JP2009101554A - Apparatus and method for manufacturing hollow molding - Google Patents

Apparatus and method for manufacturing hollow molding Download PDF

Info

Publication number
JP2009101554A
JP2009101554A JP2007274245A JP2007274245A JP2009101554A JP 2009101554 A JP2009101554 A JP 2009101554A JP 2007274245 A JP2007274245 A JP 2007274245A JP 2007274245 A JP2007274245 A JP 2007274245A JP 2009101554 A JP2009101554 A JP 2009101554A
Authority
JP
Japan
Prior art keywords
core material
molding
molded body
cavity
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007274245A
Other languages
Japanese (ja)
Other versions
JP5099894B2 (en
Inventor
Masayuki Osaki
雅之 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007274245A priority Critical patent/JP5099894B2/en
Publication of JP2009101554A publication Critical patent/JP2009101554A/en
Application granted granted Critical
Publication of JP5099894B2 publication Critical patent/JP5099894B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing a hollow molding by which the hollow molding can be suitably manufactured without reducing productivity by suppressing damage due to steam generated during heating molding. <P>SOLUTION: The manufacturing apparatus of the hollow molding has a molding mold 2 which has a cavity 20 inside, a core material 3 which is inserted in the cavity 20, a molding raw material supply means 5 which supplies a molding raw material in the cavity 20 and further has a core material rotating mechanism 6 which rotates the core material 3 around its axis. In the manufacturing method using the manufacturing apparatus, the core material 3 is inserted in the cavity 20 and further the molding raw material 100 is charged therein. The core material 3 is rotated under this condition and the molding raw material 100 is molded by heating while performing steam drainage through a minute clearance produced between the core material 3 and the molding raw material 100. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、中空成形体、特に、鋳物製造用の鋳型又は構造体(以下、鋳型等ともいう。)に好適な中空成形体の製造装置及び製造方法に関する。   The present invention relates to a hollow molded body, in particular, a manufacturing apparatus and a manufacturing method for a hollow molded body suitable for a casting mold or structure (hereinafter, also referred to as a mold).

一般的な鋳物の製造方法において中空形状の鋳物を鋳造する場合には、鋳物砂で中子を形成し、主型内に該中子をセットし、溶融金属を鋳込み、冷却後に型を開いて鋳物を脱型した後、中子を崩壊、除去し所望の鋳物を得ている。   When casting a hollow casting in a general casting manufacturing method, a core is formed with foundry sand, the core is set in a main mold, molten metal is cast, and the mold is opened after cooling. After demolding the casting, the core is disintegrated and removed to obtain the desired casting.

ところで、中子は、通常の砂にバインダーを添加した鋳物砂を硬化させることによって賦形されているので、鋳造時にアミン等の分解ガスが発生する課題があった。また、脆いため、主型へセットするときや、ケレンを装着するとき、さらに注湯時に破損しやすい点が課題としてあった。さらに、砂を再利用する場合には再生処理が必要となるが、この再生処理の際にダストなどの廃棄物が発生する問題も生じている。   By the way, since the core is shaped by curing casting sand obtained by adding a binder to normal sand, there is a problem that a decomposition gas such as amine is generated during casting. Moreover, since it was fragile, when it set to the main type | mold, or when kelen was mounted | worn, the point which was easy to break at the time of pouring was a subject. Furthermore, when sand is reused, a regeneration process is required. However, there is a problem that waste such as dust is generated during the regeneration process.

出願人は、下記特許文献1に記載の技術を提案している。この技術は、鋳造に用いる鋳型等を、有機繊維、無機繊維及び熱硬化性樹脂を含む成形体で構成したものである。この技術による成形体は、従来の鋳砂を用いた鋳型等に比べ、薄肉・軽量で加工性に優れている。また上述の廃棄物が発生する問題もない。しかし、この成形体は、抄造により製造するため、より簡便な方法で成形体を製造できる技術が望まれていた。また、抄造による製造では、成形体の肉厚が大きく変化するような複雑な形状を成形することが困難であった。   The applicant has proposed the technique described in Patent Document 1 below. In this technique, a mold or the like used for casting is formed of a molded body containing organic fibers, inorganic fibers, and a thermosetting resin. The molded body by this technique is thin and lightweight and excellent in workability as compared with a mold using conventional casting sand. Further, there is no problem that the above-mentioned waste is generated. However, since this molded body is manufactured by papermaking, a technique capable of manufacturing the molded body by a simpler method has been desired. Moreover, in the manufacture by papermaking, it has been difficult to form a complicated shape in which the thickness of the molded body varies greatly.

一方、特許文献2、3には、原料を射出成形し、成形体を成形する技術が提案されている。しかし、これらの技術は、成形体の肉厚が大きく変化するような複雑な形状を成形する観点では好適であるが、中空成形体の製造技術についての開示がなく、原料に起因した蒸気発生による、該中空成形体の破損を抑えることができなかった。   On the other hand, Patent Documents 2 and 3 propose techniques for forming a molded body by injection molding a raw material. However, these techniques are suitable from the viewpoint of molding a complicated shape in which the thickness of the molded body changes greatly, but there is no disclosure about the manufacturing technology of the hollow molded body, and it is due to the generation of steam caused by the raw material. The breakage of the hollow molded body could not be suppressed.

特開2004−181472号公報JP 2004-181472 A 特開平11−280000号公報JP-A-11-280000 特開2003−71897号公報JP 2003-71897 A

従って、本発明は、上記課題に鑑みてなされたものであり、中空成形体をその加熱成形時において発生する蒸気による損傷を抑えて好適に、生産性を低下させることなく製造することができる中空成形体の製造装置及び製造方法を提供することを目的とするものである。   Accordingly, the present invention has been made in view of the above problems, and a hollow molded body that can be suitably manufactured without reducing the productivity by suppressing damage caused by steam generated during the heat molding. It aims at providing the manufacturing apparatus and manufacturing method of a molded object.

本発明は、内部にキャビティを有する成形型、前記キャビティ内に挿入される芯材、及び前記キャビティ内に成形原料を供給する成形原料供給手段を備えている中空成形体の製造装置であって、前記芯材を、該芯材の軸廻りに回転させる芯材回転機構を有する中空成形体の製造装置を提供することにより、前記目的を達成したものである。   The present invention is an apparatus for producing a hollow molded body comprising a molding die having a cavity therein, a core material inserted into the cavity, and a molding material supply means for supplying a molding material into the cavity, The object is achieved by providing an apparatus for manufacturing a hollow molded body having a core material rotation mechanism for rotating the core material around an axis of the core material.

また、本発明は、前記中空成形体の製造装置を使用した中空成形体の製造方法であって、前記キャビティ内に、前記芯材を挿入し且つ前記成形原料を充填した状態下に、該芯材を回転させ、該芯材と該成形原料との間に生じる微小な隙間を介して蒸気抜きを行いながら、該成形原料を加熱成形する中空成形体の製造方法を提供することにより、前記目的を達成したものである。   The present invention also relates to a method for manufacturing a hollow molded body using the hollow molded body manufacturing apparatus, wherein the core is inserted into the cavity and filled with the molding raw material. By providing a method for producing a hollow molded body by rotating a material and heat-molding the molding raw material while performing steam venting through a minute gap generated between the core material and the molding raw material. Is achieved.

本発明によれば、中空成形体をその加熱成形時において発生する蒸気による損傷を抑えて好適に製造することができる中空成形体の製造装置及び製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing apparatus and manufacturing method of a hollow molded object which can suppress the damage by the vapor | steam which generate | occur | produces at the time of the thermoforming, and can be manufactured suitably are provided.

以下本発明を、その好ましい実施形態に基づき説明する。
まず、本発明の中空成形体の製造装置をその好ましい実施形態に基づいて図面を参照しながら説明する。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
First, the manufacturing apparatus of the hollow molded object of this invention is demonstrated, referring drawings based on the preferable embodiment.

図1〜6は、本発明の中空成形体の製造装置(以下、単に製造装置ともいう。)の一実施形態の模式図である。これらの図において、符号1は製造装置、10は中空成形体(以下、単に成形体ともいう。)、100は成形原料(後述の成形体製造用組成物に分散媒を添加して調製された原料)を示している。   FIGS. 1-6 is a schematic diagram of one Embodiment of the manufacturing apparatus (henceforth only a manufacturing apparatus) of the hollow molded object of this invention. In these drawings, reference numeral 1 is a manufacturing apparatus, 10 is a hollow molded body (hereinafter also simply referred to as a molded body), and 100 is a raw material for molding (prepared by adding a dispersion medium to a composition for manufacturing a molded body described later). Raw material).

図1に示すように、製造装置1は、内部にキャビティ20を有する成形型2と、成形型2のキャビティ20内に挿入される芯材3と、成形型2のゲート(以下、ゲート孔ともいう。)21の開閉手段4と、キャビティ20内に成形原料を供給する成形原料供給手段5と、芯材3を、該芯材3の軸廻りに回転させる芯材回転機構6とを備えている。   As shown in FIG. 1, the manufacturing apparatus 1 includes a molding die 2 having a cavity 20 therein, a core 3 inserted into the cavity 20 of the molding die 2, and a gate of the molding die 2 (hereinafter also referred to as a gate hole). 21) Opening / closing means 4 of 21, a forming raw material supply means 5 for supplying a forming raw material into the cavity 20, and a core material rotating mechanism 6 for rotating the core material 3 around the axis of the core material 3. Yes.

成形型2は、一対で一組の割型2A、2Bから構成される。成形型2は、これらの割型を組み合わせることによって、内部にキャビティ20が形成されるとともに、キャビティ20に通じるゲート孔(ゲート)21及び芯材3の出入口22が形成される。各割型の内面で作られるキャビティ20の形成面が、成形体10の外形形状に対応している。割型2Bには、ゲート孔21に通じる成形原料注入口23が形成されている。割型は、アルミニウム合金やステンレス鋼等の金属で構成される。成形型2は、図示しない型締め手段のプラテンに取り付けられ、上下方向に開閉される。また、各割型は、図示しない加熱手段によって所定の温度に加熱される。   The mold 2 is composed of a pair of split molds 2A and 2B. By combining these split molds, the mold 2 has a cavity 20 formed therein, and a gate hole (gate) 21 leading to the cavity 20 and an entrance / exit 22 of the core material 3 are formed. The formation surface of the cavity 20 formed by the inner surface of each split mold corresponds to the outer shape of the molded body 10. In the split mold 2 </ b> B, a forming raw material inlet 23 leading to the gate hole 21 is formed. The split mold is made of a metal such as an aluminum alloy or stainless steel. The mold 2 is attached to a platen of mold clamping means (not shown), and is opened and closed in the vertical direction. Each split mold is heated to a predetermined temperature by a heating means (not shown).

芯材3の先端部30の断面は、図1及び図3に示すように、芯材3の挿入方向に向けて漸次狭まる形態を有している。該先端部30の稜線31は、曲線でも直線でも良いが、図示例における芯材3は、先端部30にテーパー部32(稜線31が直線)を有している棒状の形態を有している。この芯材3の外表面が成形体10の中空部分の内表面の形状に対応している。芯材3は、図示しない駆動手段によって前後(図1の左右方向)に駆動され、成形型2の出入口22を通してキャビティ20に出し入れされる。   As shown in FIGS. 1 and 3, the cross section of the distal end portion 30 of the core material 3 has a form that gradually narrows in the insertion direction of the core material 3. The ridgeline 31 of the tip 30 may be a curve or a straight line, but the core material 3 in the illustrated example has a rod-like shape having a tapered portion 32 (the ridgeline 31 is a straight line) at the tip 30. . The outer surface of the core material 3 corresponds to the shape of the inner surface of the hollow portion of the molded body 10. The core material 3 is driven back and forth (in the left-right direction in FIG. 1) by driving means (not shown), and is put into and out of the cavity 20 through the entrance / exit 22 of the mold 2.

ゲートの開閉手段4は、ゲート孔21内を摺動するゲートピン40を備えている。ゲートピン40は図示しない駆動手段によって前後(図1の左右方向)に駆動され、先端部分が成形型2のゲート孔21内を摺動する。   The gate opening / closing means 4 includes a gate pin 40 that slides in the gate hole 21. The gate pin 40 is driven back and forth (left and right direction in FIG. 1) by a driving means (not shown), and the tip portion slides inside the gate hole 21 of the mold 2.

成形原料の供給手段5は、いわゆる流体圧シリンダー・ピストンユニットで構成されている。成形原料の供給手段5は、成形原料が収容されるシリンダー50と、シリンダー50内で摺動するピストン51と、ピストン51で押された成形原料を吐出するノズル52とを備えている。成形原料の供給手段5は、ノズル52が、成形原料注入口23に挿入された状態で、シリンダー50内に加圧空気等の流体が供給されることによって、ピストン51が上昇し、シリンダー50内の成形原料100がノズル52を通じてゲート孔21に供給される。   The molding material supply means 5 is constituted by a so-called fluid pressure cylinder / piston unit. The molding material supply means 5 includes a cylinder 50 in which the molding material is accommodated, a piston 51 that slides in the cylinder 50, and a nozzle 52 that discharges the molding material pressed by the piston 51. The forming raw material supply means 5 is configured such that when the nozzle 52 is inserted into the forming raw material inlet 23 and a fluid such as pressurized air is supplied into the cylinder 50, the piston 51 rises, The forming raw material 100 is supplied to the gate hole 21 through the nozzle 52.

芯材回転機構6は、内部に図示しないモーターを備えた回転駆動部60と、該モーターによって回転駆動される回転駆動軸61と、該回転駆動軸61と芯材3とを連結する連結部62とを備えている。モーターを回転させると、回転駆動軸61及びそれに連結された芯材3が一体的に回転し、芯材3は、その軸廻りに回転する。回転駆動部60、回転駆動軸61及び連結部62は、前記駆動手段(図示せず)によって一体的に、芯材3の挿入方向(図1の左右方向)に駆動され、それによって、芯材3は、出入口22を通してキャビティ20に出し入れされる。連結部62は、回転駆動軸61と芯材3とを公知の結合手段により結合させた部分であり、結合手段としては、両者を結合させ得る多様な手段を採用し得る。例えば、回転駆動軸61及び芯材3の端部それぞれに、周囲に張り出したフランジ部を設け、該フランジ部同士をボルトや接着剤、溶接等により結合させたり、回転駆動軸61に、芯材3の端部が嵌合可能な凹部や、芯材3の端部を挟んだり周囲から圧迫したりして固定可能な係合部等を設けたりすることができる。   The core material rotation mechanism 6 includes a rotation drive unit 60 provided with a motor (not shown) therein, a rotation drive shaft 61 that is rotationally driven by the motor, and a connection unit 62 that connects the rotation drive shaft 61 and the core material 3. And. When the motor is rotated, the rotation drive shaft 61 and the core material 3 connected thereto rotate integrally, and the core material 3 rotates around the axis. The rotation drive unit 60, the rotation drive shaft 61, and the coupling unit 62 are integrally driven by the drive means (not shown) in the insertion direction of the core material 3 (left and right direction in FIG. 1), thereby the core material. 3 is put into and out of the cavity 20 through the inlet / outlet 22. The connecting portion 62 is a portion where the rotary drive shaft 61 and the core material 3 are connected by a known connecting means, and various means capable of connecting both can be adopted as the connecting means. For example, flange portions projecting to the periphery are provided at each of the end portions of the rotary drive shaft 61 and the core material 3, and the flange portions are coupled to each other by bolts, adhesive, welding, or the like. It is possible to provide a recessed portion into which the end portion of 3 can be fitted, an engaging portion that can be fixed by sandwiching the end portion of the core material 3 or pressing from the periphery.

芯材回転機構6は、図4に示すように、芯材3をキャビティ内の所定位置迄挿入し、該芯材3の挿入方向への移動を停止した状態において、該芯材3を回転させることが可能であると共に、図3に示すように、当該所定位置に向かって前進中の該芯材3を回転させることも可能である。更に、芯材3を回転させながら、当該所定位置から図3中の左方向に後退させることも可能である。   As shown in FIG. 4, the core material rotating mechanism 6 inserts the core material 3 to a predetermined position in the cavity, and rotates the core material 3 in a state where the movement of the core material 3 in the insertion direction is stopped. In addition, as shown in FIG. 3, it is also possible to rotate the core material 3 being advanced toward the predetermined position. Furthermore, it is possible to move the core material 3 backward from the predetermined position in the left direction in FIG. 3 while rotating the core material 3.

製造装置1は、成形型2、芯材3、ゲート開閉手段4、成形原料の供給手段5及び芯材回転機構6を、後述するような手順に従って作動させるシーケンサーを備えた制御手段(図示せず)を備えている。   The manufacturing apparatus 1 includes a control means (not shown) provided with a sequencer that operates the molding die 2, the core material 3, the gate opening / closing means 4, the molding raw material supply means 5, and the core material rotating mechanism 6 according to the procedure described later. ).

次に、本発明の中空成形体の製造方法を、前記製造装置1を使用し、鋳造に使用される中空の中子の製造方法に適用した実施形態に基づいて、図1〜図6を参照しながら説明する。   Next, referring to FIG. 1 to FIG. 6, based on the embodiment in which the manufacturing method of the hollow molded body of the present invention is applied to the manufacturing method of the hollow core used for casting using the manufacturing apparatus 1. While explaining.

本実施形態の中空成形体の製造方法においては、まず、成形原料を調製する。成形原料の調製では、無機粉体を主成分とし、無機繊維、熱硬化性樹脂及び水溶性のバインダーを予め乾式で混合する。熱膨張性粒子を含ませる場合には、この乾式混合のときに含ませる。そしてこれらの混合物(成形体製造用組成物)を、分散媒に分散させて混練機で混練し、成形原料をドウ状に調製する。ここで、無機粉体を主成分とするとは、成形体に含まれる全成分中で無機粉体が、質量比率で最も多いことを意味する。   In the method for producing a hollow molded body of the present embodiment, first, a molding raw material is prepared. In the preparation of the forming raw material, inorganic powder is a main component, and inorganic fibers, a thermosetting resin, and a water-soluble binder are mixed in advance by a dry method. When the thermally expandable particles are included, they are included at the time of this dry mixing. And these mixtures (composition for molded object manufacture) are disperse | distributed to a dispersion medium, and it knead | mixes with a kneader, and prepares a shaping | molding raw material in dough shape. Here, having inorganic powder as a main component means that the inorganic powder is the largest in mass ratio among all components contained in the molded body.

ここで、成形原料をドウ状に調製するとは、粉体及び繊維組成物と分散媒を捏和混練し、流動性を有しながらも粉体及び繊維組成物と分散媒が容易に分離することがない状態に調製することをいう。   Here, preparing the forming raw material in a dough shape means that the powder, the fiber composition, and the dispersion medium are kneaded gently, and the powder, the fiber composition, and the dispersion medium are easily separated while having fluidity. It means to prepare in the state without.

前記分散媒としては、水、エタノール、メタノール等の溶剤又はこれらの混合系等の水系の分散媒が挙げられる。成形の安定性、成形体の品質の安定性、費用、取り扱い易さ等の点から特に水が好ましい。   Examples of the dispersion medium include water, a solvent such as ethanol and methanol, and an aqueous dispersion medium such as a mixed system thereof. Water is particularly preferable from the viewpoints of molding stability, stability of the quality of the molded body, cost, ease of handling, and the like.

前記無機粉体としては、黒鉛(例えば鱗状黒鉛等)、黒曜石、雲母、滑石(タルク)、ムライト、シリカ、マグネシア、等が挙げられる。無機粉体は、一種又は二種以上を選択して用いることができる。成形性、コストの点から黒鉛を用いることが好ましい。   Examples of the inorganic powder include graphite (eg, scale-like graphite), obsidian, mica, talc, mullite, silica, magnesia, and the like. One or more inorganic powders can be selected and used. From the viewpoint of moldability and cost, it is preferable to use graphite.

前記無機繊維は、主として成形体の骨格をなし、例えば、鋳造時の溶融金属の熱によっても燃焼せずにその形状を維持する。前記無機繊維としては、炭素繊維、ロックウール等の人造鉱物繊維、セラミック繊維、天然鉱物繊維が挙げられる。前記無機繊維は、一種又は二種以上を選択して用いることができる。これらの中でも、前記熱硬化性樹脂の炭化に伴う収縮を効果的に抑える点から高温でも高強度を有するピッチ系やポリアクリロニトリル(PAN)系の炭素繊維を用いることが好ましい。   The inorganic fiber mainly forms a skeleton of a molded body, and maintains its shape without being burned by the heat of molten metal during casting, for example. Examples of the inorganic fibers include artificial mineral fibers such as carbon fibers and rock wool, ceramic fibers, and natural mineral fibers. One or two or more inorganic fibers can be selected and used. Among these, it is preferable to use pitch-based or polyacrylonitrile (PAN) -based carbon fibers having high strength even at high temperatures from the viewpoint of effectively suppressing shrinkage associated with carbonization of the thermosetting resin.

前記無機繊維は、鋳型等の成形性、均一性の観点から平均繊維長が0.5〜15mm、特に1〜8mmであるものが好ましい。   The inorganic fiber preferably has an average fiber length of 0.5 to 15 mm, particularly 1 to 8 mm, from the viewpoint of moldability and uniformity of a mold or the like.

前記熱硬化性樹脂は、成形体の常温強度及び熱間強度を維持させるとともに、成形体の表面性を良好とし、成形体を鋳型として用いた場合に鋳物の表面粗度を向上させる上で必要な成分である。前記熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、フラン樹脂等が挙げられる。これらの中でも、特に、可燃ガスの発生が少なく、燃焼抑制効果があり、熱分解(炭化)後における残炭率が25%以上と高く、成形体を鋳型に用いた場合に炭化皮膜を形成して良好な鋳肌を得ることができる点からフェノール樹脂を用いることが好ましい。フェノール樹脂には、硬化剤を必要とするノボラックフェノール樹脂、硬化剤の必要ないレゾールタイプ等のフェノール樹脂が用いられる。前記熱硬化性樹脂は、一種又は二種以上を選択して用いることができる。   The thermosetting resin is necessary for maintaining the normal temperature strength and hot strength of the molded body, improving the surface properties of the molded body, and improving the surface roughness of the casting when the molded body is used as a mold. Is an essential ingredient. Examples of the thermosetting resin include a phenol resin, an epoxy resin, and a furan resin. Among these, in particular, there is little generation of combustible gas, there is a combustion suppressing effect, the residual carbon ratio after pyrolysis (carbonization) is as high as 25% or more, and a carbonized film is formed when the molded body is used as a mold. It is preferable to use a phenol resin from the viewpoint that a good casting surface can be obtained. As the phenol resin, a novolak phenol resin that requires a curing agent or a resol type phenol resin that does not require a curing agent is used. The said thermosetting resin can select and use 1 type, or 2 or more types.

前記水溶性のバインダーとしては、増粘性の多糖類、ポリビニルアルコール、ポリエチレングリコール等が挙げられる。前記多糖類には、キサンタンガム、タマリンドガム、ジェランガム、グアーガム、ローカストビーンガム、タラガム等のガム剤、カルボキシメチルセルロース、ヒドロキシエチルセルロース等のセルロース誘導体、カラギーナン、プルラン、ペクチン、アルギン酸、寒天等が挙げられる。これら多糖類の中でも寒天の様な天然物よりも、非天然物例えば、カルボキシメチルセルロースの様なセルロース誘導体や化学修飾物は、成形体製造用組成物における水溶性のバインダーの配合比を少量でその性能を発揮することができる観点で良好である。   Examples of the water-soluble binder include thickening polysaccharides, polyvinyl alcohol, and polyethylene glycol. Examples of the polysaccharide include gum agents such as xanthan gum, tamarind gum, gellan gum, guar gum, locust bean gum and tara gum, cellulose derivatives such as carboxymethyl cellulose and hydroxyethyl cellulose, carrageenan, pullulan, pectin, alginic acid and agar. Among these polysaccharides, non-natural products such as cellulose derivatives and chemically modified products such as carboxymethyl cellulose are used in a small amount of the water-soluble binder in the composition for producing molded products, rather than natural products such as agar. It is favorable from the viewpoint of exhibiting performance.

前記成形体製造用組成物において、前記無機粉体、前記無機繊維、前記熱硬化性樹脂、及び前記水溶性のバインダー(固形分)の総質量に対し、各成分の配合比(質量比率)は、無機粉体/無機繊維/熱硬化性樹脂/水溶性のバインダー(固形分)=40〜90/1〜20/1〜30/1〜10(質量比率)が好ましく、50〜85/2〜16/2〜25/1〜5(質量比率)がより好ましく、50〜85/2〜16/2〜20/1〜5(質量比率)がさらに好ましい。(ただし上記質量比率の合計は100である。)   In the composition for manufacturing a molded body, the mixing ratio (mass ratio) of each component is based on the total mass of the inorganic powder, the inorganic fiber, the thermosetting resin, and the water-soluble binder (solid content). Inorganic powder / inorganic fiber / thermosetting resin / water-soluble binder (solid content) = 40 to 90/1 to 20/1 to 30/1 to 10 (mass ratio) is preferable, and 50 to 85/2 16/2 to 25/1 to 5 (mass ratio) is more preferable, and 50 to 85/2 to 16/2 to 20/1 to 5 (mass ratio) is more preferable. (However, the sum of the mass ratios is 100.)

前記無機粉体の配合比が前記範囲であると、鋳込み時での形状保持性、成形品の表面性が良好となり、また成形後の離型性も好適となる。前記無機繊維の配合比が前記範囲であると、成形性、鋳込み時の形状保持性が良好である。前記熱硬化性樹脂の配合比が前記範囲であると、鋳型の成形性、鋳込み後の形状保持性、表面平滑性が良好である。前記水溶性のバインダーの配合比が前記範囲であると、成形原料を成形型内に充填する際に、成形原料の流動性が良好な状態で充填可能となり、成形体の成形性が良好となる。   When the blending ratio of the inorganic powder is within the above range, the shape retention at the time of casting and the surface property of the molded product are good, and the releasability after molding is also suitable. When the blending ratio of the inorganic fibers is within the above range, moldability and shape retention during casting are good. When the blending ratio of the thermosetting resin is within the above range, moldability, shape retention after casting, and surface smoothness are good. When the blending ratio of the water-soluble binder is within the above range, when the molding raw material is filled in the molding die, the molding raw material can be filled with good fluidity, and the moldability of the molded body is improved. .

前記成形原料において熱膨張性粒子を含ませる場合、該熱膨張性粒子としては、熱可塑性樹脂の殻壁に、気化して膨張する膨張剤を内包したマイクロカプセルが好ましい。該マイクロカプセルは、80〜200℃で加熱すると、直径が好ましくは3〜5倍、体積が好ましくは50〜100倍に膨張し、膨張前の平均粒径が好ましくは5〜80μm、より好ましくは20〜50μmの粒子が好ましい。熱膨張性粒子の膨張が斯かる範囲であると膨張による成形精度への悪影響を抑えた上で添加効果が十分に得ることができる。前記熱膨張性粒子は、膨張前の平均直径が好ましくは5〜80μm、より好ましくは20〜50μmのものが好ましい。   When heat-expandable particles are included in the forming raw material, the heat-expandable particles are preferably microcapsules in which an expansion agent that expands by vaporization is encapsulated in the shell wall of a thermoplastic resin. When the microcapsule is heated at 80 to 200 ° C., the diameter preferably expands to 3 to 5 times, the volume preferably expands to 50 to 100 times, and the average particle diameter before expansion is preferably 5 to 80 μm, more preferably Particles of 20-50 μm are preferred. When the expansion of the thermally expandable particles is within such a range, the effect of addition can be sufficiently obtained while suppressing the adverse effect on the molding accuracy due to the expansion. The thermally expandable particles preferably have an average diameter before expansion of 5 to 80 μm, more preferably 20 to 50 μm.

前記マイクロカプセルの殻壁を構成する熱可塑性樹脂としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、アクリロニトリル−塩化ビニリデン共重合体、エチレン−酢酸ビニル共重合体又はこれらの組み合わせが挙げられる。前記殻壁に内包される膨張剤としては、プロパン、ブタン、ペンタン、イソブタン、石油エーテル等の低沸点の有機溶剤が挙げられる。   Examples of the thermoplastic resin constituting the shell wall of the microcapsule include polystyrene, polyethylene, polypropylene, polyacrylonitrile, acrylonitrile-vinylidene chloride copolymer, ethylene-vinyl acetate copolymer, or combinations thereof. Examples of the expanding agent contained in the shell wall include low-boiling organic solvents such as propane, butane, pentane, isobutane, and petroleum ether.

前記熱膨張性粒子は、前記無機粉体、前記無機繊維、前記熱硬化性樹脂及び前記水溶性のバインダーの総質量に対し、0.5〜10%(質量%)含んでいることが好ましく、1〜5%(質量%)含んでいることがより好ましい。熱膨張性粒子を斯かる範囲で含んでいると膨張により成形原料が型の細部にわたり充填され、型の形状を忠実に転写でき、添加効果が十分に得られる。また前記範囲の場合には、大量の熱膨張性粒子を含まないため、過膨張を防ぐことができ、余分な冷却時間を必要としないため、高い生産性を維持することができる。   The thermally expandable particles preferably include 0.5 to 10% (% by mass) with respect to the total mass of the inorganic powder, the inorganic fiber, the thermosetting resin, and the water-soluble binder. It is more preferable to contain 1 to 5% (mass%). When the thermally expandable particles are contained in such a range, the molding raw material is filled in the details of the mold by expansion, and the shape of the mold can be faithfully transferred, and the effect of addition can be sufficiently obtained. Moreover, in the case of the said range, since a large amount of thermally expansible particles are not included, overexpansion can be prevented and an extra cooling time is not required, so that high productivity can be maintained.

本実施形態の成形体には、前記各成分以外に、着色剤、離型剤、コロイダルシリカ等の他の成分を適宜の割合で添加することもできる。また、本実施形態の成形体には、その効果に悪影響を及ぼさない範囲で有樹繊維を含ませることができる。前記有機繊維には、紙繊維(パルプ繊維)、フィブリル化した合成繊維、再生繊維(例えば、レーヨン繊維)等が挙げられる。有機繊維は、一種又は二種以上を選択して用いることができる。成形性、乾燥後の強度、コストの点から、紙繊維が好ましい。   In addition to the components described above, other components such as a colorant, a release agent, and colloidal silica can be added to the molded body of the present embodiment at an appropriate ratio. Moreover, the molded object of this embodiment can contain a tree fiber in the range which does not exert a bad influence on the effect. Examples of the organic fiber include paper fiber (pulp fiber), fibrillated synthetic fiber, and regenerated fiber (for example, rayon fiber). One or two or more organic fibers can be selected and used. Paper fiber is preferable from the viewpoints of moldability, strength after drying, and cost.

次に、図1に示すように成形型2を型締めするとともに、芯材3及びゲートピン40をセットする。芯材3は、その先端部31が成形型2の出入口22に位置するようにセットする。
このときの成形型の温度は、分散媒の蒸発、熱硬化性樹脂の硬化速度、熱膨張性粒子の膨張速度、成形原料の焦げ付き等を考慮すると、120〜250℃が好ましい。
そして、図2に示すように、成形原料の供給手段5のピストン51を上昇させることによって、成形原料100を成形原料注入口23から成形型2内に加圧しながら充填する。成形原料の供給手段5の加圧流体にエアを使用した場合には、エア圧は0.5〜3MPaが好ましい。また、成形型2内への成形原料の充填圧力は、充填している間は変化するが、最大充填圧力は前記エア圧と等しい。
Next, as shown in FIG. 1, the mold 2 is clamped and the core material 3 and the gate pin 40 are set. The core material 3 is set so that the front end portion 31 is positioned at the entrance / exit 22 of the mold 2.
The temperature of the mold at this time is preferably 120 to 250 ° C. in consideration of the evaporation of the dispersion medium, the curing rate of the thermosetting resin, the expansion rate of the thermally expandable particles, the burning of the forming raw material, and the like.
Then, as shown in FIG. 2, the molding material 100 is filled into the molding die 2 while being pressurized from the molding material inlet 23 by raising the piston 51 of the molding material supply means 5. When air is used for the pressurized fluid of the forming raw material supply means 5, the air pressure is preferably 0.5 to 3 MPa. Further, the filling pressure of the forming raw material into the mold 2 changes while filling, but the maximum filling pressure is equal to the air pressure.

次に、図3に示すように、ゲートピン40を前記駆動手段によって前進させキャビティ20を密閉状態とする。
そして、図3に示すように、芯材回転機構6により芯材3を回転させながら、該芯材3をキャビティ20に挿入する方向に前進させる。芯材3は、図4に示すように、予め設定された所定位置迄挿入し、当該所定位置において前後方向(図4の左右方向)への移動を停止する。
そして、所定時間の加熱成形を行う。この加熱成形の間も、芯材3の回転を継続させる。芯材3を回転させながら成形原料100の加熱成形を行うことにより、芯材3と成形原料100との間に生じた微小な隙間(図示せず)を介して、成形原料100から発生した蒸気を、成形型2の外部に効率よく逃がすことができる。より具体的には、芯材3と成形原料100との間に生じた微小な隙間を通った蒸気は、芯材3の外周面33と出入口22との間の隙間を通って成形型2の外部へと放出される。
これにより、急激な脱気による成形体10の損傷を効率的に抑えることができる。芯材3は、成形原料100が流動状態から非流動状態(固化状態)へと変化する段階において、少なくとも回転させておくことが好ましい。
Next, as shown in FIG. 3, the gate pin 40 is moved forward by the driving means so that the cavity 20 is sealed.
Then, as shown in FIG. 3, while the core material 3 is rotated by the core material rotation mechanism 6, the core material 3 is advanced in the direction of insertion into the cavity 20. As shown in FIG. 4, the core material 3 is inserted to a predetermined position set in advance, and stops moving in the front-rear direction (left-right direction in FIG. 4) at the predetermined position.
Then, heat forming for a predetermined time is performed. The rotation of the core material 3 is continued during the heat forming. Steam generated from the forming raw material 100 through a minute gap (not shown) generated between the core material 3 and the forming raw material 100 by performing the heat forming of the forming raw material 100 while rotating the core material 3. Can be efficiently released to the outside of the mold 2. More specifically, the steam that has passed through the minute gap generated between the core material 3 and the forming raw material 100 passes through the gap between the outer peripheral surface 33 of the core material 3 and the inlet / outlet port 22, so that Released to the outside.
Thereby, the damage of the molded object 10 by rapid deaeration can be suppressed efficiently. The core material 3 is preferably rotated at least when the forming raw material 100 changes from a fluidized state to a non-fluidized state (solidified state).

芯材3の回転速度は、10〜1000rpm、特に200〜800rpmとすることが好ましい。また、芯材3の外周面33と出入口22との間に、蒸気は逃がすことができるが、流動状態の成形原料が漏れ出さないような隙間を形成する観点から、芯材3の外径と出入口22の内周面の内径との差は、10〜500μm、特に30〜200μmとすることが好ましい。尚、本実施形態における芯材3の外周面及び出入口22の内周面は断面円形である。 The rotation speed of the core material 3 is preferably 10 to 1000 rpm, particularly 200 to 800 rpm. Further, the steam can escape between the outer peripheral surface 33 of the core material 3 and the inlet / outlet port 22, but from the viewpoint of forming a gap that prevents the molding material in a fluid state from leaking, the outer diameter of the core material 3 The difference from the inner diameter of the inner peripheral surface of the entrance / exit 22 is preferably 10 to 500 μm , more preferably 30 to 200 μm . In addition, the outer peripheral surface of the core material 3 and the inner peripheral surface of the entrance / exit 22 in this embodiment are circular in cross section.

次に、芯材3を図4に示す所定位置から後退させるが、その後退の際にも、芯材3の回転を継続させておく。
また、この後退の際には、図5に示すように、テーパー部32が出入口22にかかるところで芯材3の引き出しを停止する。この状態において、テーパー部32と出入口22の内周面との間の隙間を通して、更なる蒸気抜きを行う。これにより、急激な脱気による成形体10の損傷を一層効果的に抑制することができる。
Next, although the core material 3 is retracted from the predetermined position shown in FIG. 4, the core material 3 is kept rotating during the retraction.
Further, at the time of the retreat, as shown in FIG. 5, the drawing out of the core material 3 is stopped when the tapered portion 32 is applied to the entrance / exit 22. In this state, further steam removal is performed through the gap between the tapered portion 32 and the inner peripheral surface of the entrance / exit 22. Thereby, the damage of the molded object 10 by rapid deaeration can be suppressed more effectively.

前記蒸気は成形原料に前記の分散媒を含んでいる為に発生するが、分散媒の蒸気以外のガスが発生しても、上述のように、芯材3を回転させ、加圧成形中に蒸気抜きを行うことによって、該ガスを成形型から排出することができる。分散媒の蒸気以外のガスとしては、前記熱硬化性樹脂としてフェノール樹脂を使用した場合には、ホルマリンガス、フリーフェノールガス、アンモニアガス等が発生し、さらに前記熱膨張性粒子からは該粒子に使用しているマイクロカプセル内部の炭化水素ガス等が発生する。   The steam is generated because the molding material contains the dispersion medium, but even if a gas other than the dispersion medium vapor is generated, the core material 3 is rotated as described above, and during the pressure molding. By performing the vapor removal, the gas can be discharged from the mold. As a gas other than the vapor of the dispersion medium, when a phenol resin is used as the thermosetting resin, formalin gas, free phenol gas, ammonia gas, etc. are generated, and further from the thermally expandable particles to the particles. Hydrocarbon gas and the like inside the microcapsules used are generated.

上述のよう芯材3の引き出しを一端停止して蒸気抜きを行った後、所定時間の加熱を続けて成形体の乾燥を行う。そして、図6に示すように、ゲートピン40を後退させ、成形型2を開き、成形体10を取り出す。成形体10は、冷却後必要に応じてトリミング、薬剤の塗布、再加熱処理等の後処理を行って製造を完了する。   As described above, the drawing of the core material 3 is stopped at one end and the steam is released. Then, the molded body is dried by continuing heating for a predetermined time. And as shown in FIG. 6, the gate pin 40 is retracted, the shaping | molding die 2 is opened, and the molded object 10 is taken out. The molded body 10 is post-cooled and subjected to post-processing such as trimming, chemical application, and reheating as necessary after completion of cooling.

本実施形態の中空成形体の製造方法は、芯材3を回転させながら成形原料100を加熱成形するので、芯材3と成形原料100との間に微小な隙間を介して蒸気を外部に効率よく逃がすことができ、蒸気爆発などによる成形体の損傷を抑えて成形体を高速で製造することができる。   In the method for manufacturing a hollow molded body according to the present embodiment, the molding material 100 is heat-molded while the core material 3 is rotated. Therefore, steam is efficiently discharged to the outside through a minute gap between the core material 3 and the molding material 100. It can escape well, and the molded body can be manufactured at high speed while suppressing damage to the molded body due to steam explosion.

しかも、芯材3を後退させる際に、出入口22の内周とテーパー部32との隙間を通じた蒸気抜きを行い、その後、成形体10を引き続き加熱して乾燥を行うので、蒸気爆発などによる成形体の損傷を一層確実に防止でき、損傷のない成形体を一層高速で製造することができる。   Moreover, when the core material 3 is retracted, steam is removed through the gap between the inner periphery of the inlet / outlet 22 and the tapered portion 32, and then the molded body 10 is continuously heated and dried, so that molding by steam explosion or the like is performed. Damage to the body can be prevented more reliably, and a molded body without damage can be produced at a higher speed.

更に、成形原料100が充填されたキャビティ20内に、芯材3を、該芯材3を回転させながら挿入したので、芯材3が、キャビティ20に撓んだ状態に挿入されることも防止され、また、芯材3の周囲に厚みムラ等が生じることも防止される。   Further, since the core material 3 is inserted into the cavity 20 filled with the forming raw material 100 while the core material 3 is rotated, the core material 3 is prevented from being inserted into the cavity 20 in a bent state. In addition, it is possible to prevent unevenness in thickness around the core material 3 from occurring.

図7は、このようにして製造された成形体の模式図である。成形体10の先端部101は閉じており、後端部102は開いている。また、成形体10は外径が太くなる部分を有しており、本実施形態では後端部102の外径が他の部分よりも太く形成されている。   FIG. 7 is a schematic view of a molded body produced in this way. The front end 101 of the molded body 10 is closed and the rear end 102 is open. Moreover, the molded object 10 has a part where an outer diameter becomes thick, and in this embodiment, the outer diameter of the rear-end part 102 is formed thicker than another part.

また、成形体10は、水を含む成形原料から製造された場合は、該成形体の使用前(鋳造に供せられる前)の質量含水率は5%以下が好ましく、2%以下がより好ましい。含水率が低いほど、鋳造時の熱硬化性樹脂の熱分解(炭化)に起因するガス発生量を低く抑えることができる。   Moreover, when the molded object 10 is manufactured from the shaping | molding raw material containing water, 5% or less is preferable and the moisture content before using of this molded object (before using for casting) is preferable, and 2% or less is more preferable. . The lower the moisture content, the lower the amount of gas generated due to thermal decomposition (carbonization) of the thermosetting resin during casting.

また、成形体10は、無機粉体を主成分とし、無機繊維、熱硬化性樹脂、及び水溶性のバインダーを含有しており、軽量であり、常温強度が高く、ケレンなどを使用して中子として使用する時等の取り扱い性に優れている。また、使用時において熱分解に伴うガスの発生が少ないため、環境に及ぼす悪影響を低く抑えることができる。また、寸法精度が高く、熱間強度も高いので、高精度の鋳物を安定的に製造することができる。特に、熱膨張性粒子を含ませた場合には、細部に亘って成形精度の高い成形体であるので、より高精度の鋳物を製造することができる。また、内部が中空であるので、鋳造時に発生するガスを中空部から外部へと効率よく排出でき、また、より軽量であり、使用後は、ブラスト処理等によって容易に細かくすることができ、鋳造後の取り扱いにも優れている。   Further, the molded body 10 is mainly composed of inorganic powder, contains inorganic fibers, a thermosetting resin, and a water-soluble binder, is lightweight, has high normal temperature strength, and uses kelen or the like. Excellent handling when used as a child. Moreover, since there is little generation | occurrence | production of the gas accompanying thermal decomposition at the time of use, the bad influence on an environment can be restrained low. In addition, since the dimensional accuracy is high and the hot strength is high, a highly accurate casting can be stably manufactured. In particular, when heat-expandable particles are included, since it is a molded body with high molding accuracy in every detail, a casting with higher accuracy can be manufactured. Moreover, since the inside is hollow, the gas generated during casting can be efficiently discharged from the hollow portion to the outside, and it is lighter. After use, it can be easily made fine by blasting, etc. Also excellent for later handling.

本発明は、前記実施形態に制限されるものではなく、本発明の趣旨を逸脱しない範囲において適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the spirit of the present invention.

例えば、成形原料100が充填されたキャビティ20内に、芯材3を回転させながら挿入するのに代えて、成形原料100を充填する前のキャビティ20内に芯材3を挿入しておき、その芯材3を回転させながら、キャビティ20内に成形原料100を加圧充填させることもできる。この場合においても、芯材3を回転させることで、芯材3がキャビティ20内で撓むことが防止され、厚みが高精度に制御された高品質の中空成形体が得られる。
また、このように、芯材3が挿入された状態のキャビティ20内に成形原料100を充填する場合においても、芯材3を回転させ、芯材3と成形原料100との間に生じる微小な隙間を介して蒸気抜きを行いながら、成形原料100を加熱成形することにより、蒸気爆発などによる成形体の損傷を抑えて、損傷のない成形体を高速で製造することができる。
For example, instead of inserting the core material 3 into the cavity 20 filled with the forming raw material 100 while rotating, the core material 3 is inserted into the cavity 20 before the molding raw material 100 is filled, While the core material 3 is rotated, the forming raw material 100 can be pressurized and filled into the cavity 20. Also in this case, by rotating the core material 3, the core material 3 is prevented from being bent in the cavity 20, and a high-quality hollow molded body whose thickness is controlled with high accuracy is obtained.
In addition, even when the forming raw material 100 is filled in the cavity 20 in the state where the core material 3 is inserted, the core material 3 is rotated to generate minute amounts generated between the core material 3 and the forming raw material 100. By performing the heat forming of the forming raw material 100 while removing the steam through the gap, damage to the formed body due to steam explosion or the like can be suppressed, and a formed body without damage can be manufactured at high speed.

また、芯材3と回転駆動軸61とは一体成形されていても良い。芯材3は、モーター以外によって駆動されるものであっても良い。   Moreover, the core material 3 and the rotational drive shaft 61 may be integrally formed. The core material 3 may be driven by other than a motor.

また、前記実施形態では、芯材の先端部の断面が、該芯材の挿入方向に向けて漸次狭まる形態(先端部にテーパー部を有する形態)としたが、芯材の先端部の断面を斯かる形態にする代わりに、芯材の出入口の断面が、該芯材の挿入方向に向けて漸次狭まる形態とすることもでき、さらに芯材の先端部の断面と芯材の出入口断面の両方を該芯材の挿入方向に向けて、漸次狭まる形態とすることもできる。
更に、芯材は、その先端部の断面が、該芯材の挿入方向に向けて漸次狭まる形態でなくても良い。
Moreover, in the said embodiment, although the cross section of the front-end | tip part of a core material was made into the form (form which has a taper part in a front-end | tip part) that narrows gradually toward the insertion direction of this core material, Instead of such a form, the cross-section of the entrance / exit of the core material can be gradually narrowed toward the insertion direction of the core material, and both the cross-section of the tip of the core material and the cross-section of the entrance / exit of the core material Can be gradually narrowed toward the insertion direction of the core material.
Furthermore, the core member does not have to have a configuration in which the cross-section of the tip portion gradually narrows in the insertion direction of the core member.

本発明の中空成形体の製造装置及び製造方法は、前記実施形態のような鋳造に使用される中子の他、鋳型(主型)、湯道、湯止り、受口、湯口、湯口底、せき、ガス抜き、揚り、押湯等の構造体及びその他の付帯構造体の用途に好適である。また、耐熱性を要する鋳造分野以外の用途にも適用でき、その用途に応じた形状の細部に亘って成形精度の高いものとすることができる。   In addition to the core used for casting as in the above-described embodiment, the hollow molded body manufacturing apparatus and manufacturing method of the present invention include a mold (main mold), a runner, a hot water stop, a receiving port, a gate, a gate bottom, It is suitable for the use of structures such as cough, degassing, frying, and hot water, and other incidental structures. Moreover, it can apply also to uses other than the casting field | area which requires heat resistance, and can make it a thing with high shaping | molding precision over the detail of the shape according to the use.

また、本発明の製造装置及び製造方法は、前記実施形態におけるような、前記無機粉体、前記無機繊維、前記熱硬化性樹脂、前記水溶性のバインダー(固形分)、及び前記熱膨張性粒子を含む成形原料を用いた中空成形体の製造に好適であるが、それ以外の成形原料を使用した中空成形体の製造にも適用することができる。
例えば、有機繊維とでんぷんの混合物を、水を分散媒として混練したもの等を成形原料とする成形体の製造にも適用することができる。
Further, the manufacturing apparatus and the manufacturing method of the present invention are the same as in the embodiment described above, in which the inorganic powder, the inorganic fiber, the thermosetting resin, the water-soluble binder (solid content), and the thermally expandable particles. Although it is suitable for the manufacture of a hollow molded body using a molding raw material containing, it can also be applied to the manufacture of a hollow molded body using other molding raw materials.
For example, the present invention can also be applied to the production of a molded body using a mixture of organic fiber and starch kneaded with water as a dispersion medium.

本発明の中空成形体の製造装置の一実施形態を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically one Embodiment of the manufacturing apparatus of the hollow molded object of this invention. 同製造装置を使用した本発明の中空成形体の製造方法の一実施形態における成形原料の供給工程を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the supply process of the shaping | molding raw material in one Embodiment of the manufacturing method of the hollow molded object of this invention using the manufacturing apparatus. 同製造装置を使用した本発明の中空成形体の製造方法の一実施形態における芯材の挿入工程を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the insertion process of the core material in one Embodiment of the manufacturing method of the hollow molded object of this invention using the manufacturing apparatus. 同製造装置を使用した本発明の中空成形体の製造方法の一実施形態における成形工程を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the formation process in one Embodiment of the manufacturing method of the hollow molded object of this invention using the manufacturing apparatus. 同製造装置を使用した本発明の中空成形体の製造方法の一実施形態における加熱乾燥工程を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the heat drying process in one Embodiment of the manufacturing method of the hollow molded object of this invention using the manufacturing apparatus. 同製造装置を使用した本発明の中空成形体の製造方法の一実施形態における脱型工程を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the demolding process in one Embodiment of the manufacturing method of the hollow molded object of this invention using the manufacturing apparatus. 本発明の中空成形体の製造方法により製造された中空成形体の一実施形態を示す半断面図である。It is a half sectional view showing one embodiment of the hollow fabrication object manufactured by the manufacturing method of the hollow fabrication object of the present invention.

符号の説明Explanation of symbols

1 成形体の製造装置
2 成形型
2A、2B 割型
20 キャビティ
21 ゲート孔(ゲート)
22 出入口
3 芯材
4 ゲート開閉手段
40 ゲートピン
5 成形原料供給手段
50 シリンダー
51 ピストン
52 ノズル
6 芯材回転機構
60 回転駆動部
61 回転駆動軸
62 連結部
10 成形体
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of molded object 2 Mold 2A, 2B Split mold 20 Cavity 21 Gate hole (gate)
22 Entrance / Exit 3 Core Material 4 Gate Opening / Closing Means 40 Gate Pin 5 Molding Raw Material Supplying Means 50 Cylinder 51 Piston 52 Nozzle 6 Core Material Rotating Mechanism 60 Rotation Drive Unit 61 Rotation Drive Shaft 62 Connection Unit 10 Molded Body

Claims (5)

内部にキャビティを有する成形型、前記キャビティ内に挿入される芯材、及び前記キャビティ内に成形原料を供給する成形原料供給手段を備えている中空成形体の製造装置であって、
前記芯材を、該芯材の軸廻りに回転させる芯材回転機構を有する中空成形体の製造装置。
An apparatus for producing a hollow molded body comprising a molding die having a cavity therein, a core material inserted into the cavity, and a molding material supply means for supplying a molding material into the cavity,
An apparatus for manufacturing a hollow molded body having a core material rotation mechanism for rotating the core material about an axis of the core material.
前記芯材回転機構は、前記ギャビティ内の所定位置迄挿入した状態の前記芯材を回転可能であると共に、該所定位置に向かって前進中の該芯材も回転可能である請求項1記載の中空成形体の製造装置。   2. The core material rotation mechanism according to claim 1, wherein the core material in a state where the core material is inserted to a predetermined position in the gap is rotatable, and the core material being advanced toward the predetermined position is also rotatable. Equipment for producing hollow molded bodies. 請求項1記載の中空成形体の製造装置を使用した中空成形体の製造方法であって、
前記キャビティ内に、前記芯材を挿入し且つ前記成形原料を充填した状態下に、該芯材を回転させ、該芯材と該成形原料との間に生じる微小な隙間を介して蒸気抜きを行いながら、該成形原料を加熱成形する中空成形体の製造方法。
A method for producing a hollow molded body using the hollow molded body production apparatus according to claim 1,
The core material is rotated in a state where the core material is inserted into the cavity and the molding material is filled, and steam is released through a minute gap generated between the core material and the molding material. A process for producing a hollow molded body, wherein the molding raw material is thermoformed while performing.
前記成形原料が充填された前記キャビティ内に、前記芯材を、該芯材を回転させながら挿入する請求項3記載の中空成形体の製造方法。   The manufacturing method of the hollow molded object of Claim 3 which inserts the said core material in the said cavity with which the said shaping | molding raw material was filled, rotating this core material. 前記芯材が挿入された前記キャビティ内に、該芯材を回転させながら、前記成形原料を充填する請求項3記載の中空成形体の製造方法。   The manufacturing method of the hollow molded object of Claim 3 which fills the said shaping | molding raw material, rotating this core material in the said cavity in which the said core material was inserted.
JP2007274245A 2007-10-22 2007-10-22 Hollow molded body manufacturing apparatus and manufacturing method Expired - Fee Related JP5099894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007274245A JP5099894B2 (en) 2007-10-22 2007-10-22 Hollow molded body manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007274245A JP5099894B2 (en) 2007-10-22 2007-10-22 Hollow molded body manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2009101554A true JP2009101554A (en) 2009-05-14
JP5099894B2 JP5099894B2 (en) 2012-12-19

Family

ID=40703847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274245A Expired - Fee Related JP5099894B2 (en) 2007-10-22 2007-10-22 Hollow molded body manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP5099894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021080952A (en) * 2019-11-15 2021-05-27 ジヤトコ株式会社 Resin valve body and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163616A (en) * 1982-03-24 1983-09-28 Ryozo Oota Forming method of plastic substance
JPS60145817A (en) * 1984-05-18 1985-08-01 Dainippon Printing Co Ltd Manufacture of hollow semispherical body and apparatus therefor
JPH079495A (en) * 1993-06-28 1995-01-13 Meihoo:Kk High-accuracy pipe and production of the pipe
JPH1182588A (en) * 1997-09-12 1999-03-26 Nippon Petrochem Co Ltd Impact energy absorbing member
JPH11182604A (en) * 1997-12-22 1999-07-06 Nippon Petrochem Co Ltd Impact energy absorbing member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58163616A (en) * 1982-03-24 1983-09-28 Ryozo Oota Forming method of plastic substance
JPS60145817A (en) * 1984-05-18 1985-08-01 Dainippon Printing Co Ltd Manufacture of hollow semispherical body and apparatus therefor
JPH079495A (en) * 1993-06-28 1995-01-13 Meihoo:Kk High-accuracy pipe and production of the pipe
JPH1182588A (en) * 1997-09-12 1999-03-26 Nippon Petrochem Co Ltd Impact energy absorbing member
JPH11182604A (en) * 1997-12-22 1999-07-06 Nippon Petrochem Co Ltd Impact energy absorbing member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021080952A (en) * 2019-11-15 2021-05-27 ジヤトコ株式会社 Resin valve body and method of manufacturing the same
JP7305280B2 (en) 2019-11-15 2023-07-10 ジヤトコ株式会社 Resin valve body and manufacturing method thereof

Also Published As

Publication number Publication date
JP5099894B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5441402B2 (en) Casting manufacturing structure, casting manufacturing structure composition, casting manufacturing structure manufacturing method, and casting manufacturing method
JP4675276B2 (en) Compact
JP4601531B2 (en) MANUFACTURING METHOD AND DEVICE FOR FIBER MOLDED ARTICLE, FIBER MOLDING INTERMEDIATE AND FIBER MOLDED
EP2939759B1 (en) Method for producing structure for casting and structure such as mold
Choi et al. Application of dual coating process and 3D printing technology in sand mold fabrication
JP5099894B2 (en) Hollow molded body manufacturing apparatus and manufacturing method
JP4869786B2 (en) Casting structure
BRPI0621379A2 (en) composite casting core and casting method using said core
JP2011056563A (en) Structure for producing casting
JP5767139B2 (en) Sand mold making apparatus and sand mold making method
JP4980811B2 (en) Mold and composite mold
JP2009101553A (en) Apparatus and method for manufacturing hollow molding
JP5441387B2 (en) Manufacturing method of casting manufacturing structure, casting manufacturing structure, and casting manufacturing method
JP5755575B2 (en) Mold release method
JP5368077B2 (en) Manufacturing method of casting structure
JP5473312B2 (en) Manufacturing method of casting structure
JP5755574B2 (en) Mold release device
JP5362531B2 (en) Manufacturing method of casting structure
JP5419429B2 (en) Molded object for mold, method for producing molded object for mold, and method for producing casting
JP2011212877A (en) Method of manufacturing molded body
CN115041631A (en) Preparation method of multi-material integrated casting mold of hollow turbine blade and casting mold
JP5037112B2 (en) Casting structure
JP2015120177A (en) Manufacturing method of sand core used for low speed low pressure die-casting by one or more injections, sand core used for low speed low pressure die-casting by one or more injections, and die-casting method using the sand core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5099894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees