比較的容易であるが、採光を必要とするテラスハウスや植物栽培用のビニールハウス等では光を透過させることが必須条件になるので、隔壁の熱抵抗を高めることが容易ではなく、断熱処理のために建築コストが極端に上昇する問題がある。In addition, it is relatively easy to heat-treat the building walls and increase the heat resistance, but it is essential to transmit light in terrace houses and greenhouses for plant cultivation that require daylighting. It is not easy to increase the thermal resistance of the partition walls, and there is a problem that the construction cost extremely increases due to the heat insulation treatment.
また、車両などの狭い空間では室内空間を極力多くとるために隔壁に十分な断熱材のスペースが確保できないため十分な断熱効果が得られない問題がある。
さらに、どんなに隔壁の断熱性を向上しても熱伝達速度が低減するだけで閉鎖空間内と非閉鎖空間との熱交換を完全に防ぐことはできず、冷暖房負荷として多くの熱エネルギーのロスが発生している。
Furthermore, no matter how much the heat insulation of the partition wall is improved, the heat transfer rate is reduced, and heat exchange between the enclosed space and the non-enclosed space cannot be completely prevented. It has occurred.
本発明は、こうした従来の問題に鑑み、これを解決するためになされたもので、閉鎖空間から非閉鎖空間への熱移動を低減し、安価で簡便な断熱方法を提供することを目的とする。The present invention has been made in order to solve the above-described conventional problems, and an object of the present invention is to provide an inexpensive and simple heat insulation method by reducing heat transfer from a closed space to a non-closed space. .
請求項1に記載の本発明は、閉鎖空間と非閉鎖空間との間に熱回収空間を設け、閉鎖空間から放出される熱エネルギーを熱回収空間内の気体に一旦吸収させる。
閉鎖空間から熱回収空間に伝わった熱は熱回収されて閉鎖空間に戻すことにより熱回収空間内の気体の温度はほぼ一定に保たれる。
すなわち、閉鎖空間から熱回収空間内に伝達された熱は非閉鎖空間に伝わることなく閉鎖空間に戻されるため、閉鎖空間から非閉鎖空間への熱伝達が防止できる。According to the first aspect of the present invention, a heat recovery space is provided between the closed space and the non-closed space, and the heat energy released from the closed space is temporarily absorbed by the gas in the heat recovery space.
The heat transmitted from the closed space to the heat recovery space is recovered and returned to the closed space, whereby the temperature of the gas in the heat recovery space is kept substantially constant.
That is, the heat transferred from the closed space into the heat recovery space is returned to the closed space without being transferred to the non-closed space, so that heat transfer from the closed space to the non-closed space can be prevented.
請求項2に記載の本発明は、閉鎖空間から熱回収空間内に伝達された熱を回収し閉鎖空間内に熱移動させる手段をヒートポンプ等の熱移動手段により行う。According to the second aspect of the present invention, means for recovering heat transferred from the closed space into the heat recovery space and transferring the heat into the closed space is performed by a heat transfer means such as a heat pump.
請求項3に記載の本発明は、熱回収空間内の気体の温度を非閉鎖空間内の気体温度と閉鎖空間内の気体温度の間に制御することにより、非閉鎖空間と熱回収空間内との温度差が非閉鎖空間と閉鎖空間との温度差よりも小さくなり、熱回収空間から非閉鎖空間への熱の移動が低減できる。According to the third aspect of the present invention, the temperature of the gas in the heat recovery space is controlled between the gas temperature in the non-closed space and the gas temperature in the closed space. Is smaller than the temperature difference between the non-closed space and the closed space, and heat transfer from the heat recovery space to the non-closed space can be reduced.
本発明の効果を図で説明する。
一般に住宅において室内から室外への熱流束密度Jは、壁温度をTw、外気温度をT0、とすると、熱伝達係数αとの関係は次のように表される(Tw>T0の場合)。
J=α・(Tw−T0)・・・・・・・・(1)
すなわち、室内と室外の温度差が少なく、隔壁の熱伝達係数が小さいほど室内から室外への熱放出が小さくなるといえる。The effects of the present invention will be described with reference to the drawings.
In general, the heat flux density J from indoor to outdoor in a house is expressed as follows when the wall temperature is Tw and the outside air temperature is T0 (when Tw> T0).
J = α · (Tw−T0) (1)
That is, it can be said that the smaller the temperature difference between the room and the room, and the smaller the heat transfer coefficient of the partition wall, the smaller the heat released from the room to the room.
図5は、単に閉鎖空間が非閉鎖空間の間に熱回収空間を介して接している場合で、閉鎖空間の温度T0、熱回収空間の温度T1、非閉鎖空間の温度T2とするとT0<T1<T2またはT0>T1>T2の関係になる。
この場合は、単に閉鎖空間1と非閉鎖空間3が熱回収空間2の気体により断熱されているだけで、閉鎖空間か1ら熱回収空間2の気体に伝達された熱40はさらに非閉鎖空間3へ伝達されて熱ロスとなる。すなわち、単なる断熱機能では閉鎖空間1から非閉鎖空間30への熱伝達速度が低下するだけで熱ロスの低減にはならない。FIG. 5 shows a case where the closed space is simply in contact with the non-closed space via the heat recovery space, where T0 <T1 when the temperature T0 of the closed space, the temperature T1 of the heat recovery space, and the temperature T2 of the non-closed space are assumed. <T2 or T0>T1> T2.
In this case, the closed
本発明では熱回収空間内の気体からヒートポンプ等により熱を回収し、閉鎖空間に熱を戻すことにより、図6に示すように熱回収空間内の温度T1はT2に近くなり閉鎖空間1と熱回収空間2の温度差は大きくなる。その結果、閉鎖空間1から熱回収空間2への熱移動は大きくなるが、移動した熱41は熱回収空間から回収されて閉鎖空間に戻される。一方、熱回収により熱回収空間2の温度T1と非閉鎖空間3の温度T0との差は小さくなるため、熱回収空間2から非閉鎖空間3への熱移動40は低減される。
その結果、熱源である閉鎖空間1から熱回収空間2経由で非閉鎖空間3に放出される熱ロス40を低減することが可能となる。In the present invention, heat is recovered from the gas in the heat recovery space by a heat pump or the like, and the heat is returned to the closed space, so that the temperature T1 in the heat recovery space becomes close to T2 as shown in FIG. The temperature difference in the
As a result, it is possible to reduce the
また、一般的にヒートポンプによる冷暖房は外気すなわち非閉鎖空間と室内すなわち閉鎖空間との間の熱移動をおこなうが、本発明では非閉鎖空間すなわち外気から熱回収するのでなく熱回収空間内の気体から熱回収するものであり、熱回収空間内の温度が非閉鎖空間と閉鎖空間内の気体温度の間にあるため、非閉鎖空間から熱回収する場合と比べてヒートポンプによる熱移動の温度差は小さくなる。
この温度差が小さくなることにより、ヒートポンプのエネルギー効率COP(Coefficient Of Performance)が高くなる。
これは、非閉鎖空間へ放出された熱エネルギーを回収する場合と比べヒートポンプの消費エネルギーは少なくてよいことになる。
すなわち、本発明は閉鎖空間から非閉鎖空間に排出される熱エネルギーを閉鎖空間内の温度との温度差が小さい熱回収空間から熱回収するために、熱移動のためのヒートポンプのエネルギー消費を削減することが可能となる。In general, air conditioning by a heat pump performs heat transfer between the outside air, that is, the non-closed space, and the room, that is, the closed space, but in the present invention, heat is not recovered from the non-closed space, that is, outside air, but from the gas in the heat recovery space. Since the temperature in the heat recovery space is between the gas temperature in the non-closed space and the closed space, the temperature difference in heat transfer by the heat pump is smaller than in the case of heat recovery from the non-closed space. Become.
As the temperature difference is reduced, the energy efficiency COP (Coefficient of Performance) of the heat pump is increased.
This means that less energy is consumed by the heat pump than when recovering the thermal energy released into the non-closed space.
That is, the present invention reduces the energy consumption of the heat pump for heat transfer in order to recover the heat energy discharged from the closed space to the non-closed space from the heat recovery space having a small temperature difference from the temperature in the closed space. It becomes possible to do.
また本発明による断熱方法は熱回収空間に気体が流れる程度の空間が有れば良く、断熱材による断熱と比べて室内空間を犠牲にせずに断熱することが可能となり、車両や航空機等の空間制約が多い場合や、温室ハウスのように光の透過性を必要とする場合などに特に有効である。
さらに、本発明による断熱性能は機密性に依存せずに、放熱する熱を回収することにより断熱するので、必ずしも熱回収空間は高気密にしなくても断熱効果は得られる。したがって構造体の断熱対策費用を安価にすることが可能である。In addition, the heat insulation method according to the present invention only needs to have a space in which the gas can flow in the heat recovery space, and heat insulation can be performed without sacrificing the indoor space as compared with heat insulation by a heat insulating material. This is particularly effective when there are many restrictions or when light transmission is required as in a greenhouse.
Furthermore, the heat insulation performance according to the present invention does not depend on confidentiality, and heat insulation is performed by collecting the heat dissipated, so that the heat insulation effect can be obtained even if the heat collection space is not necessarily airtight. Therefore, it is possible to reduce the cost of heat insulation measures for the structure.
次に、本発明による断熱方法の実施例を図面に基づいて詳細に説明する。 Next, an embodiment of a heat insulation method according to the present invention will be described in detail with reference to the drawings.
第1の実施例
図1は本発明による一実施例で、閉鎖空間1の暖房に適用した例である。
隔壁4で囲まれた閉鎖空間1から熱回収空間2へ移動した熱を蒸発器6にて回収し、凝縮器6aで閉鎖空間に移動させる。
その結果、閉鎖空間1から熱回収空間2へ放出された熱は再び閉鎖空間1に移動されるので理想状態では閉鎖空間1内の温度変化は発生せず閉鎖空間が断熱されていることになる。First Embodiment FIG. 1 is an embodiment according to the present invention, and is an example applied to heating of a closed
The heat transferred from the closed
As a result, the heat released from the closed
第2の実施例
図2は本発明による一実施例で、温水式床暖房に適用した例である。
ヒートポンプの熱交換器13で加温された貯湯槽12内の温水は床暖房パネル14で閉鎖空間を輻射加熱し温水戻り配管11に接続された熱交換器13で昇温されて再び貯湯槽12にもどる。
床暖房パネル14は閉鎖空間を床面から輻射加温するが、同時に熱回収空間2にも熱が放射されて熱ロスが発生する。その熱をヒートポンプ20により熱回収し熱交換器13により床暖房パネル14からの温水戻り11の温水を加温することにより熱ロスの発生を防止する。Second Embodiment FIG. 2 shows an embodiment according to the present invention, which is an example applied to hot water type floor heating.
The hot water in the hot
The
第3の実施例
図3は本発明による一実施例で、ハウス栽培のハウスの暖房に適用した例である。
隔壁4は透明ビニールシートのようなもので閉鎖空間1と熱回収空間2を隔離している。
閉鎖空間1から熱回収空間2に伝達された熱は室外機31により回収され室内機30により閉鎖空間に戻される。3rd Example FIG. 3: is one Example by this invention, and is the example applied to the heating of the house of house cultivation.
The
The heat transferred from the closed
第4の実施例
図4は本発明による一実施例で、第3の実施例で透明なビニールシートの隔壁4が天井部分のみに設けた例で、熱回収空間2で熱回収された気体温度は閉鎖空間1内の温度より低く、気体の比重差で壁面に沿って降下するので必ずしも壁面を隔離しなくても断熱効果は得られる。Fourth Embodiment FIG. 4 shows an embodiment according to the present invention. In the third embodiment, the transparent
以上、本発明による断熱方法の実施の形態を詳細に説明したが、本発明は前述した実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。 As mentioned above, although embodiment of the heat insulation method by this invention was described in detail, this invention is not limited to embodiment mentioned above, It can change in the range which does not deviate from the summary.
1 閉鎖空間
2 熱回収空間
3 非閉鎖空間
4 隔壁
5 圧縮機
6 蒸発器
6a 凝縮器
7 膨張弁
8 熱回収ダクト
9 冷媒配管
10 温水配管
11 温水戻り配管
12 貯湯槽
13 熱交換器
20 断熱用ヒートポンプ
21 床暖房用ヒートポンプ
30 室内機
31 室外機
40 熱移動
41 熱回収
42 温度勾配DESCRIPTION OF
Claims (3)
熱回収空間から閉鎖空間への熱移動にヒートポンプを設けたことを特徴とする断熱方法。The heat insulation method according to claim 1,
A heat insulation method comprising a heat pump for heat transfer from a heat recovery space to a closed space.
熱回収空間の温度を非閉鎖空間の気体温度と閉鎖空間内の気体温度との間の範囲に制御することを特徴とする断熱方法。In the heat insulation method of Claim 1 or Claim 2,
A heat insulation method, wherein the temperature of the heat recovery space is controlled to a range between the gas temperature in the non-closed space and the gas temperature in the closed space.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007299811A JP2009102969A (en) | 2007-10-24 | 2007-10-24 | Heat insulation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007299811A JP2009102969A (en) | 2007-10-24 | 2007-10-24 | Heat insulation method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009102969A true JP2009102969A (en) | 2009-05-14 |
Family
ID=40704922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007299811A Pending JP2009102969A (en) | 2007-10-24 | 2007-10-24 | Heat insulation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009102969A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114223438A (en) * | 2022-01-26 | 2022-03-25 | 陕西理工大学 | Domestic flower cultivation system suitable for area that temperature is lower |
-
2007
- 2007-10-24 JP JP2007299811A patent/JP2009102969A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114223438A (en) * | 2022-01-26 | 2022-03-25 | 陕西理工大学 | Domestic flower cultivation system suitable for area that temperature is lower |
JP7062326B1 (en) | 2022-01-26 | 2022-05-06 | 陝西理工大学 | Household flower cultivation system applied to cold regions |
JP2023109126A (en) * | 2022-01-26 | 2023-08-07 | 陝西理工大学 | Household flower cultivation system suitable for low-temperature areas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5613155B2 (en) | Direct cooling type air conditioning system and heat exchange ceiling board used therefor | |
CN103398507B (en) | A kind of heat pump and air conditioner | |
JP2008076015A (en) | Building air-conditioning system by geothermal use | |
JP6556691B2 (en) | Solar power system | |
WO2017195885A1 (en) | Floor air conditioning system | |
JP2012225517A (en) | Radiation air conditioning apparatus and dehumidification and humidification air conditioning system | |
JP2014156962A (en) | Air-conditioning system and air-conditioning method | |
US11441789B2 (en) | Convection/radiation air conditioning terminal and air conditioning system | |
JP2008256344A (en) | Cooling/heating and heat/cold retaining system using cold in underground layer with less temeprature change for circulating liquid temperature-controlled by water temeprature control auxiliary device into whole building and container or in cooler/heater while using the liquid as cold source | |
JP3160838U (en) | Heat dissipation device | |
JP4490396B2 (en) | Air conditioning system and control method thereof | |
JP2009102969A (en) | Heat insulation method | |
JP2008304180A (en) | Thermal storage system | |
EP1970639A2 (en) | Ventilation system for houses, buildings etc. | |
JP2017128853A (en) | Building and air conditioner | |
JP2009236458A (en) | Indoor air conditioning system using geothermal heat | |
JP2009262378A (en) | Surface material, its manufacturing method, building, outdoor unit casing of air-conditioner, and outdoor heat exchanger | |
JP2006349265A (en) | Geothermal air-conditioning system | |
JP6361904B2 (en) | Air conditioning system | |
CN207455962U (en) | Evaporator and air-conditioning refrigeration system | |
KR101664805B1 (en) | Radiation cooling and heating system for offshore plant | |
JP2006349266A (en) | Air conditioner | |
US20150083361A1 (en) | Heat transfer system and method | |
CN107606824A (en) | Evaporator and air-conditioning refrigeration system | |
CN203478700U (en) | Heat pump system and air conditioner |