JP2011056563A - Structure for producing casting - Google Patents

Structure for producing casting Download PDF

Info

Publication number
JP2011056563A
JP2011056563A JP2009211079A JP2009211079A JP2011056563A JP 2011056563 A JP2011056563 A JP 2011056563A JP 2009211079 A JP2009211079 A JP 2009211079A JP 2009211079 A JP2009211079 A JP 2009211079A JP 2011056563 A JP2011056563 A JP 2011056563A
Authority
JP
Japan
Prior art keywords
casting
inorganic particles
particle size
inorganic
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009211079A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kibe
義幸 木部
Tomoji Kamisawa
智史 神澤
Akira Yoshida
昭 吉田
Masayuki Osaki
雅之 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009211079A priority Critical patent/JP2011056563A/en
Publication of JP2011056563A publication Critical patent/JP2011056563A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure for producing a casting, which has sufficient hot strength during casting and can produce a casting having an excellent effect of lessening gas defects. <P>SOLUTION: The structure for producing the casting contains inorganic particles, inorganic fibers and thermosetting resin. The kurtosis of the particle size distribution of the inorganic particles is 1 to 20. It is desirable that the mode of the inorganic particle distribution is 100 to 600 μm. It is desirable that the inorganic particles are graphite such as earthy graphite and artificial graphite. It is also desirable that the inorganic particles are spheroidal activated carbon. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鋳物の製造時に用いられる鋳型等の鋳物製造用構造体に関する。   The present invention relates to a casting manufacturing structure such as a mold used in manufacturing a casting.

鋳物は一般に、木型や金型などをもとに、内部にキャビティを有する鋳型を鋳物砂によって形成するとともに、必要に応じて該キャビティ内に中子を配した後、該キャビティに溶湯を供給して製造されている。鋳物砂を用いた砂型は、通常の砂にバインダを添加し、硬化させて形状を保持させているので、砂の再利用には再生処理工程が必須となる。更に、再生処理の際にダストなどの廃棄物が発生するなどの問題も生じている。中子を砂型で製造する場合は、前記の課題に加え、中子自身の質量のために取り扱いに難があり、更には鋳込み時の強度保持と鋳込み後の中子除去性という相反する性能が要求される。   Casting is generally based on wooden molds or molds, and a mold with a cavity inside is formed from casting sand, and if necessary, a core is placed in the cavity and then molten metal is supplied to the cavity. Manufactured. In the sand mold using the foundry sand, a binder is added to normal sand and cured to maintain the shape. Therefore, a recycling process is essential for reusing the sand. Further, there is a problem that waste such as dust is generated during the regeneration process. When the core is manufactured in a sand mold, in addition to the above-mentioned problems, it is difficult to handle due to the mass of the core itself, and furthermore, there are conflicting performances of strength maintenance during casting and core removal after casting. Required.

このような課題を解決する技術として、軽量性、加工性、廃棄物低減に優れる鋳物製造用構造体を得る技術が知られている(例えば特許文献1参照)。この構造体は、有機繊維、無機繊維、無機粒子及び熱硬化性樹脂を含有するものである。   As a technique for solving such a problem, a technique for obtaining a casting manufacturing structure that is excellent in lightness, workability, and waste reduction is known (see, for example, Patent Document 1). This structure contains organic fibers, inorganic fibers, inorganic particles, and a thermosetting resin.

また、特許文献2には、平均粒径70μm以下の鱗状黒鉛、熱硬化性樹脂及び有機繊維を含有する鋳物製造用構造体が記載されている。特許文献3及び4には、熱硬化性樹脂で被覆された砂及び含水ケイ酸マグネシウム質粘土鉱物からなるシェル鋳型材料が記載されている。更に特許文献5には、溶融金属の鋳造に使用される熱絶縁体が記載されている。同文献においては、該熱絶縁体の通気度について言及されている。   Patent Document 2 describes a casting manufacturing structure containing scaly graphite having an average particle size of 70 μm or less, a thermosetting resin, and organic fibers. Patent Documents 3 and 4 describe shell mold materials made of sand coated with a thermosetting resin and hydrous magnesium silicate clay mineral. Further, Patent Document 5 describes a thermal insulator used for casting molten metal. The document mentions the air permeability of the thermal insulator.

特開2005−349428号公報JP 2005-349428 A 特開2007−144511号公報JP 2007-144511 A 特開昭62−45446号公報JP 62-45446 A 特開昭62−156044号公報JP 62-156044 A 特公昭50−20545号公報Japanese Patent Publication No. 50-20545

特許文献1に記載の技術によれば、鋳込み時においても優れた熱間強度を有し、鋳込み後の鋳物の形状保持性に優れるので、表面平滑性に優れた鋳物を製造することができる。しかし、複雑な形状の鋳物を製造する場合には鋳物にガス欠陥が生じることがあり、鋳物のガス欠陥の更なる低減が望まれていた。   According to the technique described in Patent Document 1, it has excellent hot strength even at the time of casting, and is excellent in shape retention of the casting after casting, so that it is possible to manufacture a casting having excellent surface smoothness. However, when producing a casting having a complicated shape, a gas defect may occur in the casting, and further reduction of the gas defect in the casting has been desired.

本発明は、前述した従来技術よりも種々の性能に優れた鋳物製造用構造体を提供するものである。   The present invention provides a structure for producing a casting, which is superior in various performances to the prior art described above.

本発明は、無機粒子、無機繊維及び熱硬化性樹脂を含有する鋳物製造用構造体であって、該無機粒子の粒度分布の尖度が1〜20である鋳物製造用構造体を提供するものである。   The present invention provides a casting manufacturing structure containing inorganic particles, inorganic fibers, and a thermosetting resin, and provides a casting manufacturing structure having a kurtosis of 1 to 20 in particle size distribution of the inorganic particles. It is.

本発明によれば、無機粒子の尖度を特定の範囲に設定することで、鋳物製造用構造体の成形性を損なうことなく、かつ通気度が良好となり、目的とする鋳物の製造中に発生するガスの排出性が向上する鋳物製造用構造体が提供される。更に、無機粒子の粒度分布の最頻値を特定の範囲に設定することにより、鋳物製造用構造体の表面性が良好となり、目的とする鋳物の表面性に悪影響を与えることのない鋳物製造用構造体が提供される。その結果、ガス欠陥の低減効果に優れた鋳物製造用構造体を得ることが可能となる。特許文献1の記載説明で指摘した課題を解決し、つまり、複雑な形状を有する鋳物を製造するような厳しい条件で発生するガス欠陥の低減に顕著な効果を発揮する。   According to the present invention, by setting the kurtosis of the inorganic particles in a specific range, the air permeability becomes good without impairing the moldability of the structure for casting production, and it occurs during the production of the target casting. There is provided a casting manufacturing structure with improved gas discharge performance. Furthermore, by setting the mode of the particle size distribution of the inorganic particles to a specific range, the surface property of the structure for producing castings is improved, and the casting product does not adversely affect the surface properties of the target castings. A structure is provided. As a result, it is possible to obtain a casting manufacturing structure having an excellent gas defect reduction effect. The problem pointed out in the description of Patent Document 1 is solved, that is, a remarkable effect is exhibited in reducing gas defects generated under severe conditions such as manufacturing a casting having a complicated shape.

図1は、本発明の鋳物製造用構造体の一実施形態を示す模式図である。FIG. 1 is a schematic view showing an embodiment of a casting manufacturing structure of the present invention. 図2は、本発明の鋳物製造用構造体を鋳型内に納めた一実施形態を示す概略図である。FIG. 2 is a schematic view showing an embodiment in which the casting manufacturing structure of the present invention is housed in a mold. 図3は、本発明の鋳物製造用構造体の通気度を測定する装置を示す模式図である。FIG. 3 is a schematic view showing an apparatus for measuring the air permeability of the structure for manufacturing a casting according to the present invention.

以下本発明を、その好ましい実施形態に基づき説明する。本発明の鋳物製造用構造体は、その構成材料として無機粒子、無機繊維及び熱硬化性樹脂を含有している。そしてこれらの構成材料のうち、無機粒子の粒度分布に特徴の一つを有している。この特徴を有する鋳物製造用構造体は、鋳込み時においても十分な熱間強度を有し、かつ良好な通気度を有するので、目的とする鋳物の製造時に発生するガスの排出性が向上し、複雑な形状の鋳物の製造においてもガス欠陥の発生が抑えられるという優れた効果を発現する。   Hereinafter, the present invention will be described based on preferred embodiments thereof. The structure for producing a casting according to the present invention contains inorganic particles, inorganic fibers, and a thermosetting resin as its constituent materials. Of these constituent materials, one of the characteristics is the particle size distribution of the inorganic particles. The structure for producing a casting having this feature has sufficient hot strength even during casting and has a good air permeability, so that the discharge of gas generated during the production of the target casting is improved. Even in the production of a casting having a complicated shape, an excellent effect of suppressing the generation of gas defects is exhibited.

更に詳述すると、本発明の特徴の一つは、軽量性及び加工性に優れる鋳物製造用構造体を使用して、特に複雑な形状の鋳物を製造するときに発生する鋳物のガス欠陥の課題を解決するための手段として、無機粒子の粒度分布の尖度を特定の範囲に設定することが有効であることを見いだした点にある。これによって、鋳物製造用構造体の無機粒子間に均一な大きさの微細空隙が形成されると推測され、成形性を損なうことなく、通気性が良好になる。その結果、複雑な形状の鋳物の製造においても製造時に発生するガスの排出性に優れるので、ガス欠陥の発生が抑えられる。   More specifically, one of the features of the present invention is the problem of casting gas defects generated when a casting having a complicated shape is manufactured using a structure for manufacturing a casting having excellent lightness and workability. As a means for solving this problem, it has been found that it is effective to set the kurtosis of the particle size distribution of the inorganic particles in a specific range. Thereby, it is presumed that fine voids having a uniform size are formed between the inorganic particles of the structure for producing castings, and the air permeability is improved without impairing the moldability. As a result, even in the production of a casting having a complicated shape, the gas generated during the production is excellent in discharging, so that the occurrence of gas defects can be suppressed.

本発明の鋳物製造用構造体の通気度は、鋳物のガス欠陥発生の低減効果を顕著なものとする観点から1以上であることが好ましく、2以上であることが更に好ましく、8以上であることが一層好ましい。特に10以上であることが好ましく、20以上であることがとりわけ好ましい。また通気度の上限値については、鋳物のガス欠陥発生の低減効果と、該構造体が鋳込み時においても十分な熱間強度を有する観点から、500以下であることが好ましく、400以下であることが更に好ましく、300以下であることが一層好ましい。特に200以下であることが好ましく、150以下であることがとりわけ好ましい。これらの観点から、鋳物製造用構造体の通気度は1〜500であることが好ましく、2〜400であることが更に好ましく、8〜300であることが一層好ましい。特に10〜200であることが好ましく、20〜150であることがとりわけ好ましい。鋳物製造用構造体の通気度は、後述する実施例に記載の方法で測定される。   The air permeability of the structure for manufacturing a casting according to the present invention is preferably 1 or more, more preferably 2 or more, and more preferably 8 or more from the viewpoint of making the gas defect generation reduction effect of the casting remarkable. More preferably. In particular, it is preferably 10 or more, and particularly preferably 20 or more. Further, the upper limit value of the air permeability is preferably 500 or less, preferably 400 or less, from the viewpoint of the effect of reducing the occurrence of gas defects in the casting and the structure having sufficient hot strength even during casting. Is more preferable, and it is still more preferable that it is 300 or less. In particular, it is preferably 200 or less, particularly preferably 150 or less. From these viewpoints, the air permeability of the structure for producing castings is preferably 1 to 500, more preferably 2 to 400, and still more preferably 8 to 300. 10-200 is particularly preferable, and 20-150 is particularly preferable. The air permeability of the structure for producing castings is measured by the method described in Examples described later.

鋳物製造用構造体が前記の好ましい通気度を有するためには、該構造体を構成する材料のうち、無機粒子の粒度分布を調整することが有効であることが本発明者らの検討の結果判明した。詳細には、無機粒子の粒度分布における尖度を1〜20、好ましくは1〜19、更に好ましくは1〜10の範囲に調整することが有効である。尖度とは統計学上の用語であり、無機粒子の粒度分布を正規分布と比較して、度数分布曲線の相対的な鋭角度又は平坦度を表した数値である。尖度が正の数になる場合、度数分布曲線が相対的に鋭角になっていることを表し、負の数になる場合は、相対的に平坦になっていることを表す。本発明においては、尖度は無機粒子の分布のシャープさの指標となる。尖度は以下の式(1)で表される。   As a result of the study by the present inventors, it is effective to adjust the particle size distribution of the inorganic particles among the materials constituting the structure in order that the structure for producing castings has the preferable air permeability. found. Specifically, it is effective to adjust the kurtosis in the particle size distribution of the inorganic particles to a range of 1 to 20, preferably 1 to 19, and more preferably 1 to 10. Kurtosis is a statistical term and is a numerical value representing the relative acute angle or flatness of a frequency distribution curve by comparing the particle size distribution of inorganic particles with a normal distribution. When the kurtosis is a positive number, it indicates that the frequency distribution curve is relatively acute, and when it is a negative number, it indicates that it is relatively flat. In the present invention, the kurtosis is an index of the sharpness of the distribution of inorganic particles. The kurtosis is expressed by the following formula (1).

Figure 2011056563
Figure 2011056563

無機粒子の粒度分布における尖度を上述の範囲に内に調整するためには、無機粒子に対して、例えば篩い分けによる分級を行う等の前処理を行えばよい。あるいは、市販品をそのまま用いた場合であっても、尖度が上述の範囲内となる場合もある。   In order to adjust the kurtosis in the particle size distribution of the inorganic particles within the above range, the inorganic particles may be subjected to pretreatment such as classification by sieving. Or even if it is a case where a commercial item is used as it is, kurtosis may be in the above-mentioned range.

粒度分布の尖度が前記の範囲である無機粒子を用いることで鋳物製造用構造体の通気性が調整される理由は、粒度の揃った無機粒子を用いることで、無機粒子間に均一な大きさの微細空隙が形成されることによるものと推測される。これに対して、粒度分布が広い無機粒子を用いると、粒径の大きな無機粒子間に、粒径の小さな無機粒子が入り込みやすくなってしまうので、鋳物製造用構造体の通気性が阻害されやすくなる。一方、粒度の揃った無機粒子を用いることは、無機粒子同士の結合点が少なくなり、鋳物製造用構造体の成形が困難になることや、成形できても強度が弱くなることが懸念される。これに対して、粒度分布が広い無機粒子を用いると、無機粒子同士の結合点が多くなり、鋳物製造用構造体の成形が行いやすくなる。   The reason why the air permeability of the structure for casting production is adjusted by using inorganic particles having a kurtosis of the particle size distribution within the above range is that by using inorganic particles having a uniform particle size, the size between the inorganic particles is uniform. This is presumed to be due to the formation of fine voids. On the other hand, if inorganic particles having a wide particle size distribution are used, inorganic particles having a small particle size are likely to enter between inorganic particles having a large particle size, and thus the air permeability of the structure for casting production is likely to be hindered. Become. On the other hand, the use of inorganic particles having a uniform particle size may reduce the bonding points between the inorganic particles, making it difficult to form a structure for producing a casting, or reducing the strength even if it can be formed. . On the other hand, when inorganic particles having a wide particle size distribution are used, the number of bonding points between the inorganic particles increases, and it becomes easy to form a structure for casting production.

粒度分布の尖度が同じ無機粒子を比較すると、粒径が小さくなるに連れて通気度が低くなる傾向にあり、逆に粒径が大きくなるに連れて成形を行いづらくなる。この観点から、粒度分布の尖度が前記の範囲内であることを条件として、無機粒子はその粒度分布の最頻値が100〜600μm、特に105〜500μm、とりわけ150〜425μmであることが好ましい。最頻値とは統計学上の用語であり、頻度分布の各階級に置いて、最も度数の大きい階級を表す。本発明においては、無機粒子の粒度を測定する際に、下記の第1の測定方法で使用する各ふるい面上に存在する粒子の重量が最大となるふるいの呼び寸法を最頻値とする。   When comparing inorganic particles having the same kurtosis of the particle size distribution, the air permeability tends to decrease as the particle size decreases, and conversely, molding becomes difficult as the particle size increases. From this viewpoint, on the condition that the kurtosis of the particle size distribution is within the above range, the mode of the particle size distribution of the inorganic particles is preferably 100 to 600 μm, particularly 105 to 500 μm, and particularly preferably 150 to 425 μm. . The mode is a statistical term and represents the class with the highest frequency in each class of the frequency distribution. In the present invention, when measuring the particle size of the inorganic particles, the nominal size of the sieve that maximizes the weight of the particles present on each sieve surface used in the first measurement method described below is defined as the mode value.

無機粒子の粒度分布は、下記の第1の測定方法で測定し、呼び寸法425μmのふるい面上の粒子重量累積が、全試料重量の10%を超える場合は、第1の測定方法で粒度分布を求め、そうでない場合には、下記の第2の測定方法で測定することにより求めることができる。
<第1の方法>
JIS Z2601(1993)「鋳物砂の試験方法」付随書2に規定する方法に基づいて測定される。前記重量累積は、各ふるい面上の粒子を、JIS Z2601(1993)解説表2に示す「径の平均Dn(μm)」とみなして計算するものとする。
<第2の方法>
レーザー回折式粒度分布測定装置(堀場製作所製LA−920)を用いて測定される。測定条件は次のとおりである。
・測定方法:フロー法
・屈折率:無機粒子によって変動(LA−920付属のマニュアル参照)
・分散媒:イオン交換水+ヘキサメタリン酸ナトリウム0.1%混合
・分散方法:攪拌、内蔵超音波3分
・試料濃度:2mg/100mL
The particle size distribution of the inorganic particles is measured by the following first measurement method. When the cumulative particle weight on the sieve surface having a nominal size of 425 μm exceeds 10% of the total sample weight, the particle size distribution by the first measurement method is used. If this is not the case, it can be obtained by measuring with the following second measurement method.
<First method>
Measured based on the method specified in JIS Z2601 (1993) “Testing Methods for Foundry Sand”, Appendix 2. The weight accumulation is calculated by regarding the particles on each sieve surface as “average diameter Dn (μm)” shown in Table 2 of JIS Z2601 (1993).
<Second method>
It is measured using a laser diffraction particle size distribution analyzer (LA-920 manufactured by Horiba, Ltd.). The measurement conditions are as follows.
・ Measurement method: Flow method ・ Refractive index: Varies depending on inorganic particles (Refer to the manual attached to LA-920)
・ Dispersion medium: Ion exchange water + 0.1% sodium hexametaphosphate mixed ・ Dispersion method: Stirring, built-in ultrasonic wave 3 minutes ・ Sample concentration: 2 mg / 100 mL

本発明の鋳物製造用構造体は、特に複雑な形状の鋳物を製造するような厳しい条件で発生するガス欠陥の低減に顕著な効果を発揮する。このような効果が発現する理由は定かではないが、軽量性及び加工性に優れる鋳物製造用構造体を使用する分野における、従来の鋳物製造用構造体では十分な通気性がないので、特に複雑な形状の鋳物を製造するような厳しい条件では、鋳物製造用構造体から発生する微量なガスが鋳物を構成する溶湯金属側へ入り込み、鋳物表面にガス欠陥を及ぼしていたものと考えられる。一方、本発明の鋳物製造用構造体は、適度な通気度を有しているので、特に複雑な形状の鋳物を造型するような厳しい条件でも、鋳物製造用構造体から発生する微量なガスが、鋳物を構成する溶湯金属側へ入り込むのを顕著に抑えられ、その結果、鋳物のガス欠陥を特段に低減できるものと考えられる。   The structure for manufacturing a casting according to the present invention exhibits a remarkable effect in reducing gas defects generated under severe conditions such as manufacturing a casting having a complicated shape. The reason why such an effect appears is not clear, but in the field of using a casting manufacturing structure having excellent lightness and workability, a conventional casting manufacturing structure does not have sufficient air permeability, so it is particularly complicated. Under severe conditions such as manufacturing a casting having a simple shape, it is considered that a small amount of gas generated from the casting manufacturing structure entered the molten metal side constituting the casting and caused gas defects on the casting surface. On the other hand, since the casting manufacturing structure of the present invention has an appropriate air permeability, a trace amount of gas generated from the casting manufacturing structure is generated even under severe conditions such as molding a casting having a complicated shape. It is considered that the entry into the molten metal constituting the casting can be remarkably suppressed, and as a result, gas defects in the casting can be reduced particularly.

本発明の鋳物製造用構造体が、上述した通気度を有するための追加的な好ましい条件としては、無機粒子の種類、熱硬化性樹脂の種類及び各成分の配合比の調整等が挙げられる。各成分の配合比に関しては、無機粒子、無機繊維及び熱硬化性樹脂の配合比(質量比率)が、無機粒子/無機繊維/熱硬化性樹脂=40〜90/1〜20/1〜30であることが好ましく、50〜85/2〜16/2〜25であることが更に好ましく、50〜85/2〜16/2〜20であることが一層好ましい。   Additional preferable conditions for the structure for producing a casting of the present invention to have the above-described air permeability include adjustment of the kind of inorganic particles, the kind of thermosetting resin, and the blending ratio of each component. Regarding the blending ratio of each component, the blending ratio (mass ratio) of inorganic particles, inorganic fibers, and thermosetting resin is inorganic particles / inorganic fibers / thermosetting resin = 40 to 90/1 to 20/1 to 30. It is preferably 50 to 85/2 to 16/2 to 25, and more preferably 50 to 85/2 to 16/2 to 20.

無機粒子は、鋳物製造用構造体の耐熱性を向上させる成分である。本発明では、鋳物製造用構造体の通気性を向上させる観点から、土状黒鉛及び人造黒鉛から選ばれる少なくとも1種の黒鉛を用いることが好ましい。また、黒鉛は耐焼着性が高い観点からも好ましく用いられる材料である。これらの黒鉛のうち、品質が安定し、構造体の通気度を制御し易い親点から人造黒鉛を用いることが好ましい。なお、黒鉛は一般に、鱗状黒鉛や土状黒鉛のように天然に産出されるものと、石油コークスやカーボンブラックあるいはピッチなどを原料に人工的に製造される人造黒鉛とに分類される。   An inorganic particle is a component which improves the heat resistance of the structure for casting manufacture. In the present invention, it is preferable to use at least one graphite selected from earthy graphite and artificial graphite from the viewpoint of improving the air permeability of the structure for producing castings. Graphite is also a material preferably used from the viewpoint of high seizure resistance. Of these graphites, it is preferable to use artificial graphite from the viewpoint of stable quality and easy control of the air permeability of the structure. Note that graphite is generally classified into those that are naturally produced, such as scaly graphite and earthy graphite, and artificial graphite that is artificially produced from petroleum coke, carbon black, pitch, or the like.

黒鉛以外の無機粒子としては、活性炭、黒曜石、雲母、ムライト、シリカ、マグネシア、タルク等が挙げられる。なお、活性炭はその形状により、一般的に、粉末活性炭、球状活性炭、繊維状活性炭に分類される。また、その原料により、木質系活性炭、椰子系活性炭、石炭系活性炭に分類される。本発明では鋳物製造用構造体の通気性を向上させる観点から、活性炭の形状は球状であることが好ましく、球状活性炭であれば、その原料は問わない。黒鉛を含め、これら各種の無機粒子は、単独で又は2種以上を組み合わせて用いることができる。全無機粒子中に占める黒鉛の合計量の好ましい割合は90質量%以上、更に好ましい割合は95質量%以上、一層好ましい割合は実質100質量%である。黒鉛を含め、2種以上の無機粒子を組み合わせて用いる場合には、上述した粒度分布の尖度は、混合粒子を対象として測定される。   Examples of inorganic particles other than graphite include activated carbon, obsidian, mica, mullite, silica, magnesia, and talc. In addition, activated carbon is generally classified into powdered activated carbon, spherical activated carbon, and fibrous activated carbon depending on its shape. Moreover, according to the raw material, it classify | categorizes into a wood type activated carbon, an insulator type activated carbon, and a coal type activated carbon. In the present invention, from the viewpoint of improving the air permeability of the structure for producing castings, the shape of the activated carbon is preferably spherical, and any raw material can be used as long as it is spherical activated carbon. These various inorganic particles including graphite can be used alone or in combination of two or more. A preferred proportion of the total amount of graphite in the total inorganic particles is 90% by mass or more, a more preferred proportion is 95% by mass or more, and a further preferred proportion is substantially 100% by mass. When two or more kinds of inorganic particles including graphite are used in combination, the kurtosis of the particle size distribution described above is measured for mixed particles.

無機粒子の粒度分布における最頻値は上述したとおりであるところ、無機粒子の平均粒径は、鋳物製造用構造体の通気性を一層向上させる観点から、80μm以上が好ましく、100μm以上が更に好ましく、120μm以上が一層好ましい。また、鋳物製造用構造体が鋳込み時においても十分な熱間強度を有する観点から、3000μm以下が好ましく、2500μm以下が更に好ましく、1000μm以下が一層好ましく、800μm以下がとりわけ好ましい。これらの観点から、無機粒子の平均粒径は、80〜3000μmが好ましく、100〜2500μmが更に好ましく、100〜1000μmが一層好ましく、120〜800μmがとりわけ好ましい。無機粒子の平均粒径は、上述した粒度分布と同様の方法によって測定され、体積累積50%の平均粒径として定義される。   The mode value in the particle size distribution of the inorganic particles is as described above, and the average particle size of the inorganic particles is preferably 80 μm or more, more preferably 100 μm or more, from the viewpoint of further improving the air permeability of the structure for casting production. 120 μm or more is more preferable. Further, from the viewpoint of having sufficient hot strength even when casting is produced, the structure is preferably 3000 μm or less, more preferably 2500 μm or less, still more preferably 1000 μm or less, and particularly preferably 800 μm or less. From these viewpoints, the average particle size of the inorganic particles is preferably 80 to 3000 μm, more preferably 100 to 2500 μm, still more preferably 100 to 1000 μm, and particularly preferably 120 to 800 μm. The average particle size of the inorganic particles is measured by the same method as the particle size distribution described above, and is defined as an average particle size of 50% volume accumulation.

無機粒子の含有量は、構造体の鋳込み時での形状保持性、成形品の表面性及び成形後の離型性が好適となる観点から、構造体中、40〜90質量%が好ましく、50〜85質量%が更に好ましい。この含有量の数値は、構造体を製造する際の配合量の数値であってもよい(以下に述べる材料についても同様である。)。   The content of the inorganic particles is preferably 40 to 90% by mass in the structure from the viewpoint that the shape retention at the time of casting of the structure, the surface property of the molded product, and the release property after molding are suitable. -85 mass% is still more preferable. The numerical value of this content may be the numerical value of the blending amount when manufacturing the structure (the same applies to the materials described below).

本発明の鋳物製造用構造体に含まれる無機繊維は、主として該構造体の骨格をなし、例えば鋳造時の溶融金属の熱によって燃焼せずにその形状を維持するものが用いられる。無機繊維としては、炭素繊維、ロックウール等の人造鉱物繊維、セラミック繊維、天然鉱物繊維が挙げられる。無機繊維は、単独で又は2種以上を組み合わせて用いることができる。これらの繊維のうち、熱硬化性樹脂の炭化に伴う収縮を効果的に抑える点から、高温でも高強度を有する繊維である炭素繊維を用いることが好ましい。炭素繊維を用いる場合には、ピッチ系やポリアクリロニトリル(PAN)系の炭素繊維が好ましく、特にポリアクリロニトリル(PAN)系の炭素繊維が好ましい。   The inorganic fiber contained in the structure for producing a casting according to the present invention mainly forms a skeleton of the structure, and for example, one that maintains its shape without being burned by the heat of the molten metal at the time of casting. Examples of the inorganic fiber include carbon fiber, artificial mineral fiber such as rock wool, ceramic fiber, and natural mineral fiber. An inorganic fiber can be used individually or in combination of 2 or more types. Among these fibers, it is preferable to use carbon fibers which are fibers having high strength even at high temperatures from the viewpoint of effectively suppressing shrinkage associated with carbonization of the thermosetting resin. When carbon fibers are used, pitch-based or polyacrylonitrile (PAN) -based carbon fibers are preferable, and polyacrylonitrile (PAN) -based carbon fibers are particularly preferable.

無機繊維は、鋳物製造用構造体の成形性及び均一性の観点から、平均繊維長が0.5〜15mm、特に1〜8mmであることが好ましい。   The inorganic fibers preferably have an average fiber length of 0.5 to 15 mm, particularly 1 to 8 mm, from the viewpoint of moldability and uniformity of the structure for producing castings.

無機繊維の含有量は、鋳物製造用構造体の成形性及び鋳込み時の形状保持性の観点から、構造体中、1〜20質量%が好ましく、2〜16質量%が更に好ましい。   The content of the inorganic fiber is preferably 1 to 20% by mass and more preferably 2 to 16% by mass in the structure from the viewpoint of moldability of the structure for producing castings and shape retention during casting.

本発明の鋳物製造用構造体に含まれる熱硬化性樹脂は、該構造体の常温強度及び熱間強度を維持させるとともに、構造体の表面性を良好とし、構造体を鋳型として用いた場合に鋳物の表面粗度を向上させるために必要な成分である。熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、フラン樹脂等が挙げられる。これらの樹脂は単独で又は2種以上を組み合わせて用いることができる。これらの樹脂のうち、特にフェノール樹脂を用いることが好ましい。この理由は、フェノール樹脂は、鋳造時における分解ガスの発生量が少なく、燃焼抑制効果があり、熱分解(炭化)後における残炭率が25%以上と高く、構造体を鋳型に用いた場合に炭化皮膜を形成して良好な鋳肌を得ることができるからである。フェノール樹脂としては、硬化剤を必要とするノボラックフェノール樹脂、硬化剤の必要ないレゾールフェノール樹脂が挙げられる。   The thermosetting resin contained in the structure for producing castings of the present invention maintains the normal temperature strength and hot strength of the structure, improves the surface property of the structure, and uses the structure as a mold. It is a component necessary for improving the surface roughness of the casting. Examples of the thermosetting resin include a phenol resin, an epoxy resin, and a furan resin. These resins can be used alone or in combination of two or more. Of these resins, it is particularly preferable to use a phenol resin. The reason for this is that phenol resin has a small amount of cracked gas generated during casting, has an effect of suppressing combustion, has a high residual carbon ratio of 25% or more after pyrolysis (carbonization), and the structure is used as a mold. This is because a good cast skin can be obtained by forming a carbonized film on the surface. Examples of the phenol resin include novolak phenol resins that require a curing agent and resol phenol resins that do not require a curing agent.

また、フェノール樹脂のうち、レゾールフェノール樹脂を単独で又は他の樹脂と併用することが一層好ましい。この理由は、酸やアミン等の硬化剤を必要としないので、構造体を成形するときに発生する臭気を低減することができ、また構造体を鋳型として用いた場合に鋳造欠陥を低減することができるからである。   Of the phenolic resins, it is more preferable to use a resole phenolic resin alone or in combination with another resin. The reason for this is that it does not require a curing agent such as acid or amine, so that it is possible to reduce the odor generated when molding the structure, and to reduce casting defects when the structure is used as a mold. Because you can.

レゾールフェノール樹脂としては、例えば市販品を用いることができる。そのような市販品としては、例えば群栄化学工業(株)製の商品名レヂトップPGA−2165、旭有機材工業(株)製の商品名KL−4000、エア・ウオーター(株)製の商品名ベルパールS−890などが挙げられる。   As a resole phenol resin, a commercial item can be used, for example. As such a commercial item, for example, the product name REGITOP PGA-2165 manufactured by Gunei Chemical Industry Co., Ltd., the product name KL-4000 manufactured by Asahi Organic Materials Co., Ltd., the product name manufactured by Air Water Co., Ltd. Belpearl S-890 etc. are mentioned.

熱硬化性樹脂の含有量は、鋳物製造用構造体の成形性及び鋳込み時の形状保持性の観点と、鋳物の表面平滑性の観点とから、構造体中、1〜30質量%が好ましく、2〜25質量%が更に好ましく、2〜20質量%が一層好ましい。   The content of the thermosetting resin is preferably 1 to 30% by mass in the structure from the viewpoint of moldability of the structure for casting production and shape retention during casting, and from the viewpoint of surface smoothness of the casting. 2-25 mass% is still more preferable, and 2-20 mass% is still more preferable.

本発明では、鋳物製造用構造体の成形原料に、鋳物製造用構造体の成形性向上の観点から、水溶性高分子化合物を添加することが好ましい。水溶性高分子化合物は、通常(例えば25℃)の使用条件下で水を吸着又は吸収する高分子化合物であり、例えば25℃の純水中に1.0質量%以上溶解することが好ましい。   In the present invention, it is preferable to add a water-soluble polymer compound to the molding raw material for the casting production structure from the viewpoint of improving the moldability of the casting production structure. The water-soluble polymer compound is a polymer compound that adsorbs or absorbs water under normal use conditions (for example, 25 ° C.), and is preferably dissolved in, for example, 1.0% by mass or more in pure water at 25 ° C.

水溶性高分子化合物としては、例えば増粘性の多糖類、ポリビニルアルコール、ポリエチレングリコール等が挙げられる。これらうち、構造体の成形性向上の観点から増粘性の多糖類を用いることが好ましい。増粘性の多糖類とは、水系で増粘性を発現する多糖類である。その例としては、キサンタンガム、タマリンドガム、ジェランガム、グアーガム、ローカストビーンガム、タラガム等のガム剤、カルボキシメチルセルロース、ヒドロキシエチルセルロース等のセルロース誘導体、カラギーナン、プルラン、ペクチン、アルギン酸、寒天等が挙げられる。これらの多糖類のうち、寒天のような天然物よりも、非天然物、例えば、カルボキシメチルセルロースのようなセルロース誘導体は、その使用量が少なくても十分な性能を発揮することができるので好ましい。水溶性高分子化合物の重量平均分子量は、好ましくは1万〜300万、更に好ましくは2万〜100万である。   Examples of water-soluble polymer compounds include thickening polysaccharides, polyvinyl alcohol, and polyethylene glycol. Of these, it is preferable to use thickening polysaccharides from the viewpoint of improving the moldability of the structure. A thickening polysaccharide is a polysaccharide that exhibits thickening in an aqueous system. Examples thereof include gum agents such as xanthan gum, tamarind gum, gellan gum, guar gum, locust bean gum and tara gum, cellulose derivatives such as carboxymethyl cellulose and hydroxyethyl cellulose, carrageenan, pullulan, pectin, alginic acid, agar and the like. Among these polysaccharides, non-natural products such as cellulose derivatives such as carboxymethyl cellulose are preferable to natural products such as agar because they can exhibit sufficient performance even if the amount used is small. The weight average molecular weight of the water-soluble polymer compound is preferably 10,000 to 3,000,000, more preferably 20,000 to 1,000,000.

鋳物製造用構造体の成形原料に水溶性高分子化合物が添加される場合における、該高分子化合物の含有量は、構造体の成形性を向上させる観点から、0.5質量%以上が好ましく、1質量%以上が更に好ましい。構造体の通気度を好適な範囲にする観点からは10質量%以下が好ましく、7質量%以下が更に好ましい。これらの点から、水溶性高分子化合物の含有量は、成形原料中、0.5〜10質量%が好ましく、1〜7質量%が一層好ましい。   In the case where a water-soluble polymer compound is added to the molding raw material of the structure for casting production, the content of the polymer compound is preferably 0.5% by mass or more from the viewpoint of improving the moldability of the structure, 1 mass% or more is still more preferable. From the viewpoint of setting the air permeability of the structure within a suitable range, it is preferably 10% by mass or less, and more preferably 7% by mass or less. From these points, the content of the water-soluble polymer compound is preferably 0.5 to 10% by mass, and more preferably 1 to 7% by mass in the forming raw material.

本発明では、鋳物製造用構造体の成形原料に、該構造体の成形性向上の観点から、熱膨張性粒子を添加することが好ましい。熱膨張性粒子は、熱可塑性樹脂の殻壁内に、気化して膨張する膨張剤を内包したマイクロカプセルであることが好ましい。該マイクロカプセルは、例えば、80〜200℃で加熱すると、直径が好ましくは3〜5倍、体積が好ましくは50〜100倍に膨張する。膨張前の平均粒径は、好ましくは5〜80μm、更に好ましくは20〜50μmである。熱膨張性粒子の膨張がかかる範囲であると、膨張による成形精度への悪影響を抑えた上で、添加効果が十分に得られやすい。   In the present invention, it is preferable to add thermally expandable particles to the forming raw material of the structure for producing castings from the viewpoint of improving the formability of the structure. The thermally expandable particles are preferably microcapsules in which an expansion agent that expands by vaporization is encapsulated in the shell wall of a thermoplastic resin. For example, when the microcapsule is heated at 80 to 200 ° C., the diameter preferably expands 3 to 5 times and the volume preferably 50 to 100 times. The average particle diameter before expansion is preferably 5 to 80 μm, more preferably 20 to 50 μm. When the expansion of the heat-expandable particles is within the range, the effect of addition is easily obtained while suppressing the adverse effect on the molding accuracy due to the expansion.

マイクロカプセルの殻壁を構成する熱可塑性樹脂としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、ポリ塩化ビニリデン、アクリロニトリル−塩化ビニリデン共重合体、エチレン−酢酸ビニル共重合体又はこれらの組み合わせ等が挙げられる。これらの樹脂のうち、適切な膨張開始温度や高い膨張率を得る観点から、アクリロニトリルや塩化ビニリデンからなる重合体、又はそれらを1つ以上含む共重合体で殻壁を構成することが好ましい。殻壁に内包される膨張剤としては、プロパン、ブタン、ペンタン、ヘキサン、イソブタン、石油エーテル等の低沸点の有機溶剤が挙げられる。   Examples of the thermoplastic resin constituting the shell wall of the microcapsule include polystyrene, polyethylene, polypropylene, polyacrylonitrile, polyvinylidene chloride, acrylonitrile-vinylidene chloride copolymer, ethylene-vinyl acetate copolymer, or combinations thereof. . Among these resins, from the viewpoint of obtaining an appropriate expansion start temperature and a high expansion coefficient, the shell wall is preferably composed of a polymer made of acrylonitrile or vinylidene chloride, or a copolymer containing one or more of them. Examples of the expanding agent contained in the shell wall include low-boiling organic solvents such as propane, butane, pentane, hexane, isobutane, and petroleum ether.

鋳物製造用構造体の成形原料に熱膨張性粒子が添加される場合における、該熱膨張性粒子の含有量は、構造体の成形性に優れる観点から、成形原料中、0.5〜10質量%が好ましく、1〜5質量%が更に好ましい。この範囲内であれば、膨張によって成形原料が型の細部にわたって充填され、型の形状を忠実に転写でき、添加効果が十分に得られる。   The content of the heat-expandable particles in the case where the heat-expandable particles are added to the molding raw material for the structure for producing castings is 0.5 to 10 mass in the molding raw material from the viewpoint of excellent moldability of the structure. % Is preferable, and 1 to 5% by mass is more preferable. Within this range, the molding raw material is filled over the details of the mold by expansion, the shape of the mold can be faithfully transferred, and the effect of addition can be sufficiently obtained.

鋳物製造用構造体の成形原料には、前記の各成分以外に、着色剤、離型剤、コロイダルシリカ等の他の成分を適宜の割合で添加することもできる。また、これらの他の成分は、鋳物製造用構造体の成形時又は成形後に添加してもよい。   In addition to the components described above, other components such as a colorant, a release agent, and colloidal silica can be added to the molding raw material for the structure for producing castings in an appropriate ratio. Moreover, you may add these other components at the time of shaping | molding of the structure for casting manufacture, or after shaping | molding.

鋳物製造用構造体を、水を含む成形原料から製造する場合には、該構造体の使用前(鋳造に供せられる前)の質量含水率が5%以下であることが好ましく、2%以下であることが一層好ましい。含水率が低いほど、鋳造時の水蒸気に由来するガス発生量を低く抑えることができ、ガス欠陥を低減できる。   When the structure for casting production is produced from a forming raw material containing water, the mass moisture content before use of the structure (before being used for casting) is preferably 5% or less, and preferably 2% or less. It is more preferable that The lower the moisture content, the lower the amount of gas generated due to the water vapor during casting, and the reduction of gas defects.

本発明の鋳物製造用構造体は、内面に鋳物製品形状のキャビティを有する主型、その主型に入れて使用する中子、あるいは湯道などの注湯系部材、フィルター保持具等に適用することができる。本発明の鋳物製造用構造体は表面平滑性に優れており、良好な鋳肌の鋳物を得ることができるので、主型や中子への適用が好ましい。本発明の鋳物製造用構造体は、特に、鋳物のガス欠陥低減効異に優れるので、注型時に溶湯金属に覆われてガス欠陥が発生しやすくなる中子への適用が好ましく、中空中子への適用が更に好ましい。   The casting manufacturing structure of the present invention is applied to a main mold having a casting product-shaped cavity on the inner surface, a core used in the main mold, or a pouring member such as a runner, a filter holder, and the like. be able to. The structure for producing a casting of the present invention is excellent in surface smoothness, and a casting having a good casting surface can be obtained. Therefore, application to a main mold and a core is preferable. The structure for producing a casting according to the present invention is particularly excellent in reducing gas defects in castings. Therefore, it is preferably applied to a core that is covered with molten metal during casting and is likely to generate gas defects. Application to is more preferable.

次に、本発明の鋳物製造用構造体の製造方法を、その好ましい実施形態に基づいて説明する。本製造方法においては、無機粒子、無機繊維、熱硬化性樹脂及び分散媒を含有する成形原料(鋳物製造用構造体用組成物と分散媒とを含有する組成物)を調製し、該成形原料を成形型に注入して、鋳物製造用構造体を得る。   Next, the manufacturing method of the structure for casting production according to the present invention will be described based on preferred embodiments thereof. In this production method, a forming raw material (a composition containing a structure for casting production and a dispersion medium) containing inorganic particles, inorganic fibers, a thermosetting resin, and a dispersion medium is prepared, and the forming raw material Is poured into a mold to obtain a structure for casting production.

本製造方法に使用される好適な鋳物製造用構造体用組成物の各成分の配合比(質量比率)は、無機粒子、無機繊維、熱硬化性樹脂及び水溶性高分子化合物の固形分総質量に対し、無機粒子/無機繊維/熱硬化性樹脂/水溶性高分子化合物=40〜90/1〜20/1〜30/1〜10が好ましく、50〜85/2〜16/2〜25/1〜7が一層好ましく、50〜85/2〜16/2〜20/1〜7が更に好ましい。ただし、質量比率に用いる各成分の数値の合計は100である。また、鋳物製造用構造体用組成物中、(i)無機粒子、無機繊維及び熱硬化性樹脂の合計含有量、(ii)無機粒子、無機繊維、熱硬化性樹脂及び水溶性高分子化合物の合計含有量、(iii)無機粒子、無機繊維、熱硬化性樹脂及び熱膨張性粒子の合計含有量、又は(iv)無機粒子、無機繊維、熱硬化性樹脂、水溶性高分子化合物及び熱膨張性粒子の合計含有量は、90〜100質量%、更に95〜100質量%であることが好ましい。なお、鋳物製造用構造体用組成物中、紙繊維、フィブリル化した合成繊維、再生繊維等の有機繊維の含有量は0.1質量%以下、特に0.05質量%以下とすることが好ましい。有機繊維を含有させると、構造体自体の強度は向上するが、有機繊維の熱分解ガスが発生し易くなり、ガス欠陥を誘発するおそれがある。   The compounding ratio (mass ratio) of each component of the composition for a structural body for casting production suitable for use in this production method is the total solid content of inorganic particles, inorganic fibers, thermosetting resin and water-soluble polymer compound. In contrast, inorganic particles / inorganic fibers / thermosetting resin / water-soluble polymer compound = 40 to 90/1 to 20/1 to 30/1 to 10 is preferable, and 50 to 85/2 to 16/2 to 25 /. 1-7 are still more preferable, and 50-85 / 2-16 / 2-20 / 1-7 are still more preferable. However, the total of the numerical values of each component used for the mass ratio is 100. Further, in the composition for a structure for casting production, (i) the total content of inorganic particles, inorganic fibers and thermosetting resin, (ii) of inorganic particles, inorganic fibers, thermosetting resin and water-soluble polymer compound Total content, (iii) Total content of inorganic particles, inorganic fibers, thermosetting resins and thermally expandable particles, or (iv) Inorganic particles, inorganic fibers, thermosetting resins, water-soluble polymer compounds and thermal expansion The total content of the conductive particles is preferably 90 to 100% by mass, and more preferably 95 to 100% by mass. The content of organic fibers such as paper fibers, fibrillated synthetic fibers, and regenerated fibers in the composition for a structure for casting production is preferably 0.1% by mass or less, particularly preferably 0.05% by mass or less. . When the organic fiber is contained, the strength of the structure itself is improved, but the pyrolysis gas of the organic fiber is easily generated, which may cause a gas defect.

無機粒子の配合が前記の範囲内であると、鋳込み時の形状保持性、成形品の表面性が良好となり、また成形後の離型性も好適となりやすい。無機繊維の配合比が前記の範囲内であると、成形性、鋳込み時の形状保持性が良好となりやすい。熱硬化性樹脂の配合比が前記の範囲内であると、構造体の成形性、鋳込み後の形状保持性、表面平滑性が良好となりやすい。水溶性高分子化合物の配合比が前記の範囲内であると、成形原料(成形体製造用組成物に分散媒を添加し調製して得られる原料)を成形型内に充填する際に、成形原料中の分散媒が分離することなく流動性が良好な状態で充填可能であるとともに、得られる構造体の通気性が良好となりやすい。   When the blending of the inorganic particles is within the above range, the shape retention at the time of casting and the surface property of the molded product are good, and the mold release property after molding tends to be suitable. When the blending ratio of the inorganic fibers is within the above range, the moldability and shape retention during casting are likely to be good. When the blending ratio of the thermosetting resin is within the above range, the moldability of the structure, the shape retention after casting, and the surface smoothness are likely to be good. When the mixing ratio of the water-soluble polymer compound is within the above range, the molding material (raw material obtained by adding a dispersion medium to the composition for forming a molded body) is filled into the molding die. The dispersion medium in the raw material can be filled with good fluidity without separation, and the air permeability of the resulting structure tends to be good.

鋳物製造用構造体用組成物の調製においては、無機粒子、無機繊維、熱硬化性樹脂を予め乾式で混合することが好ましい。均一に混合できる観点及び成形性向上の観点から、更に水溶性高分子化合物も予め乾式で混合することが好ましい。成形性の観点から、更に熱膨張性粒子も予め乾式で混合することが好ましい。そしてこれらの混合物を、分散媒に分散させて混練機で混練し、成形原料をドウ状に調製することが好ましい。該ドウ状の成形原料を成形型内に充填し、該成形型を加熱して熱硬化性樹脂を硬化させて成形することが好ましい。   In the preparation of the structure for a casting manufacturing structure, it is preferable to dryly mix inorganic particles, inorganic fibers, and a thermosetting resin in advance. From the viewpoint of being able to mix uniformly and improving moldability, it is preferable to further mix the water-soluble polymer compound in advance by a dry method. From the viewpoint of moldability, it is preferable to mix the heat-expandable particles in a dry manner. And it is preferable to disperse these mixtures in a dispersion medium and knead them with a kneader to prepare the forming raw material in a dough shape. Preferably, the dough-shaped forming raw material is filled in a mold, and the mold is heated to cure the thermosetting resin.

分散媒としては、水、エタノール、メタノール等の溶剤又はこれらの混合系等の水系の分散媒が挙げられる。得られる構造体の品質の安定性、製造経費、取り扱い易さ等の点から、水を用いることが特に好ましい。   Examples of the dispersion medium include water, a solvent such as ethanol and methanol, and an aqueous dispersion medium such as a mixed system thereof. It is particularly preferable to use water from the viewpoints of stability of the quality of the resulting structure, production costs, ease of handling, and the like.

成形原料をドウ状に調製するとは、無機粒子、無機繊維及び熱硬化性樹脂を含む組成物と分散媒を捏和混練して、流動性を有しながらも無機粒子及び無機繊維と分散媒とが容易に分離することがない状態に調製することをいう。成形原料中における分散媒の含有量は、成形原料が流動性を有しながらも無機粒子及び無機繊維と分散媒とが容易に分離することがない状態に成形原料を調製する観点から、無機粒子、無機繊維、熱硬化性樹脂及び水溶性高分子化合物の固形分総質量に対し、好ましくは10〜200質量%であり、更に好ましくは25〜180質量%であり、一層好ましくは30〜170質量%である。   Preparation of the forming raw material in a dough shape means that the composition containing inorganic particles, inorganic fibers and a thermosetting resin and a dispersion medium are gently kneaded so that the inorganic particles and the inorganic fibers and the dispersion medium have fluidity. Refers to the preparation in a state where it is not easily separated. The content of the dispersion medium in the forming raw material is determined from the viewpoint of preparing the forming raw material so that the inorganic particles and the inorganic fibers and the dispersion medium are not easily separated while the forming raw material has fluidity. , Preferably 10 to 200% by mass, more preferably 25 to 180% by mass, and still more preferably 30 to 170% by mass based on the total solid mass of the inorganic fiber, thermosetting resin and water-soluble polymer compound. %.

鋳物製造用構造体の製造方法に使用する成形型は、例えば図1に示す中空棒状品に対応したキャビティを有する主型と、中空を形成する芯材とを備えることによって構成される。構造体の成形時、成形型は、分散媒の蒸発、熱硬化性樹脂の硬化や熱膨張性粒子の膨張を考慮して、120〜250℃程度に加熱される。次に、成形型に設けられたゲートの開閉手段を開くことで、成形原料が成形型内に充填される。充填圧力は、エアを充填手段にした場合には0.5〜3MPa程度が好適である。成形型内に充填された成形原料が加熱されると、分散媒由来の蒸気や、熱硬化性樹脂由来のガス等が発生する。発生したガスを成形型外へ放出させつつ、成形原料を乾燥させる。そして。冷却後に必要に応じてトリミング、薬剤の塗布等を行うことで、目的とする鋳物製造用構造体が得られる。   The molding die used in the method for manufacturing a casting manufacturing structure is configured by including, for example, a main die having a cavity corresponding to the hollow rod-shaped product shown in FIG. 1 and a core material that forms a hollow. At the time of molding the structure, the mold is heated to about 120 to 250 ° C. in consideration of evaporation of the dispersion medium, curing of the thermosetting resin, and expansion of the thermally expandable particles. Next, the molding raw material is filled in the mold by opening the gate opening / closing means provided in the mold. The filling pressure is preferably about 0.5 to 3 MPa when air is used as the filling means. When the molding raw material filled in the mold is heated, vapor derived from the dispersion medium, gas derived from the thermosetting resin, and the like are generated. The molding raw material is dried while releasing the generated gas out of the mold. And then. By performing trimming, drug application, and the like as necessary after cooling, a target casting manufacturing structure can be obtained.

次に、本発明の鋳物製造用構造体を用いた鋳物の製造方法について説明する。本製造方法では、上述のようにして得られた鋳物製造用構造体を、鋳物砂内の所定位置に埋設して造型を行う。鋳物砂には、従来この種の鋳物の製造に用いられている通常のものを特に制限なく用いることができる。そして、注湯口から溶融金属を注ぎ入れて鋳込みを行う。このとき、本発明の構造体は、熱間強度が維持され、該構造体の熱分解に伴う熱収縮が小さいので、各鋳物製造用構造体のひび割れや、鋳物製造用構造体自体の破損が抑制され、溶融金属の鋳物用構造体への差込みや鋳物砂などの付着が生じにくい。鋳込みを終えた後、所定の温度まで冷却し、鋳枠を解体して鋳物砂を取り除き、更にブラスト処理によって鋳物製造用構造体を取り除いて鋳物を露呈させる。この場合、熱硬化性樹脂が熱分解しているので、鋳物製造用構造体の除去処理は容易である。その後必要に応じて鋳物にトリミング処理等の後処理を施して鋳物の製造を完了する。   Next, the casting manufacturing method using the casting manufacturing structure of the present invention will be described. In this manufacturing method, the casting manufacturing structure obtained as described above is embedded in a predetermined position in the molding sand to perform molding. As the foundry sand, conventional ones conventionally used for producing this type of casting can be used without any particular limitation. Then, the molten metal is poured from the pouring port and cast. At this time, since the structure of the present invention maintains the hot strength and the thermal shrinkage accompanying the thermal decomposition of the structure is small, cracks in the structures for casting production and damage to the structures for casting production itself It is suppressed, and the insertion of molten metal into the casting structure and the adhesion of foundry sand are less likely to occur. After the casting is completed, the casting is cooled to a predetermined temperature, the casting frame is disassembled to remove the casting sand, and the casting manufacturing structure is removed by blasting to expose the casting. In this case, since the thermosetting resin is thermally decomposed, the removal process of the casting manufacturing structure is easy. Thereafter, post-processing such as trimming is performed on the casting as necessary to complete the manufacturing of the casting.

更に好ましい鋳物の製造方法は、本発明の鋳物製造用構造体を中空中子として使用する態様である。この態様においては、鋳型内に中空中子を、該中空中子の開口部の少なくとも1つが鋳型外に開放するように配置し、次いで鋳型内に溶融金属を注湯する。具体的には、図2に示すように、図1に示す中空中子を主型内に配置するとともにケレンによって中空中子を支持し、中空中子の開口部の1つが鋳型外に開放するように配置し、次いで鋳型内に溶融金属を注湯して鋳物を製造する。なお、中空中子の開口部の1つが鋳型外に開放するように配置する方法としては、主型に中空中子の中空部と連通するように開口部を備える方法を採用してもよい。   A more preferred casting production method is an embodiment in which the casting production structure of the present invention is used as a hollow core. In this embodiment, the hollow core is disposed in the mold such that at least one of the openings of the hollow core is opened outside the mold, and then the molten metal is poured into the mold. Specifically, as shown in FIG. 2, the hollow core shown in FIG. 1 is arranged in the main mold and the hollow core is supported by keren, and one of the openings of the hollow core is opened outside the mold. Then, the molten metal is poured into the mold to produce a casting. In addition, as a method for arranging one of the openings of the hollow core so as to open to the outside of the mold, a method of providing an opening in the main mold so as to communicate with the hollow part of the hollow core may be employed.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。特に断らない限り、「部」は「質量部」を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “part” means “part by mass”.

〔実施例1ないし5並びに比較例1及び2〕
(1)鋳物製造用構造体用組成物及び成形原料の調製
無機粒子、無機繊維、熱硬化性樹脂、水溶性高分子化合物及び熱膨張性粒子の組成及び配合率(質量比率)が表1のとおりになるように鋳物製造用構造体用組成物を調製した後、この鋳物製造用構造体用組成物に、同表に示す量の水を添加してドウ状の成形原料を調製した。表1に示す各成分は表2に示すとおりである。
[Examples 1 to 5 and Comparative Examples 1 and 2]
(1) Preparation of casting composition for structural body and preparation of molding raw material The composition and blending ratio (mass ratio) of inorganic particles, inorganic fibers, thermosetting resin, water-soluble polymer compound and thermally expandable particles are shown in Table 1. After preparing the structure for casting manufacturing structure so that it might become like this, the amount of water shown in the same table was added to this structure for casting manufacturing structure, and the dough-shaped forming raw material was prepared. Each component shown in Table 1 is as shown in Table 2.

(2)鋳物製造用構造体の製造
図1に示す中空棒状品に対応するキャビティを有する主型と中空を形成する芯材を備える加熱された成形型に、成形原料を充填した。充填のエア圧力は1MPaとした。成形型の温度は200℃とした。加熱によって分散媒由来の蒸気や、熱硬化性樹脂由来のガスを成形型外へ放出させつつ乾燥させ、外径11mm(中空部径5mm)×長さ380mmの図1に示す中空棒状品(鋳物製造用構造体)を得た。
(2) Manufacture of structure for casting production A molding raw material was filled in a heated mold having a main mold having a cavity corresponding to the hollow rod-shaped product shown in FIG. 1 and a core material forming a hollow. The air pressure for filling was 1 MPa. The temperature of the mold was 200 ° C. A hollow rod-shaped product (casting) shown in FIG. 1 having an outer diameter of 11 mm (hollow part diameter of 5 mm) and a length of 380 mm is dried while discharging the vapor derived from the dispersion medium or the gas derived from the thermosetting resin by heating. Manufacturing structure) was obtained.

(3)評価
得られた鋳物製造用構造体の通気度を以下の方法で測定した。また、成形性及び鋳物の表面性を以下の方法で評価した。これらの結果を以下の表1に示す。
(3) Evaluation The air permeability of the obtained casting production structure was measured by the following method. Moreover, the moldability and the surface property of the casting were evaluated by the following methods. These results are shown in Table 1 below.

〔通気度〕
JIS Z2601(1993)「鋳物砂の試験方法」に基づいて規定された、「消失模型用塗型剤の標準試験方法」(平成8年3月 社団法人日本鋳造工学会関西支部)の「5.通気度測定法」に従い、該刊行物(24ページ図5−2)に記載された通気度測定装置(コンプレッサー空気通気方式)と同等原理の装置を用いて測定した。通気度Pは「P=(h/(a×p))×V」で表わされる。式中、hは試験片厚さ(cm)、aは試験片断面積(cm2)、pは通気抵抗(cmH2O)、Vは空気の流量(cm3/min)である。試験片厚さは前記の中空棒状品の肉厚すなわち「(外径−中空部直径)/2」とし、試験片断面積は「中空部直径×円周率×長さ」とした。測定に際して、図3に示すとおり、通気度測定装置に、前記の中空棒状品に漏れなく接続できるようゴムチューブ及び接続治具(パッキン)を取り付け、更に中空棒状品の中空部片端に該接続治具を隙間なく接続し、もう片端をパッキン等で塞ぎ空気の漏れを防いで測定を行った。
[Air permeability]
“5. Standard test method of coating material for disappearance model” (March 1996, Kansai Branch, Japan Foundry Engineering Society) defined based on JIS Z2601 (1993) “Testing method of foundry sand”. According to the method of measuring the air permeability, the air permeability was measured using a device having the same principle as the air permeability measuring device (compressor air ventilation method) described in the publication (FIG. 5-2 on page 24). The air permeability P is expressed by “P = (h / (a × p)) × V”. In the formula, h is the specimen thickness (cm), a is the specimen cross-sectional area (cm 2 ), p is the ventilation resistance (cmH 2 O), and V is the air flow rate (cm 3 / min). The thickness of the test piece was the thickness of the hollow rod-shaped product, that is, “(outer diameter−hollow part diameter) / 2”, and the cross-sectional area of the test piece was “hollow part diameter × circumferential ratio × length”. At the time of measurement, as shown in FIG. 3, a rubber tube and a connecting jig (packing) are attached to the air permeability measuring device so that it can be connected to the hollow rod-shaped product without omission, and the connection treatment is applied to one end of the hollow portion of the hollow rod-shaped product. The tools were connected without gaps, and the other end was closed with a packing or the like to prevent air leakage.

〔成形性〕
前記方法で得た中空棒状品(鋳物製造用構造体)の成形性を以下の基準で評価した。
◎:90%以上の確率において、所望する中空棒状の構造体が得られるもの。
○:70%以上90%未満の確率において、所望する中空棒状の構造体が得られるもの。
△:50%以上70%未満の確率において、所望する中空棒状の構造体が得られるもの。
×:50%以上の確率において、所望する中空棒状の構造体が得られないもの。
[Formability]
The moldability of the hollow rod-like product (structure for producing castings) obtained by the above method was evaluated according to the following criteria.
A: A desired hollow rod-like structure is obtained with a probability of 90% or more.
A: A desired hollow rod-like structure is obtained with a probability of 70% or more and less than 90%.
Δ: A desired hollow rod-like structure is obtained with a probability of 50% or more and less than 70%.
X: The desired hollow rod-like structure cannot be obtained with a probability of 50% or more.

〔鋳物製造用構造体の表面性〕
得られた鋳物製造用構造体の表面性を、目視で、以下の基準で評価した。
◎:表面の凹凸や亀裂が見受けられず、滑らかであるもの。
○:表面に凹凸や亀裂が存在しても、その大きさが十分小さく、鋳物肌に悪影響を与える恐れがないもの。
△:表面に凹凸や亀裂が存在し、鋳物肌に悪影響を与える恐れが高いもの。
×:表面に顕著な凹凸や亀裂、欠落部が存在するもの。
[Surface properties of structures for casting production]
The surface properties of the resulting casting production structure were evaluated visually according to the following criteria.
A: Smooth surface with no irregularities or cracks on the surface.
○: Even if there are irregularities and cracks on the surface, the size is sufficiently small and there is no possibility of adversely affecting the casting skin.
(Triangle | delta): The thing with a high possibility that an unevenness | corrugation and a crack exist in the surface and has a bad influence on casting skin.
X: A thing with remarkable unevenness | corrugation, a crack, and a missing part on the surface.

Figure 2011056563
Figure 2011056563

Figure 2011056563
Figure 2011056563

表1に示す結果から明らかなように、各実施例で得られた中空棒状品からなる鋳物製造用構造体(本発明品)は、無機粒子の粒度分布を特定の範囲内に設定することで、適切な通気度を有し、成形も良好に行われることが判る。また、無機粒子の粒度分布の最頻値を特定の範囲内に設定することで、成形された鋳物製造用構造体の表面性も良好であることが判る。これに対して、無機粒子の粒度分布の尖度が本発明の範囲外であり、かつ無機粒子の粒度分布の最頻値が本発明の範囲外である比較例1で得られた中空棒状品からなる鋳物製造用構造体は、通気度が低く、成形された鋳物製造用構造体の表面性も良好でないことが判る。   As is apparent from the results shown in Table 1, the structure for producing castings (the product of the present invention) composed of the hollow rod-like product obtained in each example is set by setting the particle size distribution of the inorganic particles within a specific range. It can be seen that it has an appropriate air permeability and is well molded. Moreover, it turns out that the surface property of the shape | molded structure for casting manufacture is also favorable by setting the mode value of the particle size distribution of an inorganic particle in a specific range. On the other hand, the hollow rod-like product obtained in Comparative Example 1 in which the kurtosis of the particle size distribution of the inorganic particles is out of the range of the present invention and the mode value of the particle size distribution of the inorganic particles is out of the range of the present invention. It can be seen that the structure for producing a casting made of the above has a low air permeability and the surface property of the formed structure for producing a casting is not good.

Claims (6)

無機粒子、無機繊維及び熱硬化性樹脂を含有する鋳物製造用構造体であって、該無機粒子の粒度分布の尖度が1〜20である鋳物製造用構造体。   A casting manufacturing structure containing inorganic particles, inorganic fibers and a thermosetting resin, wherein the kurtosis of the particle size distribution of the inorganic particles is 1 to 20. 前記無機粒子の粒度分布の最頻値が100〜600μmである請求項1記載の鋳物製造用構造体。   The structure for casting production according to claim 1, wherein the mode value of the particle size distribution of the inorganic particles is 100 to 600 μm. 前記無機粒子が黒鉛である請求項1又は2記載の鋳物製造用構造体。   The structure for casting production according to claim 1 or 2, wherein the inorganic particles are graphite. 前記黒鉛が土状黒鉛又は人造黒鉛である請求項3記載の鋳物製造用構造体。   The structure for casting production according to claim 3, wherein the graphite is earthy graphite or artificial graphite. 前記無機粒子が球状活性炭である請求項1又は2記載の鋳物製造用構造体。   The casting manufacturing structure according to claim 1, wherein the inorganic particles are spherical activated carbon. 前記鋳物製造用構造体が中空中子である請求項1ないし5のいずれかに記載の鋳物製造用構造体。   6. The casting manufacturing structure according to claim 1, wherein the casting manufacturing structure is a hollow core.
JP2009211079A 2009-09-11 2009-09-11 Structure for producing casting Pending JP2011056563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009211079A JP2011056563A (en) 2009-09-11 2009-09-11 Structure for producing casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009211079A JP2011056563A (en) 2009-09-11 2009-09-11 Structure for producing casting

Publications (1)

Publication Number Publication Date
JP2011056563A true JP2011056563A (en) 2011-03-24

Family

ID=43944820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009211079A Pending JP2011056563A (en) 2009-09-11 2009-09-11 Structure for producing casting

Country Status (1)

Country Link
JP (1) JP2011056563A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480801A (en) * 2013-09-18 2014-01-01 沈阳工业大学 Novel preparation method for casting crankshaft oil bore
JP2018058112A (en) * 2016-09-29 2018-04-12 日立金属株式会社 Shell-mold resin-coated foundry sand, core and main mold using the same, and method for manufacturing shell-mold resin-coated foundry sand
CN109158534A (en) * 2018-09-21 2019-01-08 四川共享铸造有限公司 The method that solution has the shrinkage porosite of long hole casting parts, shrinkage cavity defect
EP3715010A4 (en) * 2017-11-20 2021-09-01 Kao Corporation Structure for producing cast

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480801A (en) * 2013-09-18 2014-01-01 沈阳工业大学 Novel preparation method for casting crankshaft oil bore
JP2018058112A (en) * 2016-09-29 2018-04-12 日立金属株式会社 Shell-mold resin-coated foundry sand, core and main mold using the same, and method for manufacturing shell-mold resin-coated foundry sand
EP3715010A4 (en) * 2017-11-20 2021-09-01 Kao Corporation Structure for producing cast
US11590560B2 (en) 2017-11-20 2023-02-28 Kao Corporation Structure for producing cast
CN109158534A (en) * 2018-09-21 2019-01-08 四川共享铸造有限公司 The method that solution has the shrinkage porosite of long hole casting parts, shrinkage cavity defect

Similar Documents

Publication Publication Date Title
JP5441402B2 (en) Casting manufacturing structure, casting manufacturing structure composition, casting manufacturing structure manufacturing method, and casting manufacturing method
EP2939759B1 (en) Method for producing structure for casting and structure such as mold
JP4675276B2 (en) Compact
JP5680490B2 (en) Casting structure
JP2011056563A (en) Structure for producing casting
JP6235448B2 (en) Disappearance model coating composition
JP5368077B2 (en) Manufacturing method of casting structure
JP5441387B2 (en) Manufacturing method of casting manufacturing structure, casting manufacturing structure, and casting manufacturing method
JP5362531B2 (en) Manufacturing method of casting structure
JP5473312B2 (en) Manufacturing method of casting structure
JP4672289B2 (en) Casting manufacturing structure, manufacturing method thereof, and casting
JP4907326B2 (en) Casting manufacturing structure and casting manufacturing method
JP5099894B2 (en) Hollow molded body manufacturing apparatus and manufacturing method
JP2010274270A (en) Structure for producing casting
CN117102435A (en) Structure for casting production
JP2011212877A (en) Method of manufacturing molded body
JP2009101553A (en) Apparatus and method for manufacturing hollow molding