JP4907326B2 - Casting manufacturing structure and casting manufacturing method - Google Patents

Casting manufacturing structure and casting manufacturing method Download PDF

Info

Publication number
JP4907326B2
JP4907326B2 JP2006334513A JP2006334513A JP4907326B2 JP 4907326 B2 JP4907326 B2 JP 4907326B2 JP 2006334513 A JP2006334513 A JP 2006334513A JP 2006334513 A JP2006334513 A JP 2006334513A JP 4907326 B2 JP4907326 B2 JP 4907326B2
Authority
JP
Japan
Prior art keywords
casting
weight
mold
inorganic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006334513A
Other languages
Japanese (ja)
Other versions
JP2008142755A (en
Inventor
昭 吉田
重昭 高階
春樹 池永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2006334513A priority Critical patent/JP4907326B2/en
Publication of JP2008142755A publication Critical patent/JP2008142755A/en
Application granted granted Critical
Publication of JP4907326B2 publication Critical patent/JP4907326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋳物の製造時に用いられる鋳型等の構造体及び該構造体を用いた鋳物の製造方法に関する。   The present invention relates to a structure such as a mold used in manufacturing a casting and a method for manufacturing a casting using the structure.

鋳物は、一般に、木型や金型などをもとに鋳物砂で内部にキャビティを有する鋳型を形成するとともに、必要に応じて該キャビティ内に中子を配した後、該キャビティに溶湯を供給して製造されている。   For castings, in general, a mold having a cavity is formed with casting sand based on a wooden mold or a mold, and a core is disposed in the cavity as needed, and then a molten metal is supplied to the cavity. Manufactured.

木型、金型の製造は、加工に熟練を要し高価な設備も必要で、高価で重い等の欠点と共に廃棄処理の問題も生じ、量産の鋳物のほかには使用が困難である。また、鋳物砂を用いた砂型は、通常の砂にバインダーを添加し、硬化させて形状を保持させているため、砂の再利用には再生処理工程が必須となる。また、再生処理の際にダストなどの廃棄物が発生するなどの問題も生じている。加えて、中子を砂型で製造する場合、上記課題に加え中子自身の重量のため取り扱いに難があり、さらには、鋳込み時の強度保持と鋳込み後の中子除去性という相反する性能が要求される。   The manufacture of wooden molds and molds requires skill in processing and expensive equipment, and there are disadvantages such as expensive and heavy disposal, as well as disposal problems, making it difficult to use in addition to mass-produced castings. Moreover, since the sand mold | die using casting sand has added the binder to normal sand, it is made to harden | cure and the shape is hold | maintained, a recycling process process becomes essential for reuse of sand. There is also a problem that waste such as dust is generated during the regeneration process. In addition, when the core is manufactured in a sand mold, it is difficult to handle due to the weight of the core itself in addition to the above problems, and furthermore, there are conflicting performances of strength maintenance during casting and core removal after casting. Required.

このような課題を解決する技術として、セルロース繊維に無機粉や無機繊維を添加して成形するもの(下記特許文献1参照)が知られている。また、有機繊維、無機繊維、無機粒子及び熱硬化性樹脂を含有する鋳型又は構造体(下記特許文献2参照)が知られている。   As a technique for solving such a problem, there is known a technique in which inorganic powder or inorganic fiber is added to cellulose fiber and molded (see Patent Document 1 below). Moreover, the casting_mold | template or structure (refer following patent document 2) containing an organic fiber, an inorganic fiber, an inorganic particle, and a thermosetting resin is known.

これらの技術は、軽量化、加工性、廃材問題については、ある程度の効果を有するものの、これらの鋳型を用いて鋳造した場合、鋳造された鋳物表面にガス欠陥が発生して鋳物品質の低下を招くという課題があった。よって、これらの課題を改善すべく手段が強く望まれていた。   Although these technologies have some effects in terms of weight reduction, workability, and waste material problems, when casting using these molds, gas defects occur on the cast surface and the casting quality deteriorates. There was a problem of inviting. Therefore, a means has been strongly desired to improve these problems.

特開平9−253792号公報Japanese Patent Laid-Open No. 9-253792 特開2005−153003号公報JP 2005-153003 A

本発明の課題は、鋳物品質であるガス欠陥を改善することができる鋳物製造用構造体を提供することにある。   The subject of this invention is providing the structure for casting manufacture which can improve the gas defect which is casting quality.

本発明は、無機繊維、無機粒子、熱硬化性樹脂、並びに、バナジウム、チタン及び鉄からなる群から選ばれる少なくとも1種の金属を含有する鋳物製造用構造体に関する。   The present invention relates to a structure for producing a casting containing inorganic fibers, inorganic particles, a thermosetting resin, and at least one metal selected from the group consisting of vanadium, titanium, and iron.

また、本発明は、バナジウム、チタン及び鉄からなる群から選ばれる少なくとも1種の金属が、無機繊維、無機粒子、熱硬化性樹脂を含有する鋳物製造用構造体の表面に付着している、鋳物製造用構造体に関する。   Further, in the present invention, at least one metal selected from the group consisting of vanadium, titanium, and iron is attached to the surface of a casting manufacturing structure containing inorganic fibers, inorganic particles, and a thermosetting resin. The present invention relates to a casting manufacturing structure.

また、本発明は、上記本発明の鋳物製造用構造体を用いる鋳物の製造方法に関する。   Moreover, this invention relates to the manufacturing method of the casting which uses the structure for casting manufacture of the said invention.

なお、本明細書において、「鋳物製造用の構造体」という場合、「鋳物製造用の鋳型」の範疇に含まれる場合もある。   In the present specification, the term “structure for casting production” may be included in the category of “mold for casting production”.

本発明の鋳物製造用の構造体は、溶融金属を鋳込む場合において、鋳造後の鋳物表面あるいは内部にガス欠陥や異物噛み欠陥等の鋳物の欠陥が顕著に改善され、高品質の鋳物が生産できる。   The structure for producing a casting according to the present invention produces a high-quality casting by remarkably improving a casting defect such as a gas defect or a foreign matter biting defect on a casting surface or inside after casting when casting a molten metal. it can.

以下本発明を、その好ましい実施形態に基づき説明する。   Hereinafter, the present invention will be described based on preferred embodiments thereof.

本実施形態の構造体は、溶融金属から鋳物を製造するために好適である。   The structure of the present embodiment is suitable for producing a casting from molten metal.

本実施形態の構造体は、無機繊維、無機粒子、熱硬化性樹脂、並びに、バナジウム、チタン及び鉄からなる群から選ばれる少なくとも1種の金属(以下、金属(a)という)を含有するものである。あるいは、金属(a)が、無機繊維、無機粒子、熱硬化性樹脂を含有する鋳物製造用構造体の表面に付着してなるものでる。   The structure of this embodiment contains inorganic fibers, inorganic particles, thermosetting resins, and at least one metal selected from the group consisting of vanadium, titanium, and iron (hereinafter referred to as metal (a)). It is. Or a metal (a) adheres to the surface of the structure for casting manufacture containing an inorganic fiber, an inorganic particle, and a thermosetting resin.

無機繊維の配合重量比率は、構造体中、0.1〜80重量%、更に1〜50重量%、特に1〜30重量%が好ましい。なお、この配合重量比率の数値は、構造体中の含有量の数値であってもよい(以下も同様)。   The blending weight ratio of the inorganic fibers in the structure is preferably 0.1 to 80% by weight, more preferably 1 to 50% by weight, and particularly preferably 1 to 30% by weight. The numerical value of the blending weight ratio may be a numerical value of the content in the structure (the same applies to the following).

この無機繊維の重量比率が0.1重量%以上であることは構造体の耐熱性の低下に伴う熱収縮によって鋳物の形状保持性の低下を抑制でき、またガスの発生量を低減できるという観点から好ましく、この重量比率が80重量%以下であることは構造体の成形性が良好で鋳込み後の構造体の除去性も良好となるという観点から好ましい。   The viewpoint that the weight ratio of the inorganic fiber is 0.1% by weight or more can suppress the decrease in the shape retention of the casting due to the thermal contraction accompanying the decrease in the heat resistance of the structure, and can reduce the amount of gas generated. The weight ratio is preferably 80% by weight or less from the viewpoint of good moldability of the structure and good removability of the structure after casting.

また、無機粒子の配合重量比率は、構造体中、10〜95重量%、更に20〜90重量%、特に30〜85重量%が好ましい。   Moreover, the compounding weight ratio of the inorganic particles is preferably 10 to 95% by weight, more preferably 20 to 90% by weight, and particularly preferably 30 to 85% by weight in the structure.

この無機粒子の重量比率が10重量%以上であることは後述する無機粒子の添加効果がより発現しやすいという観点から好ましく、この重量比率が95重量%以下であることは構造体の成形性、鋳物の形状保持性等が良好となるという観点から好ましい。   The weight ratio of the inorganic particles is preferably 10% by weight or more from the viewpoint that the effect of adding the inorganic particles described later is more easily expressed, and the weight ratio of 95% by weight or less is the moldability of the structure, It is preferable from the viewpoint of improving the shape retention of the casting.

また、熱硬化性樹脂の配合重量比率は、構造体中、3〜70重量%、更に5〜50重量%、特に5〜30重量%が好ましい。   Moreover, the compounding weight ratio of a thermosetting resin is 3-70 weight% in a structure, Furthermore, 5-50 weight%, Especially 5-30 weight% is preferable.

この熱硬化性樹脂の重量比率が3重量%以上であることは鋳物の表面の平滑性が良好で、構造体の強度や形状保持性も良好となるという観点から好ましく、この重量比率が70重量%以下であることは構造体の成形性が良くなるほか、ガス発生量が低減されて鋳物の表面欠陥を抑制できるという観点から好ましい。   It is preferable that the weight ratio of the thermosetting resin is 3% by weight or more from the viewpoint that the smoothness of the casting surface is good and the strength and shape retention of the structure are good. % Or less is preferable from the viewpoint of improving the moldability of the structure and reducing the amount of gas generated to suppress surface defects of the casting.

また、金属(a)の配合重量比率は、構造体中、0.1〜90重量%、更に0.5〜50重量%、特に1〜30重量%が好ましい。   Moreover, the compounding weight ratio of the metal (a) is preferably 0.1 to 90% by weight, more preferably 0.5 to 50% by weight, and particularly preferably 1 to 30% by weight in the structure.

この金属(a)の重量比率が0.1重量%以上であることは鋳物表面のガス欠陥を低減できるという観点から好ましく、この重量比率が90重量%以下であることは鋳造後の構造体を容易に除去できるという観点から好ましい。   The weight ratio of the metal (a) is preferably 0.1% by weight or more from the viewpoint that gas defects on the casting surface can be reduced, and the weight ratio of 90% by weight or less indicates the structure after casting. It is preferable from the viewpoint that it can be easily removed.

前記無機繊維は、主として構造体において鋳造に用いられる前の状態ではその骨格をなし、鋳造に用いられたときには溶融金属の熱によって燃焼せずにその形状を維持する成分である。特に、本発明で使用する熱硬化性樹脂等の有機成分が溶融金属の熱によって熱分解して生じる熱収縮を抑える成分である。   The inorganic fiber is a component that mainly forms a skeleton in a state before being used for casting in a structure, and maintains its shape without being burned by the heat of molten metal when used for casting. In particular, it is a component that suppresses thermal shrinkage caused by thermal decomposition of an organic component such as a thermosetting resin used in the present invention by the heat of molten metal.

前記無機繊維としては、炭素繊維、ガラス繊維、ロックウール等の人造鉱物繊維、セラミック繊維、天然鉱物繊維が挙げられる。無機繊維は、これらを単独で又は二以上を選択して用いることができる。そして、これらの中でも、熱硬化性樹脂の炭化に伴う収縮を効果的に抑える点から高温でも高強度を有するピッチ系やポリアクリロニトリル(PAN)系炭素繊維を用いることが好ましく、特にPAN系の炭素繊維が好ましい。   Examples of the inorganic fiber include carbon fiber, glass fiber, artificial mineral fiber such as rock wool, ceramic fiber, and natural mineral fiber. These inorganic fibers can be used alone or in combination of two or more. Among these, it is preferable to use pitch-based or polyacrylonitrile (PAN) -based carbon fibers having high strength even at high temperatures from the viewpoint of effectively suppressing shrinkage associated with carbonization of the thermosetting resin, and in particular, PAN-based carbon. Fiber is preferred.

前記無機繊維は、構造体を抄造して脱水する場合の脱水性、構造体の成形性、均一性の観点から平均繊維長が0.2〜10mm、特に0.5〜8mmであるものが好ましい。   The inorganic fibers preferably have an average fiber length of 0.2 to 10 mm, particularly 0.5 to 8 mm, from the viewpoints of dewaterability when the structure is made and dehydrated, moldability of the structure, and uniformity. .

前記無機繊維は、構造体の熱分解に伴う熱収縮を効果的に抑える機能を有している。   The inorganic fiber has a function of effectively suppressing thermal shrinkage accompanying thermal decomposition of the structure.

前記無機粒子は、該構造体の耐熱性を向上させる成分である。   The inorganic particles are components that improve the heat resistance of the structure.

前記無機粒子としては、シリカ、アルミナ、ムライト、マグネシア、ジルコニア、雲母、黒鉛、黒曜石等の耐火度800℃以上、更に1000℃以上の無機粒子が挙げられる。軟化時の粘度が高く、溶融金属の熱により軟化して緻密な耐火膜を形成する観点から黒曜石、ムライト粉が好ましい。また、構造体の成型性に優れるという観点から黒鉛が好ましい。なお、これらの無機粒子は単独で又は二種以上を併用しても良い。該無機粒子は、粒子径が200μm以下のものを用いることが好ましい。特に、鋳造する溶融金属の鋳込温度に対し±300℃、特に±200℃の耐火度を有する無機粒子が好ましい。ここで、無機粒子の耐火度は、ゼーゲルコーンを用いた測定方法(JIS R2204)で測定される。   Examples of the inorganic particles include inorganic particles having a fire resistance of 800 ° C. or higher, such as silica, alumina, mullite, magnesia, zirconia, mica, graphite, obsidian and the like, and 1000 ° C. or higher. Obsidian and mullite powder are preferred from the viewpoint of high viscosity during softening and softening by the heat of the molten metal to form a dense refractory film. Further, graphite is preferable from the viewpoint of excellent moldability of the structure. These inorganic particles may be used alone or in combination of two or more. The inorganic particles preferably have a particle size of 200 μm or less. In particular, inorganic particles having a fire resistance of ± 300 ° C., particularly ± 200 ° C. with respect to the casting temperature of the molten metal to be cast are preferable. Here, the fire resistance of the inorganic particles is measured by a measuring method (JIS R2204) using a Zeger cone.

前記熱硬化性樹脂としては、フェノール系樹脂、エポキシ系樹脂、フラン系樹脂等の熱硬化性樹脂が挙げられる。熱硬化性樹脂は、常温強度及び熱間強度を維持させると共に、鋳物の表面粗度を向上させるために必要な成分であり、塗型剤を塗布した砂型と同等の表面平滑性が得られ、塗型剤を使用しなくても良いほどである。   Examples of the thermosetting resin include thermosetting resins such as phenol resins, epoxy resins, and furan resins. The thermosetting resin is a component necessary for maintaining the normal temperature strength and the hot strength and improving the surface roughness of the casting, and a surface smoothness equivalent to that of a sand mold coated with a coating agent is obtained. It is not necessary to use a coating agent.

斯かる性能を有する前記熱硬化性樹脂には、特に、可燃ガスの発生が少なく、燃焼抑制効果があり、熱分解(炭化)後における残炭率が25%以上と高く、鋳造時に炭素皮膜を形成するために良好な鋳肌を得ることができる点からフェノール系樹脂を用いることが好ましい。なお、残炭率は、示査熱分析により還元雰囲気下(窒素雰囲気下)にて1000℃に加熱後の残留重量により求めることができる。   In particular, the thermosetting resin having such performance has little generation of combustible gas, has a combustion suppressing effect, has a high residual carbon ratio of 25% or more after pyrolysis (carbonization), and has a carbon film at the time of casting. It is preferable to use a phenol-based resin from the viewpoint that a good casting surface can be obtained for the formation. The residual carbon ratio can be determined from the residual weight after heating to 1000 ° C. in a reducing atmosphere (under a nitrogen atmosphere) by an analytical thermal analysis.

前記フェノール系樹脂としては、レゾールフェノール樹脂、ノボラックフェノール樹脂、尿素、メラミン、エポキシ等で変性した変性フェノール樹脂等が挙げられるが、好ましくはレゾールフェノール樹脂又はその変性樹脂である。   Examples of the phenolic resin include resol phenol resin, novolac phenol resin, modified phenol resin modified with urea, melamine, epoxy, and the like, preferably resole phenol resin or modified resin thereof.

前記熱硬化性樹脂は、単独で又は二以上を選択して用いることもでき、さらにはアクリル系樹脂やポリビニルアルコール系樹脂等と併用することもできる。特に、本発明の構造体を中空中子に適用する場合には、熱硬化性樹脂(特に残炭率が15%以上、特には25%以上)を使用することで、高い熱間強度が得られ、中空中子としての機能を十分に発揮できる。   The thermosetting resins may be used alone or in combination of two or more, and may be used in combination with an acrylic resin, a polyvinyl alcohol resin, or the like. In particular, when the structure of the present invention is applied to a hollow core, a high hot strength can be obtained by using a thermosetting resin (particularly a residual carbon ratio of 15% or more, particularly 25% or more). Therefore, the function as a hollow core can be sufficiently exhibited.

前記熱硬化性樹脂は、前記無機繊維又は前記無機粒子、更に前記有機繊維(配合する場合)にコーティングしたり、粉末化又は乳化して原料スラリー中に添加したりし、抄造後乾燥成形したときに、前記無機繊維及び前記無機粒子、更に前記有機繊維(配合する場合)を結合させるもの、成形体の抄造後に含浸させ、乾燥又は硬化させることで構造体の強度を高め、鋳込み時に溶融金属の熱によって炭化させて強度を維持するものなど、その後の鋳込み時の溶融金属の熱によって炭化して炭素皮膜を形成し、構造体の強度の維持と鋳物の表面平滑性の向上に寄与し得るものであれば含有させる形態はいずれでもよい。   When the thermosetting resin is coated on the inorganic fibers or the inorganic particles and further the organic fibers (when blended), or powdered or emulsified and added to the raw material slurry, and after the paper making and dry-molded In order to increase the strength of the structure by impregnating it after making the molded body, drying or curing it, and bonding the molten metal during casting, Carbon that is carbonized by heat to maintain strength, such as carbon film that is carbonized by the heat of molten metal at the time of casting, which can contribute to maintaining the strength of the structure and improving the surface smoothness of the casting If so, any form may be included.

前記ノボラックフェノール樹脂を使用した場合に必要となる硬化剤は、水に溶け易いため、湿式抄造による場合には特に成形体の脱水後に塗工することが好ましい。前記硬化剤には、ヘキサメチレンテトラミン等を用いることが好ましい。   Since the curing agent required when the novolak phenol resin is used is easily dissolved in water, it is preferably applied after dehydration of the molded body, particularly in the case of wet papermaking. It is preferable to use hexamethylenetetramine or the like as the curing agent.

本発明に用いられる金属(a)は、バナジウム、チタン及び鉄からなる群から選ばれる少なくとも1種の金属である。金属(a)は、金属単体、合金の何れでもよく、粒子状のものを使用することが好ましい。金属粒子は、通常市販されている試薬レベルの金属粒子、工業用途の金属粒子など、種々使用できる。金属(a)もしくは金属(a)を含む合金は、一種又は二種以上を使用できる。金属粒子の形状は特に限定されるものではなく、球状等でよく、また、多孔性のものでもよい。金属粒子は純度が30〜100重量%が好ましいが、鉄金属粒子の場合、水溶媒の接触による酸化防止の目的で、酸化鉄(Fe34)処理した鉄金属粒子〔例えば、同和工業(株)製の鉄粉RKH等〕が特に好ましい。また、チタン及びバナジウムに関しては、水素化チタン及び水素化バナジウムを含むものとする(これらは、鋳造時に熱分解して、それぞれ、チタン、バナジウムに変化する)。 The metal (a) used in the present invention is at least one metal selected from the group consisting of vanadium, titanium and iron. The metal (a) may be a single metal or an alloy, and is preferably in the form of particles. Various metal particles such as commercially available reagent-level metal particles and metal particles for industrial use can be used as the metal particles. The metal (a) or the alloy containing the metal (a) can be used alone or in combination of two or more. The shape of the metal particles is not particularly limited, and may be spherical or the like, or may be porous. The metal particles preferably have a purity of 30 to 100% by weight. In the case of iron metal particles, iron metal particles treated with iron oxide (Fe 3 O 4 ) for the purpose of preventing oxidation by contact with an aqueous solvent [for example, Dowa Kogyo ( Iron powder RKH manufactured by Co., Ltd.] is particularly preferable. As for titanium and vanadium, titanium hydride and vanadium hydride are included (they are thermally decomposed during casting and change into titanium and vanadium, respectively).

本発明の金属(a)は、無機繊維、無機粒子、熱硬化性樹脂等の構造体の組成中にこれらの金属の粒子を添加配合して、水分散媒とした原料スラリーとして用いられるのが好ましく、かかる原料スラリーを用いて本発明の構造体を作製することができる。   The metal (a) of the present invention is used as a raw material slurry in which these metal particles are added and blended in the composition of a structure such as inorganic fibers, inorganic particles, and thermosetting resin to form an aqueous dispersion medium. Preferably, the structure of the present invention can be produced using such raw material slurry.

また、無機繊維、無機粒子、熱硬化性樹脂を含有する鋳物製造用構造体に、金属(a)の粒子を被覆等により付着させて、本発明の鋳物製造用構造体を得ることもできる。金属(a)を付着させる場合、固着性を向上させる方法としてバインダーを使用することもできる。例えば、コロイダルシリカ、コロイダルアルミナ、水ガラス等の無機バインダーや、フェノール樹脂、アクリル系樹脂、酢酸ビニル系樹脂等の有機系バインダーを使用することができる。金属(a)の付着量は、鋳物製造用構造体〔金属(a)の付着前のもの〕100重量部に対して0.1〜10重量部、更に0.2〜5重量部、特に0.5〜5重量部が好ましい。なお、金属(a)を付着させる構造体は、金属(a)を含まないもの、金属(a)を含むもの、の何れでも良い。また、付着対象となる構造体が金属(a)を含まない場合も、該構造体における各成分の配合重量比率は前記の範囲とすることができる(ただし合計は100重量%となるように調整する)。   In addition, the casting production structure of the present invention can also be obtained by attaching metal (a) particles to a casting production structure containing inorganic fibers, inorganic particles, and a thermosetting resin by coating or the like. In the case of attaching the metal (a), a binder can be used as a method for improving the adhesion. For example, inorganic binders such as colloidal silica, colloidal alumina, and water glass, and organic binders such as phenol resin, acrylic resin, and vinyl acetate resin can be used. The adhesion amount of the metal (a) is 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, and particularly 0 0.5 to 5 parts by weight is preferred. Note that the structure to which the metal (a) is attached may be either one not containing the metal (a) or one containing the metal (a). Further, even when the structure to be attached does not contain the metal (a), the blending weight ratio of each component in the structure can be within the above range (however, the total is adjusted to be 100% by weight). To do).

金属(a)の付着、特に被覆は、金属粒子を含む塗布液を、刷毛塗布、スプレー塗布、もしくは溶射塗布することで行うことができる。金属粒子の粒径は、1000μm以下、更に200μm以下、特に50μm以下のものが、原料スラリー及びコーティング材として用いるための分散性が良く、鋳造した後の鋳物表面のガス欠陥及び異物噛みによる鋳物欠陥が顕著に改善されることから、好ましい。   The metal (a) can be attached, in particular, coated by applying a coating solution containing metal particles by brush coating, spray coating, or spray coating. Metal particles with a particle size of 1000 μm or less, more preferably 200 μm or less, particularly 50 μm or less have good dispersibility for use as raw material slurry and coating material, and casting defects due to gas defects and foreign matter biting after casting. Is remarkably improved, which is preferable.

本発明では、更に、抄造した後の中間成形体を抄造型から抜型する場合の湿態強度及び乾燥後の成形体強度を向上させる目的で有機繊維を配合添加してもよい。有機繊維の配合重量比率は、構造体中、1〜70重量%、更に2〜50重量%、特に2〜30重量%が好ましい。該比率が、1重量%以上であると、成形体強度が向上し、成形性に優れるものが得られる。また、該比率が70重量%以下であると、鋳込み後のガス発生量が低減されて鋳物の表面欠陥が発生し難くなり、耐熱性が向上し、鋳物の形状保持性が良好となる。   In the present invention, organic fibers may be further added for the purpose of improving the wet strength when the intermediate formed body after paper making is removed from the paper making mold and the strength of the formed body after drying. The blending weight ratio of the organic fiber is preferably 1 to 70% by weight, more preferably 2 to 50% by weight, and particularly preferably 2 to 30% by weight in the structure. When the ratio is 1% by weight or more, the strength of the molded body is improved, and an excellent moldability is obtained. Further, when the ratio is 70% by weight or less, the amount of gas generated after casting is reduced, surface defects of the casting are hardly generated, heat resistance is improved, and shape retention of the casting is improved.

前記有機繊維は、主として構造体において鋳造に用いられる前の状態ではその骨格をなし、構造体の成形性を向上させる成分である。また、鋳造に用いられたときには溶融金属の熱によってその一部若しくは全部が燃焼し、鋳物製造後の構造体の内部に空隙を形成して構造体の除去性を向上させる成分である。   The organic fiber is a component that forms a skeleton in the state before being used for casting mainly in the structure and improves the moldability of the structure. Further, when used for casting, it is a component that part or all of it is burned by the heat of the molten metal to form voids in the structure after the casting is manufactured, thereby improving the removability of the structure.

前記有機繊維としては、紙繊維、フィブリル化した合成繊維、再生繊維(例えば、レーヨン繊維)等の繊維が挙げられる。有機繊維は、これらを単独で又は二種以上を選択して用いることができる。そして、これらの中でも、特に、抄造により多様な形態に成形できるほか、脱水後と乾燥後に十分な強度が得られる点から紙繊維を用いることが好ましい。   Examples of the organic fibers include paper fibers, fibrillated synthetic fibers, and recycled fibers (for example, rayon fibers). These organic fibers can be used alone or in combination of two or more. Among these, it is particularly preferable to use paper fibers because they can be formed into various forms by papermaking and sufficient strength can be obtained after dehydration and drying.

前記紙繊維としては、木材パルプ、コットンパルプ、リンターパルプ、竹やわらその他の非木材パルプが挙げられる。紙繊維は、これらのバージンパルプ若しくは古紙パルプを単独で又は二種以上を選択して用いることができる。紙繊維は、入手の容易性、環境保護、製造費用の低減等の点から、特に古紙パルプが好ましい。   Examples of the paper fiber include wood pulp, cotton pulp, linter pulp, bamboo straw and other non-wood pulp. As the paper fiber, these virgin pulp or waste paper pulp can be used alone or in combination of two or more. The paper fiber is particularly preferably used paper pulp from the viewpoints of easy availability, environmental protection, and reduction of manufacturing costs.

前記有機繊維は、構造体の成形性、表面平滑性、耐衝撃性を考慮すると、平均繊維長が0.3〜2.0mm、特に0.5〜1.5mmであるものが好ましい。   The organic fiber preferably has an average fiber length of 0.3 to 2.0 mm, particularly 0.5 to 1.5 mm, considering the moldability, surface smoothness and impact resistance of the structure.

本実施形態の構造体には、前記無機繊維、前記無機粒子、前記熱硬化性樹脂及び金属(a)に加えて、必要に応じ、前記有機繊維、ポリビニルアルコール、カルボキシメチルセルロース(CMC)、ポリアミドアミンエピクロルヒドリン樹脂等の紙力強化材、ポリアクリルアミド系等の凝集剤、着色剤等の他の成分を適宜の割合で添加することができる。   In addition to the inorganic fibers, the inorganic particles, the thermosetting resin, and the metal (a), the structure of the present embodiment includes the organic fibers, polyvinyl alcohol, carboxymethyl cellulose (CMC), and polyamidoamine as necessary. Other components such as a paper strength reinforcing material such as epichlorohydrin resin, a polyacrylamide-based flocculant, and a colorant can be added at an appropriate ratio.

本実施形態の構造体は、表面粗度(Ra)が20μm以下、特には3〜15μm、更には5〜10μm以下とするのが好ましい。斯かる表面粗度とすることで、得られる鋳物の表面の平滑性をより優れたものとすることができる。ここで、表面粗度は、後述の実施例のように市販の測定装置で測定することができる。   The structure of this embodiment preferably has a surface roughness (Ra) of 20 μm or less, particularly 3 to 15 μm, more preferably 5 to 10 μm. By setting it as such surface roughness, the smoothness of the surface of the casting obtained can be made more excellent. Here, the surface roughness can be measured with a commercially available measuring device as in the examples described later.

本実施形態の構造体の厚みは、その用いられる部分に応じて適宜設定することができるが、少なくとも溶融金属と接する部分における厚みが、0.2〜5mm、特に0.4〜2mmであることが好ましい。薄すぎると鋳物砂を充填して造型するときに要する強度が不十分となり、構造体、特に、中子等の構造体の形状機能が維持できない場合があり、厚すぎると鋳込み時にガス発生量が増加して鋳物の表面欠陥が発生しやすくなるほか、成形時間が長くなり、製造費が高くなる場合がある。   The thickness of the structure according to the present embodiment can be appropriately set according to the portion used, but the thickness at least in the portion in contact with the molten metal is 0.2 to 5 mm, particularly 0.4 to 2 mm. Is preferred. If it is too thin, the strength required when molding by filling with casting sand may be insufficient, and the shape function of the structure, especially the core and other structures may not be maintained. In addition to the increased surface defects of the casting, the molding time may be increased and the manufacturing cost may be increased.

本実施形態の構造体は、鋳造に用いられる前の状態において、抗折強度が1MPa以上であることが好ましく、3MPa以上であることがより好ましい。   The structure of the present embodiment preferably has a bending strength of 1 MPa or more and more preferably 3 MPa or more in a state before being used for casting.

本実施形態の構造体は、水を分散媒とした原料スラリーを用いた抄造工程を経て製造したときには、鋳込み時のガス発生量を極力抑える点から、鋳造に用いられる前の状態において、含水率(重量含水率)が10%以下、特には8%以下であることが好ましい。   When the structure of the present embodiment is manufactured through a paper making process using a raw material slurry using water as a dispersion medium, the moisture content in a state before being used for casting from the point of suppressing gas generation during casting as much as possible. (Weight moisture content) is preferably 10% or less, particularly preferably 8% or less.

本実施形態の構造体は、軽量性と、造型作業や二次加工のし易さの点でから、鋳造に用いられる前の状態において、その比重が1.5以下であることが好ましく、1.2以下であることがより好ましい。   The structure of the present embodiment preferably has a specific gravity of 1.5 or less in a state before being used for casting, from the viewpoint of lightness and ease of molding and secondary processing. More preferably, it is 2 or less.

本実施形態の構造体は、内面に鋳物製品形状のキャビティーを有する主型、その主型に入れて使用する中子、或いは湯道などの注湯系部材等に適用することができるが、本発明の構造体が表面平滑性に優れており、良好な鋳肌の鋳物を得ることができるため、主型や中子への適用が好ましい。特に、熱間の圧縮強度にも優れ、高い形状保持性を有し且つ鋳込み後の除去性にも優れているため、中子として、特には中空形状でも高い形状保持性を有し、鋳物砂の充填が不要となる中空中子へ適用することが好ましい。   The structure of the present embodiment can be applied to a main mold having a casting product-shaped cavity on the inner surface, a core used in the main mold, or a pouring system member such as a runner, Since the structure of the present invention is excellent in surface smoothness and a casting having a good casting surface can be obtained, application to a main mold and a core is preferable. In particular, it has excellent hot compressive strength, high shape-retaining properties, and excellent removability after casting. It is preferable to apply to a hollow core that does not require filling.

本実施形態の構造体を鋳物の製造に用いると、従来のように、主型の周りに充填する鋳物砂及びショット玉のような鉄球等、中空中子にバックアップの目的で充填する鋳物砂等を必ずしもバインダーで硬化させる必要がないので、鋳物砂の再生が容易となる利点も生じる。   When the structure of this embodiment is used for the production of castings, as in the past, foundry sand filled around the main mold, iron balls such as shot balls, etc., and filled with hollow cores for backup purposes. Etc. need not necessarily be cured with a binder, so that there is an advantage that the molding sand can be easily regenerated.

次に、本発明の構造体の製造方法を、その好ましい実施形態として上述した実施形態の構造体の製造方法に基づいて説明する。
本実施形態の製造方法では、前記無機繊維、前記無機粒子、前記熱硬化性樹脂及び金属(a)、更に好ましくは前記有機繊維を前記所定配合比で含む原料スラリーを調製し、該原料スラリーを用いた湿式抄造法によって所定形状の繊維積層体を抄造し、脱水、乾燥して構造体を製造する。
Next, the structure manufacturing method of the present invention will be described as a preferred embodiment based on the structure manufacturing method of the above-described embodiment.
In the production method of the present embodiment, a raw material slurry containing the inorganic fiber, the inorganic particles, the thermosetting resin, and the metal (a), more preferably the organic fiber in the predetermined mixing ratio is prepared, and the raw material slurry is prepared. A fiber laminate having a predetermined shape is made by the wet paper making method, and dehydrated and dried to produce a structure.

前記原料スラリーの分散媒としては、水、白水の他、エタノール、メタノール等の溶剤等が挙げられ、これらの中でも抄造・脱水の安定性、品質の安定性、費用、取り扱い易さ等の点から特に水が好ましい。   Examples of the dispersion medium of the raw material slurry include water, white water, and solvents such as ethanol and methanol. Among these, from the viewpoints of papermaking / dehydration stability, quality stability, cost, ease of handling, etc. Water is particularly preferable.

前記原料スラリーにおける前記分散媒に対する前記各繊維(前記有機繊維を含む)、無機粒子及び金属(a)の合計の割合は、0.1〜8重量%、特に0.5〜6重量%であることが好ましい。原料スラリー中の前記繊維及び粒子の合計割合が多すぎると肉厚むらが生じやすくなる。特に中空品の場合には内面の表面性が悪くなる場合がある。逆に、少なすぎると局所的な薄肉部が発生する場合がある。   The total ratio of the fibers (including the organic fibers), the inorganic particles, and the metal (a) to the dispersion medium in the raw slurry is 0.1 to 8% by weight, particularly 0.5 to 6% by weight. It is preferable. If the total proportion of the fibers and particles in the raw slurry is too large, uneven thickness tends to occur. In particular, in the case of a hollow product, the surface property of the inner surface may be deteriorated. Conversely, if the amount is too small, a local thin portion may occur.

前記原料スラリーには、必要に応じて、前記紙力強化材、前記凝集剤、防腐剤等の添加剤を適宜の割合で添加することができる。   If necessary, additives such as the paper strength reinforcing material, the flocculant, and the preservative can be added to the raw material slurry at an appropriate ratio.

前記繊維積層体の抄造工程では、例えば、2個で一組をなす割型を突き合わせることにより、当該構造体の外形に略対応した形状を有し且つ外部に向けて開口するキャビティが内部に形成される金型を用いる。各割型には、外部とキャビティとを連通する多数の連通孔を設けておくとともに、各割型の内面を所定の大きさの網目を有するネットによって被覆しておく。そして、該金型のキャビティ内に所定量の原料スラリーを圧送ポンプ等を用いて注入する一方で前記連通孔を通して液体分を吸引排出し、前記ネットに原料スラリーの固形分を堆積させる。前記原料スラリーの加圧注入の圧力は、0.01〜5MPa、特に0.01〜3MPaであることが好ましい。   In the paper making process of the fiber laminate, for example, a cavity having a shape substantially corresponding to the outer shape of the structure and opening to the outside is formed inside by matching a pair of split molds. Use the mold to be formed. Each split mold is provided with a large number of communication holes for communicating the outside with the cavity, and the inner surface of each split mold is covered with a net having a mesh of a predetermined size. Then, a predetermined amount of raw material slurry is injected into the cavity of the mold using a pressure pump or the like, while liquid is sucked and discharged through the communication hole, and the solid content of the raw material slurry is deposited on the net. The pressure for pressure injection of the raw slurry is preferably 0.01 to 5 MPa, particularly preferably 0.01 to 3 MPa.

所定量の原料スラリーの注入により、前記ネット上に所定厚みの繊維積層体が形成されたら、原料スラリーの加圧注入を停止し、前記キャビティ内に空気を圧入して繊維積層体を所定の含水率に脱水する。   When a fiber laminate having a predetermined thickness is formed on the net by injecting a predetermined amount of raw material slurry, the pressure injection of the raw material slurry is stopped, and air is injected into the cavity so that the fiber laminate has a predetermined water content. Dehydrate to rate.

次に、前記繊維積層体を乾燥成形する。この乾燥成形工程では、一組の割型を突き合わせることにより成形すべき構造体の外形に対応した形状を有し且つ外部に向けて開口するキャビティが形成される乾燥型を用いる。そして、該乾燥型を所定温度に加熱し、脱水された前記繊維積層体を該乾燥型内に装填する。上述のような表面粗度を有する構造体を得るためには、乾燥型のキャビティの形成面の表面粗度(Ra)を15μm以下、特には10μm以下、さらには3μm以下とすることが好ましい。   Next, the fiber laminate is dry-molded. In this dry molding process, a dry mold having a shape corresponding to the outer shape of the structure to be molded by abutting a pair of split molds and having a cavity opening toward the outside is used. Then, the drying mold is heated to a predetermined temperature, and the dehydrated fiber laminate is loaded into the drying mold. In order to obtain the structure having the surface roughness as described above, the surface roughness (Ra) of the formation surface of the dry-type cavity is preferably 15 μm or less, particularly 10 μm or less, more preferably 3 μm or less.

次に、弾性を有し伸縮自在で且つ中空状をなす中子(弾性中子)を前記キャビティ内に挿入し、該中子内に加圧流体を供給して該中子を該キャビティ内において膨らませる。そして、前記繊維積層体を該キャビティの形成面に押圧し、該キャビティの内面形状を転写しながら乾燥する。中子には、例えば、ウレタン、フッ素系ゴム、シリコーン系ゴム又はエラストマー製のものを用いる。   Next, an elastic, elastic and hollow core (elastic core) is inserted into the cavity, a pressurized fluid is supplied into the core, and the core is inserted into the cavity. Inflate. Then, the fiber laminate is pressed against the formation surface of the cavity and dried while transferring the shape of the inner surface of the cavity. For the core, for example, urethane, fluorine rubber, silicone rubber or elastomer is used.

前記中子を膨張させる前記加圧流体としては、例えば圧縮空気(加熱空気)、油(加熱油)、その他各種の液が挙げられる。加圧流体を供給する圧力は、0.01〜5MPa、特に0.1〜3MPaであることが好ましい。   Examples of the pressurized fluid for expanding the core include compressed air (heated air), oil (heated oil), and other various liquids. The pressure for supplying the pressurized fluid is preferably 0.01 to 5 MPa, particularly preferably 0.1 to 3 MPa.

前記乾燥型の加熱温度(金型温度)は、乾燥時間、焦げによる表面性の低下を考慮すると150〜300℃、特に170〜250℃であることが好ましい。   The heating temperature (mold temperature) of the drying mold is preferably 150 to 300 ° C., particularly 170 to 250 ° C. in consideration of drying time and deterioration of surface properties due to scorching.

前記繊維積層体の乾燥後、前記中子内の前記加圧流体を抜き、該中子を縮ませて当該繊維積層体から取り出す。そして、前記乾燥型を開いて乾燥成形された構造体を取り出す。   After the fiber laminate is dried, the pressurized fluid in the core is drained, the core is shrunk and removed from the fiber laminate. Then, the dry mold is opened to take out the dry-formed structure.

得られた構造体には、必要に応じて、バインダーを部分的又は全体に含浸させ、加熱して熱硬化させることができる。該バインダーとしては、コロイダルシリカ、エチルシリケート、水ガラス等が挙げられる。   The obtained structure can be impregnated partially or wholly with a binder and heated to be thermally cured as necessary. Examples of the binder include colloidal silica, ethyl silicate, and water glass.

このようにして得られる構造体は、無機繊維、無機粒子、熱硬化性樹脂及び金属(a)、更には有機繊維の各成分がむらなく均一に分散しているため、熱収縮に伴うひび割れ等の発生が抑えられ、高い熱間強度が得られ、表面の平滑性にも優れている。
また、前記繊維積層体がその内部から前記中子で乾燥型のキャビティの形成面に押し付けられて成形されているため、内表面及び外表面の平滑性が高い。このため、鋳物の製造に用いた場合には、得られる鋳物は特に表面平滑性に優れたものとなる。またさらに、中空形状や複雑な立体形状とする場合にも貼り合わせ工程が不要なので、最終的に得られる構造体には貼り合わせによる継ぎ目及び肉厚部は存在しない。この点においても、肉厚が均一で成形精度や機械的強度が高く、精度の高く表面の平滑性に優れた鋳物を製造することができる。従って、主型や中子は勿論、嵌合部やネジ部を有する湯道等の構造体の製造にも適用することができる。
In the structure thus obtained, inorganic fibers, inorganic particles, thermosetting resin and metal (a), and further, each component of organic fiber is uniformly dispersed, so that cracks caused by heat shrinkage, etc. Generation is suppressed, high hot strength is obtained, and surface smoothness is excellent.
Moreover, since the said fiber laminated body is pressed and shape | molded from the inside to the formation surface of the dry type cavity with the said core, the smoothness of an inner surface and an outer surface is high. For this reason, when it uses for manufacture of a casting, the obtained casting becomes a thing excellent especially in surface smoothness. Furthermore, when a hollow shape or a complicated three-dimensional shape is used, a bonding step is not required, and therefore a seam and a thick portion due to bonding do not exist in the finally obtained structure. Also in this respect, it is possible to manufacture a casting having a uniform thickness, high molding accuracy and mechanical strength, high accuracy, and excellent surface smoothness. Therefore, the present invention can be applied not only to the main mold and the core but also to the manufacture of a structure such as a runner having a fitting part and a screw part.

また、構造体は、予め150〜300℃、特には170〜250℃で熱処理を行い、熱硬化性樹脂の硬化を進めることが好ましい。このような熱処理を行うことで、より優れた形状保持性を有する構造体が得られる。特に、鋳物の材質や形状によりガス欠陥の発生が懸念される場合にも好適である。   Moreover, it is preferable that the structure is heat-treated in advance at 150 to 300 ° C., particularly 170 to 250 ° C., to advance the curing of the thermosetting resin. By performing such heat treatment, a structure having more excellent shape retention can be obtained. In particular, it is also suitable when there are concerns about the occurrence of gas defects due to the material and shape of the casting.

次に、本発明の構造体を用いた鋳物の製造方法を、その好ましい実施形態に基づいて説明する。
本実施形態の製造方法では、上述のようにして得られた所定の構造体を鋳物砂内の所定位置に埋設して造型する。鋳物砂には、従来からこの種の鋳物の製造に用いられている通常のものを特に制限なく用いることができる。なお、鋳物砂やショット玉等のバックアップはバインダーで硬化させなくてもよいが、必要に応じて硬化させてもよい。構造体が中空中子の場合には中子内に鋳物砂の充填は不要であるが、充填することもできる。
Next, the manufacturing method of the casting using the structure of the present invention will be described based on the preferred embodiment.
In the manufacturing method of the present embodiment, the predetermined structure obtained as described above is embedded in a predetermined position in the foundry sand for molding. As the foundry sand, a conventional one that has been conventionally used for producing this type of casting can be used without any particular limitation. It should be noted that backups such as foundry sand and shot balls need not be cured with a binder, but may be cured as necessary. When the structure is a hollow core, it is not necessary to fill the core with foundry sand, but it can be filled.

そして、注湯口から溶融金属を注ぎ入れ、鋳込みを行う。鋳込みを終えた後、所定の温度まで冷却し、鋳枠を解体して鋳物砂を取り除き、さらにブラスト処理によって構造体を取り除いて鋳物を露呈させる。この時、熱硬化性樹脂、更には前記有機繊維が熱分解しているため、構造体の除去処理は容易である。その後必要に応じて鋳物にトリミング処理等の後処理を施して鋳物の製造を完了する。   Then, the molten metal is poured from the pouring gate and cast. After the casting is finished, it is cooled to a predetermined temperature, the casting frame is disassembled to remove the foundry sand, and the structure is removed by blasting to expose the foundry. At this time, since the thermosetting resin and further the organic fiber are thermally decomposed, the structure removal process is easy. Thereafter, post-processing such as trimming is performed on the casting as necessary to complete the manufacturing of the casting.

本実施形態の鋳物の製造方法は、前記無機繊維、前記無機粒子、前記熱硬化性樹脂及び金属(a)、更にはパルプ等の前記有機繊維を含む構造体を用いるので鋳造後の鋳物表面あるいは内部にガス欠陥や異物噛み欠陥等の鋳物の欠陥が顕著に改善され、高品質の鋳物が生産できる。   The casting manufacturing method of the present embodiment uses a structure containing the inorganic fibers, the inorganic particles, the thermosetting resin and the metal (a), and further the organic fibers such as pulp. Casting defects such as gas defects and foreign object biting defects are remarkably improved inside, and high-quality castings can be produced.

本発明は上述した実施形態に制限されず、本発明の趣旨を逸脱しない範囲において、適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

本発明の構造体は、前記実施形態のように、立体的な中空形状の構造体を形成する上では、湿式抄造法によって成形体を抄造し、脱水、乾燥成形工程を経て構造体を製造することが好ましいが、前記原料スラリーを抄紙してシート状の成形体を形成し、これを紙管として巻き上げて構造体を製造することもできる。   In the structure of the present invention, as in the above embodiment, in order to form a three-dimensional hollow structure, a formed body is made by a wet paper making method, and the structure is manufactured through dehydration and dry forming steps. It is preferable, however, that the raw material slurry is made into paper to form a sheet-like formed body, and this is rolled up as a paper tube to produce a structure.

また、乾燥成形後に最終的な形状に対応した構造体が得られるように製造することが好ましいが、乾燥後に得られた成形体を切断して分割し、分割された部品どうしを嵌合や螺合等で連結できる形態で製造することもできる。この場合、予め端部や分割部分に嵌合や螺合部を有する形態で成形しておくことが好ましい。   In addition, it is preferable to manufacture so that a structure corresponding to a final shape can be obtained after dry molding, but the molded body obtained after drying is cut and divided, and the divided parts are fitted or screwed together. It can also be manufactured in a form that can be connected together. In this case, it is preferable to form in advance a form having a fitting or screwing portion at the end or divided portion.

以下、本発明を実施例によりさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

〔実施例1〕
表1に示す材料組成の構造体を以下のように作製し、得られた構造体の重量を測定した。また、得られた構造体を用いて鋳物を製造し、鋳物の形状保持性(構造体の形状保持性)、表面平滑性(鋳物の表面粗度)、及び鋳物表面の鋳造欠陥を下記のように評価した。それらの結果を表1に示した。
[Example 1]
A structure having the material composition shown in Table 1 was produced as follows, and the weight of the obtained structure was measured. In addition, a casting is manufactured using the obtained structure, and the shape retention of the casting (structure retention of the structure), surface smoothness (surface roughness of the casting), and casting defects on the casting surface are as follows: Evaluated. The results are shown in Table 1.

<原料スラリーの調製>
下記有機繊維、無機繊維、無機粒子及び金属粒子を表1に示す配合で水に分散させた約1重量%のスラリーを調整した後、該スラリーに下記熱硬化性樹脂粉末及び適量の下記凝集剤を添加し、原料スラリーを調整した。
有機繊維:新聞古紙(平均繊維長1mm、フリーネス(CSF、以下同じ)150cc)
無機繊維:PAN系炭素繊維(東レ(株)製「トレカチョップ」、繊維長3mm、収縮率0.1%)
無機粒子:黒曜石(キンセイマテック社製「ナイスキャッチ」、平均粒子径30μm)
バナジウム粒子:和光純薬工業(株)製、バナジウム金属粉末試薬(粒度−45μm品)
熱硬化性樹脂:球状フェノール樹脂(エア・ウォーター(株)製ベルパールS−890)
凝集剤:ポリアクリルアミド系凝集剤(三井サイテック社製「A110」)
<Preparation of raw material slurry>
After preparing a slurry of about 1% by weight in which the following organic fiber, inorganic fiber, inorganic particle and metal particle were dispersed in water with the formulation shown in Table 1, the following thermosetting resin powder and an appropriate amount of the following flocculant were added to the slurry. Was added to prepare a raw material slurry.
Organic fiber: used newspaper (average fiber length 1mm, freeness (CSF, the same applies below) 150cc)
Inorganic fiber: PAN-based carbon fiber (“Toray Chop” manufactured by Toray Industries, Inc., fiber length 3 mm, shrinkage 0.1%)
Inorganic particles: Obsidian (“Nice catch” manufactured by Kinsei Matec Co., Ltd., average particle size 30 μm)
Vanadium particles: manufactured by Wako Pure Chemical Industries, Ltd., vanadium metal powder reagent (particle size -45 μm product)
Thermosetting resin: Spherical phenol resin (Belpearl S-890 manufactured by Air Water Co., Ltd.)
Flocculant: Polyacrylamide flocculant (“A110” manufactured by Mitsui Cytec)

<中空中子として用いる構造体の抄造成形>
抄造型には、φ40mm×250mmに対応するキャビティ形成面(表面粗度(Ra)0.9μm)を有する一対の割型で、当該キャビティ形成面に所定の目開きのネットが配され、キャビティ形成目と外部とを連通する多数の連通孔が形成されたものを用いた。そして、前記原料スラリーをモーノポンプで循環させ、前記抄造型内に所定量のスラリーを加圧注入する一方で、前記連通孔を通じて排水し、所定の繊維積層体を前記ネットの表面に堆積させた。所定量の原料スラリーの注入を完了した後、該繊維積層体が堆積された抄造型内に0.2MPaの加圧エアーを約30秒間供給し、該繊維積層体を脱水した。次いで、繊維積層体を抄造型から取り出し、220℃に加熱された乾燥型に移した。乾燥型には、φ40mm×250mmに対応するキャビティ形成面を有する一対の割型で、該キャビティ形成面と外部とを連通する多数の連通孔が形成されたものを用いた。乾燥工程では、前記乾燥型の上方開口部から袋状の弾性中子を挿入し、密閉された該乾燥型内で該弾性中子内に加圧流体(加圧空気、0.2MPa)を供給して該弾性中子を膨らませた。そして、前記繊維積層体を該乾燥型の内面に押しつけて、該乾燥型の内面形状を転写させつつ該繊維積層体を乾燥した。所定時間(180秒)の加圧乾燥を行った後、前記弾性中子内の加圧流体を抜いて該弾性中子を収縮させて前記乾燥型内から退避させた。そして、得られた成形体を前記乾燥型から取り出して冷却し、図1に示す形態で、表1に示した組成、重量、肉厚1.2mmの中空中子1(構造体)を得た。
<Paper forming of structure used as hollow core>
The papermaking mold is a pair of split molds having a cavity forming surface (surface roughness (Ra) 0.9 μm) corresponding to φ40 mm × 250 mm, and a net having a predetermined opening is arranged on the cavity forming surface, thereby forming a cavity. What formed many communication holes which connect eyes and the exterior was used. Then, the raw material slurry was circulated by a Mono pump, and a predetermined amount of slurry was pressurized and injected into the papermaking mold, while drained through the communication hole, and a predetermined fiber laminate was deposited on the surface of the net. After the injection of a predetermined amount of raw material slurry was completed, 0.2 MPa of pressurized air was supplied for about 30 seconds into the papermaking mold on which the fiber laminate was deposited, and the fiber laminate was dehydrated. The fiber laminate was then removed from the papermaking mold and transferred to a dry mold heated to 220 ° C. As the drying mold, a pair of split molds having a cavity forming surface corresponding to φ40 mm × 250 mm, in which a large number of communication holes communicating the cavity forming surface with the outside were used. In the drying process, a bag-shaped elastic core is inserted from the upper opening of the drying mold, and pressurized fluid (pressurized air, 0.2 MPa) is supplied into the elastic core in the sealed drying mold. Then, the elastic core was inflated. Then, the fiber laminate was pressed against the inner surface of the dry mold, and the fiber laminate was dried while transferring the inner shape of the dry mold. After performing pressure drying for a predetermined time (180 seconds), the pressurized fluid in the elastic core was removed, and the elastic core was contracted and retracted from the drying mold. And the obtained molded object was taken out from the said dry type | mold, it cooled, and the hollow core 1 (structure) of the composition, weight, and thickness 1.2mm shown in Table 1 with the form shown in FIG. 1 was obtained. .

<前記中空中子の構造体を用いる鋳物の鋳造>
図2に示すような直管状の鋳物10に対応したキャビティを有する主型を鋳物砂で造型し、その中に、得られたφ40mm×250mmの前記中空中子1を配し、中子1内には鋳物砂を充填せずに造型し、鋳物材質FCD−700、鋳込温度1400℃で鋳物を製造した。
<Casting a casting using the hollow core structure>
A main mold having a cavity corresponding to a straight tubular casting 10 as shown in FIG. 2 is formed from foundry sand, and the obtained hollow core 1 having a diameter of 40 mm × 250 mm is arranged therein. Was cast without filling with foundry sand, and a casting was produced at a casting material FCD-700 at a casting temperature of 1400 ° C.

〔鋳造後における鋳物の形状保持性の評価〕
鋳造後の鋳物の形状保持性を目視で判断し、下記四段階で評価した。
◎:構造体の形状が非常に寸法精度よく転写されている。
○:構造体の形状が寸法精度良く転写されている。
△:寸法精度は劣るが、ほぼ構造体の形状が転写されている。
×:構造体の形状がほとんど転写されていない。
[Evaluation of casting shape retention after casting]
The shape retention of the casting after casting was judged visually and evaluated in the following four stages.
A: The shape of the structure is transferred with very high dimensional accuracy.
○: The shape of the structure is transferred with high dimensional accuracy.
Δ: Although the dimensional accuracy is inferior, the shape of the structure is almost transferred.
X: The shape of the structure is hardly transferred.

〔鋳物表面の平滑性の評価〕
得られた鋳物の前記構造体に接していた部分の表面粗度(Ra)を測定した。Raが低いほど平滑性に優れることを示す。なお鋳物の表面粗度は、テーラーホブソン社製「Surtronic 10」により測定した。
[Evaluation of smoothness of casting surface]
The surface roughness (Ra) of the portion of the obtained casting that was in contact with the structure was measured. It shows that it is excellent in smoothness, so that Ra is low. The surface roughness of the casting was measured by “Surtronic 10” manufactured by Taylor Hobson.

〔鋳物表面の鋳造欠陥の評価〕
得られた鋳物の前記構造体に接していた部分(図2の内側表面全体)のガス欠陥及び異物噛み欠陥等の鋳造欠陥(大きさが直径0.5mm以上の窪み)の発生個数を測定した。
[Evaluation of casting defects on the casting surface]
The number of occurrences of casting defects (depressions having a diameter of 0.5 mm or more) such as gas defects and foreign matter biting defects in the portion of the obtained casting that was in contact with the structure (the entire inner surface in FIG. 2) was measured. .

〔実施例2〜5及び比較例1〕
構造体の組成を表1に示すように変更した以外は、実施例1と同様にして表1に示す重量で、厚さ1.2mmの中空中子を得た。そして、この中空中子を用い、実施例1と同様にして鋳物を鋳造し、実施例1と同様の評価を行った。結果を表1に示す。なお、これら実施例で用いた金属粒子は以下のものである。
・チタン粒子;東邦チタニウム(株)製、チタン粉TS−450(粒径45μm以下品:目開き45μmの篩い通過品)
・水素化チタン粒子:東邦チタニウム(株)製、水素化チタン粉TCH450(粒径45μm以下品:目開き45μmの篩い通過品)
・鉄粒子:同和工業(株)製、鉄粉RKH〔酸化鉄(Fe34)処理された鉄粉(鉄純度82%、Fe3416%)、粒径45μm:目開き45μmの篩い通過品〕
[Examples 2 to 5 and Comparative Example 1]
Except for changing the composition of the structure as shown in Table 1, a hollow core having a thickness of 1.2 mm was obtained in the same manner as in Example 1 with the weight shown in Table 1. Then, using this hollow core, a casting was cast in the same manner as in Example 1, and the same evaluation as in Example 1 was performed. The results are shown in Table 1. The metal particles used in these examples are as follows.
-Titanium particles: manufactured by Toho Titanium Co., Ltd., titanium powder TS-450 (particle size of 45 μm or less: product passing through a sieve having an opening of 45 μm)
・ Titanium hydride particles: manufactured by Toho Titanium Co., Ltd., titanium hydride powder TCH450 (particle size of 45 μm or less: product passing through a sieve having an opening of 45 μm)
Iron particles: manufactured by Dowa Kogyo Co., Ltd., iron powder RKH [iron oxide (Fe 3 O 4 ) -treated iron powder (iron purity 82%, Fe 3 O 4 16%), particle size 45 μm: aperture 45 μm (Sheet passing product)

Figure 0004907326
Figure 0004907326

〔実施例6〕
表2に示す材料組成の構造体を以下のように作製し、得られた構造体の重量を測定した。また、得られた構造体を用いて鋳物を製造し、実施例1と同様の評価を行った。それらの結果を表2に示した。
Example 6
Structures having the material compositions shown in Table 2 were produced as follows, and the weight of the obtained structures was measured. Moreover, casting was manufactured using the obtained structure, and evaluation similar to Example 1 was performed. The results are shown in Table 2.

<主型として用いる構造体の抄造成形>
図3に示すような構造体2〔(図3(a)は平面概略図、(b)は側面概略図である〕に対応するネットが配された抄造型を用いて抄造体を作製した。表2に示す配合に従い、該抄造体の作製に用いたスラリーの調製、供給、堆積、脱水、乾燥等も実施例1と同様に行った。得られた抄造体を同形状からなる表面温度180℃の乾燥金型に移行し、0.6MPaの圧力で5分間プレス乾燥させた後、抜型して図3の肉厚1.2mmの主型構造体2を得た。以上の操作を再度行い、同じ主型構造体を得、2つの構造体を、リブ面に接着剤を塗布し、張り合わせ圧着し接合して、鋳造用の主型の構造体を得た。
<Paper forming of the structure used as the main mold>
A papermaking body was produced using a papermaking mold provided with a net corresponding to the structure 2 shown in FIG. 3 [(FIG. 3A is a schematic plan view, FIG. 3B is a schematic side view)]. According to the formulation shown in Table 2, preparation, supply, deposition, dehydration, drying, etc. of the slurry used for the production of the papermaking were performed in the same manner as in Example 1. The resulting papermaking had a surface temperature of 180 having the same shape. The mold was transferred to a dry mold at 0 ° C., press-dried at a pressure of 0.6 MPa for 5 minutes, and then removed to obtain the main mold structure 2 having a thickness of 1.2 mm in FIG. The same main mold structure was obtained, and the two structures were bonded to each other by applying an adhesive to the rib surface, and bonded to each other to obtain a main mold structure for casting.

<前記主型の構造体を用いる鋳造>
図4に示すような円柱状の鋳物20を得るため、所定の鉄製容器内に湯口を設けた向くり揚げ方案で造型した前記鋳造用の主型の構造体を設置し、バックアップの充填材としてスチールショット玉を充填し、鋳物材質FCD−700、鋳込温度1400℃で鋳物を製造した。
<Casting using the main structure>
In order to obtain a cylindrical casting 20 as shown in FIG. 4, the casting main mold structure formed by the facing-up method in which a gate is provided in a predetermined iron container is installed, and used as a backup filler. Steel shot balls were filled, and a casting was produced at a casting material FCD-700 and a casting temperature of 1400 ° C.

〔実施例7及び比較例2〕
構造体の材料組成を表2に示す組成に変更した以外は、実施例6と同様にして鋳物を鋳造した。実施例6と同様の評価を行った結果を、表2に示す。
[Example 7 and Comparative Example 2]
A casting was cast in the same manner as in Example 6 except that the material composition of the structure was changed to the composition shown in Table 2. Table 2 shows the results of the same evaluation as in Example 6.

〔実施例8〕
比較例2で用いた構造体の表面にチタン粒子(実施例2で用いたもの)の50重量%水分散液を刷毛で塗布し、チタン粒子をコーティングしたものを180℃で2時間乾燥し、チタン金属粒子をコーティングした構造体を得た。該構造体を用いた以外は、比較例2と同様にして鋳物を鋳造した。なお、チタン粒子の被覆量は、構造体(被覆前のもの)100重量部に対して3重量部である。
〔実施例9〕
比較例2で用いた構造体の表面に、鉄粒子(実施例4で用いたもの)50重量%水分散液を刷毛で塗布し、鉄粒子をコーティングしたものを180℃で2時間乾燥し、鉄粒子をコーティングした構造体を得た。該構造体を用いた以外は、比較例2と同様にして鋳物を鋳造した。なお、鉄粒子の被覆量は、構造体(被覆前のもの)100重量部に対して3重量部である。
Example 8
A 50% by weight aqueous dispersion of titanium particles (used in Example 2) was applied to the surface of the structure used in Comparative Example 2 with a brush, and the titanium particles coated were dried at 180 ° C. for 2 hours. A structure coated with titanium metal particles was obtained. A casting was cast in the same manner as in Comparative Example 2 except that the structure was used. In addition, the coating amount of the titanium particles is 3 parts by weight with respect to 100 parts by weight of the structure (before coating).
Example 9
The surface of the structure used in Comparative Example 2 was coated with a 50% by weight aqueous dispersion of iron particles (used in Example 4) with a brush, and the coated iron particles were dried at 180 ° C. for 2 hours, A structure coated with iron particles was obtained. A casting was cast in the same manner as in Comparative Example 2 except that the structure was used. In addition, the coating amount of iron particles is 3 parts by weight with respect to 100 parts by weight of the structure (before coating).

Figure 0004907326
Figure 0004907326

表2中、無機繊維、無機粒子、熱硬化性樹脂、金属粒子、有機繊維は、実施例1〜5及び比較例1と同じものである。   In Table 2, inorganic fibers, inorganic particles, thermosetting resin, metal particles, and organic fibers are the same as those in Examples 1 to 5 and Comparative Example 1.

表1、2に示すように、実施例1〜9では、軽量で、鋳込み後の構造体の形状保持性及び鋳物内面の表面平滑性が良好で、鋳物表面の鋳造欠陥が少なく、ガス欠陥の防止効果が高いことがわかる。これに対し、金属粒子を添加しない比較例1、2では、鋳物表面の鋳造欠陥が多く、ガス欠陥が十分に抑制されていないことがわかる。   As shown in Tables 1 and 2, Examples 1 to 9 are lightweight, have good shape retention after casting and good surface smoothness of the casting inner surface, have few casting defects on the casting surface, and have gas defects. It can be seen that the prevention effect is high. On the other hand, in Comparative Examples 1 and 2 in which no metal particles are added, it can be seen that there are many casting defects on the casting surface, and gas defects are not sufficiently suppressed.

本発明の鋳物製造用構造体の一例である中空中子を模式的に示す斜視図である。It is a perspective view which shows typically the hollow core which is an example of the structure for casting manufacture of this invention. 図1の中空中子を用いて製造された鋳物を模式的に示す斜視図である。It is a perspective view which shows typically the casting manufactured using the hollow core of FIG. 本発明の鋳物製造用構造体の一例である主型用の構造体を模式的に示す図である。It is a figure which shows typically the structure for main molds which is an example of the structure for casting manufacture of this invention. 図3の構造体を用いて製造された鋳物を模式的に示す斜視図である。It is a perspective view which shows typically the casting manufactured using the structure of FIG.

符号の説明Explanation of symbols

1 中空中子(構造体)
10 鋳物
2 主型用構造体
20 鋳物
1 Hollow core (structure)
10 Casting 2 Main mold structure 20 Casting

Claims (7)

無機繊維、無機粒子、熱硬化性樹脂、並びに、構造体中0.1〜30重量%のバナジウム、チタン及び鉄からなる群から選ばれる少なくとも1種の金属を含有する鋳物製造用構造体。 A casting manufacturing structure containing inorganic fibers, inorganic particles, a thermosetting resin, and at least one metal selected from the group consisting of 0.1 to 30% by weight of vanadium, titanium, and iron in the structure. バナジウム、チタン及び鉄からなる群から選ばれる少なくとも1種の金属が、無機繊維、無機粒子、熱硬化性樹脂を含有する鋳物製造用構造体の表面に付着している、請求項1記載の鋳物製造用構造体。   The casting according to claim 1, wherein at least one metal selected from the group consisting of vanadium, titanium, and iron is attached to the surface of a structure for manufacturing a casting containing inorganic fibers, inorganic particles, and a thermosetting resin. Manufacturing structure. 厚さが0.2〜5mmである請求項1又は2記載の鋳物製造用構造体。   The structure for manufacturing a casting according to claim 1 or 2, wherein the thickness is 0.2 to 5 mm. 構造体中、無機繊維を0.1〜80重量%、無機粒子を10〜95重量%、熱硬化性樹脂を3〜70重量%含有する請求項1〜3の何れか1項記載の鋳物製造用構造体。 In the structure, the inorganic fibers 0.1 to 80 wt%, the inorganic particles 10 to 95 wt%, producing castings according to any one of claims 1 to 3 containing a thermosetting resin 3 to 70 wt% Structure. 更に有機繊維を、構造体中、1〜70重量%含有する請求項1〜4の何れか1項記載の鋳物製造用構造体。 Furthermore , the structure for casting manufacture of any one of Claims 1-4 which contains organic fiber 1 to 70weight% in a structure. 無機粒子が、シリカ、アルミナ、ムライト、マグネシア、ジルコニア、雲母、黒鉛、及び黒曜石から選ばれる無機粒子である請求項1〜5の何れか1項記載の鋳物製造用構造体。   The structure for casting production according to any one of claims 1 to 5, wherein the inorganic particles are inorganic particles selected from silica, alumina, mullite, magnesia, zirconia, mica, graphite, and obsidian. 請求項1〜6の何れかに記載の鋳物製造用構造体を用いる鋳物の製造方法。   A casting manufacturing method using the casting manufacturing structure according to claim 1.
JP2006334513A 2006-12-12 2006-12-12 Casting manufacturing structure and casting manufacturing method Active JP4907326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006334513A JP4907326B2 (en) 2006-12-12 2006-12-12 Casting manufacturing structure and casting manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006334513A JP4907326B2 (en) 2006-12-12 2006-12-12 Casting manufacturing structure and casting manufacturing method

Publications (2)

Publication Number Publication Date
JP2008142755A JP2008142755A (en) 2008-06-26
JP4907326B2 true JP4907326B2 (en) 2012-03-28

Family

ID=39603504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334513A Active JP4907326B2 (en) 2006-12-12 2006-12-12 Casting manufacturing structure and casting manufacturing method

Country Status (1)

Country Link
JP (1) JP4907326B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680490B2 (en) 2010-06-25 2015-03-04 花王株式会社 Casting structure
CN114633218B (en) * 2022-03-04 2023-09-19 贵州捷盛钻具股份有限公司 Surface treatment method and device for drill rod and drill rod manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001212647A (en) * 2000-01-31 2001-08-07 Chubu Sukegawa Kogyo Kk Foundry process of iron system casting
JP3995649B2 (en) * 2002-11-29 2007-10-24 花王株式会社 Molds or structures for casting production
JP4219157B2 (en) * 2002-11-29 2009-02-04 花王株式会社 Molds and structures for casting production
JP4672289B2 (en) * 2004-06-09 2011-04-20 花王株式会社 Casting manufacturing structure, manufacturing method thereof, and casting

Also Published As

Publication number Publication date
JP2008142755A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP4002200B2 (en) Papermaking parts for casting production
JP4675276B2 (en) Compact
EP2586545B1 (en) Structure for production of cast material
US8118974B2 (en) Structure for producing castings
TWI608880B (en) Method for producing structure for casting production, structure of casting mold, and the like
JP3995649B2 (en) Molds or structures for casting production
JP4869786B2 (en) Casting structure
JP4907326B2 (en) Casting manufacturing structure and casting manufacturing method
JP4219157B2 (en) Molds and structures for casting production
JP4672522B2 (en) Casting structure
JP4672289B2 (en) Casting manufacturing structure, manufacturing method thereof, and casting
JP4407962B2 (en) Papermaking parts for casting production
JP4694347B2 (en) Manufacturing method of casting mold
CN117102435A (en) Structure for casting production
JP2007111738A (en) Method for producing mold for casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4907326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250