JP2009236458A - Indoor air conditioning system using geothermal heat - Google Patents

Indoor air conditioning system using geothermal heat Download PDF

Info

Publication number
JP2009236458A
JP2009236458A JP2008086219A JP2008086219A JP2009236458A JP 2009236458 A JP2009236458 A JP 2009236458A JP 2008086219 A JP2008086219 A JP 2008086219A JP 2008086219 A JP2008086219 A JP 2008086219A JP 2009236458 A JP2009236458 A JP 2009236458A
Authority
JP
Japan
Prior art keywords
outside air
room
air
enthalpy
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008086219A
Other languages
Japanese (ja)
Other versions
JP5221994B2 (en
Inventor
Hironori Tanaka
宏典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2008086219A priority Critical patent/JP5221994B2/en
Publication of JP2009236458A publication Critical patent/JP2009236458A/en
Application granted granted Critical
Publication of JP5221994B2 publication Critical patent/JP5221994B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F5/005Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using energy from the ground by air circulation, e.g. "Canadian well"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an indoor air conditioning system using geothermal heat can cool the inside of a room by outside air passing through a geothermal heat exchanging part in summer, for example, and furthermore, cool the inside of the room by directly feeding outside air into the room, and maintain an indoor cooling action by the outside air passing through the geothermal heat exchanging part over a long period of time. <P>SOLUTION: When the outside air enthalpy is higher than each enthalpy of an air outlet 9 of the geothermal heat exchanging part 4 and a room 1, an air conditioning mode using geothermal heat for feeding outside air passing through the geothermal heat exchanging part 4 into the room 1 is formed, and when the outside air enthalpy is lower than each enthalpy of the air outlet 9 of the geothermal heat exchanging part 4 and the room 1, the outside air is directly fed into the room 1, and an air conditioning and underground cold storage mode directly using outside air for feeding outside air directly into the room 1 and into the geothermal heat exchanging part 4 for underground cold storage is formed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、地中熱利用室内空調システムに関する。   The present invention relates to a geothermal indoor air conditioning system.

通過する外気と地中熱とに熱交換を行わせる地中熱熱交換部が備えられ、外気を該地中熱熱交換部に通して室内に送り込むことで、地中熱を利用して、室内を、夏季は涼しくし、冬季は暖かくする、地中熱利用室内空調システムは、従来より知られている。   A ground heat heat exchanging section that exchanges heat between the passing outside air and the ground heat is provided, and by sending the outside air into the room through the ground heat heat exchanging section, using the ground heat, 2. Description of the Related Art Conventionally, a geothermal indoor air conditioning system that makes a room cool in summer and warm in winter has been known.

また、この地中熱利用室内空調システムにおいて、夏季の夜間や明け方において、外気温が室内の温度及び地中熱の温度よりも低くなった場合に、外気を直接、室内に送り込んで室内を涼しくしたり、冬季の日中において、外気温が室内の温度及び地中熱の温度よりも高くなった場合に、外気を直接、室内に送り込んで室内を暖かくすることができるようになされたシステムも知られている。
特開2005−24140号公報
In addition, in this indoor air-conditioning system using geothermal heat, when the outside air temperature becomes lower than the indoor temperature and the ground heat temperature at night or at dawn in summer, the outside air is directly sent into the room to cool the room. In addition, when the outside air temperature becomes higher than the temperature of the room and the ground heat during the daytime in winter, there is also a system that can send the outside air directly into the room to warm the room. Are known.
JP-A-2005-24140

しかしながら、上記の地中熱利用室内空調システムでは、夏季には、外気が地中熱熱交換部を通過することで熱交換部周囲の地熱の温度が上昇していき、そのため、地中熱による外気冷却作用、ひいては、室内冷却作用が経時的に弱いものなっていくという問題がある。   However, in the indoor heat-use indoor air conditioning system described above, in the summer, the temperature of the geothermal heat around the heat exchange section rises due to the outside air passing through the geothermal heat exchange section. There is a problem that the outside air cooling action, and hence the room cooling action, becomes weaker with time.

また、冬季には、外気が地中熱熱交換部を通過することで熱交換部周囲の地熱の温度が下降していき、そのため、地中熱利用による外気加温作用、ひいては、室内加温作用が経時的に弱いものなっていくという問題がある。   In addition, in winter, the temperature of geothermal heat around the heat exchanger decreases as the outside air passes through the underground heat exchanger. There is a problem that the action becomes weaker with time.

本発明は、上記のような問題点に鑑み、夏季において、地中熱熱交換部を通過した外気で室内を涼しくすることができ、しかも、外気を直接、室内に送り込んで室内を涼しくすることもでき、加えて、地中熱熱交換部を通過した外気による室内冷却作用を長く維持することができる地中熱利用室内空調システムを提供することを第1の課題とする。   In view of the above-described problems, the present invention can cool the room with the outside air that has passed through the underground heat and heat exchanging section in the summer, and also directly sends the outside air into the room to cool the room. In addition, a first object is to provide a geothermal indoor air conditioning system that can maintain a long indoor cooling action by outside air that has passed through the geothermal heat exchanger.

また、冬季において、地中熱熱交換部を通過した外気で室内を暖かくすることができ、しかも、外気を直接、室内に送り込んで室内を暖かくすることもでき、加えて、地中熱熱交換部を通過した外気による室内加温作用を長く維持することができる地中熱利用室内空調システムを提供することを第2の課題とする。   In winter, the room can be warmed by the outside air that has passed through the underground heat heat exchanger, and the outside air can be directly sent into the room to warm the room. It is a second problem to provide a geothermal indoor air conditioning system that can maintain the indoor warming action by outside air that has passed through the section.

上記の第1の課題は、通過する外気と地中熱とに熱交換を行わせる地中熱熱交換部と、
室内の温湿度、外気の温湿度、及び、地中熱熱交換部の空気出口の温湿度を検知する各センサーと、
夏季において、前記センサーからの検知信号に基づき、外気のエンタルピーが地中熱熱交換部の空気出口及び室内の各エンタルピーよりも高いとき、地中熱熱交換部を通過した外気を室内に送り込む地中熱利用空調モードを形成し、外気のエンタルピーが地中熱熱交換部の空気出口及び室内の各エンタルピーよりも低いとき、外気を直接に室内に送り込むと共に外気を地中蓄冷のために地中熱熱交換部に送り込む外気直接利用空調兼地中蓄冷モードを形成する切換えと制御を行う切換え制御手段と
が備えられていることを特徴とする地中熱利用室内空調システムによって解決される(第1発明)。
Said 1st subject is the underground heat heat exchange part which performs heat exchange with the external air and underground heat which pass,
Each sensor that detects the temperature and humidity of the room, the temperature and humidity of the outside air, and the temperature and humidity of the air outlet of the underground heat exchange section,
In summer, based on the detection signal from the sensor, when the enthalpy of the outside air is higher than the air outlet of the underground heat exchanger and each enthalpy of the room, the outside air that has passed through the underground heat exchanger is sent into the room. When the medium heat utilization air conditioning mode is formed and the enthalpy of the outside air is lower than the air outlet of the underground heat exchanger and each enthalpy in the room, the outside air is sent directly into the room and the outside air is stored underground for cold storage in the ground. It is solved by a geothermal indoor air conditioning system characterized by comprising a switching control means for performing switching and control to form a direct outdoor air conditioning and underground cold storage mode to be sent to the heat heat exchanger (No. 1). 1 invention).

このシステムでは、夏季において、外気のエンタルピーが地中熱熱交換部の空気出口及び室内の各エンタルピーよりも高いとき、地中熱熱交換部を通過した外気を室内に送り込む地中熱利用の空調モードが形成されるようになされているので、地中熱熱交換部を通過した外気で室内を涼しくすることができる。   In this system, in the summer, when the enthalpy of the outside air is higher than the air outlet of the geothermal heat exchanger and each enthalpy of the room, the air conditioner using geothermal heat that sends the outside air that has passed through the geothermal heat exchanger to the room Since the mode is formed, it is possible to cool the room with the outside air that has passed through the underground heat exchanger.

しかも、外気のエンタルピーが地中熱熱交換部の空気出口及び室内の各エンタルピーよりも低いとき、外気を直接に室内に送り込む外気直接利用空調モードが形成されるようになされているので、外気を直接、室内に送り込んで室内を涼しくすることもできる。   In addition, when the enthalpy of the outside air is lower than the air outlet of the underground heat exchanger and each enthalpy in the room, an outside air direct use air-conditioning mode in which the outside air is directly sent into the room is formed. It can also be sent directly into the room to cool the room.

加えて、上記の外気直接利用空調モードは、外気を地中蓄冷のために地中熱熱交換部に送り込む地中蓄冷モードを兼ねているので、そのモードによって熱交換部周囲の地熱の温度が下降して蓄冷されていき、そのため、その後の地中熱利用空調モードにおいて、地中熱熱交換部を通過した外気による室内冷却作用を長く維持することができる。   In addition, since the above-mentioned direct air-conditioning mode of outside air also serves as a ground cold storage mode in which the outside air is sent to the underground heat heat exchange unit for underground cold storage, the temperature of the geothermal heat around the heat exchange unit depends on the mode. Therefore, in the subsequent geothermal heat-use air conditioning mode, the indoor cooling action by the outside air that has passed through the geothermal heat exchanger can be maintained for a long time.

上記の第2の課題は、通過する外気と地中熱とに熱交換を行わせる地中熱熱交換部と、
室内の温湿度、外気の温湿度、及び、地中熱熱交換部の空気出口の温湿度を検知する各センサーと、
冬季において、前記センサーからの検知信号に基づき、外気のエンタルピーが地中熱熱交換部の空気出口及び室内の各エンタルピーよりも低いとき、地中熱熱交換部を通過した外気を室内に送り込む地中熱利用空調モードを形成し、外気のエンタルピーが地中熱熱交換部の空気出口及び室内の各エンタルピーよりも高いとき、外気を直接に室内に送り込むと共に外気を地中蓄熱のために地中熱熱交換部に送り込む外気直接利用空調兼地中蓄熱モードを形成する切換えと制御を行う切換え制御手段と
が備えられていることを特徴とする地中熱利用室内空調システムによって解決される(第2発明)。
Said 2nd subject is the underground heat heat exchange part which performs heat exchange with the external air and underground heat which pass,
Each sensor that detects the temperature and humidity of the room, the temperature and humidity of the outside air, and the temperature and humidity of the air outlet of the underground heat exchange section,
In winter, when the enthalpy of the outside air is lower than the air outlet of the underground heat exchanger and each enthalpy of the room based on the detection signal from the sensor, the outside air that has passed through the underground heat exchanger is sent into the room. When a medium heat utilization air conditioning mode is formed and the enthalpy of the outside air is higher than the air outlet of the underground heat exchanger and each enthalpy in the room, the outside air is sent directly into the room and the outside air is stored underground for ground heat storage. It is solved by a geothermal indoor air conditioning system characterized by comprising a switching control means for performing switching and control to form a direct use air-conditioning and underground heat storage mode to be fed to the heat heat exchange section (first) 2 invention).

このシステムでは、冬季において、外気のエンタルピーが地中熱熱交換部の空気出口及び室内の各エンタルピーよりも低いとき、地中熱熱交換部を通過した外気が室内に送り込まれる地中熱利用の空調モードが形成されるようになされているので、地中熱熱交換部を通過した外気で室内を暖かくすることができる。   In this system, in winter, when the enthalpy of the outside air is lower than the air outlet of the geothermal heat exchanger and each enthalpy in the room, the outside air that has passed through the geothermal heat exchanger is used for geothermal heat utilization. Since the air conditioning mode is formed, the room can be warmed by the outside air that has passed through the underground heat heat exchanger.

しかも、外気のエンタルピーが地中熱熱交換部の空気出口及び室内の各エンタルピーよりも高いとき、外気が直接に室内に送り込まれる外気直接利用空調モードが形成されるようになされているので、外気を直接、室内に送り込んで室内を暖かくすることもできる。   In addition, when the enthalpy of the outside air is higher than the air outlet of the underground heat exchanger and each enthalpy in the room, an outside air direct use air conditioning mode is formed in which the outside air is directly sent into the room. Can be sent directly into the room to warm the room.

加えて、上記の外気直接利用空調モードは、外気を地中蓄熱のために地中熱熱交換部に送り込む地中蓄熱モードを兼ねているので、そのモードによって熱交換部周囲の地熱の温度が上昇して蓄熱されていき、そのため、その後の地中熱利用空調モードにおいて、地中熱熱交換部を通過した外気による室内加温作用を長く維持することができる。   In addition, the outdoor air direct use air-conditioning mode also serves as an underground heat storage mode in which the outside air is sent to the underground heat heat exchanger for underground heat storage. As it rises and stores heat, the indoor warming action by the outside air that has passed through the underground heat heat exchanger can be maintained for a long time in the subsequent underground heat-utilizing air conditioning mode.

本発明は、以上のとおりのものであるから、夏季において、地中熱熱交換部を通過した外気で室内を涼しくすることができ、しかも、外気を直接、室内に送り込んで室内を涼しくすることもでき、加えて、地中熱熱交換部を通過した外気による室内冷却作用を長く維持することができる。   Since the present invention is as described above, in the summer, the room can be cooled by the outside air that has passed through the underground heat exchange section, and the outside air can be directly sent into the room to cool the room. In addition, the indoor cooling action by the outside air that has passed through the underground heat exchange section can be maintained for a long time.

また、冬季において、地中熱熱交換部を通過した外気で室内を暖かくすることができ、しかも、外気を直接、室内に送り込んで室内を暖かくすることもでき、加えて、地中熱熱交換部を通過した外気による室内加温作用を長く維持することができる。   In winter, the room can be warmed by the outside air that has passed through the underground heat heat exchanger, and the outside air can be directly sent into the room to warm the room. The indoor warming action by the outside air that has passed through the section can be maintained for a long time.

次に、本発明の実施最良形態を図面に基づいて説明する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings.

図1に示す実施形態の地中熱利用室内空調システムにおいて、1は建物の室内、2は外気取入れ口、3は建物の地下に設けられた外気分岐室、4は建物の地下に設けられた地中熱熱交換部、5はチムニーであり、
チムニー5は、太陽熱で暖められて上昇気流を生成し、天井裏空間部6の空気を誘引して屋外に排出する作用を行うようになされており、その誘引力が、天井7に設けられた第1通気口8を通じて室内1に及ぼされ、また、床面に設けられた第2通気口9を通じて地中熱熱交換部4内の外気通路に及ぼされ、更に、床面、及び、地中熱熱交換部4と外気分岐室3とを区画する壁10に設けられた第3,第4の通気口11,12を通じて外気分岐室3に及ぼされ、外気取入れ口2に及ぼされて、外気が、外気取入れ口2を通じて、外気分岐室3内へと送り込まれ、チムニー5から排出される、温度差換気(重力換気)が行われるようになされている。
In the geothermal indoor air conditioning system of the embodiment shown in FIG. 1, 1 is a building interior, 2 is an outside air intake, 3 is an outside air branch room provided in the basement of the building, and 4 is provided in the basement of the building. Geothermal heat exchange section, 5 is a chimney,
The chimney 5 is heated by solar heat to generate an updraft, attracts the air in the ceiling space 6 and discharges it outdoors, and the attraction force is provided on the ceiling 7. It extends to the room 1 through the first vent 8, and to the outside air passage in the underground heat exchange section 4 through the second vent 9 provided on the floor, and further to the floor and underground The heat and heat exchanging section 4 and the outside air branch chamber 3 are passed through the third and fourth vents 11 and 12 provided in the wall 10 and partitioned into the outside air branch chamber 3 and the outside air intake port 2 and then outside air. However, temperature difference ventilation (gravity ventilation) is carried out through the outside air inlet 2 into the outside air branch chamber 3 and discharged from the chimney 5.

また、上記の第2,第3,第4の各通気口9,11,12は、該通気口の開度を調節可能な開閉機構を具備しており、これらの開閉機構が切換え手段を構成している。   Each of the second, third, and fourth vents 9, 11, and 12 includes an opening / closing mechanism capable of adjusting the opening degree of the vent, and these opening / closing mechanisms constitute switching means. is doing.

そして、室内1には、室内1の温湿度を検知する第1センサー13が設けられると共に、外気取入れ口2付近には、外気の温湿度を検知する第2センサー14が設けられ、更に、第2通気口9には、地中熱熱交換部4の空気出口の温湿度を検知する第3センサー15が設けられ、これらセンサー13,14,15からの検知信号に基づき、制御手段としての制御部16が、各部のエンタルピーを算出し、上記の第2〜第4の通気口9,11,12に備えられた開閉機構を制御して、夏季と冬季においてそれぞれ、次のようなモードの切換え制御を行うようになされている。なお、このように、本実施形態では、制御部16と、第2,第3,第4の各通気口9,11,12に備えられた開閉機構とが、本発明における切換え制御手段を構成している。   The room 1 is provided with a first sensor 13 for detecting the temperature and humidity of the room 1, and a second sensor 14 for detecting the temperature and humidity of the outside air is provided near the outside air inlet 2, and The second vent 9 is provided with a third sensor 15 that detects the temperature and humidity of the air outlet of the underground heat exchanger 4, and controls as control means based on detection signals from these sensors 13, 14, 15. The section 16 calculates the enthalpy of each section and controls the opening / closing mechanism provided in the second to fourth vents 9, 11 and 12 to switch between the following modes in summer and winter respectively. Control is made to be done. In this way, in this embodiment, the control unit 16 and the opening / closing mechanisms provided in the second, third, and fourth vents 9, 11, and 12 constitute the switching control means in the present invention. is doing.

即ち、夏季においては、
・ 図2(イ)に示すように、外気のエンタルピーAが、地中熱熱交換部4の空気出口9のエンタルピーBや室内1のエンタルピーCよりも高いとき(例えばC<B<A)は、第3通気口11が閉じられ、第2,第4通気口9,12が開かれて、地中熱熱交換部4を通過した外気が必要換気量分だけ室内1に送り込まれる地中熱利用の空調モード(夏季第1モード)が形成され、
・ 図2(ロ)に示すように、外気のエンタルピーAが、地中熱熱交換部4の空気出口9のエンタルピーBや室内1のエンタルピーCよりも低いとき(A<B,A<C)は、第3通気口11が開かれて外気が直接に室内1に送り込まれると共に、第4通気口12も開かれて外気が地中蓄冷のために地中熱熱交換部4に送り込まれる外気直接利用空調兼地中蓄冷モード(夏季第2モード)が形成される(なお、地中蓄冷モードにおいて、地中熱熱交換部4を通過した外気は屋外に排出されてもよいし、室内1に導入されてもよい。以下同様。)
ようになされている。
That is, in the summer,
As shown in FIG. 2 (a), when the enthalpy A of the outside air is higher than the enthalpy B of the air outlet 9 of the underground heat exchanger 4 and the enthalpy C of the room 1 (for example, C <B <A). The third ventilation hole 11 is closed, the second and fourth ventilation holes 9 and 12 are opened, and the underground heat that the outside air that has passed through the underground heat exchange section 4 is sent into the room 1 by the required ventilation amount. Air conditioning mode of use (summer first mode) is formed,
As shown in FIG. 2 (b), when the enthalpy A of the outside air is lower than the enthalpy B of the air outlet 9 of the underground heat exchanger 4 or the enthalpy C of the room 1 (A <B, A <C) The third vent 11 is opened and the outside air is directly sent into the room 1, and the fourth vent 12 is also opened and the outside air is sent to the underground heat heat exchanger 4 for underground cold storage. A direct use air conditioning and underground cold storage mode (summer second mode) is formed. (In the underground cold storage mode, the outside air that has passed through the underground heat exchange section 4 may be discharged to the outside or indoor 1 (The same shall apply hereinafter.)
It is made like that.

また、本実施形態では、夏季において、
・ 図3(ハ)に示すように、室内のエンタルピーCが、地中熱熱交換部4の空気出口9のエンタルピーBと外気のエンタルピーAよりも低く、外気のエンタルピーAが地中熱熱交換部4の空気出口9のエンタルピーBよりも低いときは(C<A<B)、第3通気口11が小さい開度で開かれて換気に必要な最小限風量の外気が直接室内1に送り込まれると共に、第4通気口12が開かれて外気が地中蓄冷のために地中熱熱交換部4に送り込まれる夏季第3のモードが形成され、
・ 図3(ニ)に示すように、地中熱熱交換部4の空気出口9のエンタルピーBが、外気のエンタルピーAや室内のエンタルピーCよりも低いときは(B<A,B<C)、外気のエンタルピーAと室内のエンタルピーCとの高低関係に基づいて、第2,第4通気口9,12の開度と、第3通気口11の開度とが調節され、地中熱利用の空調モード、外気直接利用空調モード、及び、地中熱利用空調兼外気直接利用空調モード(夏季第4のモード群)のいずれか一つのモードが形成されるようになされている。
In this embodiment, in the summer,
-As shown in Fig. 3 (c), the enthalpy C in the room is lower than the enthalpy B of the air outlet 9 of the underground heat exchange section 4 and the enthalpy A of the outside air, and the enthalpy A of the outside air exchanges with the ground heat. When it is lower than the enthalpy B of the air outlet 9 of the section 4 (C <A <B), the third vent 11 is opened with a small opening and the outside air with the minimum air volume necessary for ventilation is sent directly into the room 1 In addition, a third summer mode is formed in which the fourth vent 12 is opened and the outside air is sent to the underground heat heat exchanger 4 for underground storage,
As shown in FIG. 3 (d), when the enthalpy B of the air outlet 9 of the underground heat exchanger 4 is lower than the enthalpy A of the outside air or the enthalpy C of the room (B <A, B <C) Based on the height relationship between the enthalpy A of the outside air and the enthalpy C of the room, the opening degree of the second and fourth vent holes 9 and 12 and the opening degree of the third vent hole 11 are adjusted to use the geothermal heat. Any one of an air conditioning mode, an outdoor air direct use air conditioning mode, and a geothermal heat use air conditioning / outdoor air direct use air conditioning mode (summer fourth mode group) is formed.

また、冬季においては、
・ 図4(イ)に示すように、外気のエンタルピーAが、地中熱熱交換部4の空気出口9のエンタルピーBや室内1のエンタルピーCよりも低いときは(A<B,A<C)、第3通気口11が閉じられ、第2,第4通気口9,12が開かれて、地中熱熱交換部4を通過した外気が室内1に送り込まれる地中熱利用の空調モード(冬季第1モード)が形成され、
・ 図4(ロ)に示すように、外気のエンタルピーAが、地中熱熱交換部4の空気出口9のエンタルピーBや室内1のエンタルピーCよりも高いとき(例えばC<B<A)は、第3通気口11が開かれて外気が直接に室内1に送り込まれると共に、第4通気口12も開かれて外気が地中蓄熱のために地中熱熱交換部4に送り込まれる外気直接利用空調兼地中蓄熱モード(冬季第2モード)が形成される(なお、地中蓄熱モードにおいて、地中熱熱交換部4を通過した外気は屋外に排出されてもよいし、室内1に導入されてもよい。以下同様)
ようになされている。
In winter,
As shown in FIG. 4 (a), when the enthalpy A of the outside air is lower than the enthalpy B of the air outlet 9 of the underground heat exchanger 4 or the enthalpy C of the room 1 (A <B, A <C ), The third vent 11 is closed, the second and fourth vents 9 and 12 are opened, and the outside air that has passed through the geothermal heat exchanger 4 is sent into the room 1 through the underground heat-use air conditioning mode. (Winter 1st mode) is formed,
As shown in FIG. 4 (b), when the enthalpy A of the outside air is higher than the enthalpy B of the air outlet 9 of the underground heat exchanger 4 and the enthalpy C of the room 1 (for example, C <B <A). The third vent 11 is opened and the outside air is directly sent into the room 1, and the fourth vent 12 is also opened and the outside air is directly sent to the underground heat exchange section 4 for underground heat storage. The use air conditioning and underground heat storage mode (second winter mode) is formed (in the underground heat storage mode, the outside air that has passed through the underground heat exchange section 4 may be discharged to the outside or into the room 1. (The same applies hereinafter)
It is made like that.

また、本実施形態では、冬季において、
・ 図5(ハ)に示すように、室内のエンタルピーCが、地中熱熱交換部4の空気出口9のエンタルピーBと外気のエンタルピーAよりも低く、外気のエンタルピーAが地中熱熱交換部4の空気出口9のエンタルピーBよりも低いときは(C<A<B)、第2,第4通気口9,12の開度と、第3通気口11の開度とが調節され、地中熱利用の空調モード、外気直接利用空調モード、及び、地中熱利用空調兼外気直接利用空調モード(冬季第3のモード群)のうちのいずれか一つのモードが形成され、
・ 図5(ニ)に示すように、地中熱熱交換部4の空気出口9のエンタルピーBが、外気のエンタルピーAや室内のエンタルピーCよりも低いときは(B<A,B<C)、外気のエンタルピーAと室内のエンタルピーCとの高低関係に基づいて、第2,第4通気口9,12の開度と、第3通気口11の開度とが調節され、外気直接利用空調モード、地中蓄熱モード、及び、外気直接利用空調モード兼地中蓄熱モード(冬季第4のモード群)のいずれか一つのモードが形成されるようになされている。
In this embodiment, in winter,
-As shown in FIG. 5 (c), the enthalpy C in the room is lower than the enthalpy B in the air outlet 9 of the underground heat exchange section 4 and the enthalpy A in the outside air, and the enthalpy A in the outside air is in the underground heat exchange. When it is lower than the enthalpy B of the air outlet 9 of the section 4 (C <A <B), the opening degree of the second and fourth vent holes 9 and 12 and the opening degree of the third vent hole 11 are adjusted, Any one mode of the geothermal use air conditioning mode, the outdoor air direct use air conditioning mode, and the geothermal heat use air conditioning and outdoor air direct use air conditioning mode (third mode group in winter) is formed,
As shown in FIG. 5 (d), when the enthalpy B of the air outlet 9 of the underground heat exchanger 4 is lower than the enthalpy A of the outside air or the enthalpy C of the room (B <A, B <C) Based on the height relationship between the enthalpy A of the outside air and the enthalpy C of the room, the opening degree of the second and fourth ventilation holes 9 and 12 and the opening degree of the third ventilation hole 11 are adjusted, and the outside air direct use air conditioning Any one of a mode, an underground heat storage mode, and an outside air direct use air conditioning mode and an underground heat storage mode (fourth mode group in winter) is formed.

このように、上記の地中熱利用室内空調システムでは、夏季において、図2(イ)に示すように、外気のエンタルピーAが地中熱熱交換部4の空気出口9及び室内1の各エンタルピーB,Cよりも高いとき、地中熱熱交換部4を通過した外気を室内1に送り込む地中熱利用の空調モード(夏季第1モード)が形成されるようになされているので、地中熱熱交換部4を通過した外気で室内1を涼しくすることができる。   As described above, in the above-described underground heat-utilizing indoor air conditioning system, the enthalpy A of the outside air is converted into the enthalpies of the air outlet 9 of the underground heat exchanger 4 and the indoor 1 in the summer, as shown in FIG. When it is higher than B and C, an air-conditioning mode (summer first mode) using geothermal heat that sends outside air that has passed through the geothermal heat exchanger 4 into the room 1 is formed. The room 1 can be cooled by the outside air that has passed through the heat and heat exchanger 4.

しかも、図2(ロ)に示すように、外気のエンタルピーAが地中熱熱交換部4の空気出口9及び室内1の各エンタルピーB,Cよりも低いとき、外気を直接に室内1に送り込む外気直接利用空調モード(夏季第2モード)が形成されるようになされているので、外気を直接、室内1に送り込んで室内1を涼しくすることもできる。   In addition, as shown in FIG. 2 (b), when the enthalpy A of the outside air is lower than the air outlet 9 of the underground heat exchanger 4 and the enthalpies B and C of the room 1, the outside air is directly sent into the room 1. Since the outdoor air direct use air conditioning mode (summer second mode) is formed, the outdoor air can be directly sent into the room 1 to cool the room 1.

加えて、この外気直接利用空調モード(夏季第2モード)は、外気を地中蓄冷のために地中熱熱交換部4に送り込む地中蓄冷モードを兼ねているので、そのモードによって熱交換部4の周囲の地熱の温度が下降して蓄冷されていき、そのため、その後の地中熱利用空調モード(夏季第1モード等)において、地中熱熱交換部4を通過した外気による室内冷却作用を長く維持することができる。   In addition, this outdoor air direct use air conditioning mode (summer second mode) also serves as an underground cold storage mode in which the outdoor air is sent to the underground heat heat exchanger 4 for underground cold storage. The temperature of the geothermal heat around 4 is lowered and stored in cold storage. Therefore, in the subsequent geothermal air conditioning mode (summer first mode, etc.), the indoor cooling action by the outside air that has passed through the geothermal heat exchanger 4 Can be maintained for a long time.

また、冬季においては、図4(イ)に示すように、外気のエンタルピーAが地中熱熱交換部4の空気出口9及び室内1の各エンタルピーB,Cよりも低いとき、地中熱熱交換部4を通過した外気が室内1に送り込まれる地中熱利用の空調モード(冬季第1モード)が形成されるようになされているので、地中熱熱交換部4を通過した外気で室内1を暖かくすることができる。   In winter, as shown in FIG. 4 (a), when the enthalpy A of the outside air is lower than the air outlet 9 of the underground heat exchange section 4 and the enthalpies B and C of the room 1, the underground heat Since an air conditioning mode (first winter mode) using geothermal heat in which the outside air that has passed through the exchanging section 4 is sent into the room 1 is formed, the outside air that has passed through the underground heat heat exchanging section 4 1 can be warmed.

しかも、外気のエンタルピーAが地中熱熱交換部4の空気出口9及び室内1の各エンタルピーB,Cよりも高いとき、外気が直接に室内1に送り込まれる外気直接利用空調モード(冬季第2モード)が形成されるようになされているので、外気を直接、室内1に送り込んで室内1を暖かくすることもできる。   In addition, when the enthalpy A of the outside air is higher than the air outlet 9 of the underground heat exchanger 4 and the enthalpies B and C of the room 1, the outside air direct use air conditioning mode (second winter season) in which the outside air is directly sent into the room 1 Mode) is formed, the outside air can be directly sent into the room 1 to warm the room 1.

加えて、外気直接利用空調モード(冬季第2モード)は、外気を地中蓄熱のために地中熱熱交換部4に送り込む地中蓄熱モードを兼ねているので、そのモードによって熱交換部4の周囲の地熱の温度が上昇して蓄熱されていき、そのため、その後の地中熱利用空調モード(冬季第1モード等)において、地中熱熱交換部4を通過した外気による室内加温作用を長く維持することができる。   In addition, the outdoor air direct use air conditioning mode (second winter mode) also serves as an underground heat storage mode in which the outside air is sent to the underground heat heat exchange unit 4 for underground heat storage. As the temperature of the geothermal heat around the water rises and is stored, the indoor warming action by the outside air that has passed through the geothermal heat exchange section 4 in the subsequent geothermal air conditioning mode (the first mode in winter, etc.) Can be maintained for a long time.

以上に、本発明の実施形態を示したが、本発明はこれに限られるものではなく、発明思想を逸脱しない範囲で各種の変更が可能である。例えば、上記の実施形態では、本発明の地中熱利用室内空調システムを、建物の温度差換気(重力換気)システムに適用した場合を示したが、種々の空調システムに適用することが可能である。   Although the embodiment of the present invention has been described above, the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention. For example, in the above-described embodiment, the case where the geothermal indoor air conditioning system of the present invention is applied to a temperature difference ventilation (gravity ventilation) system of a building has been shown. However, the present invention can be applied to various air conditioning systems. is there.

実施形態の地中熱利用室内空調システムを示す建物内部の正面図である。It is a front view inside the building which shows the underground heat utilization indoor air-conditioning system of an embodiment. 図(イ)及び図(ロ)はそれぞれ、同システムの運転モードを示す正面図である。FIGS. 1A and 1B are front views showing operation modes of the system. 図(ハ)及び図(ニ)はそれぞれ、同システムの他の運転モードを示す正面図である。FIGS. (C) and (D) are front views showing other operation modes of the system. 図(イ)及び図(ロ)はそれぞれ、同システムの運転モードを示す正面図である。FIGS. 1A and 1B are front views showing operation modes of the system. 図(ハ)及び図(ニ)はそれぞれ、同システムの他の運転モードを示す正面図である。FIGS. (C) and (D) are front views showing other operation modes of the system.

符号の説明Explanation of symbols

1…室内
2…外気取入れ口
4…地中熱熱交換部
9…第2通気口、出口
11…第3通気口
12…第4通気口
13,14,15…温湿度センサー
16…制御部(制御手段)
DESCRIPTION OF SYMBOLS 1 ... Indoor 2 ... Outside air intake 4 ... Geothermal heat exchanging part 9 ... 2nd vent, outlet 11 ... 3rd vent 12 ... 4th vent 13, 14, 15 ... Temperature / humidity sensor 16 ... Control part ( Control means)

Claims (2)

通過する外気と地中熱とに熱交換を行わせる地中熱熱交換部と、
室内の温湿度、外気の温湿度、及び、地中熱熱交換部の空気出口の温湿度を検知する各センサーと、
夏季において、前記センサーからの検知信号に基づき、外気のエンタルピーが地中熱熱交換部の空気出口及び室内の各エンタルピーよりも高いとき、地中熱熱交換部を通過した外気を室内に送り込む地中熱利用空調モードを形成し、外気のエンタルピーが地中熱熱交換部の空気出口及び室内の各エンタルピーよりも低いとき、外気を直接に室内に送り込むと共に外気を地中蓄冷のために地中熱熱交換部に送り込む外気直接利用空調兼地中蓄冷モードを形成する切換えと制御を行う切換え制御手段と
が備えられていることを特徴とする地中熱利用室内空調システム。
A geothermal heat exchange section that exchanges heat between the passing outside air and the underground heat,
Each sensor that detects the temperature and humidity of the room, the temperature and humidity of the outside air, and the temperature and humidity of the air outlet of the underground heat exchange section,
In summer, based on the detection signal from the sensor, when the enthalpy of the outside air is higher than the air outlet of the underground heat exchanger and each enthalpy of the room, the outside air that has passed through the underground heat exchanger is sent into the room. When the medium heat utilization air conditioning mode is formed and the enthalpy of the outside air is lower than the air outlet of the underground heat exchanger and each enthalpy in the room, the outside air is sent directly into the room and the outside air is stored underground for cold storage in the ground. A geothermal heat-use indoor air conditioning system, comprising switching control means for performing switching and control to form a direct use air-conditioning and underground cold storage mode to be sent to the heat heat exchange section.
通過する外気と地中熱とに熱交換を行わせる地中熱熱交換部と、
室内の温湿度、外気の温湿度、及び、地中熱熱交換部の空気出口の温湿度を検知する各センサーと、
冬季において、前記センサーからの検知信号に基づき、外気のエンタルピーが地中熱熱交換部の空気出口及び室内の各エンタルピーよりも低いとき、地中熱熱交換部を通過した外気を室内に送り込む地中熱利用空調モードを形成し、外気のエンタルピーが地中熱熱交換部の空気出口及び室内の各エンタルピーよりも高いとき、外気を直接に室内に送り込むと共に外気を地中蓄熱のために地中熱熱交換部に送り込む外気直接利用空調兼地中蓄熱モードを形成する切換えと制御を行う切換え制御手段と
が備えられていることを特徴とする地中熱利用室内空調システム。
A geothermal heat exchange section that exchanges heat between the passing outside air and the underground heat,
Each sensor that detects the temperature and humidity of the room, the temperature and humidity of the outside air, and the temperature and humidity of the air outlet of the underground heat exchange section,
In winter, when the enthalpy of the outside air is lower than the air outlet of the underground heat exchanger and each enthalpy in the room based on the detection signal from the sensor, the outside air that has passed through the underground heat exchanger is sent into the room. When a medium heat utilization air conditioning mode is formed and the enthalpy of the outside air is higher than the air outlet of the underground heat exchanger and each enthalpy in the room, the outside air is sent directly into the room and the outside air is stored underground for ground heat storage. An underground air-conditioning indoor air-conditioning system characterized by comprising switching control means for performing switching and control to form a direct use air-conditioning and underground heat storage mode to be sent to the heat heat exchanger.
JP2008086219A 2008-03-28 2008-03-28 Geothermal indoor air conditioning system Expired - Fee Related JP5221994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086219A JP5221994B2 (en) 2008-03-28 2008-03-28 Geothermal indoor air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086219A JP5221994B2 (en) 2008-03-28 2008-03-28 Geothermal indoor air conditioning system

Publications (2)

Publication Number Publication Date
JP2009236458A true JP2009236458A (en) 2009-10-15
JP5221994B2 JP5221994B2 (en) 2013-06-26

Family

ID=41250623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086219A Expired - Fee Related JP5221994B2 (en) 2008-03-28 2008-03-28 Geothermal indoor air conditioning system

Country Status (1)

Country Link
JP (1) JP5221994B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026680A (en) * 2010-07-26 2012-02-09 Fujitsu Ltd Air conditioning system, and method of controlling the air conditioning system
JP2013002721A (en) * 2011-06-16 2013-01-07 Toyota Home Kk Solar heat collector of building
CN108800372A (en) * 2017-05-03 2018-11-13 付甫焱 Natural air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013010068A2 (en) 2011-07-13 2013-01-17 Oregon Health & Science University High efficiency scalable structure

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213530A (en) * 1985-03-20 1986-09-22 Kazuyoshi Oshita Underground heat accumulating type room cooling and heating system
JPH07208764A (en) * 1994-01-17 1995-08-11 Tamagawa Kensetsu Kk High temperature and high humidity accommodation dwelling
JP2565742Y2 (en) * 1994-10-11 1998-03-18 鐘淵化学工業株式会社 Buildings with cold storage components
JPH11101475A (en) * 1997-09-29 1999-04-13 Chiho Nakagome Heat insulation structure of dwelling
JP2004325033A (en) * 2003-04-28 2004-11-18 Daikin Ind Ltd Air-conditioning control device, program, method and system
JP2005024140A (en) * 2003-06-30 2005-01-27 Sekisui Chem Co Ltd Air conditioning system of building, and air conditioning/hot-water supply system of building
JP2005221101A (en) * 2004-02-03 2005-08-18 Sekisui Chem Co Ltd Ventilation system utilizing nature energy
JP2005241041A (en) * 2004-02-24 2005-09-08 Masahiro Mikami Air conditioning system using geothermy
JP2006258389A (en) * 2005-03-17 2006-09-28 Akira Yokota Room temperature regulation system
JP2007032910A (en) * 2005-07-26 2007-02-08 Masahiro Mikami Ground heat exchanger and air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213530A (en) * 1985-03-20 1986-09-22 Kazuyoshi Oshita Underground heat accumulating type room cooling and heating system
JPH07208764A (en) * 1994-01-17 1995-08-11 Tamagawa Kensetsu Kk High temperature and high humidity accommodation dwelling
JP2565742Y2 (en) * 1994-10-11 1998-03-18 鐘淵化学工業株式会社 Buildings with cold storage components
JPH11101475A (en) * 1997-09-29 1999-04-13 Chiho Nakagome Heat insulation structure of dwelling
JP2004325033A (en) * 2003-04-28 2004-11-18 Daikin Ind Ltd Air-conditioning control device, program, method and system
JP2005024140A (en) * 2003-06-30 2005-01-27 Sekisui Chem Co Ltd Air conditioning system of building, and air conditioning/hot-water supply system of building
JP2005221101A (en) * 2004-02-03 2005-08-18 Sekisui Chem Co Ltd Ventilation system utilizing nature energy
JP2005241041A (en) * 2004-02-24 2005-09-08 Masahiro Mikami Air conditioning system using geothermy
JP2006258389A (en) * 2005-03-17 2006-09-28 Akira Yokota Room temperature regulation system
JP2007032910A (en) * 2005-07-26 2007-02-08 Masahiro Mikami Ground heat exchanger and air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026680A (en) * 2010-07-26 2012-02-09 Fujitsu Ltd Air conditioning system, and method of controlling the air conditioning system
JP2013002721A (en) * 2011-06-16 2013-01-07 Toyota Home Kk Solar heat collector of building
CN108800372A (en) * 2017-05-03 2018-11-13 付甫焱 Natural air conditioner

Also Published As

Publication number Publication date
JP5221994B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP4485539B2 (en) Solar system house
JP2008134032A (en) Air conditioning system
WO2017195885A1 (en) Floor air conditioning system
JP5221994B2 (en) Geothermal indoor air conditioning system
US20190178516A1 (en) Apparatus and Method for Operating an Intelligent Air Conditioning and Heating System
US5913723A (en) Process and apparatus for air conditioning and/or heating, especially for apartment buildings
JP5926711B2 (en) Heating system
US20190178517A1 (en) Apparatus and Method for Operating an Intelligent Air Conditioning and Heating System
JP4581604B2 (en) Ventilation system
JP2011052918A (en) Energy saving ventilation system
JP2008304180A (en) Thermal storage system
US20190093905A1 (en) A Hide-Away Air-Conditioning System
JP2011202899A (en) Defrosting device
JP4295541B2 (en) Ventilation system
JP4049380B2 (en) Building ventilation system
JP5057660B2 (en) Cold exhaust heat utilization system and control method thereof
JPS646367B2 (en)
JP6708432B2 (en) Radiant cooling/heating system and radiant cooling/heating method
JP2009229031A (en) The indoor air-conditioning method and indoor air conditioner with humidifying function
KR100940810B1 (en) Geothermal air-conditioning system of group living facilities
JP2009210216A (en) Air conditioning system
JP2008116188A (en) Heat storage electric heater (with direct expansion coil) for floor radiation heating (for cooling)
EP2017538A2 (en) Air conditioning system for dwelling hause
JP2017219293A (en) Ventilation system
JP2005249259A (en) Positive pressure ventilation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5221994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees