JP4694347B2 - Manufacturing method of casting mold - Google Patents

Manufacturing method of casting mold Download PDF

Info

Publication number
JP4694347B2
JP4694347B2 JP2005305897A JP2005305897A JP4694347B2 JP 4694347 B2 JP4694347 B2 JP 4694347B2 JP 2005305897 A JP2005305897 A JP 2005305897A JP 2005305897 A JP2005305897 A JP 2005305897A JP 4694347 B2 JP4694347 B2 JP 4694347B2
Authority
JP
Japan
Prior art keywords
casting
mold
heat
fiber
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005305897A
Other languages
Japanese (ja)
Other versions
JP2007111739A (en
Inventor
重昭 高階
昭 吉田
定司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005305897A priority Critical patent/JP4694347B2/en
Publication of JP2007111739A publication Critical patent/JP2007111739A/en
Application granted granted Critical
Publication of JP4694347B2 publication Critical patent/JP4694347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、消失模型鋳造法による鋳物の製造時に用いられる鋳物製造用鋳型の製造方法、該鋳型を用いる鋳物の製造方法、及び消失模型鋳造法用模型に関する。   The present invention relates to a method for producing a casting mold used for producing a casting by a vanishing model casting method, a method for producing a casting using the mold, and a model for the vanishing model casting method.

消失模型鋳造法はフルモールド法とも呼ばれ、鋳物製品に相当する形状を有した合成樹脂発泡体の模型を、鋳物砂などの耐熱性骨材(以下、鋳物砂等と呼ぶ)に埋設し、前記模型部分に溶融金属(溶湯)を注入(注湯)し、前記模型と溶湯を置換させることにより、鋳物製品を得る鋳造方法である。前記鋳造方法は、従来の木型など抜取模型を用いた鋳造方法に比較して、抜型を考慮しなくて済むために、複雑な鋳物製品が得られることが大きな特徴であるが、一方で木型などに比較して合成樹脂発泡体は強度が低いため、鋳物砂等を充填する際に強い力を加えることが出来ず、鋳物砂等の充填密度が低くなりがちであり、模型の複雑な部位では一層その傾向が強くなる。その結果、鋳物砂等の粒子間に溶湯が浸透して引き起こされる焼着が発生しやすい。   The disappearance model casting method is also called a full mold method, and a model of a synthetic resin foam having a shape corresponding to a cast product is embedded in a heat-resistant aggregate such as foundry sand (hereinafter referred to as foundry sand). In this casting method, a molten metal (molten metal) is poured (poured) into the model portion to replace the model with the molten metal, thereby obtaining a cast product. Compared to the conventional casting method using a sampling model such as a wooden mold, the casting method is characterized in that a complicated casting product can be obtained because it is not necessary to consider the cutting mold. Synthetic resin foam is low in strength compared to molds, etc., so it is difficult to apply strong force when filling molding sand, etc., and the filling density of casting sand tends to be low, making the model complex The tendency becomes stronger at the site. As a result, seizure caused by the penetration of the molten metal between particles such as foundry sand tends to occur.

これらの問題に対して、耐熱性骨材やバインダーなどからなる塗型剤を、合成樹脂発泡体模型の表面に塗布し、それにより形成される耐熱性皮膜(以下、塗膜と呼ぶ)で溶湯の浸透を阻止し焼着を防止することが一般に行われている。しかしながら、塗型剤は鋳型の鋳物砂等に直接塗布されないので、塗型剤が鋳型に浸透して得られるアンカー効果など期待できず、塗膜と鋳型との結合力を高くすることが難しい。ましてや鋳物砂等の充填密度が低下した部位は一層結合力が低下しやすい。これらのことから該塗膜は、注湯時に加わる熱や圧力で脱落・剥離しやすく、その部位には焼着が発生しやすくなる。   To solve these problems, a coating agent composed of a heat-resistant aggregate or binder is applied to the surface of the synthetic resin foam model, and the molten metal is formed by a heat-resistant film (hereinafter referred to as a coating film) formed thereby. It is generally performed to prevent the penetration of the steel and prevent the seizure. However, since the coating agent is not directly applied to the casting sand or the like of the mold, the anchor effect obtained by the penetration of the coating agent into the mold cannot be expected, and it is difficult to increase the bonding force between the coating film and the mold. In addition, the bonding strength is more likely to decrease at a portion where the packing density such as foundry sand is reduced. For these reasons, the coating film is easily removed and peeled off by heat and pressure applied during pouring, and seizure is likely to occur at the site.

これらの改善策として、塗型剤に金属繊維等を配合して、塗膜を補強したもの(下記特許文献1)、塗型剤表面に粒子層を形成させ鋳型との結合力を向上させたもの(下記特許文献2)、合成樹脂発泡体模型の内部を中空にして、外部より中空部に加圧気体を送り込むことで、内圧により塗膜の脱落を防ぐもの(下記特許文献3)など、が検討されている。
特開2000−15393号公報 特開2000−117391号公報 特開2000−140994号公報
As measures for these improvements, metal fibers and the like were blended into the coating agent to reinforce the coating film (Patent Document 1 below), and a particle layer was formed on the surface of the coating agent to improve the bonding strength with the mold. (Patent Document 2 below), the inside of the synthetic resin foam model is hollowed, and the pressurized gas is sent from the outside into the hollow part to prevent the coating film from falling off by the internal pressure (Patent Document 3 below), etc. Is being considered.
JP 2000-15393 A JP 2000-117391 A JP 2000-140994 A

本発明の目的は、焼着欠陥をより低減できる消失模型鋳造法用の鋳型が得られる方法を提供することであり、特に溶湯からの熱に曝されやすい鋳物製品コーナー部や鋳物砂等の充填し難い複雑な部位においても焼着欠陥の少ない良好な鋳物製品が得られる消失模型鋳造法用の鋳型の製造方法を提供することである。   An object of the present invention is to provide a method for obtaining a casting mold for a disappearing model casting method that can further reduce seizure defects, and in particular, filling a casting product corner or casting sand that is easily exposed to heat from a molten metal. It is an object of the present invention to provide a method for producing a mold for a disappearing model casting method that can obtain a good casting product with few seizure defects even in a difficult and difficult part.

本発明者らは、耐熱性骨材と消失模型を用いて造型される鋳物製造用鋳型を製造する際に、有機繊維、無機繊維及び熱硬化性樹脂を含有する構造体を、従来塗型剤を用いても焼着欠陥が起こりやすい部位、すなわち溶湯からの熱に曝されやすい鋳物製品コーナー部や鋳物砂等の充填し難い複雑形状の部位に対して、合成樹脂発泡体模型に塗布する塗型剤に置換して配置することで、焼着欠陥の少ない良好な鋳物製品が得られることを見出した。   The inventors of the present invention used a conventional coating agent to produce a structure containing organic fibers, inorganic fibers, and a thermosetting resin when producing a casting mold that is molded using a heat-resistant aggregate and a disappearance model. Applying to the synthetic resin foam model on parts that are prone to seizure defects even when using, i.e., parts with complex shapes that are difficult to fill, such as cast product corners and casting sand that are easily exposed to heat from the molten metal. It has been found that a good casting product with few seizure defects can be obtained by substituting with a mold.

本発明は、上記知見に基づきなされたものであり、耐熱性骨材と消失模型とを用いて造型される鋳物製造用鋳型の製造方法であって、有機繊維、無機繊維及び熱硬化性樹脂を含有する構造体を、消失模型に対して少なくとも一部が接するように配置し、さらに耐熱性骨材を前記構造体が配置された前記消失模型の周囲に充填する、鋳物製造用鋳型の製造方法を提供する。   The present invention has been made on the basis of the above knowledge, and is a method for producing a casting mold that is formed using a heat-resistant aggregate and a disappearance model, and includes organic fibers, inorganic fibers, and thermosetting resins. A casting production mold manufacturing method, wherein a structure to be contained is disposed so that at least a part thereof is in contact with the disappearance model, and further, heat-resistant aggregate is filled around the disappearance model in which the structure is disposed. I will provide a.

また、本発明は、上記本発明の製造方法により得た鋳物製造用鋳型を用いる鋳物の製造方法を提供する。   Moreover, this invention provides the manufacturing method of a casting using the casting_mold | template for casting manufacture obtained by the manufacturing method of the said invention.

また、本発明は、合成樹脂発泡体からなる模型本体と、有機繊維、無機繊維及び熱硬化性樹脂を含有する構造体とを含んで構成され、前記模型本体に対して少なくとも一部が接するように前記構造体が配置されている、消失模型鋳造法用模型を提供する。   Further, the present invention is configured to include a model main body made of a synthetic resin foam and a structure containing organic fibers, inorganic fibers, and a thermosetting resin, and at least a part of the model main body is in contact with the model main body. A model for the disappearance model casting method is provided in which the structure is disposed.

本発明によれば、以下の効果が奏される。
本発明に用いる構造体は、鋳込時においても熱間強度及び形状保持性に優れるため、消失模型鋳造法において鋳物製品コーナー部や鋳物砂等の充填し難い複雑形状の部位に適用することにより、焼着欠陥が低減でき、はつり作業などの製造工数低減を図ることができる。また、溶湯に流されにくいため、異物混入による欠陥も低減できる。
According to the present invention, the following effects are exhibited.
The structure used in the present invention is excellent in hot strength and shape retention even at the time of casting. Thus, seizure defects can be reduced, and man-hours for manufacturing such as suspension work can be reduced. In addition, since it is difficult for the molten metal to flow, defects due to foreign matter can be reduced.

以下本発明を、その好ましい実施形態に基づき説明する。
本実施形態に用いられる構造体は、有機繊維、無機繊維及び熱硬化性樹脂を含有するものである。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The structure used in this embodiment contains organic fibers, inorganic fibers, and a thermosetting resin.

前記有機繊維、前記無機繊維及び前記熱硬化性樹脂の配合比は、前記有機繊維/前記無機繊維/前記熱硬化性樹脂=1〜50/1〜40/2〜50(質量比率)であることが好ましい。   The compounding ratio of the organic fiber, the inorganic fiber, and the thermosetting resin is the organic fiber / the inorganic fiber / the thermosetting resin = 1-50 / 1-40 / 2-50 (mass ratio). Is preferred.

構造体は、耐熱性及び経済性の観点から、無機粒子を含有することが好ましく、その場合における前記有機繊維、前記無機繊維、前記無機粒子及び前記熱硬化性樹脂の配合比は、前記有機繊維/前記無機繊維/前記無機粒子/前記熱硬化性樹脂=1〜50/1〜40/10〜95/2〜50(質量比率)、さらには2〜40/2〜30/20〜90/4〜40(質量比率)、特には4〜30/4〜20/30〜85/6〜30(質量比率)であることが好ましい。   The structure preferably contains inorganic particles from the viewpoints of heat resistance and economy. In that case, the blend ratio of the organic fibers, the inorganic fibers, the inorganic particles, and the thermosetting resin is the organic fibers. / Inorganic fiber / Inorganic particle / Thermosetting resin = 1 to 50/1 to 40/10 to 95/2 to 50 (mass ratio), and further 2 to 40/2 to 30/20 to 90/4. It is preferable that it is -40 (mass ratio), especially 4-30 / 4-20 / 30-85 / 6-30 (mass ratio).

前記有機繊維の配合比は、下限は構造体の成形性や常温強度の観点から、上限は鋳込時における構造体からのガス発生量増加に伴う鋳物表面欠陥の観点から、好ましい範囲が決定される。   The blending ratio of the organic fibers is preferably determined from the viewpoint of the moldability of the structure and the normal temperature strength at the lower limit, and the upper limit from the viewpoint of casting surface defects accompanying an increase in the amount of gas generated from the structure during casting. The

また、前記無機繊維の配合比は、下限は構造体の鋳込時における形状保持性の観点から、上限は構造体の成形性や鋳込後における構造体除去性の観点から、好ましい範囲が決定される。   In addition, the blending ratio of the inorganic fibers is preferably determined in terms of the lower limit from the viewpoint of shape retention during casting of the structure, and the upper limit from the viewpoint of moldability of the structure and structure removal after casting. Is done.

さらに、前記無機粒子の配合比は、構造体の鋳込時における耐熱性の観点から、上限は構造体の成形性や鋳込時における形状保持性の観点から、好ましい範囲が決定される。   Furthermore, the upper limit of the blending ratio of the inorganic particles is determined from the viewpoint of heat resistance during casting of the structure, and from the viewpoint of formability of the structure and shape retention during casting.

またさらに、前記熱硬化性樹脂の配合比は、下限は構造体の常温強度及び鋳込時における形状保持性や表面平滑性などの観点から、上限は鋳込時における構造体からのガス発生量増加に伴う鋳物表面欠陥の観点から、好ましい範囲が決定される。   Furthermore, the blending ratio of the thermosetting resin is such that the lower limit is the normal temperature strength of the structure and the shape retention or surface smoothness during casting, and the upper limit is the amount of gas generated from the structure during casting. From the viewpoint of casting surface defects accompanying the increase, a preferable range is determined.

前記有機繊維は、主として構造体において鋳造に用いられる前の状態ではその骨格をなし常温時の強度保持に寄与するとともに、構造体の成形性を向上させる成分である。   The organic fiber is a component that forms a skeleton in a state before being used for casting in the structure, contributes to maintaining strength at room temperature, and improves the moldability of the structure.

前記有機繊維としては、紙繊維、フィブリル化した合成繊維、再生繊維(例えば、レーヨン繊維)等の繊維が挙げられる。有機繊維は、これらを単独で又は二種以上を選択して用いることができる。そして、これらの中でも、特に、抄造により多様な形態に成形できるほか、脱水後と乾燥後に十分な強度が得られる点から紙繊維を用いることが好ましい。   Examples of the organic fibers include paper fibers, fibrillated synthetic fibers, and recycled fibers (for example, rayon fibers). These organic fibers can be used alone or in combination of two or more. Among these, it is particularly preferable to use paper fibers because they can be formed into various forms by papermaking and sufficient strength can be obtained after dehydration and drying.

前記紙繊維としては、木材パルプ、コットンパルプ、リンターパルプ、竹やわらその他の非木材パルプが挙げられる。紙繊維は、これらのバージンパルプ若しくは古紙パルプを単独で又は二種以上を選択して用いることができる。紙繊維は、入手の容易性、環境保護、製造費用の低減等の点から、特に古紙パルプが好ましい。   Examples of the paper fiber include wood pulp, cotton pulp, linter pulp, bamboo straw and other non-wood pulp. As the paper fiber, these virgin pulp or waste paper pulp can be used alone or in combination of two or more. The paper fiber is particularly preferably used paper pulp from the viewpoints of easy availability, environmental protection, and reduction of manufacturing costs.

前記有機繊維は、構造体等の成形性、表面平滑性、耐衝撃性を考慮すると、平均繊維長が0.3〜2.0mm、特に0.5〜1.5mmであるものが好ましい。   The organic fiber preferably has an average fiber length of 0.3 to 2.0 mm, particularly 0.5 to 1.5 mm in consideration of moldability of the structure, surface smoothness, and impact resistance.

前記無機繊維は、主として鋳造に用いられたときには溶融金属の熱によっても燃焼せずにその形状を維持する成分である。   The inorganic fiber is a component that maintains its shape without being burned by the heat of the molten metal when used mainly for casting.

前記無機繊維としては、炭素繊維、ロックウール等の人造鉱物繊維、セラミック繊維、天然鉱物繊維が挙げられる。無機繊維は、これらを単独で又は二以上を選択して用いることができる。そして、これらの中でも、熱硬化性樹脂の炭化に伴う収縮を効果的に抑える点から高温でも高強度を有するピッチ系やポリアクリロニトリル(PAN)系炭素繊維を用いることが好ましく、特にPAN系の炭素繊維が好ましい。   Examples of the inorganic fibers include artificial mineral fibers such as carbon fibers and rock wool, ceramic fibers, and natural mineral fibers. These inorganic fibers can be used alone or in combination of two or more. Among these, it is preferable to use pitch-based or polyacrylonitrile (PAN) -based carbon fibers having high strength even at high temperatures from the viewpoint of effectively suppressing shrinkage associated with carbonization of the thermosetting resin, and in particular, PAN-based carbon. Fiber is preferred.

前記無機繊維は、構造体等を抄造して脱水する場合の脱水性、構造体等の成形性、均一性の観点から平均繊維長が0.2〜10mm、特に0.5〜8mmであるものが好ましい。   The inorganic fiber has an average fiber length of 0.2 to 10 mm, particularly 0.5 to 8 mm from the viewpoint of dewaterability when paper is formed and dehydrated, moldability of the structure, and uniformity. Is preferred.

前記無機粒子は、溶融金属の熱により軟化して緻密な耐火膜を形成し、構造体の耐熱性を向上させる成分である。   The inorganic particles are components that are softened by the heat of the molten metal to form a dense refractory film and improve the heat resistance of the structure.

前記無機粒子としては、シリカ、アルミナ、ムライト、マグネシア、ジルコニア、雲母、黒鉛、黒曜石等の耐火度800〜2000℃、好ましくは1000〜1700℃の無機粒子が挙げられ、特に軟化時の粘度が高く、緻密な耐火膜を形成する観点から黒曜石、ムライト粉が好ましい。 なお、これらの無機粒子は単独で又は二種以上を併用しても良い。前記無機粒子は、粒子径が200μm以下のものを用いることが好ましい。特に、鋳造する溶融金属の鋳込温度に対し±300℃、特に±200℃の耐火度を有する無機粒子が好ましい。ここで、無機粒子の耐火度は、ゼーゲルコーンを用いた測定方法(JIS R2204)で測定される。   Examples of the inorganic particles include inorganic particles having a fire resistance of 800 to 2000 ° C., preferably 1000 to 1700 ° C. such as silica, alumina, mullite, magnesia, zirconia, mica, graphite, obsidian, and the like. From the viewpoint of forming a dense refractory film, obsidian and mullite powder are preferable. These inorganic particles may be used alone or in combination of two or more. The inorganic particles preferably have a particle diameter of 200 μm or less. In particular, inorganic particles having a fire resistance of ± 300 ° C., particularly ± 200 ° C. with respect to the casting temperature of the molten metal to be cast are preferable. Here, the fire resistance of the inorganic particles is measured by a measuring method (JIS R2204) using a Zeger cone.

前記熱硬化性樹脂としては、フェノール系樹脂、エポキシ系樹脂、フラン系樹脂等の熱硬化性樹脂が挙げられる。熱硬化性樹脂は、構造体の常温時における強度、及び熱間時における強度すなわち鋳込時の形状保持性を向上させる成分である。また鋳込時の熱により熱分解し、生成した炭素皮膜により構造体表面に平滑性を付与し、結果として鋳物の表面平滑性(鋳肌)を向上させる効果もある。
前記熱硬化性樹脂には、特に、可燃ガスの発生が少なく、燃焼抑制効果があり、熱分解(炭化)後における残炭率が25%以上と高く、鋳造時に炭素皮膜を形成するために良好な鋳肌を得ることができる点からフェノール系樹脂を用いることが好ましい。なお、残炭率は、示査熱分析により還元雰囲気下(窒素雰囲気下)にて1000℃に加熱後の残留質量により求めることができる。
Examples of the thermosetting resin include thermosetting resins such as phenol resins, epoxy resins, and furan resins. The thermosetting resin is a component that improves the strength of the structure at room temperature and the strength during hot, that is, shape retention during casting. Moreover, it is thermally decomposed by the heat at the time of casting, and the resulting carbon film imparts smoothness to the surface of the structure, resulting in the effect of improving the surface smoothness (casting surface) of the casting.
The thermosetting resin has particularly low generation of combustible gas, has a combustion suppressing effect, has a high residual carbon ratio of 25% or more after pyrolysis (carbonization), and is good for forming a carbon film during casting. It is preferable to use a phenol-based resin from the viewpoint that a smooth casting surface can be obtained. The residual carbon ratio can be determined from the residual mass after heating to 1000 ° C. in a reducing atmosphere (under a nitrogen atmosphere) by an analytical thermal analysis.

前記フェノール系樹脂としては、ノボラックフェノール樹脂、レゾールタイプ等のフェノール樹脂、尿素、メラミン、エポキシ等で変性した変性フェノール樹脂等が挙げられるが、好ましくはノボラックフェノール樹脂又はその変性樹脂である。   Examples of the phenolic resin include novolak phenol resins, resol type phenol resins, modified phenol resins modified with urea, melamine, epoxy, and the like, preferably novolak phenol resins or modified resins thereof.

前記熱硬化性樹脂は、単独で又は二以上を選択して用いることもでき、さらにはアクリル系樹脂やポリビニルアルコール系樹脂等と併用することもできる。   The thermosetting resins may be used alone or in combination of two or more, and may be used in combination with an acrylic resin, a polyvinyl alcohol resin, or the like.

前記熱硬化性樹脂の添加形態としては、前記有機繊維、前記無機繊維又は前記無機粒子にコーティングしたり、粉末化又は乳化して原料スラリー中に添加したりし、抄造後乾燥成形したときに前記有機繊維、前記無機繊維及び前記無機粒子を結合させるもの、成形体の抄造後に含浸させ、乾燥又は硬化させることで構造体等の強度を高め、鋳込み時に溶融金属の熱によって炭化させて強度を維持するものなどが挙げられる。いずれにしても、鋳込時の溶融金属から加わる熱により炭化して炭素皮膜を形成し、構造体等の強度の維持と鋳物の表面平滑性の向上に寄与し得るものであれば添加する形態はいずれでもよい。   As the addition form of the thermosetting resin, the organic fiber, the inorganic fiber or the inorganic particles are coated, powdered or emulsified and added to the raw material slurry, and after the paper making and dry-molded, Improves the strength of the structure by impregnating the organic fiber, the inorganic fiber and the inorganic particle, making the molded body after making, drying or curing, and maintaining the strength by carbonizing with the heat of the molten metal at the time of casting And what to do. In any case, a carbon film is formed by carbonization by the heat applied from the molten metal at the time of casting, and it is added if it can contribute to maintaining the strength of the structure and the like and improving the surface smoothness of the casting. May be either.

前記ノボラックフェノール樹脂を使用した場合に必要となる硬化剤は、水に溶け易いため、湿式抄造による場合には特に成形体の脱水後に塗工することが好ましい。前記硬化剤には、ヘキサメチレンテトラミン等を用いることが好ましい。   Since the curing agent required when the novolak phenol resin is used is easily dissolved in water, it is preferably applied after dehydration of the molded body, particularly in the case of wet papermaking. It is preferable to use hexamethylenetetramine or the like as the curing agent.

本実施形態の構造体には、前記有機繊維、前記無機繊維、前記無機粒子及び前記熱硬化性樹脂に加えて、必要に応じ、ポリビニルアルコール、カルボキシメチルセルロース(CMC)、ポリアミドアミンエピクロルヒドリン樹脂等の紙力強化材、ポリアクリルアミド系等の凝集剤、着色剤等の他の成分を適宜の割合で添加することができる。   In the structure of the present embodiment, in addition to the organic fiber, the inorganic fiber, the inorganic particle, and the thermosetting resin, paper such as polyvinyl alcohol, carboxymethyl cellulose (CMC), and polyamidoamine epichlorohydrin resin is used as necessary. Other components such as a force-strengthening material, a polyacrylamide-based flocculant, and a colorant can be added at an appropriate ratio.

本実施形態の構造体の厚みは、その用いられる部分に応じて適宜設定することができるが、少なくとも溶融金属と接する部分における厚みが、0.2〜5mm、特に0.4〜2mmであることが好ましい。薄すぎると耐熱性骨材を充填して鋳型を造型するときに要する強度が不十分となり、厚すぎると鋳込時にガス発生量が増加して鋳物の表面欠陥が発生しやすくなるほか、成形時間が長くなり、製造費が高くなる場合がある。ただし前記構造体の厚さとは、専ら構造体に機械的強度を付与するための補強リブや耐熱性骨材との結合強度を付与するための構造(凹凸、突起など)などを除いた部位を指す。   The thickness of the structure according to the present embodiment can be appropriately set according to the portion used, but the thickness at least in the portion in contact with the molten metal is 0.2 to 5 mm, particularly 0.4 to 2 mm. Is preferred. If it is too thin, the strength required to mold the mold by filling with heat-resistant aggregate will be insufficient, and if it is too thick, the amount of gas generated will increase during casting and surface defects of the casting will easily occur, and the molding time will be increased. May become longer and manufacturing costs may be higher. However, the thickness of the structure means a portion excluding a structure (unevenness, protrusion, etc.) for providing a bond strength with a reinforcing rib or heat-resistant aggregate exclusively for giving mechanical strength to the structure. Point to.

本実施形態の構造体は、構造体の耐熱性骨材と接する面に、耐熱性骨材と結合するための構造及び/又は接着層を設けることにより、耐熱性骨材との結合が一層強固になり、鋳型の寸法精度をさらに向上することができる。耐熱性骨材と結合するための構造としては、凹部、凸部、突起、これらの組み合わせなどが挙げられる。突起を設ける場合は、隣接部に対して突起高さを5〜20mmにすることが好ましい。低すぎると結合効果が低下し、高すぎると縁切れによる鋳型強度低下を引き起こす。   The structure of this embodiment has a stronger bond with the heat-resistant aggregate by providing a structure and / or an adhesive layer for bonding to the heat-resistant aggregate on the surface of the structure that contacts the heat-resistant aggregate. Thus, the dimensional accuracy of the mold can be further improved. Examples of the structure for bonding with the heat-resistant aggregate include a concave portion, a convex portion, a protrusion, and a combination thereof. When providing a protrusion, the protrusion height is preferably 5 to 20 mm with respect to the adjacent portion. If it is too low, the bonding effect is reduced, and if it is too high, the mold strength is reduced due to edge breakage.

接着層については、アクリレート系、ビニルブチラール系、ビニルアルコール系、酢酸ビニル系、フェノール系などの接着剤を、単独又は2以上の混合物として水系エマルション、水で希釈あるいはアルコール系有機溶剤で希釈したものを、該構造体の耐熱性骨材と接する面に塗布することで、あるいは、これら接着剤よりなる両面テープ状のものを貼付することで、形成することができる。これらのうち、作業環境の観点から、水系エマルションや水可溶化したものの塗布あるいは両面テープ状のものを貼付することが好ましい。尚、接着剤とは、2つの物を貼り合わせるのに用いる物質であるが、一時的な接着に用い、後で剥がすことができるような粘着剤も含まれる。   For the adhesive layer, acrylate-based, vinyl butyral-based, vinyl alcohol-based, vinyl acetate-based, phenol-based adhesives, etc., alone or as a mixture of two or more water-based emulsions, diluted with water or alcohol-based organic solvents Can be formed by applying to the surface of the structure in contact with the heat-resistant aggregate, or by applying a double-sided tape-like material made of these adhesives. Among these, from the viewpoint of the working environment, it is preferable to apply a water-based emulsion or water-solubilized one or a double-sided tape-like one. The adhesive is a substance used for bonding two objects together, but includes an adhesive that can be used for temporary adhesion and can be peeled off later.

本実施形態の構造体は、水を分散媒とした原料スラリーを用いた抄造工程を経て製造したときには、鋳込時のガス発生量を極力抑える点から、鋳込に用いられる前の状態において、含水率(質量含水率)が10%以下、特には8%以下であることが好ましい。   When the structure of the present embodiment is manufactured through a paper making process using a raw material slurry using water as a dispersion medium, from the point of suppressing the amount of gas generation during casting as much as possible, in a state before being used for casting, The moisture content (mass moisture content) is preferably 10% or less, particularly preferably 8% or less.

本実施形態の構造体は、軽量性による造形作業のし易さの観点から、造形に用いられる前の状態において、その比重が1.0以下であることが好ましく、0.8以下であることがより好ましい。   The structure of the present embodiment preferably has a specific gravity of 1.0 or less and 0.8 or less in the state before being used for modeling from the viewpoint of ease of modeling work due to lightness. Is more preferable.

次に、本発明の構造体の製造方法を、その好ましい実施形態として上述した実施形態の鋳型等の製造方法に基づいて説明する。   Next, the manufacturing method of the structure of the present invention will be described based on the manufacturing method of the mold or the like of the above-described embodiment as a preferred embodiment thereof.

本実施形態の構造体の製造方法として、一例として湿式抄造法による成形法が挙げられる。該湿式抄造法は、前記有機繊維、前記無機繊維、前記無機粒子及び前記熱硬化性樹脂を前記所定配合比で含む原料スラリーを調製し、該原料スラリーを用いた湿式抄造法によって所定形状の繊維積層体を抄造し、脱水、乾燥して構造体を製造する。   As an example of the structure manufacturing method of the present embodiment, a molding method using a wet papermaking method can be given. In the wet papermaking method, a raw material slurry containing the organic fiber, the inorganic fiber, the inorganic particles, and the thermosetting resin in the predetermined mixing ratio is prepared, and a fiber having a predetermined shape is obtained by a wet papermaking method using the raw material slurry. The laminated body is made, dehydrated and dried to produce a structure.

前記原料スラリーの分散媒としては、水、白水の他、エタノール、メタノール等の溶剤等が挙げられ、これらの中でも抄造・脱水の安定性、品質の安定性、費用、取り扱い易さ等の点から特に水が好ましい。   Examples of the dispersion medium of the raw material slurry include water, white water, and solvents such as ethanol and methanol. Among these, from the viewpoints of papermaking / dehydration stability, quality stability, cost, ease of handling, etc. Water is particularly preferable.

前記原料スラリーにおける前記分散媒に対する前記各繊維及び無機粒子の合計の割合は、0.1〜10質量%、特に0.5〜6質量%であることが好ましい。原料スラリー中の前記繊維及び粒子の合計割合が多すぎると肉厚むらが生じやすくなる。逆に、少なすぎると局所的な薄肉部が発生する場合がある。   The total ratio of the fibers and inorganic particles to the dispersion medium in the raw slurry is preferably 0.1 to 10% by mass, particularly 0.5 to 6% by mass. If the total proportion of the fibers and particles in the raw slurry is too large, uneven thickness tends to occur. Conversely, if the amount is too small, a local thin portion may occur.

前記原料スラリーには、必要に応じて、前記紙力強化材、前記凝集剤、防腐剤等の添加剤を適宜の割合で添加することができる。   If necessary, additives such as the paper strength reinforcing material, the flocculant, and the preservative can be added to the raw material slurry at an appropriate ratio.

前記繊維積層体の抄造工程では、例えば、該構造体の形状に略対応した形状を有する抄造型に、型背面に連通する多数の連通孔を設けておくとともに、型の抄造面に網目を有するネットで被覆しておく。そして、抄造に際しては、抄造面を上に向け、前記原料スラリーを流し込み堆積させる方法でもよいし、抄造型を前記原料スラリーにドブ漬けし、抄造型背面から吸引して堆積させてもよい。   In the papermaking process of the fiber laminate, for example, a papermaking mold having a shape substantially corresponding to the shape of the structure is provided with a large number of communication holes communicating with the back of the mold and has a mesh on the papermaking surface of the mold. Cover with a net. In the paper making, the raw material slurry may be poured and deposited with the paper making surface facing up, or the paper making mold may be immersed in the raw material slurry and sucked and deposited from the back of the paper making mold.

前記抄造型のネットに所定厚みの繊維積層体が形成されたら、必要に応じて繊維積層体に空気を通過させるなどして、繊維積層体を所定の含水率に脱水する。   When a fiber laminate having a predetermined thickness is formed on the papermaking net, the fiber laminate is dehydrated to a predetermined moisture content by passing air through the fiber laminate as necessary.

次に、前記繊維積層体を乾燥成形する。この乾燥成形工程では、目的とする該構造体形状が得られるのであれば、どのような方法を用いても構わない。例えば、目的とする該構造体形状に合わせて製作された内外一組の加熱した乾燥型に前記繊維積層体を挟み込んで乾燥成型を行う。前記乾燥型の加熱温度(金型温度)は、下限は乾燥時間、上限は焦げ付きによる表面性低下の観点から、180〜250℃が好ましく、特に200〜240℃が好ましい。   Next, the fiber laminate is dry-molded. In this dry molding step, any method may be used as long as the desired structure shape can be obtained. For example, the fiber laminate is sandwiched between a pair of heated and dry molds manufactured according to the target structure shape, and dry molding is performed. The drying temperature (mold temperature) of the drying mold is preferably 180 to 250 ° C., particularly preferably 200 to 240 ° C., from the viewpoint of drying time at the lower limit and surface property deterioration due to scorching.

また、前記繊維積層体の状態で、目的とする該構造体形状が得られれば、そのまま熱風乾燥機等で乾燥させても良い。この場合の雰囲気温度は、下限は乾燥時間、上限は有機繊維の熱分解の観点から、160〜240℃が好ましく、特に180〜220℃が好ましい。   Further, if the desired structure shape is obtained in the state of the fiber laminate, it may be dried as it is with a hot air dryer or the like. In this case, the lower limit of the atmospheric temperature is preferably 160 to 240 ° C., particularly preferably 180 to 220 ° C., from the viewpoint of drying time as the lower limit and thermal decomposition of the organic fiber.

得られた該構造体には、必要に応じて、バインダーを部分的又は全体に含浸させ、加熱して熱硬化させることができる。該バインダーとしては、コロイダルシリカ、エチルシリケート、水ガラス等が挙げられる。   If necessary, the obtained structure can be impregnated partially or entirely with a binder, and heated and thermally cured. Examples of the binder include colloidal silica, ethyl silicate, and water glass.

また、該構造体には熱処理を行い、熱硬化性樹脂の硬化を進めることが好ましい。このような熱処理を行うことで、より優れた形状保持性を有する構造体が得られる。斯かる熱処理は、前記乾燥成型工程と兼用で行っても、別途熱風乾燥機等で行っても良い。斯かる熱処理によって得られる熱硬化性樹脂の硬化度は、下記の熱硬化性樹脂のアセトン不溶分量で30%以上、特には80%以上とすることが好ましい。   Moreover, it is preferable to heat-treat the structure to promote curing of the thermosetting resin. By performing such heat treatment, a structure having more excellent shape retention can be obtained. Such heat treatment may be performed in combination with the drying molding step or may be performed separately using a hot air dryer or the like. The degree of cure of the thermosetting resin obtained by such heat treatment is preferably 30% or more, particularly 80% or more in terms of the amount of acetone insoluble in the following thermosetting resin.

前記熱硬化性樹脂の不溶分量は、具体的には、次のように求められる。
すなわち、該構造体から試料約5gを採取し、ミルで粉砕して質量(a)を精秤する。この粉砕試料をアセトンとともに容器に加えて十分に振とうさせた後、常温で放置する。次いで、前記容器に前記粉砕試料が残らないようにして、該粉砕試料をろ紙(質量(c))で十分にろ過し、ろ過した該粉砕試料を該ろ紙とともに乾燥してそれら(粉砕試料及びろ紙)の質量(b)を精秤する。そして、得られた各質量(a)〜(c)及び前記粉砕試料中の前記熱硬化性樹脂以外の成分の理論質量(d)に基づいて、下記式から前記熱硬化性樹脂の不溶分量(%)を求める。
不溶分量%=100−(a−(b−d))×100/(a−d)
Specifically, the insoluble content of the thermosetting resin is determined as follows.
That is, about 5 g of a sample is taken from the structure, pulverized with a mill, and the mass (a) is precisely weighed. The ground sample is added to a container together with acetone and shaken sufficiently, and then left at room temperature. Next, the pulverized sample is sufficiently filtered with a filter paper (mass (c)) so that the pulverized sample does not remain in the container, and the filtered pulverized sample is dried together with the filter paper to obtain them (crushed sample and filter paper). ) (B) is precisely weighed. And based on each obtained mass (a)-(c) and the theoretical mass (d) of components other than the said thermosetting resin in the said grinding | pulverization sample, the insoluble content amount of the said thermosetting resin (( %).
Insoluble content% = 100− (a− (b−d)) × 100 / (ad)

前記説明は、湿式抄造時に目的とする該構造体の形状に乾燥成型する方法を説明したが、湿式抄造時に繊維積層体をシート状に抄造し、湿潤状態のシート状繊維積層体を目的とする該構造体形状に合わせて製作された内外一組の加熱した乾燥型に挟み込んで乾燥成型を行っても良い。また更には、前記のシート状に抄造された繊維積層体を、シート状のまま乾燥させ、乾燥させた繊維積層体を、適宜切断・折り曲げ・接着を行い、目的とする該構造体の形状を得ても良い。前記接着は、接着剤、粘着テープ、ピン・鋲などの金具などが使用できるが、好ましくは接着剤による方法であり、より好ましくは熱硬化性樹脂からなる接着剤である。   In the above description, the method of dry-molding into the shape of the target structure at the time of wet papermaking was explained. However, the fiber laminate is made into a sheet at the time of wet papermaking, and the object is a wet sheet-like fiber laminate. Dry molding may be performed by sandwiching between a pair of heated and dry molds manufactured according to the shape of the structure. Still further, the fiber laminate that has been made into a sheet is dried in the form of a sheet, and the dried fiber laminate is appropriately cut, bent, and bonded to obtain the desired shape of the structure. You may get. For the bonding, an adhesive, a pressure-sensitive adhesive tape, a metal fitting such as a pin / claw can be used, and a method using an adhesive is preferable, and an adhesive made of a thermosetting resin is more preferable.

次に、本発明の鋳物製造用鋳型の製造方法を、その好ましい実施形態に基づいて説明する。   Next, the manufacturing method of the casting casting mold of the present invention will be described based on its preferred embodiment.

本実施形態の鋳物製造用鋳型の製造方法では、上述のようにして得られた所定の構造体(例えば図1)を、合成樹脂発泡体模型の焼着し易い位置(例えば図2のようなポケット部)に配置し(図3)、構造体を配置した部位以外の合成樹脂発泡体模型の表面に塗型剤を塗布し、適宜、必要に応じて塗型剤を乾燥させる。その後、耐熱性骨材を型枠内に設置された前記構造体が配置された前記消失模型の周囲に充填して造型することで、鋳物製造用鋳型を製造できる。   In the method for producing a casting mold according to this embodiment, the predetermined structure (for example, FIG. 1) obtained as described above is placed at a position where the synthetic resin foam model is easily baked (for example, as shown in FIG. 2). (FIG. 3), a coating agent is applied to the surface of the synthetic resin foam model other than the portion where the structure is disposed, and the coating agent is appropriately dried as necessary. Then, a casting mold can be manufactured by filling and molding the heat-resistant aggregate around the vanishing model in which the structure placed in the mold is disposed.

前記の焼着し易い位置とは、例えば鋳物の肉厚が厚く溶湯の凝固が遅い部位や、鋳込時に高い溶湯圧力が加わる鋳物底部、あるいは鋳型が鋳物側に突き出しているような溶湯からの熱を受け高温になりやすい部位など、熱や圧力などで過酷になりやすい部位を指す。また鋳型造型時に鋳物砂等を充填しにくいため充填密度が低くなりやすい消失模型のコーナー部、ポケット部、オーバーハング部なども同様に焼着し易い位置と言える。   For example, the position where the casting is easy to occur is a portion where the casting is thick and the solidification of the molten metal is slow, a casting bottom where a high molten metal pressure is applied during casting, or a molten metal where the mold protrudes toward the casting. This refers to areas that are likely to become severe due to heat or pressure, such as areas that are susceptible to high temperatures due to heat. Further, it can be said that the corner portion, pocket portion, overhang portion, etc. of the disappearing model, which is difficult to fill with casting sand or the like at the time of mold making, are easily baked.

前記塗型剤は、消失模型鋳造法で用いられる通常のものを、特に制限無く使用できる。前記塗型剤は、該構造体の性能を発揮させる観点から、該構造体と合成樹脂発泡体との接触面には塗布しないことが好ましい。   The said coating agent can use the normal thing used by the disappearance model casting method without a restriction | limiting in particular. From the viewpoint of exerting the performance of the structure, the coating agent is preferably not applied to the contact surface between the structure and the synthetic resin foam.

これにより、本発明では、合成樹脂発泡体からなる模型本体と、前記本発明に係る構造体とを含んで構成される消失模型鋳造法用模型が提供される。該模型本体は、発泡ポリスチレン等、通常、この分野で用いられる合成樹脂発泡体から形成される。該模型本体の鋳物製品形成部に対して、前記構造体の少なくとも一部が接するように配置されるのが好ましい。本発明の効果をより良く発現する観点から、構造体は、消失模型に対して前記記載の鋳物が焼着し易い位置に配置されるのがより好ましい。   Thereby, in this invention, the model for disappearance model casting methods comprised including the model main body which consists of a synthetic resin foam, and the structure which concerns on the said this invention is provided. The model body is formed from a synthetic resin foam such as expanded polystyrene, which is usually used in this field. It is preferable that at least a part of the structure is disposed in contact with the cast product forming portion of the model body. From the viewpoint of better manifesting the effects of the present invention, it is more preferable that the structure is disposed at a position where the above-described casting is easily seized with respect to the disappearance model.

前記耐熱性骨材は、鋳物砂を始め従来からこの種の鋳物の製造に用いられている通常のものを特に制限なく使用することができる。前記耐熱性骨材をバインダーにより硬化させる必要があれば、これも通常のものを特に制限無く用いることができる。   As the heat-resistant aggregate, normal ones conventionally used for producing this type of casting, including foundry sand, can be used without any particular limitation. If it is necessary to cure the heat-resistant aggregate with a binder, a normal one can be used without any particular limitation.

さらに、本発明で製造された鋳物製造用鋳型を用いた鋳物の製造方法を、その好ましい実施形態に基づいて説明する。   Further, a casting production method using the casting production mold produced according to the present invention will be described based on its preferred embodiment.

たとえば図4のように組み立てられた鋳型は、注湯口から溶融金属を注ぎ入れ、鋳込みを行う。このとき、該溶融金属の熱によって前記無機粒子が軟化して緻密な耐火膜を形成し、更に前記熱硬化性樹脂が熱分解して生成する炭素皮膜による鋳肌向上効果や、前記無機繊維による熱間における形状保持効果などにより、該構造体を配置した鋳物製品部位は、焼着欠陥が極めて少ないものとなり、全体としても欠陥の少ない健全な鋳物が製造できる。   For example, a mold assembled as shown in FIG. 4 is poured by pouring molten metal from a pouring spout. At this time, the inorganic particles are softened by the heat of the molten metal to form a dense refractory film, and further, the cast skin improvement effect by the carbon film generated by the thermal decomposition of the thermosetting resin, Due to the hot shape retention effect and the like, the cast product portion in which the structure is arranged has extremely few seizure defects, and a sound casting with few defects as a whole can be manufactured.

本発明は上述した実施形態に制限されず、本発明の趣旨を逸脱しない範囲において、適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

〔実施例〕
<原料スラリーの調製>
下記有機繊維、無機繊維及び無機粒子を水に分散させた約1質量%のスラリーを調製した後、該スラリーに下記熱硬化性樹脂粉末及び適量の下記凝集剤を添加し、原料スラリーを調整した。なお、有機繊維/無機繊維/無機粒子/熱硬化性樹脂粉末=25/10/45/20(質量部)の比率で調製した。
有機繊維:新聞古紙(平均繊維長1mm、フリーネス(CSF、以下同じ)150cc)
無機繊維:PAN系炭素繊維(東レ(株)製「トレカチョップ」、繊維長3mm、収縮率0.1%)
無機粒子:黒曜石(キンセイマテック社製「ナイスキャッチ」、平均粒子径30μm)
熱硬化性樹脂:ノボラックフェノール樹脂(旭有機材工業(株)製「SP1006LS」、残炭率38%)
凝集剤:ポリアクリルアミド系凝集剤(三井サイテック社製「A110」)
〔Example〕
<Preparation of raw material slurry>
After preparing a slurry of about 1% by mass in which the following organic fibers, inorganic fibers and inorganic particles were dispersed in water, the following thermosetting resin powder and an appropriate amount of the following flocculant were added to the slurry to prepare a raw material slurry. . In addition, it prepared in the ratio of organic fiber / inorganic fiber / inorganic particle / thermosetting resin powder = 25/10/45/20 (parts by mass).
Organic fiber: used newspaper (average fiber length 1mm, freeness (CSF, the same applies below) 150cc)
Inorganic fiber: PAN-based carbon fiber (“Toray Chop” manufactured by Toray Industries, Inc., fiber length 3 mm, shrinkage 0.1%)
Inorganic particles: Obsidian (“Nice catch” manufactured by Kinsei Matec Co., Ltd., average particle size 30 μm)
Thermosetting resin: Novolac phenolic resin ("SP1006LS" manufactured by Asahi Organic Materials Co., Ltd., residual charcoal rate 38%)
Flocculant: Polyacrylamide flocculant (“A110” manufactured by Mitsui Cytec)

<構造体の抄造成形>
抄造型には、図1に示す構造体に対応する抄造面を有する型を用いて、当該抄造面に所定の目開きのネットが配され、抄造面と背面とを連通する多数の連通孔が形成されたものを用いた。さらに抄造型は、抄造面を上にして、スラリー投入用の枠をセットした。そして、前記原料スラリーをモーノポンプで循環させ、前記抄造型上の枠内に所定量のスラリーを投入する一方で、前記連通孔を通じて排水し、所定の繊維積層体を前記ネットの表面に堆積させた。所定量の原料スラリーの投入を完了した後、該繊維積層体が堆積された抄造型背面から0.05MPaの負圧を与え、約30秒間エアを通気し、該繊維積層体を脱水した。得られた繊維積層体の全面に、前記熱硬化性樹脂の15%(質量比)の硬化剤(ヘキサメチレンテトラミン)を水に分散させた液を均一に塗布した。次いで、繊維積層体を抄造型から取り出し、220℃に加熱された乾燥型に移した。乾燥成形型には、図1に示す構造体に対応する内外一組のもので、該成形面と外部とを連通する多数の連通孔が形成されたものを用いた。乾燥成形工程では、前記繊維積層体を内外一組の該乾燥成形型に挟み込み、目的とする構造体の形状を転写させつつ該繊維積層体を乾燥した。所定時間(180秒)の加圧乾燥を行った後、得られた成形体を前記乾燥型から取り出して冷却し、図1に示す形態で、肉厚1.2mmの構造体を得た。
<Paper forming molding of structure>
For the papermaking mold, a mold having a papermaking surface corresponding to the structure shown in FIG. 1 is used, a net having a predetermined mesh is arranged on the papermaking surface, and a large number of communication holes communicating the papermaking surface and the back surface are provided. The formed one was used. Furthermore, the papermaking mold was set with a frame for slurry introduction with the papermaking surface facing up. Then, the raw material slurry was circulated by a Mono pump, and while a predetermined amount of slurry was put into the frame on the papermaking mold, it was drained through the communication hole, and a predetermined fiber laminate was deposited on the surface of the net. . After completing the introduction of a predetermined amount of raw material slurry, a negative pressure of 0.05 MPa was applied from the back of the papermaking mold on which the fiber laminate was deposited, and air was vented for about 30 seconds to dehydrate the fiber laminate. A liquid in which a 15% (mass ratio) curing agent (hexamethylenetetramine) of the thermosetting resin was dispersed in water was uniformly applied to the entire surface of the obtained fiber laminate. The fiber laminate was then removed from the papermaking mold and transferred to a dry mold heated to 220 ° C. As the dry mold, there was used a set of inside and outside corresponding to the structure shown in FIG. 1, in which a large number of communication holes communicating the molding surface and the outside were formed. In the dry molding step, the fiber laminate was sandwiched between a pair of inner and outer dry molds, and the fiber laminate was dried while transferring the shape of the target structure. After performing pressure drying for a predetermined time (180 seconds), the obtained molded body was taken out of the drying mold and cooled to obtain a structure having a thickness of 1.2 mm in the form shown in FIG.

<鋳型の製造>
図1の前記構造体を、発泡ポリスチレン(発泡倍率50倍)を用いて図2の形状に成形された模型のポケット部底部に配置し(図3)、下記組成の塗型剤を模型表面に乾燥膜厚で約1mm塗布した。ただし前記構造体及び前記構造体が接する模型表面には付着しないように実施した。その後、図4に示すように耐熱性骨材(フラタリーサンド+フラン樹脂/硬化剤)を充填して造型し、鋳型を製造した。
*塗型剤組成
・シリカ 28.9(質量%)
・黒鉛 13.0(質量%)
・界面活性剤 2.0(質量%)
・ベントナイト 3.0(質量%)
・メチルセルロース 6.0(質量%)
・水 残余(合計100質量%)
<Manufacture of mold>
The structure shown in FIG. 1 is placed on the bottom of the pocket portion of the model molded into the shape shown in FIG. 2 using foamed polystyrene (50 times the expansion ratio) (FIG. 3), and a coating agent having the following composition is applied to the model surface. A dry film thickness of about 1 mm was applied. However, it implemented so that it might not adhere to the model body surface which the said structure and the said structure contact | connect. Thereafter, as shown in FIG. 4, a heat-resistant aggregate (flattery sand + furan resin / curing agent) was filled to form a mold.
* Coating agent composition, silica 28.9 (mass%)
・ Graphite 13.0 (mass%)
-Surfactant 2.0 (mass%)
・ Bentonite 3.0 (mass%)
・ Methylcellulose 6.0 (mass%)
・ Water residue (total 100% by mass)

<鋳物の製造>
図4の鋳型に、鋳物材質FC−300、鋳込温度1380℃の溶融金属(溶湯)を注入し、凝固したのち、鋳型を壊して、鋳物を取り出した。
<Manufacture of castings>
A molten metal (molten metal) having a casting material FC-300 and a casting temperature of 1380 ° C. was poured into the mold of FIG. 4 and solidified. Then, the mold was broken and the casting was taken out.

<結果(焼着発生状態)>
図5に示す、発泡ポリスチレン模型と同様形状の鋳物が得られた。鋳物表面は、ポケット部も含めて焼着が無い鋳物が得られた。
<Result (increased state)>
A casting having the same shape as the expanded polystyrene model shown in FIG. 5 was obtained. As for the casting surface, a casting having no seizure including the pocket portion was obtained.

〔比較例〕
前記構造体を用いない点を除いては、実施例と同様である(図6)。
<結果(焼着発生状態)>
図7に示す、発泡ポリスチレン模型と同様形状の鋳物が得られた。しかし、ポケット部の底部コーナー部分に重度の焼着が発生し、それ以外のポケット部の底部に軽度の焼着が見られた。前記以外の鋳物表面には焼着は見られなかった。なお重度の焼着とはショットブラストでは除去できずチッパー等による「はつり」作業を必要とする程度のものを指し、軽度の焼着とはショットブラストのみで除去できる程度のものを指す。
[Comparative Example]
Except that the structure is not used, it is the same as the embodiment (FIG. 6).
<Results (state of occurrence of seizure)>
A casting having the same shape as the expanded polystyrene model shown in FIG. 7 was obtained. However, heavy seizure occurred at the bottom corner of the pocket, and mild seizure was seen at the bottom of the other pockets. No seizure was observed on the other casting surfaces. Severe baking refers to an item that cannot be removed by shot blasting but requires a “hanger” operation by a chipper or the like, and mild baking refers to an item that can be removed only by shot blasting.

本発明の鋳型の製造方法に用いられる構造体の一実施形態を模式的に示す図である。It is a figure which shows typically one Embodiment of the structure used for the manufacturing method of the casting_mold | template of this invention. 図1の構造体が配置される前の消失模型の一実施形態を模式的に示す図である。It is a figure which shows typically one Embodiment of the vanishing model before the structure of FIG. 1 is arrange | positioned. 図1の構造体が配置された消失模型の一実施形態を模式的に示す図である。It is a figure which shows typically one Embodiment of the vanishing model in which the structure of FIG. 1 is arrange | positioned. 図3の模型を用いて造型された鋳型による鋳造方法を示す概略図である。It is the schematic which shows the casting method by the casting_mold | template shape | molded using the model of FIG. 図4の鋳造方法により得られた鋳物を示す概略図である。It is the schematic which shows the casting obtained by the casting method of FIG. 従来の消失模型を用いた鋳造方法を示す概略図である。It is the schematic which shows the casting method using the conventional vanishing model. 図6の鋳造方法により得られた鋳物を示す概略図である。It is the schematic which shows the casting obtained by the casting method of FIG.

Claims (5)

耐熱性骨材と消失模型とを用いて造型される鋳物製造用鋳型の製造方法であって、有機繊維、無機繊維、熱硬化性樹脂及び無機粒子を含有し、耐熱性骨材と接する面に、耐熱性骨材と結合するための構造を有する構造体を、前記消失模型に対して少なくとも一部が接するように配置し、前記構造体を配置した部位以外の合成樹脂発泡体模型の表面に塗型剤を塗布し、さらに耐熱性骨材を前記構造体が配置された前記消失模型の周囲に充填する、鋳物製造用鋳型の製造方法。 A method for producing a casting casting mold formed using a heat-resistant aggregate and a disappearance model, comprising organic fiber, inorganic fiber , thermosetting resin, and inorganic particles , on a surface in contact with the heat-resistant aggregate The structure having a structure for bonding with the heat-resistant aggregate is disposed so that at least a part thereof is in contact with the disappearance model, and the surface of the synthetic resin foam model other than the portion where the structure is disposed is disposed. A method for producing a casting mold, wherein a casting agent is applied, and further, heat-resistant aggregate is filled around the disappearance model in which the structure is arranged. 耐熱性骨材と結合するための構造が、高さ5〜20mmの突起である、請求項1記載の鋳物製造用鋳型の製造方法。 The method for producing a casting mold according to claim 1 , wherein the structure for bonding to the heat-resistant aggregate is a protrusion having a height of 5 to 20 mm . 前記構造体が、耐熱性骨材と接する面に、耐熱性骨材と結合するための接着層を有する、請求項1又は2記載の鋳物製造用鋳型の製造方法。 It said structure is, the surface in contact with heat resistant aggregate, having a contact adhesive layer for binding the refractory aggregate, according to claim 1 or 2 method of manufacturing for casting molds according. 前記構造体が、前記有機繊維、前記無機繊維及び前記熱硬化性樹脂を少なくとも含む原料スラリーを用いた抄造工程を具備する製造方法により得られたものである、請求項1〜3の何れかに記載の鋳物製造用鋳型の製造方法。   The said structure is obtained by the manufacturing method which comprises the papermaking process using the raw material slurry which contains the said organic fiber, the said inorganic fiber, and the said thermosetting resin at least in any one of Claims 1-3. The manufacturing method of the casting mold for description. 請求項1〜4の何れかに記載の製造方法により得た鋳物製造用鋳型を用いる鋳物の製造方法。   A casting production method using the casting production mold obtained by the production method according to claim 1.
JP2005305897A 2005-10-20 2005-10-20 Manufacturing method of casting mold Active JP4694347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305897A JP4694347B2 (en) 2005-10-20 2005-10-20 Manufacturing method of casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305897A JP4694347B2 (en) 2005-10-20 2005-10-20 Manufacturing method of casting mold

Publications (2)

Publication Number Publication Date
JP2007111739A JP2007111739A (en) 2007-05-10
JP4694347B2 true JP4694347B2 (en) 2011-06-08

Family

ID=38094390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305897A Active JP4694347B2 (en) 2005-10-20 2005-10-20 Manufacturing method of casting mold

Country Status (1)

Country Link
JP (1) JP4694347B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107096891A (en) * 2017-04-26 2017-08-29 常州万兴纸塑有限公司 The preparation method of high temperature fiber papery sprue cup

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109121A (en) * 1974-02-06 1975-08-28
JPS5939447A (en) * 1982-08-25 1984-03-03 Okamoto:Kk Casting method by full mold
JPS62130741A (en) * 1985-12-02 1987-06-13 Mitsubishi Heavy Ind Ltd Forming method for casting mold
JP2005153003A (en) * 2002-11-29 2005-06-16 Kao Corp Mold or structural body for producing casting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109121A (en) * 1974-02-06 1975-08-28
JPS5939447A (en) * 1982-08-25 1984-03-03 Okamoto:Kk Casting method by full mold
JPS62130741A (en) * 1985-12-02 1987-06-13 Mitsubishi Heavy Ind Ltd Forming method for casting mold
JP2005153003A (en) * 2002-11-29 2005-06-16 Kao Corp Mold or structural body for producing casting

Also Published As

Publication number Publication date
JP2007111739A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP5007214B2 (en) Parts for removing foreign matter from molten metal
JP4002200B2 (en) Papermaking parts for casting production
JP4675276B2 (en) Compact
EP2586545B1 (en) Structure for production of cast material
JP6682159B2 (en) Method for manufacturing structure for casting production
EP1754554B1 (en) Structure for casting production
JP3995649B2 (en) Molds or structures for casting production
JP4694347B2 (en) Manufacturing method of casting mold
JP4219157B2 (en) Molds and structures for casting production
JP4672289B2 (en) Casting manufacturing structure, manufacturing method thereof, and casting
JP4907326B2 (en) Casting manufacturing structure and casting manufacturing method
JP6741418B2 (en) Raw material for casting manufacturing structure, container for the raw material, raw material slurry, casting manufacturing structure, and method for manufacturing the raw material
JP2007111738A (en) Method for producing mold for casting
WO2023228762A1 (en) Structure for producing casting, method for producing same, and method for producing casting using same
JP3241628U (en) Structures for casting manufacturing
JP2006224189A (en) Part prepared through sheet-making process for use in producing casting
CN117102435A (en) Structure for casting production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4694347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250