JP2017128853A - Building and air conditioner - Google Patents

Building and air conditioner Download PDF

Info

Publication number
JP2017128853A
JP2017128853A JP2016007158A JP2016007158A JP2017128853A JP 2017128853 A JP2017128853 A JP 2017128853A JP 2016007158 A JP2016007158 A JP 2016007158A JP 2016007158 A JP2016007158 A JP 2016007158A JP 2017128853 A JP2017128853 A JP 2017128853A
Authority
JP
Japan
Prior art keywords
air
heat
wall
insulating material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016007158A
Other languages
Japanese (ja)
Other versions
JP6750946B2 (en
Inventor
太田 勇
Isamu Ota
勇 太田
昭光 納富
Akimitsu Notomi
昭光 納富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Misawa Homes Co Ltd
Original Assignee
Misawa Homes Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Misawa Homes Co Ltd filed Critical Misawa Homes Co Ltd
Priority to JP2016007158A priority Critical patent/JP6750946B2/en
Publication of JP2017128853A publication Critical patent/JP2017128853A/en
Application granted granted Critical
Publication of JP6750946B2 publication Critical patent/JP6750946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Residential Or Office Buildings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a building and an air conditioner free from condensation capable of obtaining a large air-conditioning effect with little calorie loss.SOLUTION: The building includes: a room to be air-conditioned 16; and a buffer chamber 15 abutting on the room to be air-conditioned 16 being partitioned by an inner wall body 14. The buffer chamber 15 is separated from the outside by an outer wall body 13 as an outer wall. The inner wall body 14 includes: a heat insulation material 141; and air-conditioning means 142 is disposed closer to the room to be air-conditioned 16 than the heat insulation material 141.SELECTED DRAWING: Figure 2

Description

本発明は、建物および冷暖房装置に関する。   The present invention relates to a building and an air conditioner.

従来、断熱材と、流体を流通させる管部材とを建物の壁体または床体の内部に設け、管部材に高温または低温の流体を流通させて壁体から熱放射することにより建物内を冷暖房する放射冷暖房装置が知られている。
特許文献1に記載の放射冷暖房装置では、壁体だけでなく、床および天井にチューブを配管し、チューブに冷水または温水を流通させることで多面的に室内を冷房している。
Conventionally, a heat insulating material and a pipe member that circulates fluid are provided inside the wall or floor of a building, and high-temperature or low-temperature fluid is circulated through the pipe member to radiate heat from the wall to cool and heat the interior of the building. A radiant air conditioner is known.
In the radiant cooling and heating apparatus described in Patent Document 1, a tube is piped not only on a wall but also on a floor and a ceiling, and cold water or hot water is circulated through the tube to cool the room in a multifaceted manner.

特開平7−174368号公報JP-A-7-174368

しかしながら、特許文献1に記載の放射冷暖房装置では、冷房運転する際、低温水をチューブに流通させるため、放射面が結露してしまうという問題が生じる。
また、冷房および暖房のいずれの場合においても、外気温および建物内気温に比して流通させる水温が大きく異なる場合、すなわち内外気と放射面との温度差が大きいと、屋内側への熱放射量だけでなく屋外への熱放射量も多くなるため、熱量損失が多くなってしまい(厳密には外気との温度差の方が大きいため、内外熱抵抗によっては、内気への有効熱量よりも外気への損失熱量の方が多くなる)、エネルギー効率が悪くなってしまうという問題も生じる。
これらの問題に対し、仮に結露の防止、並びに、熱量損失を少なくするために内外気と水温との温度差を小さくすると、損失熱量は縮小できるが有効熱量も縮小されてしまうため、十分な冷暖房効果が得られなくなってしまうという問題が生じる。
However, in the radiant cooling and heating apparatus described in Patent Document 1, when cooling operation is performed, low temperature water is circulated through the tube, which causes a problem of condensation on the radiation surface.
In both cases of cooling and heating, if the temperature of the circulating water is significantly different from the outside air temperature and the inside air temperature of the building, that is, if the temperature difference between the inside and outside air and the radiation surface is large, the heat radiation to the indoor side Not only the amount of heat but also the amount of heat radiation to the outside increases, resulting in an increase in heat loss. (Strictly speaking, the temperature difference from the outside air is larger, so depending on the internal and external heat resistance, the effective heat amount to the inside air The amount of heat loss to the outside air increases, and there is a problem that energy efficiency is deteriorated.
For these problems, if the temperature difference between the inside and outside air and the water temperature is reduced in order to prevent condensation and reduce heat loss, the heat loss can be reduced, but the effective heat amount is also reduced. There arises a problem that the effect cannot be obtained.

本発明は、上記課題に鑑みてなされたもので、結露のおそれがなく、熱量損失が少なく冷暖房効果が大きい建物および冷暖房装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a building and an air conditioning apparatus that have no fear of condensation and have a small heat loss and a large air conditioning effect.

上記課題を解決するため、請求項1に記載の発明は、例えば、図2に示すように、被空調室16と、この被空調室16に隣接し、内壁体14によって仕切られる緩衝室15と、を備えており、前記緩衝室15は、外壁となる外壁体13によって外部と仕切られており、前記内壁体14は、断熱材141と、この断熱材141よりも前記被空調室15側に設けられる冷暖房手段142と、を備えていることを特徴とする。   In order to solve the above-described problem, the invention described in claim 1 includes, for example, an air-conditioned room 16 and a buffer room 15 adjacent to the air-conditioned room 16 and partitioned by an inner wall body 14 as shown in FIG. The buffer chamber 15 is partitioned from the outside by an outer wall body 13 serving as an outer wall, and the inner wall body 14 is closer to the air-conditioned room 15 side than the heat insulating material 141. And a cooling / heating unit 142 provided.

請求項1に記載の発明によれば、被空調室16と、この被空調室16に隣接し、内壁体14によって仕切られる緩衝室15と、を備えており、緩衝室15は、外壁となる外壁体13によって外部と仕切られており、内壁体14は、断熱材141と、この断熱材141よりも被空調室15側に設けられる冷暖房手段142と、を備えているので、例えば、外気が高温であり、建物2内を冷房する場合、外部と仕切られる緩衝室15が外気から被空調室16への熱の流入を低減することとなる。
また、緩衝室15と被空調室16との間における熱貫流(緩衝室15と被空調室16との熱の流出入)を低減する断熱材141が緩衝室15から冷暖房手段142への熱の流入を低減することとなる。言い換えれば、冷房の冷媒となる冷暖房手段142の冷熱が緩衝室15へと失われにくくなる。
さらに、前述の通り、緩衝室15が外部と仕切られており、緩衝室15が被空調室16と外気とを断熱しているので、断熱材141が外気に直接接触する場合に比べて、外気から被空調室16への熱貫流量を少なくすることができる。すなわち、冷暖房手段142から緩衝室15への冷熱の移流を少なくすることができる。
このため、冷暖房手段142の熱放射面TRS(Thermal Radiation Surface)を比較的高くしても被空調室16へと有効に冷熱を伝熱することができる。
また、冷暖房手段142の熱放射面TRSの温度を比較的高くできることから、当該熱放射面TRSを結露させにくくすることができる。
また、例えば、外気が低温であり、建物2内を暖房する場合においても、外気、緩衝室15および被空調室16における熱貫流は同様なものとなる。具体的には、緩衝室15が冷暖房手段142から外気への熱の流出を低減でき、被空調室16へと熱を有効に伝熱することができる。
よって、建物2を熱の損失が少なく、冷暖房効率の高いものとすることができる。
According to the first aspect of the present invention, the air-conditioned room 16 and the buffer room 15 adjacent to the air-conditioned room 16 and partitioned by the inner wall body 14 are provided, and the buffer room 15 is an outer wall. The outer wall 13 is partitioned from the outside, and the inner wall 14 includes a heat insulating material 141 and a cooling / heating unit 142 provided closer to the air-conditioned room 15 than the heat insulating material 141. When the inside of the building 2 is cooled at a high temperature, the buffer chamber 15 partitioned from the outside reduces the inflow of heat from the outside air to the air-conditioned room 16.
Further, a heat insulating material 141 that reduces heat flow between the buffer chamber 15 and the air-conditioned room 16 (heat inflow and outflow between the buffer chamber 15 and the air-conditioned room 16) is provided with heat from the buffer chamber 15 to the cooling / heating unit 142. Inflow will be reduced. In other words, the cooling heat of the cooling / heating unit 142 serving as a cooling refrigerant is not easily lost to the buffer chamber 15.
Furthermore, as described above, since the buffer chamber 15 is partitioned from the outside, and the buffer chamber 15 insulates the air-conditioned room 16 from the outside air, the outside air is compared with the case where the heat insulating material 141 is in direct contact with the outside air. The heat flow rate from the air to the air-conditioned room 16 can be reduced. That is, the transfer of cold heat from the cooling / heating unit 142 to the buffer chamber 15 can be reduced.
For this reason, even if the heat radiation surface TRS (Thermal Radiation Surface) of the air conditioning unit 142 is relatively high, the cold heat can be effectively transferred to the air-conditioned room 16.
Further, since the temperature of the heat radiation surface TRS of the cooling / heating unit 142 can be made relatively high, it is possible to make it difficult for the heat radiation surface TRS to condense.
Further, for example, when the outside air is at a low temperature and the inside of the building 2 is heated, the heat flow in the outside air, the buffer room 15 and the air-conditioned room 16 is the same. Specifically, the buffer chamber 15 can reduce the outflow of heat from the cooling / heating unit 142 to the outside air, and can effectively transfer the heat to the air-conditioned room 16.
Therefore, the building 2 can have a low heat loss and high air conditioning efficiency.

請求項2に記載の発明は、例えば、図3に示すように、被空調室26と、この被空調室26に隣接し、天井体24によって仕切られる小屋裏空間25と、を備えており、前記小屋裏空間25は、屋根となる屋根体23によって外部と仕切られており、前記天井体24は、断熱材241と、この断熱材241よりも前記被空調室26側に設けられる冷暖房手段242と、を備えていることを特徴とする。   For example, as shown in FIG. 3, the invention according to claim 2 includes an air-conditioned room 26, and a shed space 25 adjacent to the air-conditioned room 26 and partitioned by a ceiling body 24. The roof space 25 is partitioned from the outside by a roof body 23 serving as a roof, and the ceiling body 24 includes a heat insulating material 241 and a cooling / heating unit 242 provided closer to the air-conditioned room 26 than the heat insulating material 241. And.

請求項2に記載の発明によれば、被空調室26と、この被空調室26に隣接し、天井体24によって仕切られる小屋裏空間25と、を備えており、小屋裏空間25は、屋根となる屋根体23によって外部と仕切られており、天井体24は、断熱材241と、この断熱材241よりも被空調室26側に設けられる冷暖房手段242と、を備えているので、例えば、外気が高温であり、建物2内を冷房する場合、外部と仕切られる小屋裏空間25が外気から被空調室26への熱の流入を低減することとなる。
また、小屋裏空間25と被空調室26との間における熱貫流(小屋裏空間25と被空調室26との熱の流出入)を低減する断熱材241が小屋裏空間25から冷暖房手段242への熱の流入を低減することとなる。言い換えれば、冷房の冷媒となる冷暖房手段242の冷熱が小屋裏空間25へと流れる割合を少なくできる。
さらに、前述の通り、小屋裏空間25が外部と仕切られており、小屋裏空間25が被空調室26と外気とを断熱しているので、断熱材241が外気に直接接触する場合に比べて、外気から被空調室26への熱貫流量を少なくすることができる。すなわち、冷暖房手段242から小屋裏空間25への冷熱の移流を少なくすることができる。
このため、冷暖房手段242の熱放射面TRSを比較的高くしても被空調室26へと有効に冷熱を伝熱することができる。
また、冷暖房手段242の熱放射面TRSの温度を比較的高くできることから、当該熱放射面TRSを結露させにくくすることができる。
また、例えば、外気が低温であり、建物2内を暖房する場合においても、外気、小屋裏空間25および被空調室26における熱貫流は同様なものとなる。具体的には、小屋裏空間25が冷暖房手段242から外気への熱の流出を低減でき、被空調室26へと熱を有効に伝熱することができる。
よって、建物2を熱の損失が少なく、冷暖房効率の高いものとすることができる。
According to the second aspect of the present invention, the air-conditioned room 26 and the cabin space 25 adjacent to the air-conditioned room 26 and partitioned by the ceiling body 24 are provided. Since the roof body 23 is partitioned from the outside by the roof body 23, the ceiling body 24 includes a heat insulating material 241 and a cooling / heating unit 242 provided closer to the air-conditioned room 26 than the heat insulating material 241. When the outside air is hot and the inside of the building 2 is cooled, the back space 25 partitioned from the outside reduces the inflow of heat from the outside air to the air-conditioned room 26.
Further, a heat insulating material 241 that reduces heat flow between the attic space 25 and the air-conditioned room 26 (heat inflow / outflow between the attic space 25 and the air-conditioned room 26) is transferred from the attic space 25 to the cooling / heating unit 242. Inflow of heat will be reduced. In other words, the rate at which the cooling / heating means 242 serving as the cooling refrigerant flows into the cabin space 25 can be reduced.
Furthermore, as described above, the cabin space 25 is partitioned from the outside, and the cabin space 25 insulates the air-conditioned room 26 from the outside air, so that the heat insulating material 241 is in direct contact with the outside air. The heat flow rate from the outside air to the air-conditioned room 26 can be reduced. That is, it is possible to reduce the transfer of cold heat from the cooling / heating unit 242 to the cabin space 25.
For this reason, cold heat can be effectively transferred to the air-conditioned room 26 even if the heat radiation surface TRS of the air conditioning unit 242 is relatively high.
Moreover, since the temperature of the heat radiation surface TRS of the air conditioning unit 242 can be made relatively high, the heat radiation surface TRS can be made difficult to condense.
Further, for example, when the outside air is at a low temperature and the inside of the building 2 is heated, the heat flow in the outside air, the cabin space 25 and the air-conditioned room 26 is the same. Specifically, the cabin space 25 can reduce the outflow of heat from the cooling / heating unit 242 to the outside air, and can effectively transfer the heat to the air-conditioned room 26.
Therefore, the building 2 can have a low heat loss and high air conditioning efficiency.

請求項3に記載の発明は、例えば、図2,3に示すように、請求項1または2に記載の建物2において、前記外壁体13の前記緩衝室15側の壁面または前記屋根体23の前記小屋裏空間25側の面には、放射率の低い低放射率材132,232が設けられることを特徴とする。   The invention according to claim 3 is, for example, as shown in FIGS. 2 and 3, in the building 2 according to claim 1 or 2, the wall surface of the outer wall body 13 on the buffer chamber 15 side or the roof body 23. Low emissivity materials 132 and 232 having low emissivity are provided on the surface of the cabin space 25 side.

請求項3に記載の発明によれば、請求項1または2に記載の建物2において、外壁体13の緩衝室15側の壁面または屋根体23の小屋裏空間25側の面には、放射率の低い低放射率材132,232が設けられるので、緩衝室15または小屋裏空間25と外気との熱貫流量Qをより一層少なくすることができ、冷暖房手段142,242を流通する流体から緩衝室15または小屋裏空間25へと熱または冷熱がより一層流れにくくすることができる。
よって、建物2をより一層熱の損失が少なく、より一層冷暖房効率の高いものとすることができる。
According to the invention described in claim 3, in the building 2 described in claim 1 or 2, the emissivity is not provided on the wall surface of the outer wall body 13 on the buffer chamber 15 side or on the surface of the roof body 23 on the hut space 25 side. Low emissivity materials 132 and 232 are provided, so that the heat flow rate Q between the buffer chamber 15 or the cabin space 25 and the outside air can be further reduced, and the fluid flowing through the cooling and heating means 142 and 242 is buffered. Heat or cold can be made more difficult to flow into the room 15 or the cabin space 25.
Therefore, the building 2 can be made to have much less heat loss and higher cooling and heating efficiency.

請求項4に記載の発明は、例えば、図2,3に示すように、請求項1から3のいずれか一項に記載の建物の放射冷暖房装置1において、前記緩衝室15または前記小屋裏空間25は、居室以外の空間であることを特徴とする。   The invention according to claim 4 is, for example, as shown in FIGS. 2 and 3, in the radiant cooling and heating device 1 for a building according to any one of claims 1 to 3, the buffer chamber 15 or the attic space. 25 is a space other than the living room.

請求項4に記載の発明によれば、請求項1から3のいずれか一項に記載の建物2において、緩衝室15または小屋裏空間25は、居室以外の空間であるので、居室のような居住者が滞在する空間ではない空間が緩衝室15または小屋裏空間25として用いられることとなる。
このため、緩衝室15または小屋裏空間25が被空調室26よりも空調が効いていなくても居住者が常駐しない空間なので、生活をする上で不快なものとはならない上、被空調室16,26と緩衝室15または小屋裏空間25とを行き来する場合のヒートショックやストレスを軽減することができる。
According to the invention described in claim 4, in the building 2 according to any one of claims 1 to 3, the buffer room 15 or the cabin space 25 is a space other than the living room. A space that is not a space in which the resident stays is used as the buffer room 15 or the hut space 25.
For this reason, since the buffer room 15 or the attic space 25 is a space where the resident is not resident even if the air conditioning is not more effective than the air-conditioned room 26, it is not uncomfortable for living, and the air-conditioned room 16 , 26 and the buffer chamber 15 or the attic space 25 can be reduced.

請求項5に記載の発明は、例えば、図4,5に示すように、外壁となる外壁体33と、前記外壁体33以外の内壁となる内壁体34と、を備える建物であって、前記外壁体33は、第1断熱材331と、前記第1断熱材331よりも屋内側に設けられる第1冷暖房手段334と、を備え、前記内壁体34は、第2冷暖房手段342を備え、前記第1冷暖房手段334は、外気からの熱貫流を低減し、前記第2冷暖房手段342は、屋内空気の熱量を増減することを特徴とする。   The invention according to claim 5 is, for example, a building including an outer wall body 33 serving as an outer wall and an inner wall body 34 serving as an inner wall other than the outer wall body 33 as illustrated in FIGS. The outer wall body 33 includes a first heat insulating material 331 and first air-conditioning / heating means 334 provided on the indoor side of the first heat-insulating material 331, and the inner wall body 34 includes second air-conditioning / heating means 342, The first air conditioning unit 334 reduces heat flow from the outside air, and the second air conditioning unit 342 increases or decreases the amount of heat in the indoor air.

請求項5に記載の発明によれば、外壁となる外壁体33と、外壁体33以外の内壁となる内壁体34と、を備える建物であって、外壁体33は、第1断熱材331と、第1断熱材331よりも屋内側に設けられる第1冷暖房手段334と、を備え、内壁体34は、第2冷暖房手段342を備え、第1冷暖房手段334は、外気からの熱貫流を低減し、第2冷暖房手段342は、屋内空気の熱量を増減する。
まず、外壁体33は、外気からの熱貫流を低減する。具体的には、例えば、外気が高温であり、建物2内を冷房する場合、外壁体33が外気から屋内へと熱の流入を低減する。
これに対し、内壁体34は、第2冷暖房手段342から屋内空気351,361へと冷熱が流入する。すなわち、内壁体34は、屋内空気351,361の熱量を減少させて温度を低下させる(空調する)ことができる。
このため、外壁体33と内壁体34とで空調の役割を分担することで、外壁体33の壁面温度を通常よりも高くすることができ、外壁体33が空調の役割を一部負担しているので、内壁体34の壁面の温度を、役割を分担しない場合に比べて高くすることができる。
また、冷媒の温度を上げて温度差が小さくなるので、熱放射面TRSが結露するという問題も生じるおそれがなくなる。
また、外壁体33は、熱交換する外気との温度差が小さくなり、熱損失が少なくて済み、冷房効果を良好なものとすることができる。
なお、冷房の場合について説明してきたが、暖房の場合においても同様に熱媒と外気との温度差を小さくすることができるため、熱量損失が少なく、暖房効果を良好なものとすることができる。
According to invention of Claim 5, it is a building provided with the outer wall body 33 used as an outer wall, and the inner wall body 34 used as inner walls other than the outer wall body 33, Comprising: The outer wall body 33 is the 1st heat insulating material 331, and The first air-conditioning means 334 provided on the indoor side of the first heat insulating material 331, the inner wall body 34 includes the second air-conditioning means 342, and the first air-conditioning means 334 reduces the heat flow from the outside air. And the 2nd air conditioning unit 342 increases / decreases the heat quantity of indoor air.
First, the outer wall body 33 reduces the heat flow from the outside air. Specifically, for example, when the outside air is hot and the inside of the building 2 is cooled, the outer wall body 33 reduces the inflow of heat from the outside air to the inside.
On the other hand, in the inner wall body 34, cold heat flows from the second air conditioning unit 342 into the indoor air 351, 361. That is, the inner wall body 34 can reduce the temperature of the indoor air 351 and 361 to reduce the temperature (air-conditioning).
Therefore, by sharing the role of air conditioning between the outer wall body 33 and the inner wall body 34, the wall surface temperature of the outer wall body 33 can be made higher than usual, and the outer wall body 33 partially bears the role of air conditioning. Therefore, the temperature of the wall surface of the inner wall body 34 can be made higher than when the role is not shared.
Further, since the temperature difference is reduced by increasing the temperature of the refrigerant, there is no possibility of causing the problem that the heat radiation surface TRS is condensed.
Further, the outer wall 33 has a small temperature difference from the outside air to be heat-exchanged, less heat loss, and a good cooling effect.
Although the case of cooling has been described, the temperature difference between the heat medium and the outside air can be reduced similarly in the case of heating, so that the loss of heat is small and the heating effect can be improved. .

請求項6に記載の発明は、例えば、図5に示すように、請求項5に記載の建物の放射冷暖房装置1において、前記内壁体34は、一方の壁面側に第2断熱材341を備えることを特徴とする。   For example, as shown in FIG. 5, the inner wall body 34 includes a second heat insulating material 341 on one wall surface side, as shown in FIG. 5. It is characterized by that.

請求項6に記載の発明によれば、請求項5に記載の建物の放射冷暖房装置1において、内壁体34は、一方の壁面側に第2断熱材341を備えるので、第2断熱材341を備えない場合のように内壁体34の両面から均等に熱放射することなく、任意の壁面から選択的に熱放射することができる。   According to the invention described in claim 6, in the building radiant cooling and heating apparatus 1 described in claim 5, the inner wall body 34 includes the second heat insulating material 341 on one wall surface side. The heat can be selectively radiated from any wall surface without radiating heat equally from both sides of the inner wall body 34 as in the case of not having it.

請求項7に記載の発明は、例えば、図7,8に示すように、請求項5または6に記載の建物の放射冷暖房装置1において、前記第2冷暖房手段342は、任意に前記第1冷暖房手段334に切り替わることを特徴とする。   The invention according to claim 7 is, for example, as shown in FIGS. 7 and 8, in the radiant cooling and heating apparatus 1 for a building according to claim 5 or 6, the second air-conditioning means 342 is optionally the first air-conditioner. It switches to the means 334, It is characterized by the above-mentioned.

まず、例えば、内壁体34に面して家具F等を配置する場合、熱放射面TRSと家具Fとの間の滞留空気が過冷却され、熱放射面TRSが結露するというおそれがある。
これに対し、請求項7に記載の発明によれば、請求項5または6に記載の建物の放射冷暖房装置1において、前記第2冷暖房手段342は、任意に前記第1冷暖房手段334に切り替わるので、内壁体34に面して家具F等を配置する場合、家具F等を配置する内壁体34の熱放射面TRSを外壁体33の熱放射面TRSと同じ温度に切り替えることで、当該箇所を第2冷暖房手段342から第1冷暖房手段334に切り替えることができる。
このため、上述のような熱放射面TRSが結露するようなおそれをなくすことができる。
First, for example, when the furniture F or the like is arranged facing the inner wall body 34, the staying air between the heat radiation surface TRS and the furniture F may be supercooled, and the heat radiation surface TRS may be condensed.
On the other hand, according to the invention described in claim 7, in the building radiant cooling and heating apparatus 1 according to claim 5 or 6, the second cooling / heating means 342 is arbitrarily switched to the first cooling / heating means 334. When the furniture F or the like is arranged facing the inner wall body 34, the heat radiation surface TRS of the inner wall body 34 on which the furniture F or the like is arranged is switched to the same temperature as the heat radiation surface TRS of the outer wall body 33, thereby The second air conditioning unit 342 can be switched to the first air conditioning unit 334.
For this reason, it is possible to eliminate the possibility that the heat radiation surface TRS as described above is condensed.

請求項8に記載の発明は、例えば、図4,5に示すように、第1断熱材331を備える外壁体33に設けられる第1冷暖房手段334と、内壁体34に設けられる第2冷暖房手段342と、を備える冷暖房装置であって、前記第1冷暖房手段334は、前記第1冷暖房手段334よりも屋内側に設けられる前記外壁体33の壁面TRSが接する気体の温度と略同じ温度になるように前記壁面TRSの温度を制御する第1温度制御手段38を備え、前記第2冷暖房手段342は、前記第2冷暖房手段342よりも屋内側に設けられる前記内壁体34の壁面TRSが接する気体の温度よりも暖房時には高温となり、冷房時には低温となるように前記壁面TRSの温度を制御する第2温度制御手段39を備えることを特徴とする。   The invention according to claim 8 is, for example, as shown in FIGS. 4 and 5, first cooling / heating means 334 provided on the outer wall body 33 including the first heat insulating material 331 and second cooling / heating means provided on the inner wall body 34. 342, wherein the first cooling / heating unit 334 has substantially the same temperature as the temperature of the gas in contact with the wall surface TRS of the outer wall body 33 provided on the indoor side of the first cooling / heating unit 334. As described above, the first temperature control means 38 for controlling the temperature of the wall surface TRS is provided, and the second cooling / heating means 342 is in contact with the wall surface TRS of the inner wall body 34 provided on the indoor side with respect to the second cooling / heating means 342. It is characterized by comprising second temperature control means 39 for controlling the temperature of the wall surface TRS so that the temperature is higher during heating and lower during cooling.

請求項8に記載の発明によれば、第1断熱材331を備える外壁体33に設けられる第1冷暖房手段334と、内壁体34に設けられる第2冷暖房手段342と、を備える冷暖房装置であって、前記第1冷暖房手段334は、前記第1冷暖房手段334よりも屋内側に設けられる前記外壁体33の壁面TRSが接する気体の温度と略同じ温度になるように前記壁面TRSの温度を制御する第1温度制御手段38を備え、前記第2冷暖房手段342は、前記第2冷暖房手段342よりも屋内側に設けられる前記内壁体34の壁面TRSが接する気体の温度よりも暖房時には高温となり、冷房時には低温となるように前記壁面TRSの温度を制御する第2温度制御手段39を備える。
まず、外壁体33は、第1冷暖房手段334により外気からの熱貫流を低減する。具体的には、例えば、外気が高温であり、建物2内を冷房する場合、外壁体33が外気から屋内へと熱の流入を低減する。
これに対し、内壁体34は、第2冷暖房手段342から屋内空気351,361へと冷熱が流入する。すなわち、内壁体34は、第2冷暖房手段により屋内空気351,361の熱量を減少させて温度を低下させる(空調する)ことができる。
このため、外壁体33と内壁体34とで空調の役割を分担することで、外壁体33の壁面温度を通常よりも高くすることができ、外壁体33が空調の役割を一部負担しているので、内壁体34の壁面の温度を、役割を分担しない場合に比べて高くすることができる。
また、壁面の温度を上げて温度差が小さくなるので、熱放射面TRSが結露するという問題も生じるおそれがなくなる。
また、外壁体33および内壁体34が熱交換する外気ないし屋内空気351,361との温度差がそれぞれ小さくなり、熱損失が少なくて済み、冷房効果を良好なものとすることができる。
なお、冷房の場合について説明してきたが、暖房の場合においても同様に熱媒と外気ないし屋内空気351,361との温度差を小さくすることができるため、熱量損失が少なく、暖房効果を良好なものとすることができる。
According to the eighth aspect of the present invention, there is provided an air conditioning apparatus including the first air conditioning unit 334 provided on the outer wall body 33 including the first heat insulating material 331 and the second air conditioning unit 342 provided on the inner wall body 34. The first air conditioning unit 334 controls the temperature of the wall surface TRS so that the temperature of the wall surface TRS of the outer wall body 33 provided on the indoor side than the first air conditioning unit 334 is substantially the same as the temperature of the gas. The second air conditioning unit 342 has a higher temperature during heating than the temperature of the gas in contact with the wall surface TRS of the inner wall body 34 provided on the indoor side of the second air conditioning unit 342. Second temperature control means 39 is provided for controlling the temperature of the wall surface TRS so that the temperature becomes low during cooling.
First, the outer wall body 33 reduces the heat flow from the outside air by the first air conditioning unit 334. Specifically, for example, when the outside air is hot and the inside of the building 2 is cooled, the outer wall body 33 reduces the inflow of heat from the outside air to the inside.
On the other hand, in the inner wall body 34, cold heat flows from the second air conditioning unit 342 into the indoor air 351, 361. That is, the inner wall 34 can reduce the temperature (air-conditioning) by reducing the amount of heat of the indoor air 351 and 361 by the second air conditioning unit.
Therefore, by sharing the role of air conditioning between the outer wall body 33 and the inner wall body 34, the wall surface temperature of the outer wall body 33 can be made higher than usual, and the outer wall body 33 partially bears the role of air conditioning. Therefore, the temperature of the wall surface of the inner wall body 34 can be made higher than when the role is not shared.
Further, since the temperature difference is reduced by raising the temperature of the wall surface, there is no possibility of causing a problem that the heat radiation surface TRS is condensed.
Further, the temperature difference between the outside air 33 and the indoor air 351, 361 where the outer wall body 33 and the inner wall body 34 exchange heat is reduced, heat loss is reduced, and the cooling effect can be improved.
Although the case of cooling has been described, the temperature difference between the heat medium and the outside air or indoor air 351, 361 can be reduced in the case of heating as well, so that the loss of heat is small and the heating effect is good. Can be.

請求項9に記載の発明は、例えば、図5に示すように、請求項8に記載の冷暖房装置において、前記内壁体34は、前記第2冷暖房手段342よりも一方の壁面側に設けられる第2断熱材341を備えることを特徴とする。   The invention described in claim 9 is, for example, as shown in FIG. 5, in the air conditioning apparatus according to claim 8, the inner wall body 34 is provided on the one wall surface side of the second air conditioning unit 342. 2 heat insulating material 341 is provided.

請求項9に記載の発明によれば、請求項8に記載の冷暖房装置において、内壁体34は、前記第2冷暖房手段342よりも一方の壁面側に設けられる第2断熱材341を備えるので、第2断熱材341を備えない場合のように内壁体34の両面から均等に熱放射することなく、任意の壁面から選択的に熱放射することができる。   According to the ninth aspect of the present invention, in the air conditioning apparatus according to the eighth aspect, the inner wall body 34 includes the second heat insulating material 341 provided on one wall surface side of the second air conditioning unit 342. As in the case where the second heat insulating material 341 is not provided, it is possible to selectively radiate heat from any wall surface without uniformly radiating heat from both surfaces of the inner wall body 34.

請求項10に記載の発明は、例えば、図7,8に示すように、請求項9に記載の冷暖房装置において、前記第2冷暖房手段342は、任意に前記第1冷暖房手段334に切り替わることを特徴とする。   As for invention of Claim 10, as shown in FIG.7, 8, for example, in the air conditioning apparatus of Claim 9, the said 2nd air conditioning means 342 is switching to the said 1st air conditioning means 334 arbitrarily. Features.

まず、例えば、内壁体34に面して家具F等を配置する場合、熱放射面TRSと家具Fとの間の滞留空気が過冷却され、熱放射面TRSが結露するというおそれがある。
請求項10に記載の発明によれば、請求項9に記載の冷暖房装置において、前記第2冷暖房手段342は、任意に前記第1冷暖房手段334に切り替わるので、内壁体34に面して家具F等を配置する場合、家具F等を配置する内壁体34の熱放射面TRSを外壁体33の熱放射面TRSと同じ温度に切り替えることができる。
このため、上述のような熱放射面TRSが結露するようなおそれをなくすことができる。
First, for example, when the furniture F or the like is arranged facing the inner wall body 34, the staying air between the heat radiation surface TRS and the furniture F may be supercooled, and the heat radiation surface TRS may be condensed.
According to invention of Claim 10, in the air conditioning apparatus of Claim 9, since the said 2nd air conditioning means 342 switches arbitrarily to the said 1st air conditioning means 334, it faces the inner wall body 34, and furniture F Etc., the heat radiation surface TRS of the inner wall 34 where the furniture F or the like is disposed can be switched to the same temperature as the heat radiation surface TRS of the outer wall 33.
For this reason, it is possible to eliminate the possibility that the heat radiation surface TRS as described above is condensed.

本発明によれば、結露のおそれがなく、熱量損失が少なく冷暖房効果が大きい建物および冷暖房装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, there is no possibility of dew condensation, and the building and air conditioning apparatus with a small heat loss and a large air conditioning effect can be provided.

建物への放射冷暖房装置の導入例を示す断面図である。It is sectional drawing which shows the example of introduction of the radiation cooling and heating apparatus to a building. 本発明の第1実施形態に係る建物の放射冷暖房装置を示す断面図である。It is sectional drawing which shows the radiant cooling and heating apparatus of the building which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る建物の放射冷暖房装置を示す断面図である。It is sectional drawing which shows the radiant cooling and heating apparatus of the building which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る第1冷暖房装置を示す断面図である。It is sectional drawing which shows the 1st air conditioning apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る第2冷暖房装置を示す断面図である。It is sectional drawing which shows the 2nd air conditioning apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る第1冷暖房装置および第2冷暖房装置が採用された建物の間取りを示す平断面図である。It is a plane sectional view which shows the floor plan of the building where the 1st air conditioning apparatus and 2nd air conditioning apparatus which concern on 3rd Embodiment of this invention were employ | adopted. 本発明の第3実施形態に係る第1冷暖房装置が第2冷暖房装置へと切り替えられる様子を示す平断面図である。It is a plane sectional view showing signs that the 1st air conditioning equipment concerning a 3rd embodiment of the present invention is switched to the 2nd air conditioning equipment. 本発明の第3実施形態に係る建物に家具が配置される壁体の温度分布を示す断面図である。It is sectional drawing which shows the temperature distribution of the wall body in which furniture is arrange | positioned at the building which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る第1温度制御手段および第2温度制御手段のステップフロー図である。It is a step flow figure of the 1st temperature control means and the 2nd temperature control means concerning a 3rd embodiment of the present invention.

以下、図面を参照して本発明の実施の形態について説明する。ただし、以下に述べる本実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、本発明の技術的範囲を以下の実施形態および図示例に限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, the present embodiment described below includes various technically preferable limitations for carrying out the present invention. However, the technical scope of the present invention is limited to the following embodiments and illustrated examples. is not.

〔建物への放射冷暖房装置の導入〕
図1に示すように、建物へ放射冷暖房装置を導入する場合、外気と接する外壁体3の内部に断熱材4と、壁内管部材5とを設けることが考えられる。
具体的には、外壁体3の屋外側と屋内側との両面に壁面材7を設け、屋外側の壁面材7の内面に外側断熱材4を設け、この外側断熱材4に隣接して壁内管部材5を設ける構成が挙げられる。
[Introduction of radiant cooling and heating equipment to buildings]
As shown in FIG. 1, when a radiant cooling and heating apparatus is introduced into a building, it is conceivable to provide a heat insulating material 4 and an in-wall pipe member 5 inside an outer wall body 3 in contact with outside air.
Specifically, the wall surface material 7 is provided on both the outdoor side and the indoor side of the outer wall body 3, the outer heat insulating material 4 is provided on the inner surface of the outdoor wall surface material 7, and the wall is adjacent to the outer heat insulating material 4. The structure which provides the inner pipe member 5 is mentioned.

そして、壁内管部材5は、管内に屋内空気よりも温度が高い温水または低い冷水が流通されるようになっており、この水が冷媒または熱媒として屋内空気温を昇降させることとなる。具体的には、例えば冷媒の場合、冷水は壁内管部材5を介して外側断熱材4とその反対側との両方へと冷熱を伝える。このとき、外側断熱材4は熱貫流抵抗値Rが高いため、冷媒からの冷熱の熱貫流量Qは、外側断熱材4の反対側、すなわち屋内側の方が多くなる。
こうすることで、冷媒からの冷熱が屋内空気へと選択的に熱貫流(壁面を通じて気体への伝熱であり、以後熱放射と表現する)されるようになる。
言い換えれば、外側断熱材4により外気への熱貫流量Qが低減されるため、冷媒の冷熱が屋外側へと流失せず、冷媒の冷熱を屋内空気の空調に有効に利用できるようになる。
And the hot water or cold water whose temperature is higher than indoor air distribute | circulates in the pipe member 5 in a wall, and this water raises / lowers indoor air temperature as a refrigerant | coolant or a heat medium. Specifically, for example, in the case of a refrigerant, the cold water transmits cold heat to both the outer heat insulating material 4 and the opposite side via the inner wall pipe member 5. At this time, since the heat insulation resistance value R of the outer heat insulating material 4 is high, the heat flow rate Q of the cold heat from the refrigerant is larger on the opposite side of the outer heat insulating material 4, that is, on the indoor side.
By doing so, the cold heat from the refrigerant is selectively transferred to the indoor air (heat transfer to the gas through the wall surface, hereinafter referred to as heat radiation).
In other words, since the heat flow rate Q to the outside air is reduced by the outer heat insulating material 4, the cold heat of the refrigerant does not flow out to the outdoor side, and the cold heat of the refrigerant can be effectively used for air conditioning of indoor air.

ここで、上述の放射冷暖房装置では、壁内管部材5が外側断熱材4を介して(壁面材7は熱貫流抵抗値Rが低いため便宜上無視する)外気と熱交換するため、特に夏場の高温な外気と冷媒の冷水との温度差が大きくなる場合には熱貫流量Q、すなわち熱交換量が多くなる。
このことから、冷媒から屋外側への冷熱の流失量が大きくなり、その増大分が屋内側への有効な冷熱の熱貫流量、すなわち熱放射量を減少させてしまい、冷房効果が低下することとなる。
このため、所望の屋内空気温に到達させるために冷媒の冷水温をさらに下げる必要に迫られることとなる。
Here, in the above-described radiant cooling and heating apparatus, the inner wall pipe member 5 exchanges heat with the outside air via the outer heat insulating material 4 (the wall surface material 7 is neglected for the sake of convenience because the heat flow resistance value R is low). When the temperature difference between the high-temperature outside air and the cold water of the refrigerant increases, the heat flow rate Q, that is, the heat exchange amount increases.
As a result, the amount of cold heat flowing from the refrigerant to the outdoor side increases, and the increased amount reduces the effective heat flow rate of the cold air to the indoor side, that is, the amount of heat radiation, and the cooling effect decreases. It becomes.
For this reason, in order to reach the desired indoor air temperature, it is necessary to further lower the cold water temperature of the refrigerant.

しかしながら、冷水温を下げると外気温との温度差がさらに大きくなり、屋外側への冷熱の流失量も増大することとなり、所望の屋内空気温を実現することはできるが、冷暖房効果はより一層低下することとなる。
また、冷水温を下げることで、外壁体3の屋内側壁面がより一層結露することとなってしまう。
However, if the chilled water temperature is lowered, the temperature difference from the outside air temperature will be further increased, and the amount of cold heat that flows to the outdoor side will also increase, so that the desired indoor air temperature can be achieved, but the cooling and heating effect will be further improved. Will be reduced.
In addition, by reducing the cold water temperature, the indoor side wall surface of the outer wall 3 is further condensed.

〔第1実施形態の建物の放射冷暖房装置の構成〕
そこで、本発明に係る第1実施形態の建物の放射冷暖房装置1では、図2に示すように、外壁体13と、緩衝室15と、内壁体14と、被空調室16と、を備えている。
外壁体13は、第1断熱材131と、壁面材133と、低放射率材132と、を備えている。
第1断熱材131は、外気と建物2の屋内とを隔てる外壁体13の内部に設けられる部材であり、熱貫流抵抗値Rが高く、外気と緩衝室15内の空気である緩衝室内気151との間における熱貫流(第1断熱材131を通じて外気と緩衝室内気151との熱の流出入、すなわち熱交換)を低減している。
なお、第1実施形態においては、第1断熱材131の熱貫流抵抗値Rは、2[m・K/W]であり、熱貫流率Kは、0.50[W/m・K]である。
また、壁面材133は、第1断熱材131の両面に設けられる外壁体の壁面を構成する壁面構成材である。この壁面構成材としては、例えば、タイル、サイディング、ALC、合板および石膏ボードなどが挙げられ、これらを複数用いてもよい。
なお、合板や石膏ボードのような下地材に仕上げ材が取り付けられてもよい。このような仕上げ材を取り付けることで、遮熱性を高めたり、熱量損失を少なくしたりすることができるようになっている。また、建物ユニットのような直方体状の枠組にタイル、サイディング、ALC、合板および石膏ボードなどを取り付ける構成としてもよく、これらを複数用いる構成としてもよい。さらに、壁面構成材は、それ自体が断熱材として機能させられるものでもよく、断熱材と壁面構成材とを兼ねる構成としてもよい。
また、低放射率材132は、後述する緩衝室15側の壁面材133の表面に設けられる熱放射率の低い部材である。
[Configuration of Radiant Heating and Cooling System for Building of First Embodiment]
Therefore, the building radiant cooling and heating apparatus 1 according to the first embodiment of the present invention includes an outer wall body 13, a buffer chamber 15, an inner wall body 14, and an air-conditioned room 16, as shown in FIG. Yes.
The outer wall body 13 includes a first heat insulating material 131, a wall surface material 133, and a low emissivity material 132.
The first heat insulating material 131 is a member provided inside the outer wall body 13 that separates the outside air from the interior of the building 2. The heat insulating resistance value R is high, and the buffer room air 151 that is the outside air and the air inside the buffer room 15. The flow of heat between the air and the heat (outflow or inflow of heat between the outside air and the buffer room air 151 through the first heat insulating material 131, that is, heat exchange) is reduced.
In the first embodiment, the heat flow resistance value R of the first heat insulating material 131 is 2 [m 2 · K / W], and the heat flow rate K is 0.50 [W / m 2 · K. ].
Further, the wall surface material 133 is a wall surface constituting material constituting the wall surface of the outer wall body provided on both surfaces of the first heat insulating material 131. Examples of the wall constituent material include tiles, siding, ALC, plywood and gypsum board, and a plurality of these may be used.
A finishing material may be attached to a base material such as plywood or gypsum board. By attaching such a finishing material, it is possible to increase the heat shielding property or reduce the heat loss. Moreover, it is good also as a structure which attaches a tile, siding, ALC, a plywood board, a gypsum board, etc. to a rectangular parallelepiped frame like a building unit, and it is good also as a structure which uses these two or more. Furthermore, the wall surface constituent material itself may be made to function as a heat insulating material, or may be configured to serve as both the heat insulating material and the wall surface constituent material.
The low emissivity material 132 is a member having a low thermal emissivity provided on the surface of a wall surface material 133 on the buffer chamber 15 side described later.

緩衝室15は、建物2の外壁体13を備え、具体的には外壁体13により屋外側が外気と隔てられ、内壁体14により屋内側で被空調室16と隔てられている。
また、緩衝室15は、被空調室16と外気との間に配置されており、外壁体13および内壁体14を通じて生じる熱貫流により、外気と被空調室内気161とが直接熱貫流する(直接熱貫流するとは、外壁体13または内壁体14のいずれか一方の壁体のみを通じて熱交換すること)ことを妨げる緩衝空間である。
The buffer room 15 includes an outer wall body 13 of the building 2. Specifically, the outdoor side is separated from the outside air by the outer wall body 13, and is separated from the air-conditioned room 16 by the inner wall body 14 on the indoor side.
Further, the buffer chamber 15 is disposed between the air-conditioned room 16 and the outside air, and the heat flow generated through the outer wall body 13 and the inner wall body 14 causes the outside air and the air-conditioned room air 161 to directly heat through (directly). The heat flow is a buffer space that prevents heat exchange through only one of the outer wall body 13 and the inner wall body 14).

内壁体14は、第2断熱材141と、冷房手段としての第2管部材142と、壁面材144と、を備えている。
第2断熱材141は、緩衝室内気151と被空調室内気161とを隔てる内壁体14の内部に設けられる部材であり、熱貫流抵抗値Rが高く、緩衝室内気151と後述する第2管部材142を流通する熱媒または冷媒である流体との熱貫流(緩衝室内気151と流体とが第2断熱材141を通じて行う熱交換)を低減している。
The inner wall body 14 includes a second heat insulating material 141, a second pipe member 142 as a cooling means, and a wall surface material 144.
The second heat insulating material 141 is a member provided inside the inner wall body 14 that separates the buffered indoor air 151 and the air-conditioned indoor air 161, has a high heat-flow resistance value R, and the buffered indoor air 151 and a second pipe to be described later. The heat flow with the fluid that is the heat medium or refrigerant flowing through the member 142 (heat exchange performed between the buffer chamber air 151 and the fluid through the second heat insulating material 141) is reduced.

第2管部材142は、内壁体14の内部に設けられる管状の部材であり、上述の第2断熱材141よりも屋内側に配置されている。具体的には、第2管部材142は、内壁体14内を蛇行するように壁面に対して均一に配管されている。
第2管部材142には、後述する被空調室16を空調するため、暖房用の熱媒または冷房用の冷媒として被空調室内気161よりも高温ないし低温の流体が流通される。この流体としては、第1実施形態では水または不凍液(例えば、エチレングリコールなどが挙げられる)が用いられている。水は加熱冷却が容易であり、配管などのメンテナンスにおいても好適な流体である。
The second pipe member 142 is a tubular member provided inside the inner wall body 14, and is disposed on the indoor side with respect to the second heat insulating material 141 described above. Specifically, the second pipe member 142 is uniformly piped with respect to the wall surface so as to meander in the inner wall body 14.
In order to air-condition the air-conditioned room 16 to be described later, a fluid having a temperature higher or lower than that of the air-conditioned room air 161 is circulated through the second pipe member 142 as a heating medium or a cooling refrigerant. As this fluid, water or antifreeze (for example, ethylene glycol etc.) is used in the first embodiment. Water is easy to heat and cool, and is a suitable fluid for maintenance of piping and the like.

被空調室16は、建物の内壁体14を備え、具体的には内壁体14により屋外側が緩衝室内気151と隔てられている。また、被空調室内気161は、内壁体14の屋内側壁面と接しており、この屋内側壁面が熱放射面TRSであり、この熱放射面TRSから熱放射を受けることで温度が昇降するようになっている。   The air-conditioned room 16 is provided with an inner wall body 14 of the building. Specifically, the outdoor side is separated from the buffer room air 151 by the inner wall body 14. The air-conditioned indoor air 161 is in contact with the indoor side wall surface of the inner wall body 14, and this indoor side wall surface is a heat radiation surface TRS, and the temperature rises and falls by receiving heat radiation from the heat radiation surface TRS. It has become.

なお、内壁体14における第2断熱材141と壁面材144とは、熱抵抗が異なっており、この違いにより熱貫流抵抗値Rの比率が調整されている。
第1実施形態においては、第2断熱材141と壁面材144との熱貫流抵抗値Rは、それぞれ1.25[m・K/W]および0.17[m・K/W]であり、熱貫流率Kは、それぞれ0.8[W/m・K]および6[W/m・K]である。
Note that the second heat insulating material 141 and the wall surface material 144 in the inner wall body 14 have different thermal resistances, and the ratio of the heat flow resistance value R is adjusted by this difference.
In the first embodiment, the heat flow resistance values R of the second heat insulating material 141 and the wall surface material 144 are 1.25 [m 2 · K / W] and 0.17 [m 2 · K / W], respectively. The heat transmissivity K is 0.8 [W / m 2 · K] and 6 [W / m 2 · K], respectively.

〔第1実施形態の建物の放射冷暖房装置の作用〕
第1実施形態の建物の放射冷暖房装置1では、冷房の場合、冷媒として第2管部材142に冷水(例えば、20℃)を流通させ、冷熱を内壁体14に供給する。
内壁体14に供給された冷熱は、第2断熱材141および壁面材144を通じて、緩衝室内気151および被空調室内気161へとそれぞれ熱貫流する。また、上述した通り、第2断熱材141と壁面材144とが熱貫流抵抗値Rに違いがあるため、緩衝室内気151よりも被空調室内気161へより多く熱貫流することとなる。
このため、緩衝室内気151温(例えば、30℃)よりも被空調室内気161温(例えば、28℃)の方が低くなる。
[Operation of the Building Radiant Heating and Cooling Apparatus of the First Embodiment]
In the building radiant cooling and heating apparatus 1 of the first embodiment, in the case of cooling, cold water (for example, 20 ° C.) is circulated through the second pipe member 142 as a refrigerant, and cold heat is supplied to the inner wall body 14.
The cold supplied to the inner wall body 14 flows through the second heat insulating material 141 and the wall surface material 144 to the buffered indoor air 151 and the air-conditioned indoor air 161, respectively. Further, as described above, since the second heat insulating material 141 and the wall surface material 144 are different in the heat-flow resistance value R, the heat flow is more conducted to the air-conditioned room air 161 than the buffered room air 151.
For this reason, the air-conditioned indoor air 161 temperature (for example, 28 ° C.) is lower than the buffer indoor air 151 temperature (for example, 30 ° C.).

また、緩衝室内気151は、内壁体14からの冷熱の熱放射だけでなく、外壁体13から熱放射の影響も受ける。具体的には、外気(例えば、40℃)から第1断熱材131を通じての熱貫流により熱が流入する。この流入する熱と、第2管部材142から第2断熱材141を通じての冷熱の熱貫流とにより、緩衝室内気151温(30℃)は外気(40℃)よりも低い温度となる。
こうすることで、第2管部材142を流通する冷水と緩衝室内気151との温度差が小さくなる(外気と冷水とでは、40℃と20℃とで温度差20℃であるが、緩衝室内気151と冷水では、30℃と20℃とで温度差が10℃と半分の差になる)。このため、第2断熱材141から放射される冷熱が従来のように外気へと流失する訳ではなく、緩衝室15の温度低下に利用され、この温度低下する分が第2断熱材141からの熱放射量の低減につながることとなる。
Further, the buffer room air 151 is affected not only by the cold heat radiation from the inner wall body 14 but also by the heat radiation from the outer wall body 13. Specifically, heat flows from the outside air (for example, 40 ° C.) by heat flow through the first heat insulating material 131. Due to the inflowing heat and the cold heat flow through the second heat insulating material 141 from the second pipe member 142, the temperature in the buffer room air 151 (30 ° C.) becomes lower than the temperature of the outside air (40 ° C.).
By doing so, the temperature difference between the cold water flowing through the second pipe member 142 and the buffer room air 151 is reduced (the temperature difference between 40 ° C. and 20 ° C. is 20 ° C. between the outside air and the cold water, In the case of air 151 and cold water, the temperature difference between 30 ° C. and 20 ° C. is half the difference of 10 ° C.). For this reason, the cold heat radiated from the second heat insulating material 141 does not flow away to the outside air as in the prior art, but is used for lowering the temperature of the buffer chamber 15. This will lead to a reduction in the amount of heat radiation.

言い換えれば、従来は、緩衝室15が設けられておらず、被空調室16への冷熱の放射以外の冷熱がそのまま外気(大気)へと放出されてしまい(大気への熱放射においては、放射熱量は熱容量に比して無視少となるため、大気の温度変化は略ゼロとなる)、冷熱の有効活用が不十分であったが、第1実施形態では、大気にではなく、緩衝室内気151へと冷熱が流出するので、緩衝室内気151温の低下に寄与させることができ、冷熱の損失量が低減され、これにより冷房効率を高められるようになっている。   In other words, conventionally, the buffer chamber 15 is not provided, and cold heat other than the radiation of the cold heat to the air-conditioned room 16 is released as it is to the outside air (atmosphere). Since the amount of heat is negligible compared to the heat capacity, the temperature change in the atmosphere is substantially zero), and the effective use of the cold heat is insufficient. Since the cooling heat flows out to 151, it is possible to contribute to a decrease in the temperature of the buffer room air 151, the amount of cooling heat loss is reduced, and thereby the cooling efficiency can be increased.

〔第1実施形態の建物の放射冷暖房装置の奏する効果〕
以上のように、第1実施形態によれば、例えば、図2に示すように、外壁となる外壁体13を備える緩衝室15と、緩衝室15に隣接し、かつ、外壁体13以外の内壁となる内壁体14を備える被空調室16と、を備える建物の放射冷暖房装置1であって、外壁体13は、外気と緩衝室15内の空気である緩衝室内気151との間における熱貫流を低減する第1断熱材131を備え、内壁体14は、緩衝室内気151と被空調室16内の空気である被空調室内気161との間における熱貫流を低減する第2断熱材141と、第2断熱材141よりも被空調室16側に設けられる高温ないし低温の水を流通させる第2管部材142と、を備えているものとした。
[Effects of the building radiant cooling and heating system of the first embodiment]
As described above, according to the first embodiment, for example, as illustrated in FIG. 2, the buffer chamber 15 including the outer wall body 13 serving as the outer wall, and the inner wall adjacent to the buffer chamber 15 and other than the outer wall body 13. The air-conditioning room 16 provided with the inner wall body 14 is a building radiant cooling and heating device 1, and the outer wall body 13 is a heat flow between the outside air and the buffer room air 151 that is the air in the buffer room 15. And the inner wall body 14 includes a second heat insulating material 141 that reduces heat flow between the buffered indoor air 151 and the air-conditioned indoor air 161 that is air in the air-conditioned room 16. The second pipe member 142 that circulates high-temperature or low-temperature water provided closer to the air-conditioned room 16 than the second heat insulating material 141 is provided.

こうすることで、例えば、外気が高温であり、建物2内を冷房する場合、外気と緩衝室内気151との間における熱貫流(外気と緩衝室内気151との熱の流出入)を低減する第1断熱材131が外気からの熱の流入を低減することとなる。すなわち、高温の外気からの熱の流入が第1断熱材131により低減され、緩衝室内気151への熱の流入量が低減されるため、緩衝室内気151の温度が外気温よりも低い温度となる。
また、緩衝室内気151と被空調室内気161との間における熱貫流(緩衝室内気151と被空調室内気161との熱の流出入)を低減する第2断熱材141が緩衝室内気151から第2管部材142への熱の流入を低減することとなる。言い換えれば、冷房の冷媒となる第2管部材142を流通する冷水の冷熱が緩衝室内気151へと失われにくくなる。
In this way, for example, when the outside air is hot and the inside of the building 2 is cooled, the heat flow between the outside air and the buffer indoor air 151 (outflow and inflow of heat between the outside air and the buffer indoor air 151) is reduced. The first heat insulating material 131 reduces the inflow of heat from the outside air. That is, since the inflow of heat from the high temperature outside air is reduced by the first heat insulating material 131 and the inflow amount of heat into the buffer indoor air 151 is reduced, the temperature of the buffer indoor air 151 is lower than the outside air temperature. Become.
Further, the second heat insulating material 141 that reduces the heat flow between the buffered indoor air 151 and the air-conditioned indoor air 161 (the flow of heat in and out of the buffered indoor air 151 and the air-conditioned indoor air 161) is provided from the buffered indoor air 151. Inflow of heat into the second pipe member 142 will be reduced. In other words, the cold heat of the cold water flowing through the second pipe member 142 serving as the cooling refrigerant is less likely to be lost to the buffer room air 151.

さらに、前述の通り、緩衝室内気151の温度は、第1断熱材131により外気温よりも低くなっているので、第2断熱材141が外気に直接接触する場合に比べて、流通する冷水との温度差を小さくすることができる。ここで、熱貫流量は以下の式(1)によって算出され、熱貫流率Kおよび伝熱面積Aは一定となるため、温度差が小さければ小さいほど熱貫流量Qは少なくなる。
Q=KA(T−T)・・・式(1)
Q:熱貫流量
K:熱貫流率
A:伝熱面積(ここでは、内壁体の平面積)
:緩衝室内気151の温度
:冷水温
したがって、第2管部材142を流通する冷水は、外気温よりも低い緩衝室内気151と第2断熱材141を介して接触しているため、外気と接触する場合に比べて熱貫流量Qを少なくすることができる。すなわち、冷水から緩衝室内気151への冷熱の移流が少なくなるため、結果として冷水からの外気への熱の流出を少なくすることができ、冷水の冷熱の損失が少ない。
Furthermore, as described above, since the temperature of the buffer room air 151 is lower than the outside air temperature by the first heat insulating material 131, compared with the case where the second heat insulating material 141 is in direct contact with the outside air, The temperature difference can be reduced. Here, the heat flow rate is calculated by the following equation (1), and the heat flow rate K and the heat transfer area A are constant. Therefore, the smaller the temperature difference, the smaller the heat flow rate Q.
Q = KA (T 2 −T 1 ) (1)
Q: Heat flow rate K: Heat flow rate A: Heat transfer area (in this case, the flat area of the inner wall)
T 1 : Temperature of the buffer room air 151 T 2 : Cold water temperature Therefore, the cold water flowing through the second pipe member 142 is in contact with the buffer room air 151 lower than the outside air temperature via the second heat insulating material 141. The heat-transmission flow rate Q can be reduced as compared with the case where it comes into contact with the outside air. That is, since the transfer of cold heat from the cold water to the buffer indoor air 151 is reduced, the outflow of heat from the cold water to the outside air can be reduced as a result, and the loss of cold heat of the cold water is small.

このため、比較的高い温めの冷水を用いても被空調室内気161へと有効に冷熱を放射することができる。
また、冷媒である冷水を温めの温度に設定できることから、内壁体14の冷熱放射面TRSの温度を上げることができ、当該熱放射面TRSを結露させにくくすることができる。
また、例えば、外気が低温であり、建物2内を暖房する場合においても、外気、緩衝室内気151および被空調室内気161における熱貫流は同様なものとなる。具体的には、外気よりも緩衝室内気151の方が温度が高く、熱媒である温水からの熱が緩衝室内気151へと流出するのを低減でき、被空調室内気161へと熱媒の熱を有効に放射することができる。
よって、建物の放射冷暖房装置1を熱の損失が少なく、冷暖房効率の高いものとすることができる。
For this reason, cold heat can be effectively radiated to the air-conditioned indoor air 161 even if relatively high-temperature cold water is used.
Moreover, since the cold water which is a refrigerant | coolant can be set to the warm temperature, the temperature of the cold-heat radiation surface TRS of the inner wall body 14 can be raised, and the said heat-radiation surface TRS can be made hard to condense.
For example, even when the outside air is at a low temperature and the inside of the building 2 is heated, the heat flow in the outside air, the buffered indoor air 151, and the air-conditioned indoor air 161 is the same. Specifically, the temperature of the buffered indoor air 151 is higher than that of the outside air, and heat from hot water as a heat medium can be reduced from flowing out to the buffered indoor air 151. Can effectively radiate heat.
Therefore, the radiant cooling and heating apparatus 1 in the building can have a low heat loss and high cooling and heating efficiency.

また、第1実施形態によれば、例えば、図2に示すように、外壁体13の緩衝室15側の壁面材133には、放射率の低い低放射率材132が設けられるものとした。
こうすることで、緩衝室内気151と外気との熱貫流量Qをより一層少なくすることができ、第2管部材142を流通する冷水から緩衝室内気151へと熱または冷熱がより一層失われにくくすることができる。
よって、建物の放射冷暖房装置1をより一層熱の損失が少なく、より一層冷暖房効率の高いものとすることができる。
According to the first embodiment, for example, as shown in FIG. 2, the low emissivity material 132 having a low emissivity is provided on the wall surface material 133 on the buffer chamber 15 side of the outer wall body 13.
By doing so, the heat flow rate Q between the buffer indoor air 151 and the outside air can be further reduced, and heat or cold is further lost from the cold water flowing through the second pipe member 142 to the buffer indoor air 151. Can be difficult.
Therefore, the radiant cooling / heating device 1 of the building can be made to have much less heat loss and higher cooling / heating efficiency.

また、第1実施形態によれば、例えば、図2に示すように、緩衝室15は、居室以外の空間であるものとした。
こうすることで、居室のような居住者が滞在する空間ではない空間が緩衝室15として用いられることとなる。
このため、緩衝室15が被空調室16よりも空調が効いていなくても居住者が常駐しない空間なので、生活をする上で不快なものとはならない上、被空調室16と緩衝室15とを行き来する場合のヒートショックやストレスを軽減することができる。
Further, according to the first embodiment, for example, as shown in FIG. 2, the buffer chamber 15 is a space other than the living room.
By doing so, a space that is not a space in which a resident stays, such as a living room, is used as the buffer room 15.
For this reason, since the buffer room 15 is a space in which a resident is not resident even if the air conditioning is not more effective than the air-conditioned room 16, it is not uncomfortable for living, and the air-conditioned room 16 and the buffer room 15 Heat shock and stress when going back and forth can be reduced.

〔第2実施形態の建物の放射冷暖房装置の構成〕
次に、本発明に係る第2実施形態の建物の放射冷暖房装置1について説明する。
本発明に係る第2実施形態の建物の放射冷暖房装置1では、図3に示すように、屋根体23と、小屋裏空間25と、天井体24と、被空調室26と、を備えている。
屋根体23は、第1断熱材231と、面構成材233と、低放射率材232と、を備えている。
[Configuration of Radiant Heating and Cooling System for Building of Second Embodiment]
Next, the building radiation cooling and heating apparatus 1 according to the second embodiment of the present invention will be described.
As shown in FIG. 3, the building radiant cooling and heating apparatus 1 according to the second embodiment of the present invention includes a roof body 23, a shed space 25, a ceiling body 24, and an air-conditioned room 26. .
The roof body 23 includes a first heat insulating material 231, a surface constituent material 233, and a low emissivity material 232.

第1断熱材231は、外気と建物2の屋内とを隔てる屋根体23の内部に設けられる部材であり、熱貫流抵抗値Rが高く、外気と小屋裏空間25内の空気である小屋裏内気251との間における熱貫流(第1断熱材231を通じて外気と小屋裏内気251との熱の流出入、すなわち熱交換)を低減している。
なお、第2実施形態においては、第1断熱材231の熱貫流抵抗値Rは、2[m・K/W]であり、熱貫流率Kは、0.50[W/m・K]である。
また、面構成材233は、第1断熱材231の両面に設けられる屋根体23の屋根面を構成する面構成材233である。
この面構成材233は、屋根材および内装材であり、屋外側に設けられる屋根面を構成する面材(野地板)と、小屋裏空間25側に設けられる小屋裏天井面を構成する面材(天井板)と、を備えている。面構成材233としては、例えば、スレート、瓦、合板および石膏ボードなどが挙げられ、これらを適宜選択して用いてもよい。さらに、面構成材233は、それ自体が断熱材として機能させられるものでもよく、断熱材と面構成材233とを兼ねる構成としてもよい。
また、低放射率材232は、後述する小屋裏空間25側の面構成材233の表面に設けられる熱放射率の低い部材である。
The first heat insulating material 231 is a member provided inside the roof body 23 that separates the outside air from the interior of the building 2, has a high heat-flow resistance value R, and the inside air of the shed that is the outside air and the air in the shed space 25. The heat flow between the air and the air 251 (outflow of heat between the outside air and the inside air of the hut 251 through the first heat insulating material 231, that is, heat exchange) is reduced.
In the second embodiment, the heat flow resistance value R of the first heat insulating material 231 is 2 [m 2 · K / W], and the heat flow rate K is 0.50 [W / m 2 · K. ].
The surface component 233 is a surface component 233 that forms the roof surface of the roof body 23 provided on both surfaces of the first heat insulating material 231.
This surface constituent material 233 is a roof material and an interior material, and is a surface material (field board) that constitutes a roof surface provided on the outdoor side, and a surface material that constitutes a roof back ceiling surface provided on the shed space 25 side. (Ceiling board). Examples of the surface component 233 include slate, roof tile, plywood, and gypsum board, and these may be appropriately selected and used. Furthermore, the surface constituent material 233 itself may function as a heat insulating material, or may be configured to serve as both the heat insulating material and the surface constituent material 233.
Moreover, the low emissivity material 232 is a member with a low thermal emissivity provided on the surface of the surface constituent material 233 on the side of the hut space 25 described later.

小屋裏空間25は、建物2の屋根体23を備え、具体的には屋根体23により屋外側が外気と隔てられ、天井体24により屋内側で被空調室26と隔てられている。
また、小屋裏空間25は、被空調室26と外気との間に配置されており、屋根体23および天井体24を通じて生じる熱貫流により、外気と被空調室内気261とが直接熱貫流する(直接熱貫流するとは、屋根体23または天井体24のいずれか一方の壁体のみを通じて熱交換すること)ことを妨げる緩衝空間である。
The attic space 25 includes a roof body 23 of the building 2. Specifically, the outdoor side is separated from the outside air by the roof body 23, and the air-conditioned room 26 is separated from the indoor side by the ceiling body 24.
Further, the cabin space 25 is disposed between the air-conditioned room 26 and the outside air, and the outside air and the air-conditioned room air 261 directly heat through the heat flow generated through the roof body 23 and the ceiling body 24 ( Direct heat penetration is a buffer space that prevents heat exchange through only one of the walls of the roof body 23 or the ceiling body 24).

天井体24は、第2断熱材241と、冷暖房手段としての第2管部材242と、天井面材244と、を備えている。
第2断熱材241は、小屋裏内気251と被空調室内気261とを隔てる天井体24の内部に設けられる部材であり、熱貫流抵抗値Rが高く、小屋裏内気251と後述する第2管部材242を流通する熱媒または冷媒である流体との熱貫流(小屋裏内気251と流体とが第2断熱材241を通じて行う熱交換)を低減している。
The ceiling body 24 includes a second heat insulating material 241, a second pipe member 242 as an air conditioning unit, and a ceiling surface material 244.
The second heat insulating material 241 is a member provided inside the ceiling body 24 that separates the cabin interior air 251 and the air-conditioned indoor air 261, has a high heat-flow resistance R, and the cabin interior air 251 and a second pipe described later. The heat flow through the fluid that is the heat medium or refrigerant flowing through the member 242 (heat exchange performed by the cabin backside air 251 and the fluid through the second heat insulating material 241) is reduced.

第2管部材242は、天井体24の内部に設けられる管状の部材であり、上述の第2断熱材241よりも屋内側に配置されている。具体的には、第2管部材242は、天井体24内を蛇行するように天井面に対して均一に配管されている。
第2管部材242には、後述する被空調室26を空調するため、暖房用の熱媒または冷房用の冷媒として被空調室内気261よりも高温ないし低温の流体が流通される。この流体としては、第2実施形態では水または不凍液が用いられている。水は加熱冷却が容易であり、配管などのメンテナンスにおいても好適な流体である。
The second pipe member 242 is a tubular member provided inside the ceiling body 24, and is disposed on the indoor side with respect to the second heat insulating material 241 described above. Specifically, the second pipe member 242 is uniformly piped with respect to the ceiling surface so as to meander in the ceiling body 24.
In the second pipe member 242, a fluid having a temperature higher or lower than that of the air-conditioned room air 261 is circulated as a heating medium or a cooling refrigerant in order to air-condition the air-conditioned room 26 described later. As this fluid, water or antifreeze is used in the second embodiment. Water is easy to heat and cool, and is a suitable fluid for maintenance of piping and the like.

被空調室26は、建物の天井体24を備え、具体的には天井体24により屋外側が小屋裏内気251と隔てられている。また、被空調室内気261は、天井体24の天井面と接しており、この天井面が熱放射面TRSであり、この熱放射面TRSから熱放射を受けることで温度が昇降するようになっている。   The air-conditioned room 26 is provided with a ceiling body 24 of the building. Specifically, the outdoor side is separated from the cabin interior air 251 by the ceiling body 24. The air-conditioned room air 261 is in contact with the ceiling surface of the ceiling body 24, and this ceiling surface is the heat radiation surface TRS, and the temperature rises and falls by receiving heat radiation from the heat radiation surface TRS. ing.

なお、天井体24における第2断熱材241と天井面材244とは、熱抵抗が異なっており、この違いにより熱貫流抵抗値Rの比率が調整されている。
第2実施形態においては、第2断熱材241と天井面材244との熱貫流抵抗値Rは、それぞれ1.25[m・K/W]および0.17[m・K/W]であり、熱貫流率Kは、それぞれ0.8[W/m・K]および6[W/m・K]である。
In addition, the 2nd heat insulating material 241 and the ceiling surface material 244 in the ceiling body 24 differ in thermal resistance, and the ratio of the heat-flow resistance value R is adjusted by this difference.
In the second embodiment, the heat flow resistance values R of the second heat insulating material 241 and the ceiling surface material 244 are 1.25 [m 2 · K / W] and 0.17 [m 2 · K / W], respectively. The heat transmissivity K is 0.8 [W / m 2 · K] and 6 [W / m 2 · K], respectively.

〔第2実施形態の建物の放射冷暖房装置の作用〕
第2実施形態の建物の放射冷暖房装置1では、冷房の場合、冷媒として第2管部材242に冷水(例えば、20℃)を流通させ、冷熱を天井体24に供給する。
天井体24に供給された冷熱は、第2断熱材241および天井面材244を通じて、小屋裏内気251および被空調室内気261へとそれぞれ熱貫流する。また、上述した通り、第2断熱材241と天井面材244とが熱貫流抵抗値Rに違いがあるため、小屋裏内気251よりも被空調室内気261へより多く冷熱が熱貫流することとなる。
このため、小屋裏内気251の温度(例えば、30℃)よりも被空調室内気261の温度(例えば、28℃)の方が低くなる。
[Operation of the Building Radiant Heating and Cooling System of the Second Embodiment]
In the building radiant cooling and heating apparatus 1 of the second embodiment, in the case of cooling, cold water (for example, 20 ° C.) is circulated through the second pipe member 242 as a refrigerant, and cold heat is supplied to the ceiling body 24.
The cold heat supplied to the ceiling body 24 flows through the second heat insulating material 241 and the ceiling surface material 244 to the indoor air 251 behind the cabin and the indoor air 261 to be air-conditioned, respectively. Further, as described above, since the second heat insulating material 241 and the ceiling surface material 244 have a difference in the heat flow resistance value R, more cold heat flows through the air-conditioned indoor air 261 than through the cabin interior air 251. Become.
For this reason, the temperature (for example, 28 ° C.) of the air-conditioned indoor air 261 is lower than the temperature (for example, 30 ° C.) of the cabin interior air 251.

また、小屋裏内気251は、天井体24からの冷熱の熱放射だけでなく、屋根体23から熱放射の影響も受ける。具体的には、外気(例えば、40℃)から第1断熱材231を通じての熱貫流により熱が流入する。この流入する熱と、第2管部材242から第2断熱材241を通じての冷熱の熱貫流とにより、小屋裏内気251の温度(30℃)は外気(40℃)よりも低い温度となる。
こうすることで、第2管部材242を流通する冷水と小屋裏内気251との温度差が小さくなる(外気と冷水とでは、40℃と20℃とで温度差20℃であるが、小屋裏内気251と冷水では、30℃と20℃とで温度差が10℃と半分の差になる)。このため、第2断熱材241から放射される冷熱が従来のように外気へと流失する訳ではなく、小屋裏空間25の温度低下に利用され、この温度低下する分が第2断熱材241からの熱放射量の低減につながることとなる。
In addition, the inside air 251 of the hut is affected not only by the heat radiation of the cold heat from the ceiling body 24 but also by the heat radiation from the roof body 23. Specifically, heat flows from the outside air (for example, 40 ° C.) by heat flow through the first heat insulating material 231. The temperature (30 ° C.) of the cabin back interior air 251 becomes lower than the outside air (40 ° C.) due to the inflowing heat and the heat flow of the cold heat from the second pipe member 242 through the second heat insulating material 241.
By doing so, the temperature difference between the cold water flowing through the second pipe member 242 and the cabin interior air 251 is reduced (the temperature difference between the ambient air and the cold water is 20 ° C. between 40 ° C. and 20 ° C., but the cabin back In the inside air 251 and cold water, the temperature difference between 30 ° C. and 20 ° C. is a half difference of 10 ° C.). For this reason, the cold heat radiated from the second heat insulating material 241 does not flow away to the outside air as in the prior art, but is used for lowering the temperature of the cabin space 25, and the amount of the temperature decrease is from the second heat insulating material 241. This leads to a reduction in the amount of heat radiation.

〔第2実施形態の建物の放射冷暖房装置の奏する効果〕
本実施形態によれば、例えば、図3に示すように、建物2の屋根面を形成する屋根体23を備える小屋裏空間25と、小屋裏空間25の下方に隣接する被空調室26と、を備える建物の放射冷暖房装置1であって、屋根体23は、外気と小屋裏空間25の空気である小屋裏内気251との間における熱貫流を低減する第1断熱材231を備え、小屋裏空間25と被空調室26とを隔てる天井体24は、小屋裏内気251と被空調室26内の空気である被空調室内気261との間における熱貫流を低減する第2断熱材241と、第2断熱材241よりも被空調室26側に設けられる高温ないし低温の流体を流通させる第2管部材242と、を備えているものとした。
[Effects of the building radiant cooling and heating system of the second embodiment]
According to the present embodiment, for example, as shown in FIG. 3, a cabin space 25 including a roof body 23 that forms a roof surface of the building 2, an air-conditioned room 26 adjacent to the lower side of the cabin space 25, The roof body 23 includes a first heat insulating material 231 that reduces heat flow between the outside air and the inside air 251 that is air in the attic space 25, The ceiling body 24 that separates the space 25 and the air-conditioned room 26 includes a second heat insulating material 241 that reduces heat flow between the cabin backside air 251 and the air-conditioned room air 261 that is air in the air-conditioned room 26, The second pipe member 242 for circulating a high-temperature or low-temperature fluid provided closer to the air-conditioned room 26 than the second heat insulating material 241 is provided.

こうすることで、例えば、外気が高温であり、建物2内を冷房する場合、外気と小屋裏内気251との間における熱貫流(外気と小屋裏内気251との熱の流出入)を低減する第1断熱材231が外気からの熱の流入を低減することとなる。すなわち、高温の外気からの熱の流入が第1断熱材231により低減され、小屋裏内気251への熱の流入量が低減されるため、小屋裏内気251の温度が外気温よりも低い温度となる。
また、小屋裏内気251と被空調室内気261との間における熱貫流(小屋裏内気251と被空調室内気261との熱の流出入)を低減する第2断熱材241が小屋裏内気251から第2管部材242への熱の流入を低減することとなる。言い換えれば、冷房の冷媒となる第2管部材242を流通する流体の冷熱が小屋裏内気251へと失われにくくなる。
By doing so, for example, when the outside air is hot and the inside of the building 2 is cooled, the heat flow between the outside air and the attic air 251 (outflow and inflow of heat between the outside air and the attic air 251) is reduced. The first heat insulating material 231 will reduce the inflow of heat from the outside air. That is, since the inflow of heat from the high-temperature outside air is reduced by the first heat insulating material 231 and the inflow amount of heat into the cabin backside air 251 is reduced, the temperature of the cabin backside air 251 is lower than the outside air temperature. Become.
In addition, the second heat insulating material 241 that reduces the heat flow between the cabin backside air 251 and the air-conditioned room air 261 (the heat inflow and outflow between the cabin backside air 251 and the air-conditioned room air 261) is provided from the cabin backside air 251. The inflow of heat into the second pipe member 242 will be reduced. In other words, the cold heat of the fluid flowing through the second pipe member 242 serving as the cooling refrigerant is less likely to be lost to the cabin backside air 251.

さらに、前述の通り、小屋裏内気251の温度は、第1断熱材231により外気温よりも低くなっているので、第2断熱材241が外気に直接接触する場合に比べて、流通する流体との温度差を小さくすることができる。ここで、熱貫流量Qは前述の式(1)によって算出され、熱貫流率Kおよび伝熱面積Aは一定となるため、温度差が小さければ小さいほど熱貫流量Qは少なくなる。
したがって、第2管部材242を流通する流体は、外気温よりも低い小屋裏内気251と第2断熱材241を介して接触しているため、外気と接触する場合に比べて熱貫流量Qを少なくすることができる。すなわち、流体から小屋裏内気251への冷熱の流出を少なくすることができ、流体の冷熱の損失が少ない。
Furthermore, as described above, the temperature of the cabin backside air 251 is lower than the outside air temperature by the first heat insulating material 231, and therefore, compared with the case where the second heat insulating material 241 directly contacts the outside air, The temperature difference can be reduced. Here, the heat flow rate Q is calculated by the above-described equation (1), and the heat flow rate K and the heat transfer area A are constant. Therefore, the smaller the temperature difference, the smaller the heat flow rate Q.
Therefore, since the fluid flowing through the second pipe member 242 is in contact with the cabin backside air 251 that is lower than the outside air temperature via the second heat insulating material 241, the heat-transmission flow rate Q is higher than that in contact with the outside air. Can be reduced. That is, the outflow of cold heat from the fluid to the cabin interior air 251 can be reduced, and the loss of cold heat of the fluid is small.

このため、比較的高い温めの流体を用いても被空調室内気261へと有効に冷熱を放射することができる。
また、冷媒である流体を温めの温度に設定できることから、天井体24の冷熱放射面TRSの温度を上げることができ、当該熱放射面TRSを結露させにくくすることができる。
また、例えば、外気が低温であり、建物2内を暖房する場合においても、外気、小屋裏内気251および被空調室内気261における熱貫流は同様なものとなる。具体的には、外気よりも小屋裏内気251の方が温度が高く、熱媒である温水からの熱が小屋裏内気251へと流出するのを低減でき、被空調室内気261へと熱媒の熱を有効に放射することができる。
よって、建物の放射冷暖房装置1を熱の損失が少なく、冷暖房効率の高いものとすることができる。
For this reason, cold heat can be effectively radiated to the air-conditioned indoor air 261 even when a relatively warm fluid is used.
Moreover, since the fluid which is a refrigerant | coolant can be set to warm temperature, the temperature of the cooling-heat radiation surface TRS of the ceiling body 24 can be raised, and the said heat-radiation surface TRS can be made hard to condense.
Further, for example, even when the outside air is at a low temperature and the inside of the building 2 is heated, the heat flow in the outside air, the cabin interior air 251 and the air-conditioned indoor air 261 is the same. Specifically, the temperature in the cabin interior 251 is higher than that in the outside air, and heat from the hot water that is the heat medium can be reduced from flowing out to the cabin interior air 251, and the heat medium is transferred to the air-conditioned room air 261. Can effectively radiate heat.
Therefore, the radiant cooling and heating apparatus 1 in the building can have a low heat loss and high cooling and heating efficiency.

また、第2実施形態によれば、例えば、図3に示すように、屋根体23の小屋裏空間25側の内面には、放射率の低い低放射率材232が設けられるものとした。
こうすることで、小屋裏内気251と外気との熱貫流量Qをより一層少なくすることができ、第2管部材242を流通する冷水から小屋裏内気251へと熱または冷熱がより一層失われにくくすることができる。
よって、建物の放射冷暖房装置1をより一層熱の損失が少なく、より一層冷暖房効率の高いものとすることができる。
Moreover, according to 2nd Embodiment, as shown in FIG. 3, the low emissivity material 232 with low emissivity shall be provided in the inner surface by the side of the hut space 25 of the roof body 23, for example.
By doing so, the heat flow rate Q between the cabin backside air 251 and the outside air can be further reduced, and heat or cold from the cold water flowing through the second pipe member 242 to the cabin backside air 251 is further lost. Can be difficult.
Therefore, the radiant cooling / heating device 1 of the building can be made to have much less heat loss and higher cooling / heating efficiency.

また、第2実施形態によれば、例えば、図3に示すように、小屋裏空間25は、居室以外の空間であるものとした。
こうすることで、居室のような居住者が滞在する空間ではない空間が小屋裏空間25として用いられることとなる。
このため、小屋裏空間25が被空調室26よりも空調が効いていなくても居住者が常駐しない空間なので、生活をする上で不快なものとはならない上、被空調室26と小屋裏空間25とを行き来する場合のヒートショックやストレスを軽減することができる。
Moreover, according to 2nd Embodiment, as shown in FIG. 3, for example, the shed space 25 shall be spaces other than a living room.
By doing so, a space that is not a space where a resident stays, such as a living room, is used as the attic space 25.
For this reason, since the shed space 25 is a space where residents are not resident even if the air conditioning is not more effective than the air-conditioned room 26, it is not uncomfortable for living, and the air-conditioned room 26 and the shed space Heat shock and stress when going to and from 25 can be reduced.

〔第3実施形態の建物の放射冷暖房装置の構成〕
次に、本発明に係る第3実施形態について説明する。
第3実施形態の建物の放射冷暖房装置1は、第1冷暖房装置33と、第2冷暖房装置34と、を備えている。
図4に示すように、外壁体33である第1冷暖房装置33は、第1断熱材331と、第1冷暖房手段としての第2管部材334と、壁面材333と、を備えている。
第1断熱材331は、外気と緩衝室35または被空調室36とを隔てる第1冷暖房装置33の内部に設けられる部材であり、熱貫流抵抗値Rが高く、屋内空気としての緩衝室内気351ないし被空調室内気361と後述する第1管部材334を流通する熱媒または冷媒である流体との熱貫流(緩衝室内気351ないし被空調室内気361と流体とが第1断熱材331を通じて行う熱交換)を低減している。
なお、第3実施形態においては、第1断熱材131の熱貫流抵抗値Rは、2[m・K/W]であり、熱貫流率Kは、0.50[W/m・K]である。
[Configuration of Radiant Heating and Cooling System for Building of Third Embodiment]
Next, a third embodiment according to the present invention will be described.
The building radiant cooling and heating apparatus 1 according to the third embodiment includes a first cooling and heating apparatus 33 and a second cooling and heating apparatus 34.
As shown in FIG. 4, the first air conditioning device 33 that is the outer wall body 33 includes a first heat insulating material 331, a second pipe member 334 as a first air conditioning device, and a wall surface material 333.
The 1st heat insulating material 331 is a member provided in the inside of the 1st air conditioning apparatus 33 which separates outside air and the buffer room 35 or the air-conditioned room 36, has a high heat-flow resistance value R, and the buffered room air 351 as indoor air. In addition, heat flow between the air to be conditioned indoor air 361 and a fluid that is a heat medium or a refrigerant flowing through the first pipe member 334 (described later) is performed through the first heat insulating material 331. Heat exchange).
In the third embodiment, the heat flow resistance value R of the first heat insulating material 131 is 2 [m 2 · K / W], and the heat flow rate K is 0.50 [W / m 2 · K. ].

また、壁面材333は、第1断熱材331と第1管部材334との平面にそれぞれ設けられる第1冷暖房装置33の壁面を構成する外装材および内装材としての壁面構成材である。   Moreover, the wall surface material 333 is a wall surface constituting material as an exterior material and an interior material constituting the wall surface of the first air conditioning device 33 provided on the planes of the first heat insulating material 331 and the first pipe member 334, respectively.

第1管部材334は、第1冷暖房装置33の内部に設けられる管状の部材であり、上述の第1断熱材331よりも屋内側に配置されている。具体的には、第1管部材334は、第1冷暖房装置33内を蛇行するように壁面に対して均一に配管されている。
第1管部材334には、後述する緩衝室内気351ないし被空調室内気361へ外気から熱貫流がないように緩衝室内気351の温度ないし被空調室内気361の温度と同じ温度の流体が流通される。この流体としては、第3実施形態では水または不凍液が用いられている。水は加熱冷却が容易であり、配管などのメンテナンスにおいても好適な流体である。
The 1st pipe member 334 is a tubular member provided in the inside of the 1st air conditioning equipment 33, and is arranged indoor side rather than the above-mentioned 1st heat insulating material 331. Specifically, the 1st pipe member 334 is uniformly piped with respect to the wall surface so that the inside of the 1st air conditioning apparatus 33 may meander.
A fluid having the same temperature as the temperature of the buffered indoor air 351 or the temperature of the air-conditioned indoor air 361 flows through the first pipe member 334 so that heat does not flow from outside air to the buffered indoor air 351 or the air-conditioned indoor air 361 described later. Is done. As this fluid, water or antifreeze is used in the third embodiment. Water is easy to heat and cool, and is a suitable fluid for maintenance of piping and the like.

次に、図5に示すように、内壁体34である第2冷暖房装置34は、第2断熱材341と、第2冷暖房手段としての第2管部材342と、を備えている。
第2断熱材341は、緩衝室35ないし被空調室36と被空調室36とを隔てる第2冷暖房装置34の内部に設けられる部材であり、熱貫流抵抗値Rが高く、緩衝室内気351ないし被空調室内気361と後述する第2管部材342を流通する熱媒または冷媒である流体との熱貫流(緩衝室内気351ないし被空調室内気361と流体とが第2断熱材341を通じて行う熱交換)を低減している。
Next, as shown in FIG. 5, the 2nd air conditioning apparatus 34 which is the inner wall body 34 is provided with the 2nd heat insulating material 341 and the 2nd pipe member 342 as a 2nd air conditioning means.
The second heat insulating material 341 is a member provided inside the second cooling / heating device 34 that separates the buffer chamber 35 or the air-conditioned room 36 from the air-conditioned room 36, has a high heat-flow resistance value R, and has a buffer room air 351 or 351. Heat flow between the air to be air-conditioned 361 and a fluid that is a heat medium or refrigerant flowing through the second pipe member 342 described later (the heat that the buffered air 351 or the air to be air-conditioned 361 and the fluid perform through the second heat insulating material 341 (Replacement) is reduced.

第2管部材342は、第2冷暖房装置34の内部に設けられる管状の部材であり、上述の第2断熱材341よりも屋内側に配置されている。具体的には、第2管部材342は、第2冷暖房装置34内を蛇行するように壁面に対して均一に配管されている。
第2管部材342には、後述する被空調室36を空調するため、暖房用の熱媒または冷房用の冷媒として被空調室内気361の温度よりも高温ないし低温の流体が流通される。この流体としては、第3実施形態では水または不凍液が用いられている。水は加熱冷却が容易であり、配管などのメンテナンスにおいても好適な流体である。
The 2nd pipe member 342 is a tubular member provided in the inside of the 2nd air conditioning apparatus 34, and is arranged indoor side rather than the above-mentioned 2nd heat insulating material 341. Specifically, the 2nd pipe member 342 is uniformly piped with respect to the wall surface so that the inside of the 2nd air conditioning apparatus 34 may meander.
In the second pipe member 342, a fluid having a temperature higher or lower than the temperature of the air in the air-conditioned room 361 is circulated as a heating medium or a cooling refrigerant in order to air-condition the air-conditioned room 36 described later. As this fluid, water or antifreeze is used in the third embodiment. Water is easy to heat and cool, and is a suitable fluid for maintenance of piping and the like.

なお、第2冷暖房装置34における第2断熱材341と壁面材344とは、熱抵抗が異なっており、この違いにより熱貫流抵抗値Rの比率が調整されている。
第3実施形態においては、第2断熱材341と壁面材344との熱貫流抵抗値Rは、それぞれ1.0[m・K/W]および0.17[m・K/W]であり、熱貫流率Kは、それぞれ1[W/m・K]および6[W/m・K]である。
In addition, the 2nd heat insulating material 341 and the wall surface material 344 in the 2nd air conditioning apparatus 34 differ in thermal resistance, and the ratio of the heat-flow resistance value R is adjusted by this difference.
In the third embodiment, the heat flow resistance values R of the second heat insulating material 341 and the wall surface material 344 are 1.0 [m 2 · K / W] and 0.17 [m 2 · K / W], respectively. The heat transmissivity K is 1 [W / m 2 · K] and 6 [W / m 2 · K], respectively.

また、壁面材344は、第2断熱材341と第2管部材342との平面にそれぞれ設けられる第2冷暖房装置34の壁面を構成する壁面構成材である。この壁面構成材は、内装材であり、例えば、合板や石膏ボードなどが挙げられる。
なお、合板や石膏ボードのような下地材に仕上げ材が取り付けられてもよい。このような仕上げ材を取り付けることで、遮熱性を高めたり、熱量損失を少なくしたりすることができるようになっている。また、建物ユニットのような直方体状の枠組に壁パネルとして合板や石膏ボードを取り付けるような構成としてもよい。さらに、壁面構成材は、それ自体が断熱材として機能させられるものでもよく、断熱材と壁面構成材とを兼ねる構成としてもよい。
Moreover, the wall surface material 344 is a wall surface structural material which comprises the wall surface of the 2nd air conditioning apparatus 34 provided in the plane of the 2nd heat insulating material 341 and the 2nd pipe member 342, respectively. This wall surface constituent material is an interior material, and examples thereof include plywood and gypsum board.
A finishing material may be attached to a base material such as plywood or gypsum board. By attaching such a finishing material, it is possible to increase the heat shielding property or reduce the heat loss. Moreover, it is good also as a structure which attaches a plywood or a gypsum board as a wall panel to a rectangular parallelepiped frame like a building unit. Furthermore, the wall surface constituent material itself may be made to function as a heat insulating material, or may be configured to serve as both the heat insulating material and the wall surface constituent material.

図6に示すように、建物2は、収納室41と、第1居室42と、第2居室43と、第3居室44と、廊下および階段45と、を備えている。
収納室41は、居室以外の空間であり、建物2の北西角部に設けられており、北側外壁と西側外壁とのそれぞれに窓411,412が設けられている。
第1居室42は、収納室41の南側に隣接して設けられており、南側外壁と西側外壁とのそれぞれに窓421,422が設けられている。
第2居室43は、第1居室42の西側に隣接して設けられており、南側外壁と東側外壁とのそれぞれに窓431,432が設けられている。
第3居室44は、第2居室42の北側に隣接して設けられており、北側外壁と東側外壁とのそれぞれに窓441,442が設けられている。
廊下および階段45は、居室以外の空間であり、収納室41と第3居室44との間に設けられており、北側外壁に窓451が設けられている。
また、建物2は、外壁体に設けられる窓以外の箇所に第1冷暖房装置33が設けられ、この内壁体に設けられる窓以外の箇所に第2冷暖房装置34が設けられる。
As shown in FIG. 6, the building 2 includes a storage room 41, a first living room 42, a second living room 43, a third living room 44, and a corridor and stairs 45.
The storage room 41 is a space other than the living room, and is provided in the northwest corner of the building 2, and windows 411 and 412 are provided on the north outer wall and the west outer wall, respectively.
The first living room 42 is provided adjacent to the south side of the storage room 41, and windows 421 and 422 are provided on the south side outer wall and the west side outer wall, respectively.
The second living room 43 is provided adjacent to the west side of the first living room 42, and windows 431 and 432 are provided on the south side outer wall and the east side outer wall, respectively.
The third living room 44 is provided adjacent to the north side of the second living room 42, and windows 441 and 442 are provided on the north side outer wall and the east side outer wall, respectively.
The corridor and the stairs 45 are spaces other than the living room, and are provided between the storage room 41 and the third living room 44, and a window 451 is provided on the north side outer wall.
Moreover, the building 2 is provided with the 1st air conditioning apparatus 33 in places other than the window provided in an outer wall body, and the 2nd air conditioning apparatus 34 is provided in places other than the window provided in this inner wall body.

図7(a)に示すように、例えば、第2居室43に家具Fを設置する場合、家具Fを第2冷暖房装置34に沿って設置すると、家具Fと第2冷暖房装置34との間の僅かな空気層が局所的に過冷却されるため、家具Fが設置される第2冷暖房装置34の壁面に結露が生じるおそれがある。
そこで、第3実施形態では、図7(b)に示すように、家具Fが設置される第2冷暖房装置34を第1冷暖房装置33に切り替えられるようになっている。
As shown in FIG. 7A, for example, when the furniture F is installed in the second living room 43, if the furniture F is installed along the second air conditioner 34, the space between the furniture F and the second air conditioner 34 is set. Since a slight air layer is locally supercooled, there is a possibility that dew condensation may occur on the wall surface of the second air conditioner 34 on which the furniture F is installed.
Therefore, in the third embodiment, as shown in FIG. 7B, the second air conditioner 34 in which the furniture F is installed can be switched to the first air conditioner 33.

具体的には、図8に示すように、第2冷暖房装置34から第1冷暖房装置33へと切り替えられた第1冷暖房装置37の第2管部材372に流通される水の温度を第2居室43の室温と同じ温度に切り替える。
これにより、第2断熱材371側からの熱貫流および第2管部材372側からの熱貫流がゼロとなる。
このため、家具Fが設置される壁面からの熱放射がなくなり、結露のおそれがなくなるようになっている。
Specifically, as shown in FIG. 8, the temperature of the water circulated through the second pipe member 372 of the first air conditioner 37 switched from the second air conditioner 34 to the first air conditioner 33 is set to the second living room. Switch to the same temperature as 43.
Thereby, the heat flow from the 2nd heat insulating material 371 side and the heat flow from the 2nd pipe member 372 side become zero.
For this reason, heat radiation from the wall surface on which the furniture F is installed is eliminated, and there is no risk of condensation.

なお、第2冷暖房装置34に設けられる第2管部材342は、独立した複数系統の流通路を備えており、それぞれの流通路が建物2の内壁体のそれぞれの箇所に配管されている。
このため、家具Fを設置する第2冷暖房装置34に対応する第2管部材342の流通路の水を第1冷暖房装置33の第1管部材334に流通している水に切り替えることで、第2冷暖房装置34を第1冷暖房装置33に切り替えられるようになっている。
In addition, the 2nd pipe member 342 provided in the 2nd air conditioning apparatus 34 is provided with the independent multiple system flow path, and each flow path is piped to each location of the inner wall body of the building 2. As shown in FIG.
For this reason, the water of the flow path of the 2nd pipe member 342 corresponding to the 2nd air conditioning apparatus 34 which installs the furniture F is switched to the water currently distribute | circulating to the 1st pipe member 334 of the 1st air conditioning apparatus 33, The second air conditioner 34 can be switched to the first air conditioner 33.

また、図9に示すように、第2冷暖房装置34を第1冷暖房装置33に切り替える具体的な仕組みについて説明する。
冷媒または熱媒としての水は、図示しない熱交換器により冷却または加熱され、第1温度制御手段38および第2温度制御手段39により所定の温度に調整されている。この温調された水をポンプにより各管部材へと吐出して建物2の壁内に流通させている。
Moreover, as shown in FIG. 9, the specific mechanism which switches the 2nd air conditioning apparatus 34 to the 1st air conditioning apparatus 33 is demonstrated.
Water as the refrigerant or the heat medium is cooled or heated by a heat exchanger (not shown) and adjusted to a predetermined temperature by the first temperature control means 38 and the second temperature control means 39. This temperature-controlled water is discharged to each pipe member by a pump and circulated in the wall of the building 2.

また、第1冷暖房装置33に備えられている第1温度制御手段38は、吐出側(行き側)の水温を測定する第1ステップS1と、吸入側(戻り側)の水温を測定する第2ステップS2とにより、上述の独立した系統ごとに吐出側と吸入側との水温差を監視している。
そして、第3ステップS3において水温差の有無を判断し、水温差がある場合は、第4ステップS4において温度差をなくすよう行き側の水温を熱交換器等により調整し、再度吐出側と吸入側との水温差を監視している。
The first temperature control means 38 provided in the first air conditioner 33 has a first step S1 for measuring the water temperature on the discharge side (going side) and a second step for measuring the water temperature on the suction side (return side). By step S2, the water temperature difference between the discharge side and the suction side is monitored for each independent system described above.
Then, the presence or absence of a water temperature difference is determined in the third step S3, and if there is a water temperature difference, the water temperature on the going side is adjusted by a heat exchanger or the like so as to eliminate the temperature difference in the fourth step S4, and again the suction side and the suction side The water temperature difference with the side is monitored.

また、第2冷暖房装置34に備えられている第2温度制御手段39は、吐出側(行き側)の水温を測定する第5ステップS5と、吸入側(戻り側)の水温を測定する第6ステップS6とにより、上述の独立した系統ごとに吐出側と吸入側との水温差を監視している。
そして、第7ステップS7において水温差の有無を判断し、水温差がないまたは小さい場合は、第1温度制御手段38に切り替えて上述した第1ステップから第4ステップまでのステップを踏んで、行き側と戻り側との水温差が出ないように監視制御するようになっている。
The second temperature control means 39 provided in the second air conditioner 34 is a fifth step S5 for measuring the water temperature on the discharge side (going side) and the sixth step for measuring the water temperature on the suction side (return side). By step S6, the water temperature difference between the discharge side and the suction side is monitored for each independent system described above.
Then, in the seventh step S7, it is determined whether or not there is a water temperature difference. If the water temperature difference is not present or small, the first temperature control means 38 is switched to and the steps from the first step to the fourth step described above are performed. Monitoring and control are performed so that there is no difference in water temperature between the return side and the return side.

こうすることで、例えば、ある系統の流通路の吐出側と吸入側との水温差が小さい場合、その流通路の対応する壁面において水があまり熱交換していないと判断することができる。
すなわち、特に第2冷暖房装置34においては、必要な熱交換量以上の冷熱または熱を壁面へと供給していることとなり、結露、エネルギーロスおよび過空調の原因となる。
By doing so, for example, when the water temperature difference between the discharge side and the suction side of the flow passage of a certain system is small, it can be determined that the water does not exchange much heat on the corresponding wall surface of the flow passage.
That is, especially in the 2nd air conditioning apparatus 34, the cold heat or heat | fever more than a required heat exchange amount will be supplied to a wall surface, and it will cause dew condensation, energy loss, and over air conditioning.

そこで、第2温度制御手段39は、吐出側と吸入側との水温差が小さいもしくは略ゼロの場合、その系統を流通する水温を室温と同じ水温になるように制御ステップを第1温度制御手段38に切り替え、上記の原因を排除するようになっている。
言い換えれば、各系統を流通する水の温度差を監視することで、各壁体を第2冷暖房装置34にするべきか第1冷暖房装置33にするべきかを自動的に判断し切り替えるようになっている。
このため、上述した、壁面に家具Fを設置する際、居住者が自主的に家具Fの設置される壁面に対応する系統の流通路の水温を室温に切り替える作業をすることなく、状況に応じて温調制御を行うようになっている。
Therefore, when the difference in water temperature between the discharge side and the suction side is small or substantially zero, the second temperature control means 39 performs the control step so that the water temperature flowing through the system is the same as the room temperature. Switching to 38, the above cause is eliminated.
In other words, by monitoring the temperature difference of the water flowing through each system, it is automatically determined and switched whether each wall body should be the second air conditioning device 34 or the first air conditioning device 33. ing.
For this reason, when installing the furniture F on the wall surface as described above, the resident voluntarily changes the water temperature of the flow passage of the system corresponding to the wall surface on which the furniture F is installed to room temperature, depending on the situation. Temperature control.

〔第3実施形態の建物の放射冷暖房装置の作用〕
第3実施形態の建物の放射冷暖房装置1では、冷房の場合、外壁体33である第1冷暖房装置33が外気からの熱貫流量Qを相殺するように外気へと冷熱を熱貫流させ、外気からの熱貫流量Qが第1冷暖房装置33において略ゼロとなるようになっている。
具体的には、第1冷暖房装置33は、第1管部材334に流通する水(28℃)が緩衝室35または被空調室36の室温(28℃)と同じ温度であり、水からの緩衝室35または被空調室36への熱貫流量Qは略ゼロとなる。
[Operation of Radiant Air Conditioning and Heating Device for Building of Third Embodiment]
In the building radiant cooling and heating apparatus 1 according to the third embodiment, in the case of cooling, the first cooling and heating apparatus 33 that is the outer wall body 33 causes the cooling air to flow through to the outside air so as to cancel out the heat flow rate Q from the outside air. The heat flow rate Q from the first air conditioner 33 is substantially zero.
Specifically, in the first air conditioner 33, the water (28 ° C.) flowing through the first pipe member 334 has the same temperature as the room temperature (28 ° C.) of the buffer chamber 35 or the air-conditioned room 36, and the buffer from the water The heat flow rate Q to the chamber 35 or the air-conditioned room 36 is substantially zero.

これに対し、屋外側の第1断熱材331を通じての熱貫流については、水温(28℃)が外気(40℃)に比して低いため、水の冷熱が外気へと熱貫流することとなる。
すなわち、第1冷暖房装置33は、第1管部材334を流通する水の冷熱が外気からの熱貫流を相殺するために用いられる。
よって、第1冷暖房装置33は、緩衝室35または被空調室36の顕熱を奪い室温を低下させるものではなく、高温な外気からの顕熱を建物2の屋内へと流入させないためのものである。
On the other hand, with respect to the heat flow through the first heat insulating material 331 on the outdoor side, the water temperature (28 ° C.) is lower than the outside air (40 ° C.), so the cold heat of water flows through to the outside air. .
That is, the 1st air conditioning unit 33 is used in order for the cold of the water which distribute | circulates the 1st pipe member 334 to cancel the heat flow from external air.
Therefore, the 1st air-conditioning / heating apparatus 33 does not take away the sensible heat of the buffer room 35 or the air-conditioned room 36 and lower the room temperature, but does not allow the sensible heat from the high temperature outside air to flow into the building 2 indoors. is there.

次に、建物2の内壁体34である第2冷暖房装置34は、緩衝室35または被空調室36と被空調室36とに挟まれた壁体である。言い換えれば、第2冷暖房装置34は、外気との接触のない壁体である。
第2冷暖房装置34は、空調しようとする被空調室36側に第2空調面としての熱放射面TRSが設けられており、第2管部材342を流通する冷水(20℃)(緩衝室35または被空調室36の室温(30℃ないし28℃)よりも低温)の主な冷熱が熱放射面TRSから放射される。
Next, the second air conditioning apparatus 34 that is the inner wall body 34 of the building 2 is a wall body sandwiched between the buffer chamber 35 or the air-conditioned room 36 and the air-conditioned room 36. In other words, the second air conditioner 34 is a wall body that does not come into contact with outside air.
The second air conditioner 34 is provided with a heat radiation surface TRS as a second air-conditioning surface on the air-conditioned room 36 side to be air-conditioned, and cold water (20 ° C.) (buffer room 35) flowing through the second pipe member 342. Or the main cold of room temperature (30 degreeC thru | or 28 degreeC lower temperature) of the air-conditioned room 36 is radiated | emitted from the thermal radiation surface TRS.

これは、第2管部材342を挟むように、緩衝室35側に設けられる第2断熱材341と被空調室36側に設けられる壁面材344との熱貫流抵抗値Rが異なる(第2断熱材341の方が熱貫流抵抗値Rが高い)ためであり、仮に第2冷暖房装置34の両壁面側が被空調室36である場合には、第2断熱材341を設けず、両壁面を熱放射面TRSとしてもよい。
すなわち、第2冷暖房装置34は、壁面材344側の熱放射面TRSから冷熱を放射(被空調室内気361の顕熱を吸収)することで被空調室36の室温を低下させている。
これに対し、第2断熱材341側の壁面からも冷熱が熱放射(緩衝室内気351または被空調室内気361の顕熱を吸収)され、緩衝室35または被空調室36の室温を低下させている。
This is because the heat flow resistance R of the second heat insulating material 341 provided on the buffer chamber 35 side and the wall surface material 344 provided on the air-conditioned room 36 side are different so as to sandwich the second pipe member 342 (second heat insulating material). In the case where both the wall surfaces of the second air conditioner 34 are air-conditioned rooms 36, the second heat insulating material 341 is not provided, and both wall surfaces are heated. The radiation surface TRS may be used.
That is, the second air conditioner 34 lowers the room temperature of the air-conditioned room 36 by radiating cold heat (absorbing sensible heat of the air-conditioned room air 361) from the heat radiation surface TRS on the wall surface material 344 side.
On the other hand, cold heat is also radiated from the wall surface on the second heat insulating material 341 side (absorbs the sensible heat of the buffered room air 351 or the air-conditioned room air 361), thereby lowering the room temperature of the buffer room 35 or the air-conditioned room 36. ing.

第1冷暖房装置33および第2冷暖房装置34の作用をまとめると、外気と触れない第2冷暖房装置34が冷熱を熱放射することで緩衝室内気351または被空調室内気361の顕熱を奪い取り、室温を低下させようとする。
また、これに対し、建物2の屋外の外気は高温であり、外気の持つ顕熱が建物2へと熱貫流し、室温を上昇させようとする。
しかし、外気と触れる外壁体が第1冷暖房装置33であり、上述の通り、外気からの熱貫流量Qを略ゼロとするため、外気からの熱負荷を略ゼロ(ただし、第1冷暖房装置33からの熱貫流量Qが略ゼロであり、窓などの開口部からの熱貫流量Qはゼロではない)としている。
このように、第1冷暖房装置33が顕熱を遮断し、第2冷暖房装置34が屋内空気である緩衝室内気351および被空調室内気361の顕熱を奪うことで室温を外気よりも低下させている。
Summarizing the actions of the first air conditioner 33 and the second air conditioner 34, the second air conditioner 34 that does not come into contact with the outside air radiates the cold heat, thereby taking away the sensible heat of the buffered indoor air 351 or the air-conditioned indoor air 361, Try to lower the room temperature.
On the other hand, the outdoor air outside the building 2 is hot, and the sensible heat of the outdoor air flows through the building 2 to increase the room temperature.
However, the outer wall body that is in contact with the outside air is the first air conditioner 33. As described above, the heat flow rate Q from the outside air is substantially zero, so that the heat load from the outside air is substantially zero (however, the first air conditioner 33). The heat-transmission flow rate Q from the window is substantially zero, and the heat-transfer flow rate Q from the opening such as a window is not zero.
In this way, the first air conditioner 33 blocks sensible heat, and the second air conditioner 34 deprives the sensible heat of the buffered indoor air 351 and the air-conditioned indoor air 361 which are indoor air, thereby lowering the room temperature from the outside air. ing.

〔第3実施形態の建物の放射冷暖房装置の奏する効果〕
以上のように、第3実施形態によれば、例えば、図4,5に示すように、外壁となる外壁体33と、外壁体33以外の内壁となる内壁体34と、を備える建物の放射冷暖房装置1であって、外壁体33は、外気との熱貫流量Qを略ゼロにする第1冷暖房装置33であり、外気と建物2の緩衝室内気351ないし被空調室内気361との間における熱貫流を低減する第1断熱材331と、第1断熱材331よりも屋内側に設けられる緩衝室内気351ないし被空調室内気361の温度と略同じ温度の水を流通させる第1管部材334と、を備え、内壁体34は、建物2の屋内を放射冷暖房する第2冷暖房装置34であり、緩衝室内気351ないし被空調室内気361の温度よりも高温ないし低温の水を流通させる第2管部材342と、を備えている。
[Effects of the building radiant cooling and heating system of the third embodiment]
As described above, according to the third embodiment, for example, as shown in FIGS. 4 and 5, the radiation of a building including the outer wall body 33 serving as an outer wall and the inner wall body 34 serving as an inner wall other than the outer wall body 33. In the air conditioning apparatus 1, the outer wall body 33 is a first air conditioning apparatus 33 that makes the heat flow rate Q with the outside air substantially zero, and is between the outside air and the buffered indoor air 351 or the air-conditioned indoor air 361 of the building 2. The first heat insulating material 331 for reducing heat flow through the first heat insulating material 331, and the first pipe member for circulating water having substantially the same temperature as the temperature of the buffered indoor air 351 or the air-conditioned indoor air 361 provided on the indoor side of the first heat insulating material 331 334, and the inner wall 34 is a second air conditioner 34 that radiates and heats the inside of the building 2 and circulates water at a temperature higher or lower than the temperature of the buffered indoor air 351 or the air-conditioned indoor air 361. A two-tube member 342 That.

まず、外壁体33は、熱貫流量Qが略ゼロの第1冷暖房装置33であり、具体的には、例えば、外気が高温であり、建物2内を冷房する場合、第1管部材334を流通する冷媒の水と緩衝室内気351ないし被空調室内気361との温度が同じであるため、第1管部材334から屋内側では熱の流出入が起きず、熱収支はゼロとなる。つまり、冷媒の水の冷熱は、全て外気から流入する熱量と収支させるために用いられる。よって、第1冷暖房装置33は、外気と緩衝室内気351ないし被空調室内気361との間で熱貫流が起こらない(冷房の場合、外気から緩衝室内気351ないし被空調室内気361へと熱が流入しない)ようになっている。   First, the outer wall 33 is the first air-conditioning / heating device 33 having a substantially zero heat-transmission flow rate Q. Specifically, for example, when the outside air is hot and the inside of the building 2 is cooled, the first pipe member 334 is installed. Since the temperature of the circulating refrigerant water and the buffered indoor air 351 or the air-conditioned indoor air 361 are the same, no heat flows in and out from the first pipe member 334 indoors, and the heat balance becomes zero. That is, the cooling water of the coolant is used to balance the amount of heat flowing from the outside air. Therefore, in the first air conditioner 33, heat does not flow between the outside air and the buffered room air 351 or the air-conditioned room air 361 (in the case of cooling, heat is transferred from the outside air to the buffered room air 351 or the air-conditioned room air 361. Does not flow in).

これに対し、第2冷暖房装置34は、冷房の場合、第1冷暖房装置33と違い緩衝室内気351ないし被空調室内気361の温度よりも低温の流体を第2管部材342に流通させるので、冷媒から緩衝室内気351ないし被空調室内気361へと冷熱が流入する。すなわち、第2冷暖房装置34は、緩衝室内気351ないし被空調室内気361の温度を低下させる(空調する)ことができる。
すなわち、言い換えるならば、第1冷暖房装置33は、外気から流出入する顕熱に対して相殺するように熱を流出入させ、顕熱収支を保ち、外気からの顕熱が屋内空気に影響を与えない(熱負荷ゼロ)ようにしている。
On the other hand, in the case of cooling, the second air conditioner 34 circulates a fluid having a temperature lower than the temperature of the buffered indoor air 351 or the air-conditioned indoor air 361 through the second pipe member 342, unlike the first air conditioning device 33. Cold heat flows from the refrigerant into the buffered indoor air 351 or the air-conditioned indoor air 361. That is, the second air conditioner 34 can reduce (air-condition) the temperature of the buffered indoor air 351 or the air-conditioned indoor air 361.
That is, in other words, the first air conditioner 33 causes the heat to flow in and out so as to cancel out the sensible heat flowing in and out from the outside air, maintains the sensible heat balance, and the sensible heat from the outside air affects the indoor air. Do not give (no heat load).

これに対し、第2冷暖房装置34は、冷媒の冷熱により緩衝室内気351ないし被空調室内気361の顕熱を積極的に奪い(冷房の場合)に行くことで、緩衝室内気351ないし被空調室内気361の温度を低下させている。
このため、冷媒が熱交換する外気ないし緩衝室内気351ないし被空調室内気361との温度差が小さくなり、熱損失が少なくて済み、冷房効果を良好なものとすることができる。
On the other hand, the second air conditioner 34 actively takes away the sensible heat of the buffered indoor air 351 or the air-conditioned indoor air 361 by the cold heat of the refrigerant (in the case of cooling), so that the buffered indoor air 351 or the air-conditioned air is supplied. The temperature of the indoor air 361 is lowered.
For this reason, the temperature difference with the outside air through which the refrigerant exchanges heat, the buffered indoor air 351, or the air-conditioned indoor air 361 is reduced, heat loss can be reduced, and the cooling effect can be improved.

また、冷媒の温度を上げて温度差が小さくなるので、熱放射面TRSが結露するという問題も生じるおそれがなくなる。
なお、冷房の場合について説明してきたが、暖房の場合においても同様に熱媒と外気および緩衝室内気351ないし被空調室内気361との温度差を小さくすることができるため、熱量損失が少なく、暖房効果を良好なものとすることができる。
Further, since the temperature difference is reduced by increasing the temperature of the refrigerant, there is no possibility of causing the problem that the heat radiation surface TRS is condensed.
In the case of cooling, the temperature difference between the heat medium and the outside air and the buffered indoor air 351 or the air-conditioned indoor air 361 can be reduced similarly in the case of heating. The heating effect can be improved.

また、第3実施形態によれば、例えば、図5に示すように、内壁体34は、建物2の収納室41、廊下および階段45に面する壁面に緩衝室内気351ないし被空調室内気361との間における熱貫流を低減する第2断熱材341を備えるものとした。
こうすることで、第2断熱材341を備えない場合のように内壁体34の両面から均等に熱放射することなく、任意の壁面から選択的に熱放射することができる。
また、第2断熱材341が収納室41、廊下および階段45に面する壁面に設けられるので、居室42,43,44のように居住者が常駐することのない空間に対して熱放射量を低減し、居室42,43,44に面した熱放射面TRSから低減した熱量分を付加して熱放射することができる。
すなわち、緩衝室内気351および被空調室内気361全体を均一に空調するのではなく、居住者の利用状況に応じて空調の強弱を設定することができる。
Further, according to the third embodiment, for example, as shown in FIG. 5, the inner wall 34 has a buffered room air 351 or an air-conditioned room air 361 on the wall surface facing the storage room 41, the corridor and the stairs 45 of the building 2. The 2nd heat insulating material 341 which reduces the heat flow between is provided.
By doing so, it is possible to selectively radiate heat from an arbitrary wall surface without radiating heat equally from both surfaces of the inner wall body 34 as in the case where the second heat insulating material 341 is not provided.
In addition, since the second heat insulating material 341 is provided on the wall surface facing the storage room 41, the corridor, and the stairs 45, the amount of heat radiation can be reduced for a space where a resident is not resident, such as the living rooms 42, 43, and 44. The heat can be radiated by adding a reduced amount of heat from the heat radiation surface TRS facing the living rooms 42, 43, 44.
That is, instead of uniformly air-conditioning the buffered room air 351 and the air-conditioned room air 361 as a whole, the strength of air conditioning can be set according to the use situation of the resident.

まず、例えば、第2冷暖房装置34に面して家具F等を配置する場合、熱放射面TRSと家具Fとの間の滞留空気が過冷却され、熱放射面TRSが結露するというおそれがある。
これに対し、第3実施形態によれば、例えば、図7,8に示すように、第2管部材342は、複数系統の流通路を備え、第2冷暖房装置34は、内壁体34内の流通路の任意の系統に緩衝室内気351ないし被空調室内気361の温度と略同じ温度の水を流通させることにより、一部が第1冷暖房壁体37に切り替えられるものとした。
First, for example, when the furniture F or the like is arranged facing the second air conditioner 34, the accumulated air between the heat radiation surface TRS and the furniture F is supercooled, and the heat radiation surface TRS may be condensed. .
On the other hand, according to the third embodiment, for example, as shown in FIGS. 7 and 8, the second pipe member 342 includes a plurality of flow paths, and the second air conditioner 34 is provided in the inner wall body 34. A part of the flow path is switched to the first cooling / heating wall body 37 by flowing water having a temperature substantially equal to the temperature of the buffered room air 351 or the air-conditioned room air 361 to an arbitrary system of the flow path.

こうすることで、第2冷暖房装置34に面して家具F等を配置する場合、家具F等を配置する内壁体34に設けられる第2管部材342の流通路を流通する冷媒の温度を第1冷暖房装置33を流通する冷媒と同じ温度に切り替えることで、当該箇所を第2冷暖房装置34から第1冷暖房壁体37に切り替えることができるので、上述のような熱放射面TRSが結露するようなおそれをなくすことができる。   In this way, when the furniture F or the like is arranged facing the second air conditioner 34, the temperature of the refrigerant flowing through the flow path of the second pipe member 342 provided on the inner wall body 34 on which the furniture F or the like is arranged is changed to the first. By switching to the same temperature as the refrigerant flowing through the first air conditioning device 33, the location can be switched from the second air conditioning device 34 to the first air conditioning wall body 37, so that the heat radiation surface TRS as described above is condensed. Furthermore it can be eliminated.

以上、本発明を本実施形態に基づいて具体的に説明してきたが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
第3実施形態では、第2冷暖房装置34が第2断熱材341を備えるものとしたが、これに限らない、例えば、第2断熱材341を備えないものとしてもよい。
すなわち、このような構成の第2冷暖房装置34は、壁面の両面が熱放射面TRSとなる。
このため、第2冷暖房装置34の壁面両側が居室であるような場合、壁面の両面から熱放射することができる。
As mentioned above, although this invention was concretely demonstrated based on this embodiment, this invention is not limited to the said embodiment, It can change in the range which does not deviate from the summary.
In 3rd Embodiment, although the 2nd air conditioning apparatus 34 shall be provided with the 2nd heat insulating material 341, for example, it is good also as a thing not including the 2nd heat insulating material 341.
That is, as for the 2nd air conditioning apparatus 34 of such a structure, both surfaces of a wall surface become the thermal radiation surface TRS.
For this reason, when both wall surfaces of the second air conditioner 34 are living rooms, heat can be radiated from both surfaces of the wall surface.

また本実施形態では、壁面構成材および面構成材と断熱材とを別部材としたが、これに限らず、例えば、壁面構成材および面構成材をそれ自体が断熱材として機能させられるものとして、断熱材と壁面構成材とを兼ねる構成としてもよい。   In the present embodiment, the wall surface constituent material and the surface constituent material and the heat insulating material are separate members. However, the present invention is not limited to this. For example, the wall surface constituent material and the surface constituent material can function as a heat insulating material. Also, it may be configured to serve as both a heat insulating material and a wall surface constituting material.

1 放射冷暖房装置(冷暖房装置)
2 建物
3 外壁体
4 外側断熱材
5 壁内管部材
6 内側断熱材
7 壁面材
13 外壁体
14 内壁体
15 緩衝室
16 被空調室
23 屋根体
24 天井体
25 小屋裏空間
26 被空調室
33 第1冷暖房装置(外壁体)
34 第2冷暖房装置(内壁体)
35 緩衝室
36 被空調室
37 第1冷暖房壁体
38 第1温度制御手段
39 第2温度制御手段
41 収納室
42 第1居室
43 第2居室
44 第3居室
45 廊下および階段
131 第1断熱材
132 低放射率材
133 壁面材
141 第2断熱材
142 第2管部材(冷暖房手段)
144 壁面材
151 緩衝室内気
161 被空調室内気
231 第1断熱材
232 低放射率材
233 壁面材
241 第2断熱材
242 第2管部材(冷暖房手段)
244 天井面材
251 小屋裏内気
261 被空調室内気
331 第1断熱材
333 壁面材
334 第1管部材(第1冷暖房手段)
341 第2断熱材
342 第2管部材(第2冷暖房手段)
344 壁面材
351 緩衝室内気
361 被空調室内気
371 第2断熱材
372 第2管部材(第1冷暖房手段)
411 窓
412 窓
421 窓
422 窓
431 窓
432 窓
441 窓
442 窓
451 窓
A 伝熱面積
F 家具
K 熱貫流率
Q 熱貫流量
R 熱貫流抵抗値
S1 第1ステップ
S2 第2ステップ
S3 第3ステップ
S4 第4ステップ
S5 第5ステップ
S6 第6ステップ
S7 第7ステップ
TRS 熱放射面(第1空調面、第2空調面)
1 Radiant air conditioner (air conditioner)
2 Building 3 Outer wall body 4 Outer heat insulating material 5 Inner wall member 6 Inner heat insulating material 7 Wall surface material 13 Outer wall body 14 Inner wall body 15 Buffer room 16 Air-conditioned room 23 Roof body 24 Ceiling body 25 Hut space 26 Air-conditioned room 33 1 Air conditioning unit (outer wall)
34 Second air conditioning unit (inner wall)
35 Buffer room 36 Air-conditioned room 37 First cooling / heating wall 38 First temperature control means 39 Second temperature control means 41 Storage room 42 First living room 43 Second living room 44 Third living room 45 Corridor and staircase 131 First heat insulating material 132 Low emissivity material 133 Wall surface material 141 Second heat insulating material 142 Second pipe member (cooling and heating means)
144 Wall material 151 Buffer room air 161 Air-conditioned room air 231 First heat insulating material 232 Low emissivity material 233 Wall material 241 Second heat insulating material 242 Second pipe member (cooling and heating means)
244 Ceiling surface material 251 Inside air inside cabin 261 Air to be conditioned Air 331 First heat insulating material 333 Wall surface material 334 First pipe member (first air conditioning unit)
341 Second heat insulating material 342 Second pipe member (second air conditioning unit)
344 Wall material 351 Buffer room air 361 Air-conditioned room air 371 Second heat insulating material 372 Second pipe member (first air-conditioning means)
411 Window 412 Window 421 Window 422 Window 431 Window 432 Window 441 Window 442 Window 442 Window 451 Window A Heat transfer area F Furniture K Heat flow rate Q Heat flow rate R Heat flow resistance value S1 First step S2 Second step S3 Third step S4 4th step S5 5th step S6 6th step S7 7th step TRS Heat radiation surface (1st air conditioning surface, 2nd air conditioning surface)

Claims (10)

被空調室と、前記被空調室に隣接し、内壁体によって仕切られる緩衝室と、を備えており、
前記緩衝室は、外壁となる外壁体によって外部と仕切られており、
前記内壁体は、断熱材と、前記断熱材よりも前記被空調室側に設けられる冷暖房手段と、を備えていることを特徴とする建物。
An air-conditioned room, and a buffer room adjacent to the air-conditioned room and partitioned by an inner wall,
The buffer chamber is partitioned from the outside by an outer wall body serving as an outer wall,
The said inner wall body is equipped with the heat insulating material and the air-conditioning means provided in the said to-be-air-conditioned room side rather than the said heat insulating material, The building characterized by the above-mentioned.
被空調室と、前記被空調室に隣接し、天井体によって仕切られる小屋裏空間と、を備えており、
前記小屋裏空間は、屋根となる屋根体によって外部と仕切られており、
前記天井体は、断熱材と、前記断熱材よりも前記被空調室側に設けられる冷暖房手段と、を備えていることを特徴とする建物。
An air-conditioned room, and a shed space adjacent to the air-conditioned room and partitioned by a ceiling body,
The attic space is partitioned from the outside by a roof body that is a roof,
The said ceiling body is equipped with the heat insulating material and the air conditioning means provided in the said air-conditioned room side rather than the said heat insulating material, The building characterized by the above-mentioned.
請求項1または2に記載の建物において、
前記外壁体の前記緩衝室側の壁面または前記屋根体の前記小屋裏空間側の面には、放射率の低い低放射率材が設けられることを特徴とする建物。
In the building according to claim 1 or 2,
A low emissivity material having a low emissivity is provided on a wall surface of the outer wall body on the buffer chamber side or a surface of the roof body on the hut space side.
請求項1から3のいずれか一項に記載の建物において、
前記緩衝室または前記小屋裏空間は、居室以外の空間であることを特徴とする建物。
In the building according to any one of claims 1 to 3,
The building, wherein the buffer room or the attic space is a space other than a living room.
外壁となる外壁体と、前記外壁体以外の内壁となる内壁体と、を備える建物であって、
前記外壁体は、第1断熱材と、前記第1断熱材よりも屋内側に設けられる第1冷暖房手段と、を備え、
前記内壁体は、第2冷暖房手段を備え、
前記第1冷暖房手段は、外気からの熱貫流を低減し、
前記第2冷暖房手段は、屋内空気の熱量を増減することを特徴とする建物。
A building comprising an outer wall body serving as an outer wall and an inner wall body serving as an inner wall other than the outer wall body,
The outer wall body includes a first heat insulating material, and a first air conditioning unit provided on the indoor side of the first heat insulating material,
The inner wall body includes a second air conditioning unit,
The first air conditioning unit reduces heat flow from the outside air,
The building characterized in that the second air conditioning unit increases or decreases the amount of heat of indoor air.
請求項5に記載の建物において、
前記内壁体は、一方の壁面側に第2断熱材を備えることを特徴とする建物。
In the building according to claim 5,
The said inner wall body is equipped with the 2nd heat insulating material in one wall surface side, The building characterized by the above-mentioned.
請求項5または6に記載の建物において、
前記第2冷暖房手段は、任意に前記第1冷暖房手段に切り替わることを特徴とする建物。
In the building according to claim 5 or 6,
The second air conditioning unit is arbitrarily switched to the first air conditioning unit.
第1断熱材を備える外壁体に設けられる第1冷暖房手段と、内壁体に設けられる第2冷暖房手段と、を備える冷暖房装置であって、
前記第1冷暖房手段は、前記第1冷暖房手段よりも屋内側に設けられる前記外壁体の壁面が接する気体の温度と略同じ温度になるように前記壁面の温度を制御する第1温度制御手段を備え、
前記第2冷暖房手段は、前記第2冷暖房手段よりも屋内側に設けられる前記内壁体の壁面が接する気体の温度よりも暖房時には高温となり、冷房時には低温となるように前記壁面の温度を制御する第2温度制御手段を備えることを特徴とする冷暖房装置。
An air conditioning apparatus comprising: a first air conditioning unit provided on an outer wall body including a first heat insulating material; and a second air conditioning unit provided on an inner wall body,
The first air-conditioning means includes first temperature control means for controlling the temperature of the wall surface so that the temperature of the wall surface of the outer wall body provided on the indoor side with respect to the first air-conditioning means is substantially the same as the temperature of the gas in contact therewith. Prepared,
The second air conditioning unit controls the temperature of the wall surface so that the temperature is higher during heating and lower than the temperature of the gas contacting the wall surface of the inner wall provided on the indoor side than the second air conditioning unit. An air conditioning apparatus comprising second temperature control means.
請求項8に記載の冷暖房装置において、
前記内壁体は、前記第2冷暖房手段よりも一方の壁面側に設けられる第2断熱材を備えることを特徴とする冷暖房装置。
The air conditioning apparatus according to claim 8,
The said inner wall body is equipped with the 2nd heat insulating material provided in one wall surface side rather than the said 2nd air conditioning means, The air conditioning apparatus characterized by the above-mentioned.
請求項9に記載の冷暖房装置において、
前記第2冷暖房手段は、任意に前記第1冷暖房手段に切り替わることを特徴とする冷暖房装置。
The air conditioning apparatus according to claim 9,
The second air conditioning unit is optionally switched to the first air conditioning unit.
JP2016007158A 2016-01-18 2016-01-18 building Active JP6750946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016007158A JP6750946B2 (en) 2016-01-18 2016-01-18 building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016007158A JP6750946B2 (en) 2016-01-18 2016-01-18 building

Publications (2)

Publication Number Publication Date
JP2017128853A true JP2017128853A (en) 2017-07-27
JP6750946B2 JP6750946B2 (en) 2020-09-02

Family

ID=59396023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016007158A Active JP6750946B2 (en) 2016-01-18 2016-01-18 building

Country Status (1)

Country Link
JP (1) JP6750946B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740608A (en) * 2017-09-18 2018-02-27 广东拓迪智能科技有限公司 A kind of cooling system of Mobile Library
WO2020244533A1 (en) * 2019-06-04 2020-12-10 深圳市新天能科技开发有限公司 Prefabricated passive energy-saving house and construction method therefor
JP2021139275A (en) * 2020-03-06 2021-09-16 ミサワホーム株式会社 Room space unit and residence

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740608A (en) * 2017-09-18 2018-02-27 广东拓迪智能科技有限公司 A kind of cooling system of Mobile Library
WO2020244533A1 (en) * 2019-06-04 2020-12-10 深圳市新天能科技开发有限公司 Prefabricated passive energy-saving house and construction method therefor
JP2021139275A (en) * 2020-03-06 2021-09-16 ミサワホーム株式会社 Room space unit and residence
JP7012816B2 (en) 2020-03-06 2022-01-28 ミサワホーム株式会社 Room space unit and housing

Also Published As

Publication number Publication date
JP6750946B2 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
Olesen Radiant Floor Cooling Systems.
EP3194677B1 (en) Thermal shell, in particular for a building
KR101048857B1 (en) Radiant air conditioning system and its control method
US20110127341A1 (en) Air conditioner controller
JPWO2010049998A1 (en) Air conditioner and relay device
JP2008134032A (en) Air conditioning system
JP2013238371A (en) Heating system
JP6750946B2 (en) building
JP2011021417A (en) Cooling device
JP3164069U (en) Building structure with circulation path in the wall
JP2008281319A (en) Air-conditioning outdoor unit connected type hot cold water system floor heating cooling unit
JP5081023B2 (en) Building air conditioning system and building equipped with the same
KR200439886Y1 (en) Floor Radiation with Convection Cooling Heating and Ventilation System
JP2006132823A (en) Indoor air-conditioning system of building
JP2014142150A (en) Air conditioning panel and panel air conditioner
JP4698204B2 (en) Indoor air conditioning system for buildings
JP2008304167A (en) Hot-water supply facility for multiple dwelling house
JP2019100179A (en) Radiation heat utilization building
JP2019100179A5 (en)
JP2013245829A (en) Radiant type air conditioner
JP3727229B2 (en) Air circulation type air conditioning system
JP2005195223A (en) Room air conditioning system utilizing heat in underfloor space
JP2019100110A (en) Radiation heat utilization building
JP6224881B2 (en) Radiant air conditioning system
CN107606824A (en) Evaporator and air-conditioning refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200813

R150 Certificate of patent or registration of utility model

Ref document number: 6750946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150