JP2007111738A - Method for producing mold for casting - Google Patents

Method for producing mold for casting Download PDF

Info

Publication number
JP2007111738A
JP2007111738A JP2005305896A JP2005305896A JP2007111738A JP 2007111738 A JP2007111738 A JP 2007111738A JP 2005305896 A JP2005305896 A JP 2005305896A JP 2005305896 A JP2005305896 A JP 2005305896A JP 2007111738 A JP2007111738 A JP 2007111738A
Authority
JP
Japan
Prior art keywords
mold
casting
heat
fiber
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005305896A
Other languages
Japanese (ja)
Inventor
Shigeaki Takashina
重昭 高階
Akira Yoshida
昭 吉田
Teiji Ueda
定司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005305896A priority Critical patent/JP2007111738A/en
Publication of JP2007111738A publication Critical patent/JP2007111738A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a mold for casting where, even to a product shape requiring a complicated removal pattern such as a loose piece, pattern removal can be easily performed, and a mold having high dimensional precision can be efficiently produced. <P>SOLUTION: When a mold for casting is produced using a heat resistant aggregate and a removal pattern, a structure comprising an organic fiber, an inorganic fiber and a thermosetting resin is arranged in such a manner that at least a part is contacted with a casting product forming part in the removal pattern, further, the heat resistant aggregate is packed around the removal pattern with the structure arranged, thereafter, only the removal pattern is removed, and the structure is made to remain in the mold, so as to produce a mold for casting. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鋳物の製造時に用いられる鋳物製造用鋳型の製造方法、及び該鋳型を用いる鋳物の製造方法に関する。   The present invention relates to a method for manufacturing a casting mold used for manufacturing a casting, and a casting manufacturing method using the mold.

鋳物は、一般に砂などの耐熱性骨材を用い、内部に目的製品形状のキャビティを形成した鋳型内に、溶融した金属(溶湯)を流し込み、凝固させることで製造される。一般に、鋳型の製造にあたっては、木や樹脂などを目的製品形状に加工した模型に、粘結剤等を添加した砂などの耐熱性骨材を充填し、粘結剤が硬化した後、模型を抜き取ること(抜型という)でキャビティを形成する(以後、抜型してキャビティを形成させるための模型を総称して抜取模型と呼ぶ)。   Casting is generally produced by pouring molten metal (molten metal) into a mold in which a heat-resistant aggregate such as sand is used and a cavity having a target product shape is formed therein and solidifying. In general, molds are manufactured by filling a model made of wood or resin into the desired product shape with heat-resistant aggregates such as sand to which a binder is added, and after the binder has hardened, A cavity is formed by extracting (referred to as a "extracting mold") (hereinafter, models for forming a cavity by extracting a mold are collectively referred to as a sampling model).

抜取模型を用いた鋳型製造法は、作業効率上、一度の抜型で済むことが好ましいが、鋳物製品形状が抜取模型の抜取方向に直交して突起や鋳抜き穴を有する場合などは、主たる抜取模型(主型模型)に組み合わせて「おいてこい」と呼ばれる抜取模型を付随させ、複雑な突起形状を有するキャビティを形成する方法が用いられる。「おいてこい」を適用した鋳型製造法は、まず主型模型を抜型した後に、「おいてこい」を抜き取る必要が生じるため、作業が煩雑になる。さらに、使用を重ねた「おいてこい」は、主型模型との接続面に磨耗などの狂いが生じると、鋳物に寸法不良などの欠陥が出やすくなるため、抜取模型の管理も難しい(下記非特許文献1参照)。   The mold manufacturing method using a sampling model is preferably performed once in terms of work efficiency. However, when the shape of a cast product is perpendicular to the sampling model's sampling direction and has a protrusion or a hole, the main sampling is performed. A method of forming a cavity having a complicated protrusion shape by attaching a sampling model called “retain” in combination with a model (main model) is used. In the mold manufacturing method to which “Oteikoi” is applied, since it is necessary to first extract the main model and then to remove “Okeoi”, the operation becomes complicated. In addition, “Kitekoi”, which has been used repeatedly, is difficult to manage the sampling model because defects such as dimensional defects are likely to occur in the casting if a misalignment such as wear occurs on the connection surface with the main model. Non-patent document 1).

このような課題を解決する技術として、主型模型と「おいてこい」とを磁石で固定し、アリ溝などの複雑な接続構造を簡略化した抜取模型を用いる方法(下記特許文献1参照)や、「おいてこい」を含む目的製品形状を、発泡物質で一体成型し、抜取模型と同様に砂等を充填した後、該発泡物質を引きちぎり抜型する方法(下記特許文献2参照)、などが知られている。
鋳物用語と解説(P53)、松居良典、(社)新日本鋳鍛造協会(昭45) 特開昭62−203637号公報 特開昭48−22318号公報
As a technique for solving such a problem, a method using a sampling model in which a main model and a “retainer” are fixed with a magnet and a complicated connection structure such as a dovetail is simplified (see Patent Document 1 below). And a method of integrally molding a target product shape including “retained” with a foaming material, filling sand or the like in the same manner as the extraction model, and then tearing out the foaming material (see Patent Document 2 below), Etc. are known.
Casting terms and explanation (P53), Yoshinori Matsui, New Japan Foundry Forging Association (Sho 45) Japanese Patent Laid-Open No. Sho 62-203637 Japanese Patent Laid-Open No. 48-22318

これらの技術は、抜取模型全体の寸法精度を向上させることで、鋳物の寸法不良軽減などには、ある程度の効果を有するものの、1)「おいてこい」を抜型するために複数回の抜型が必要となり、作業が煩雑である、2)発泡物質からなる模型を引きちぎるという特殊な抜型作業自体が煩雑である、というなどの課題を有していた。よって、これらの課題を改善し得る手段が強く望まれていた。   These technologies improve the overall dimensional accuracy of the sampling model, and have some effects in reducing dimensional defects in castings. The work is complicated because it is necessary, and 2) the special die-cutting work of tearing a model made of foamed material is complicated. Therefore, a means that can improve these problems has been strongly desired.

本発明は、上述の課題に鑑みてなされたものであり、本発明の目的は、耐熱性骨材と抜取模型を用いて造型される鋳物製造用鋳型であって、通常「おいてこい」のような複雑な抜取模型が必要な製品形状に対しても、簡便に抜型でき、寸法精度が高い鋳型を効率良く製造できる鋳造用鋳型の製造方法、及び該鋳型を用いた寸法精度の高い鋳物の製造方法を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is a casting mold that is formed using a heat-resistant aggregate and a sampling model, For a product shape that requires a complicated sampling model, a method for producing a casting mold capable of efficiently producing a mold having a high dimensional accuracy that can be easily drawn, and a casting with a high dimensional accuracy using the mold. It is to provide a manufacturing method.

本発明者らは、有機繊維、無機繊維及び熱硬化性樹脂を含有する構造体を、通常「おいてこい」を必要とするような抜取模型の一部として配置し、更に耐熱性骨材を型枠内の当該抜取模型の周囲に充填した後、抜取模型のみを抜型し、前記構造体を鋳型内に残置することによって、上記目的を達成し得ることを見出した。   The present inventors have arranged a structure containing organic fibers, inorganic fibers and a thermosetting resin as a part of a sampling model that usually requires “retaining”, and further has a heat-resistant aggregate. After filling around the extraction model in the mold, it was found that only the extraction model was extracted and the structure was left in the mold to achieve the above object.

本発明は、上記知見に基づきなされたものであり、耐熱性骨材と抜取模型とを用いて造型される鋳物製造用鋳型の製造方法であって、有機繊維、無機繊維及び熱硬化性樹脂を含有する構造体を、抜取模型に対して少なくとも一部が接するように配置し、さらに耐熱性骨材を前記構造体が配置された前記抜取模型の周囲に充填した後、抜取模型のみを抜型して、前記構造体を鋳型内に残置する鋳物製造用鋳型の製造方法を提供する。   The present invention has been made on the basis of the above knowledge, and is a method for producing a casting mold that is molded using a heat-resistant aggregate and a sampling model, and includes organic fiber, inorganic fiber, and thermosetting resin. Arrange the contained structure so that it is at least partially in contact with the extraction model, and after filling the periphery of the extraction model in which the structure is arranged with heat-resistant aggregate, only the extraction model is extracted. Thus, a method for manufacturing a casting mold for leaving the structure in the mold is provided.

また、本発明は、上記本発明の製造方法により得た鋳物製造用鋳型を用いる鋳物の製造方法を提供する。   Moreover, this invention provides the manufacturing method of a casting using the casting_mold | template for casting manufacture obtained by the manufacturing method of the said invention.

本発明によれば、以下の効果が奏される。
1.本発明の鋳物製造用鋳型の製造方法は、耐熱性骨材と抜取模型を用いて製造される鋳型のうち、通常「おいてこい」を必要とするような鋳物製品形状において、「おいてこい」を使用しない抜取模型で鋳型を製造することが可能であり、鋳型の製造工数低減を図ることができる。
According to the present invention, the following effects are exhibited.
1. The method for producing a casting mold according to the present invention comprises a casting product shape that normally requires “retain” among molds manufactured using heat-resistant aggregates and sampling models. It is possible to manufacture a mold with a sampling model that does not use "", and to reduce the number of manufacturing steps of the mold.

2.本発明の鋳物製造用鋳型の製造方法は、「おいてこい」を使用しなくても済むため、使用を重ねることで生じる「おいてこい」と主型模型との接続面磨耗に起因した鋳型寸法不良及び鋳物寸法不良が、根本的に解決できる。 2. The method for producing a casting mold according to the present invention does not require the use of “retainer”. Therefore, the mold resulting from wear of the connection surface between the “retainer” and the main model caused by repeated use. Dimensional defects and casting dimensional defects can be fundamentally solved.

以下本発明を、その好ましい実施形態に基づき説明する。
本実施形態に用いられる構造体は、有機繊維、無機繊維及び熱硬化性樹脂を含有するものである。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The structure used in this embodiment contains organic fibers, inorganic fibers, and a thermosetting resin.

前記有機繊維、前記無機繊維及び前記熱硬化性樹脂の配合比は、前記有機繊維/前記無機繊維/前記熱硬化性樹脂=1〜50/1〜40/2〜50(質量比率)であることが好ましい。   The compounding ratio of the organic fiber, the inorganic fiber, and the thermosetting resin is the organic fiber / the inorganic fiber / the thermosetting resin = 1-50 / 1-40 / 2-50 (mass ratio). Is preferred.

構造体は、耐熱性及び経済性の観点から、無機粒子を含有することが好ましく、その場合における前記有機繊維、前記無機繊維、前記無機粒子及び前記熱硬化性樹脂の配合比は、前記有機繊維/前記無機繊維/前記無機粒子/前記熱硬化性樹脂=1〜50/1〜40/10〜95/2〜50(質量比率)、さらには2〜40/2〜30/20〜90/4〜40(質量比率)、特には4〜30/4〜20/30〜85/6〜30(質量比率)であることが好ましい。   The structure preferably contains inorganic particles from the viewpoints of heat resistance and economy. In that case, the blend ratio of the organic fibers, the inorganic fibers, the inorganic particles, and the thermosetting resin is the organic fibers. / Inorganic fiber / Inorganic particle / Thermosetting resin = 1 to 50/1 to 40/10 to 95/2 to 50 (mass ratio), and further 2 to 40/2 to 30/20 to 90/4. It is preferable that it is -40 (mass ratio), especially 4-30 / 4-20 / 30-85 / 6-30 (mass ratio).

前記有機繊維の配合比は、下限は構造体の成形性や常温強度の観点から、上限は鋳込時における構造体からのガス発生量増加に伴う鋳物表面欠陥の観点から、好ましい範囲が決定される。   The blending ratio of the organic fibers is preferably determined from the viewpoint of the moldability of the structure and the normal temperature strength at the lower limit, and the upper limit from the viewpoint of casting surface defects accompanying an increase in the amount of gas generated from the structure during casting. The

また、前記無機繊維の配合比は、下限は構造体の鋳込時における形状保持性の観点から、上限は構造体の成形性や鋳込後における構造体除去性の観点から、好ましい範囲が決定される。   In addition, the blending ratio of the inorganic fibers is preferably determined in terms of the lower limit from the viewpoint of shape retention during casting of the structure, and the upper limit from the viewpoint of moldability of the structure and structure removal after casting. Is done.

さらに、前記無機粒子の配合比は、構造体の鋳込時における耐熱性の観点から、上限は構造体の成形性や鋳込時における形状保持性の観点から、好ましい範囲が決定される。   Furthermore, the upper limit of the blending ratio of the inorganic particles is determined from the viewpoint of heat resistance during casting of the structure, and from the viewpoint of formability of the structure and shape retention during casting.

またさらに、前記熱硬化性樹脂の配合比は、下限は構造体の常温強度及び鋳込時における形状保持性や表面平滑性などの観点から、上限は鋳込時における構造体からのガス発生量増加に伴う鋳物表面欠陥の観点から、好ましい範囲が決定される。   Furthermore, the blending ratio of the thermosetting resin is such that the lower limit is the normal temperature strength of the structure and the shape retention or surface smoothness during casting, and the upper limit is the amount of gas generated from the structure during casting. From the viewpoint of casting surface defects accompanying the increase, a preferable range is determined.

前記有機繊維は、主として構造体において鋳造に用いられる前の状態ではその骨格をなし常温時の強度保持に寄与するとともに、構造体の成形性を向上させる成分である。   The organic fiber is a component that forms a skeleton in a state before being used for casting in the structure, contributes to maintaining strength at room temperature, and improves the moldability of the structure.

前記有機繊維としては、紙繊維、フィブリル化した合成繊維、再生繊維(例えば、レーヨン繊維)等の繊維が挙げられる。有機繊維は、これらを単独で又は二種以上を選択して用いることができる。そして、これらの中でも、特に、抄造により多様な形態に成形できるほか、脱水後と乾燥後に十分な強度が得られる点から紙繊維を用いることが好ましい。   Examples of the organic fibers include paper fibers, fibrillated synthetic fibers, and recycled fibers (for example, rayon fibers). These organic fibers can be used alone or in combination of two or more. Among these, it is particularly preferable to use paper fibers because they can be formed into various forms by papermaking and sufficient strength can be obtained after dehydration and drying.

前記紙繊維としては、木材パルプ、コットンパルプ、リンターパルプ、竹やわらその他の非木材パルプが挙げられる。紙繊維は、これらのバージンパルプ若しくは古紙パルプを単独で又は二種以上を選択して用いることができる。紙繊維は、入手の容易性、環境保護、製造費用の低減等の点から、特に古紙パルプが好ましい。   Examples of the paper fiber include wood pulp, cotton pulp, linter pulp, bamboo straw and other non-wood pulp. As the paper fiber, these virgin pulp or waste paper pulp can be used alone or in combination of two or more. The paper fiber is particularly preferably used paper pulp from the viewpoints of easy availability, environmental protection, and reduction of manufacturing costs.

前記有機繊維は、構造体等の成形性、表面平滑性、耐衝撃性を考慮すると、平均繊維長が0.3〜2.0mm、特に0.5〜1.5mmであるものが好ましい。   The organic fiber preferably has an average fiber length of 0.3 to 2.0 mm, particularly 0.5 to 1.5 mm in consideration of moldability of the structure, surface smoothness, and impact resistance.

前記無機繊維は、主として鋳造に用いられたときには溶融金属の熱によっても燃焼せずにその形状を維持する成分である。   The inorganic fiber is a component that maintains its shape without being burned by the heat of the molten metal when used mainly for casting.

前記無機繊維としては、炭素繊維、ロックウール等の人造鉱物繊維、セラミック繊維、天然鉱物繊維が挙げられる。無機繊維は、これらを単独で又は二以上を選択して用いることができる。そして、これらの中でも、熱硬化性樹脂の炭化に伴う収縮を効果的に抑える点から高温でも高強度を有するピッチ系やポリアクリロニトリル(PAN)系炭素繊維を用いることが好ましく、特にPAN系の炭素繊維が好ましい。   Examples of the inorganic fibers include artificial mineral fibers such as carbon fibers and rock wool, ceramic fibers, and natural mineral fibers. These inorganic fibers can be used alone or in combination of two or more. Among these, it is preferable to use pitch-based or polyacrylonitrile (PAN) -based carbon fibers having high strength even at high temperatures from the viewpoint of effectively suppressing shrinkage associated with carbonization of the thermosetting resin, and in particular, PAN-based carbon. Fiber is preferred.

前記無機繊維は、構造体等を抄造して脱水する場合の脱水性、構造体等の成形性、均一性の観点から平均繊維長が0.2〜10mm、特に0.5〜8mmであるものが好ましい。   The inorganic fiber has an average fiber length of 0.2 to 10 mm, particularly 0.5 to 8 mm from the viewpoint of dewaterability when paper is formed and dehydrated, moldability of the structure, and uniformity. Is preferred.

前記無機粒子は、溶融金属の熱により軟化して緻密な耐火膜を形成し、構造体の耐熱性を向上させる成分である。   The inorganic particles are components that are softened by the heat of the molten metal to form a dense refractory film and improve the heat resistance of the structure.

前記無機粒子としては、シリカ、アルミナ、ムライト、マグネシア、ジルコニア、雲母、黒鉛、黒曜石等の耐火度800〜2000℃、好ましくは1000〜1700℃の無機粒子が挙げられ、特に軟化時の粘度が高く、緻密な耐火膜を形成する観点から黒曜石、ムライト粉が好ましい。 なお、これらの無機粒子は単独で又は二種以上を併用しても良い。前記無機粒子は、粒子径が200μm以下のものを用いることが好ましい。特に、鋳造する溶融金属の鋳込温度に対し±300℃、特に±200℃の耐火度を有する無機粒子が好ましい。ここで、無機粒子の耐火度は、ゼーゲルコーンを用いた測定方法(JIS R2204)で測定される。   Examples of the inorganic particles include inorganic particles having a fire resistance of 800 to 2000 ° C., preferably 1000 to 1700 ° C. such as silica, alumina, mullite, magnesia, zirconia, mica, graphite, obsidian, and the like. From the viewpoint of forming a dense refractory film, obsidian and mullite powder are preferable. These inorganic particles may be used alone or in combination of two or more. The inorganic particles preferably have a particle diameter of 200 μm or less. In particular, inorganic particles having a fire resistance of ± 300 ° C., particularly ± 200 ° C. with respect to the casting temperature of the molten metal to be cast are preferable. Here, the fire resistance of the inorganic particles is measured by a measuring method (JIS R2204) using a Zeger cone.

前記熱硬化性樹脂としては、フェノール系樹脂、エポキシ系樹脂、フラン系樹脂等の熱硬化性樹脂が挙げられる。熱硬化性樹脂は、構造体の常温時における強度、及び熱間時における強度すなわち鋳込時の形状保持性を向上させる成分である。また鋳込時の熱により熱分解し、生成した炭素皮膜により構造体表面に平滑性を付与し、結果として鋳物の表面平滑性(鋳肌)を向上させる効果もある。
前記熱硬化性樹脂には、特に、可燃ガスの発生が少なく、燃焼抑制効果があり、熱分解(炭化)後における残炭率が25%以上と高く、鋳造時に炭素皮膜を形成するために良好な鋳肌を得ることができる点からフェノール系樹脂を用いることが好ましい。なお、残炭率は、示査熱分析により還元雰囲気下(窒素雰囲気下)にて1000℃に加熱後の残留質量により求めることができる。
Examples of the thermosetting resin include thermosetting resins such as phenol resins, epoxy resins, and furan resins. The thermosetting resin is a component that improves the strength of the structure at room temperature and the strength during hot, that is, shape retention during casting. Moreover, it is thermally decomposed by the heat at the time of casting, and the resulting carbon film imparts smoothness to the surface of the structure, resulting in the effect of improving the surface smoothness (casting surface) of the casting.
The thermosetting resin has particularly low generation of combustible gas, has a combustion suppressing effect, has a high residual carbon ratio of 25% or more after pyrolysis (carbonization), and is good for forming a carbon film during casting. It is preferable to use a phenol-based resin from the viewpoint that a smooth casting surface can be obtained. The residual carbon ratio can be determined from the residual mass after heating to 1000 ° C. in a reducing atmosphere (under a nitrogen atmosphere) by an analytical thermal analysis.

前記フェノール系樹脂としては、ノボラックフェノール樹脂、レゾールタイプ等のフェノール樹脂、尿素、メラミン、エポキシ等で変性した変性フェノール樹脂等が挙げられるが、好ましくはノボラックフェノール樹脂又はその変性樹脂である。   Examples of the phenolic resin include novolak phenol resins, resol type phenol resins, modified phenol resins modified with urea, melamine, epoxy, and the like, preferably novolak phenol resins or modified resins thereof.

前記熱硬化性樹脂は、単独で又は二以上を選択して用いることもでき、さらにはアクリル系樹脂やポリビニルアルコール系樹脂等と併用することもできる。   The thermosetting resins may be used alone or in combination of two or more, and may be used in combination with an acrylic resin, a polyvinyl alcohol resin, or the like.

前記熱硬化性樹脂の添加形態としては、前記有機繊維、前記無機繊維又は前記無機粒子にコーティングしたり、粉末化又は乳化して原料スラリー中に添加したりし、抄造後乾燥成形したときに前記有機繊維、前記無機繊維及び前記無機粒子を結合させるもの、成形体の抄造後に含浸させ、乾燥又は硬化させることで構造体等の強度を高め、鋳込み時に溶融金属の熱によって炭化させて強度を維持するものなどが挙げられる。いずれにしても、鋳込時の溶融金属から加わる熱により炭化して炭素皮膜を形成し、構造体等の強度の維持と鋳物の表面平滑性の向上に寄与し得るものであれば添加する形態はいずれでもよい。   As the addition form of the thermosetting resin, the organic fiber, the inorganic fiber or the inorganic particles are coated, powdered or emulsified and added to the raw material slurry, and after the paper making and dry-molded, Improves the strength of the structure by impregnating the organic fiber, the inorganic fiber and the inorganic particle, making the molded body after making, drying or curing, and maintaining the strength by carbonizing with the heat of the molten metal at the time of casting And what to do. In any case, a carbon film is formed by carbonization by the heat applied from the molten metal at the time of casting, and it is added if it can contribute to maintaining the strength of the structure and the like and improving the surface smoothness of the casting. May be either.

前記ノボラックフェノール樹脂を使用した場合に必要となる硬化剤は、水に溶け易いため、湿式抄造による場合には特に成形体の脱水後に塗工することが好ましい。前記硬化剤には、ヘキサメチレンテトラミン等を用いることが好ましい。   Since the curing agent required when the novolak phenol resin is used is easily dissolved in water, it is preferably applied after dehydration of the molded body, particularly in the case of wet papermaking. It is preferable to use hexamethylenetetramine or the like as the curing agent.

本実施形態の構造体には、前記有機繊維、前記無機繊維、前記無機粒子及び前記熱硬化性樹脂に加えて、必要に応じ、ポリビニルアルコール、カルボキシメチルセルロース(CMC)、ポリアミドアミンエピクロルヒドリン樹脂等の紙力強化材、ポリアクリルアミド系等の凝集剤、着色剤等の他の成分を適宜の割合で添加することができる。   In the structure of the present embodiment, in addition to the organic fiber, the inorganic fiber, the inorganic particle, and the thermosetting resin, paper such as polyvinyl alcohol, carboxymethyl cellulose (CMC), and polyamidoamine epichlorohydrin resin is used as necessary. Other components such as a force-strengthening material, a polyacrylamide-based flocculant, and a colorant can be added at an appropriate ratio.

本実施形態の構造体の厚みは、その用いられる部分に応じて適宜設定することができるが、少なくとも溶融金属と接する部分における厚みが、0.2〜5mm、特に0.4〜2mmであることが好ましい。薄すぎると耐熱性骨材を充填して鋳型を造型するときに要する強度が不十分となり、厚すぎると鋳込時にガス発生量が増加して鋳物の表面欠陥が発生しやすくなるほか、成形時間が長くなり、製造費が高くなる場合がある。ただし前記構造体の厚さとは、専ら構造体に機械的強度を付与するための補強リブや耐熱性骨材との結合強度を付与するための構造(凹凸、突起など)などを除いた部位を指す。   The thickness of the structure according to the present embodiment can be set as appropriate according to the portion to be used, but at least the portion in contact with the molten metal has a thickness of 0.2 to 5 mm, particularly 0.4 to 2 mm. Is preferred. If it is too thin, the strength required to mold the mold by filling with heat-resistant aggregate will be insufficient, and if it is too thick, the amount of gas generated will increase during casting and surface defects of the casting will occur more easily. May become long and the manufacturing cost may be high. However, the thickness of the structure means a portion excluding a structure (concave, protrusion, etc.) for providing a bond strength with a reinforcing rib or a heat-resistant aggregate exclusively for imparting mechanical strength to the structure. Point to.

本実施形態の構造体は、構造体の耐熱性骨材と接する面に、耐熱性骨材と結合するための構造及び/又は接着層を設けることにより、耐熱性骨材との結合が一層強固になり、鋳型の寸法精度をさらに向上することができる。耐熱性骨材と結合するための構造としては、凹部、凸部、突起、これらの組み合わせなどが挙げられる。図1〜2に突起を設けた例を示す(図中の突起B)。突起を設ける場合は、隣接部に対して突起高さを5〜20mmにすることが好ましい。低すぎると結合効果が低下し、高すぎると縁切れによる鋳型強度低下を引き起こす。   The structure of this embodiment has a stronger bond with the heat-resistant aggregate by providing a structure and / or an adhesive layer for bonding to the heat-resistant aggregate on the surface of the structure that contacts the heat-resistant aggregate. Thus, the dimensional accuracy of the mold can be further improved. Examples of the structure for bonding with the heat-resistant aggregate include a concave portion, a convex portion, a protrusion, and a combination thereof. FIGS. 1 and 2 show an example in which a protrusion is provided (protrusion B in the figure). When providing a protrusion, the protrusion height is preferably 5 to 20 mm with respect to the adjacent portion. If it is too low, the bonding effect is reduced, and if it is too high, the mold strength is reduced due to edge breakage.

接着層については、アクリレート系、ビニルブチラール系、ビニルアルコール系、酢酸ビニル系、フェノール系などの接着剤を、単独又は2以上の混合物として水系エマルション、水で希釈あるいはアルコール系有機溶剤で希釈したものを、該構造体の耐熱性骨材と接する面に塗布することで、あるいは、これら接着剤よりなる両面テープ状のものを貼付することで、形成することができる。これらのうち、作業環境の観点から、水系エマルションや水希釈したものを塗布する、あるいは両面テープ状のものを貼付することが好ましい。尚、接着剤とは、2つの物を貼り合わせるのに用いる物質であるが、一時的な接着に用い、後で剥がすことができるような粘着剤も含まれる。   For the adhesive layer, acrylate-based, vinyl butyral-based, vinyl alcohol-based, vinyl acetate-based, phenol-based adhesives, etc., alone or as a mixture of two or more water-based emulsions, diluted with water or alcohol-based organic solvents Can be formed by applying to the surface of the structure in contact with the heat-resistant aggregate, or by applying a double-sided tape-like material made of these adhesives. Among these, from the viewpoint of the working environment, it is preferable to apply a water-based emulsion or a water-diluted one, or to apply a double-sided tape-like one. The adhesive is a substance used for bonding two objects together, but includes an adhesive that can be used for temporary adhesion and can be peeled off later.

本実施形態の構造体は、水を分散媒とした原料スラリーを用いた抄造工程を経て製造したときには、鋳込時のガス発生量を極力抑える点から、鋳込に用いられる前の状態において、含水率(質量含水率)が10%以下、特には8%以下であることが好ましい。   When the structure of the present embodiment is manufactured through a paper making process using a raw material slurry using water as a dispersion medium, from the point of suppressing the amount of gas generation during casting as much as possible, in a state before being used for casting, The moisture content (mass moisture content) is preferably 10% or less, particularly preferably 8% or less.

本実施形態の構造体は、軽量性による造形作業のし易さの観点から、造形に用いられる前の状態において、その比重が1.0以下であることが好ましく、0.8以下であることがより好ましい。   The structure of the present embodiment preferably has a specific gravity of 1.0 or less and 0.8 or less in the state before being used for modeling from the viewpoint of ease of modeling work due to lightness. Is more preferable.

本実施形態の鋳物製造用鋳型の製造方法が指す鋳型とは、耐熱性骨材と抜取模型を用いて造形される、内面に鋳物製品形状のキャビティを有する鋳型全般を指すが、特に従来「おいてこい」を適用しなければ造形できないような複雑な鋳型に適用することにより、抜取模型の抜型回数が削減でき、製造工数を削減できるので好適である。   The mold indicated by the method for manufacturing a casting mold according to the present embodiment refers to all molds formed using heat-resistant aggregates and sampling models and having a cavity in the shape of a cast product on the inner surface. By applying it to a complex mold that cannot be shaped without applying “Welcome”, it is possible to reduce the number of extractions of the extraction model and reduce the number of manufacturing steps.

次に、本発明の構造体の製造方法を、その好ましい実施形態として上述した実施形態の鋳型等の製造方法に基づいて説明する。   Next, the manufacturing method of the structure of the present invention will be described based on the manufacturing method of the mold or the like of the above-described embodiment as a preferred embodiment thereof.

本実施形態の構造体の製造方法として、一例として湿式抄造法による成形法が挙げられる。該湿式抄造法は、前記有機繊維、前記無機繊維、前記無機粒子及び前記熱硬化性樹脂を前記所定配合比で含む原料スラリーを調製し、該原料スラリーを用いた湿式抄造法によって所定形状の繊維積層体を抄造し、脱水、乾燥して構造体を製造する。   As an example of the method for producing the structure of the present embodiment, a molding method using a wet papermaking method can be given. In the wet papermaking method, a raw material slurry containing the organic fiber, the inorganic fiber, the inorganic particles, and the thermosetting resin in the predetermined mixing ratio is prepared, and a fiber having a predetermined shape is formed by a wet papermaking method using the raw material slurry. The laminated body is made, dehydrated and dried to produce a structure.

前記原料スラリーの分散媒としては、水、白水の他、エタノール、メタノール等の溶剤等が挙げられ、これらの中でも抄造・脱水の安定性、品質の安定性、費用、取り扱い易さ等の点から特に水が好ましい。   Examples of the dispersion medium of the raw material slurry include water, white water, and solvents such as ethanol and methanol. Among these, from the viewpoints of papermaking / dehydration stability, quality stability, cost, ease of handling, etc. Water is particularly preferable.

前記原料スラリーにおける前記分散媒に対する前記各繊維及び無機粒子の合計の割合は、0.1〜10質量%、特に0.5〜6質量%であることが好ましい。原料スラリー中の前記繊維及び粒子の合計割合が多すぎると肉厚むらが生じやすくなる。逆に、少なすぎると局所的な薄肉部が発生する場合がある。   The total ratio of the fibers and inorganic particles to the dispersion medium in the raw slurry is preferably 0.1 to 10% by mass, particularly 0.5 to 6% by mass. If the total proportion of the fibers and particles in the raw slurry is too large, uneven thickness tends to occur. Conversely, if the amount is too small, a local thin portion may occur.

前記原料スラリーには、必要に応じて、前記紙力強化材、前記凝集剤、防腐剤等の添加剤を適宜の割合で添加することができる。   If necessary, additives such as the paper strength reinforcing material, the flocculant, and the preservative can be added to the raw material slurry at an appropriate ratio.

前記繊維積層体の抄造工程では、例えば、該構造体の形状に略対応した形状を有する抄造型に、型背面に連通する多数の連通孔を設けておくとともに、型の抄造面に網目を有するネットで被覆しておく。そして、抄造に際しては、抄造面を上に向け、前記原料スラリーを流し込み堆積させる方法でもよいし、抄造型を前記原料スラリーにドブ漬けし、抄造型背面から吸引して堆積させてもよい。   In the papermaking process of the fiber laminate, for example, a papermaking mold having a shape substantially corresponding to the shape of the structure is provided with a number of communication holes communicating with the back of the mold, and has a mesh on the papermaking surface of the mold. Cover with a net. In the paper making, the raw material slurry may be poured and deposited with the paper making surface facing up, or the paper making mold may be immersed in the raw material slurry and sucked and deposited from the back of the paper making mold.

前記抄造型のネットに所定厚みの繊維積層体が形成されたら、必要に応じて繊維積層体に空気を通過させるなどして、繊維積層体を所定の含水率に脱水する。   When a fiber laminate having a predetermined thickness is formed on the papermaking net, the fiber laminate is dehydrated to a predetermined moisture content by passing air through the fiber laminate as necessary.

次に、前記繊維積層体を乾燥成形する。この乾燥成形工程では、目的とする該構造体形状が得られるのであれば、どのような方法を用いても構わない。例えば、目的とする該構造体形状に合わせて製作された内外一組の加熱した乾燥型に前記繊維積層体を挟み込んで乾燥成型を行う。前記乾燥型の加熱温度(金型温度)は、下限は乾燥時間、上限は焦げ付きによる表面性低下の観点から、180〜250℃が好ましく、特に200〜240℃が好ましい。   Next, the fiber laminate is dry-molded. In this dry molding step, any method may be used as long as the desired structure shape can be obtained. For example, the fiber laminate is sandwiched between a set of heated drying molds that are manufactured in accordance with the intended shape of the structure, and dry molding is performed. The drying temperature (mold temperature) of the drying mold is preferably 180 to 250 ° C., particularly preferably 200 to 240 ° C., from the viewpoint of drying time at the lower limit and surface property deterioration due to scorching.

また、前記繊維積層体の状態で、目的とする該構造体形状が得られれば、そのまま熱風乾燥機等で乾燥させても良い。この場合の雰囲気温度は、下限は乾燥時間、上限は有機繊維の熱分解の観点から、160〜240℃が好ましく、特に180〜220℃が好ましい。   Further, if the desired structure shape is obtained in the state of the fiber laminate, it may be dried as it is with a hot air dryer or the like. In this case, the lower limit of the atmospheric temperature is preferably 160 to 240 ° C., particularly preferably 180 to 220 ° C., from the viewpoint of drying time as the lower limit and thermal decomposition of the organic fiber.

得られた該構造体には、必要に応じて、バインダーを部分的又は全体に含浸させ、加熱して熱硬化させることができる。該バインダーとしては、コロイダルシリカ、エチルシリケート、水ガラス等が挙げられる。   If necessary, the obtained structure can be impregnated partially or entirely with a binder, and heated and thermally cured. Examples of the binder include colloidal silica, ethyl silicate, and water glass.

また、該構造体には熱処理を行い、熱硬化性樹脂の硬化を進めることが好ましい。このような熱処理を行うことで、より優れた形状保持性を有する構造体が得られる。斯かる熱処理は、前記乾燥成型工程と兼用で行っても、別途熱風乾燥機等で行っても良い。斯かる熱処理によって得られる熱硬化性樹脂の硬化度は、下記の熱硬化性樹脂のアセトン不溶分量で30%以上、特には80%以上とすることが好ましい。   Moreover, it is preferable to heat-treat the structure to promote curing of the thermosetting resin. By performing such heat treatment, a structure having more excellent shape retention can be obtained. Such heat treatment may be performed in combination with the drying molding step or may be performed separately using a hot air dryer or the like. The degree of cure of the thermosetting resin obtained by such heat treatment is preferably 30% or more, particularly 80% or more in terms of the amount of acetone insoluble in the following thermosetting resin.

前記熱硬化性樹脂の不溶分量は、具体的には、次のように求められる。
すなわち、該構造体から試料約5gを採取し、ミルで粉砕して質量(a)を精秤する。この粉砕試料をアセトンとともに容器に加えて十分に振とうさせた後、常温で放置する。次いで、前記容器に前記粉砕試料が残らないようにして、該粉砕試料をろ紙(質量(c))で十分にろ過し、ろ過した該粉砕試料を該ろ紙とともに乾燥してそれら(粉砕試料及びろ紙)の質量(b)を精秤する。そして、得られた各質量(a)〜(c)及び前記粉砕試料中の前記熱硬化性樹脂以外の成分の理論質量(d)に基づいて、下記式から前記熱硬化性樹脂の不溶分量(%)を求める。
不溶分量%=100−(a−(b−d))×100/(a−d)
Specifically, the insoluble content of the thermosetting resin is determined as follows.
That is, about 5 g of a sample is taken from the structure, pulverized with a mill, and the mass (a) is precisely weighed. The ground sample is added to a container together with acetone and shaken sufficiently, and then left at room temperature. Next, the pulverized sample is sufficiently filtered with a filter paper (mass (c)) so that the pulverized sample does not remain in the container, and the filtered pulverized sample is dried together with the filter paper to obtain them (crushed sample and filter paper). ) (B) is precisely weighed. And based on each obtained mass (a)-(c) and the theoretical mass (d) of components other than the said thermosetting resin in the said grinding | pulverization sample, the insoluble content amount of the said thermosetting resin (( %).
Insoluble content% = 100− (a− (b−d)) × 100 / (ad)

前記説明は、湿式抄造時に目的とする該構造体の形状に乾燥成型する方法を説明したが、湿式抄造時に繊維積層体をシート状に抄造し、湿潤状態のシート状繊維積層体を目的とする該構造体形状に合わせて製作された内外一組の加熱した乾燥型に挟み込んで乾燥成型を行っても良い。また更には、前記のシート状に抄造された繊維積層体を、シート状のまま乾燥させ、乾燥させた繊維積層体を、適宜切断・折り曲げ・接着を行い、目的とする該構造体の形状を得ても良い。前記接着は、接着剤、粘着テープ、ピン・鋲などの金具などが使用できるが、好ましくは接着剤による方法であり、より好ましくは熱硬化性樹脂からなる接着剤である。   In the above description, the method of dry-molding into the shape of the target structure at the time of wet papermaking was explained. However, the fiber laminate is made into a sheet at the time of wet papermaking, and the object is a wet sheet-like fiber laminate. Dry molding may be performed by sandwiching between a pair of heated and dry molds manufactured according to the shape of the structure. Still further, the fiber laminate that has been made into a sheet is dried in the form of a sheet, and the dried fiber laminate is appropriately cut, bent, and bonded to obtain the desired shape of the structure. You may get. For the bonding, an adhesive, a pressure-sensitive adhesive tape, a metal fitting such as a pin / claw can be used, and a method using an adhesive is preferable, and an adhesive made of a thermosetting resin is more preferable.

次に、本発明の鋳物製造用鋳型の製造方法を、その好ましい実施形態に基づいて説明する。   Next, the manufacturing method of the casting casting mold of the present invention will be described based on its preferred embodiment.

本実施形態の鋳物製造用鋳型の製造方法では、上述のようにして得られた所定の構造体(例えば図1)を、抜取模型の所定位置に、少なくとも一部が接するように配置し(図2)、耐熱性骨材を所定の型枠内に置かれた当該抜取模型の周囲に充填して造型し(図3)、抜取模型を抜型すると同時に該構造体を鋳型内に残置し(図4)、所定の形状に鋳型を組み立てる(図5)ことにより、鋳物製造用鋳型を製造できる。尚、「おいてこい」の代替として用いられる観点から、本発明の構造体は、製造された鋳物の凸部が形成されるような、凹部を有していることが好ましい。また、本発明の構造体は、「おいてこい」が必要とされる部位に抜取模型に対して接するように配置することが好ましい。   In the method for producing a casting mold according to the present embodiment, a predetermined structure (for example, FIG. 1) obtained as described above is arranged so that at least a part thereof is in contact with a predetermined position of the sampling model (FIG. 2) The heat-resistant aggregate is filled around the extraction model placed in a predetermined formwork (FIG. 3), and the extraction model is extracted and at the same time the structure is left in the mold (FIG. 3). 4) A casting mold can be manufactured by assembling a mold into a predetermined shape (FIG. 5). In addition, from the viewpoint of being used as an alternative to “retaining”, it is preferable that the structure of the present invention has a concave portion in which the convex portion of the manufactured casting is formed. In addition, the structure of the present invention is preferably arranged so as to be in contact with the sampling model at a site where “retaining” is required.

図2のような形状を有する抜取模型は、本発明を用いない場合、「おいてこい」を適用せざるを得ず、複数回の抜型作業を強いられるが(図9)、本発明によれば、一度の抜型作業だけで良く、製造工数の削減が可能となる。   When the present invention is not used, the sampling model having the shape as shown in FIG. 2 is forced to apply “keep away”, and is forced to perform a plurality of punching operations (FIG. 9). For example, only a single die-cutting operation is required, and the number of manufacturing steps can be reduced.

前記耐熱性骨材は、鋳物砂をはじめ、従来からこの種の鋳物の製造に用いられている通常のものを特に制限なく用いることができる。前記耐熱性骨材をバインダーにより硬化させる必要があれば、これも通常のものを特に制限無く用いることができる。   As the heat-resistant aggregate, normal ones conventionally used for producing this type of casting, including foundry sand, can be used without particular limitation. If it is necessary to cure the heat-resistant aggregate with a binder, a normal one can be used without any particular limitation.

さらに、本発明で製造された鋳物製造用鋳型を用いた鋳物の製造方法を、その好ましい実施形態に基づいて説明する。   Further, a casting production method using the casting production mold produced according to the present invention will be described based on its preferred embodiment.

たとえば図5のように組み立てられた鋳型は、注湯口から溶融金属を注ぎ入れ、鋳込みを行う(図6)。このとき、該溶融金属の熱によって前記無機粒子が軟化して緻密な耐火膜を形成し、更に前記熱硬化性樹脂が熱分解して生成する炭素皮膜による鋳肌向上効果や、前記無機繊維による熱間における形状保持効果などにより、該構造体に接触した鋳物製品部位は、欠陥が少なく形状が保持された健全な鋳物が得られる。   For example, a mold assembled as shown in FIG. 5 is poured by pouring molten metal from a pouring gate (FIG. 6). At this time, the inorganic particles are softened by the heat of the molten metal to form a dense refractory film, and further, the cast skin improvement effect by the carbon film generated by the thermal decomposition of the thermosetting resin, Due to the hot shape retention effect and the like, the cast product portion in contact with the structure can obtain a healthy casting with fewer defects and a retained shape.

本発明は上述した実施形態に制限されず、本発明の趣旨を逸脱しない範囲において、適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

〔実施例〕
<原料スラリーの調製>
下記有機繊維、無機繊維及び無機粒子を水に分散させた約1質量%のスラリーを調製した後、該スラリーに下記熱硬化性樹脂粉末及び適量の下記凝集剤を添加し、原料スラリーを調整した。なお、有機繊維/無機繊維/無機粒子/熱硬化性樹脂粉末=25/10/45/20(質量部)の比率で調製した。
有機繊維:新聞古紙(平均繊維長1mm、フリーネス(CSF、以下同じ)150cc)
無機繊維:PAN系炭素繊維(東レ(株)製「トレカチョップ」、繊維長3mm、収縮率0.1%)
無機粒子:黒曜石(キンセイマテック社製「ナイスキャッチ」、平均粒子径30μm)
熱硬化性樹脂:ノボラックフェノール樹脂(旭有機材工業(株)製「SP1006LS」、残炭率38%)
凝集剤:ポリアクリルアミド系凝集剤(三井サイテック社製「A110」)
〔Example〕
<Preparation of raw material slurry>
After preparing a slurry of about 1% by mass in which the following organic fibers, inorganic fibers and inorganic particles were dispersed in water, the following thermosetting resin powder and an appropriate amount of the following flocculant were added to the slurry to prepare a raw material slurry. . In addition, it prepared in the ratio of organic fiber / inorganic fiber / inorganic particle / thermosetting resin powder = 25/10/45/20 (parts by mass).
Organic fiber: used newspaper (average fiber length 1mm, freeness (CSF, the same applies below) 150cc)
Inorganic fiber: PAN-based carbon fiber (“Toray Chop” manufactured by Toray Industries, Inc., fiber length 3 mm, shrinkage 0.1%)
Inorganic particles: Obsidian (“Nice catch” manufactured by Kinsei Matec Co., Ltd., average particle size 30 μm)
Thermosetting resin: Novolac phenolic resin ("SP1006LS" manufactured by Asahi Organic Materials Co., Ltd., residual charcoal rate 38%)
Flocculant: Polyacrylamide flocculant (“A110” manufactured by Mitsui Cytec)

<構造体の抄造成形>
抄造型には、図1に示す構造体に対応する抄造面を有する型を用いて、当該抄造面に所定の目開きのネットが配され、抄造面と背面とを連通する多数の連通孔が形成されたものを用いた。さらに抄造型は、抄造面を上にして、スラリー投入用の枠をセットした。そして、前記原料スラリーをモーノポンプで循環させ、前記抄造型上の枠内に所定量のスラリーを投入する一方で、前記連通孔を通じて排水し、所定の繊維積層体を前記ネットの表面に堆積させた。所定量の原料スラリーの投入を完了した後、該繊維積層体が堆積された抄造型背面から0.05MPaの負圧を与え、約30秒間エアを通気し、該繊維積層体を脱水した。得られた繊維積層体の全面に、前記熱硬化性樹脂の15%(質量比)の硬化剤(ヘキサメチレンテトラミン)を水に分散させた液を均一に塗布した。次いで、繊維積層体を抄造型から取り出し、220℃に加熱された乾燥型に移した。乾燥成形型には、図1に示す構造体に対応する内外一組のもので、該成形面と外部とを連通する多数の連通孔が形成されたものを用いた。乾燥成形工程では、前記繊維積層体を内外一組の該乾燥成形型に挟み込み、目的とする構造体の形状を転写させつつ該繊維積層体を乾燥した。所定時間(180秒)の加圧乾燥を行った後、得られた成形体を前記乾燥型から取り出して冷却し、図1に示す形態で、肉厚1.2mmの構造体を得た。
<Paper forming molding of structure>
For the papermaking mold, a mold having a papermaking surface corresponding to the structure shown in FIG. 1 is used, a net having a predetermined mesh is arranged on the papermaking surface, and a large number of communication holes communicating the papermaking surface and the back surface are provided. The formed one was used. Furthermore, the papermaking mold was set with a frame for slurry introduction with the papermaking surface facing up. Then, the raw material slurry was circulated by a Mono pump, and while a predetermined amount of slurry was put into the frame on the papermaking mold, it was drained through the communication hole, and a predetermined fiber laminate was deposited on the surface of the net. . After completing the introduction of a predetermined amount of raw material slurry, a negative pressure of 0.05 MPa was applied from the back of the papermaking mold on which the fiber laminate was deposited, and air was vented for about 30 seconds to dehydrate the fiber laminate. A liquid in which a 15% (mass ratio) curing agent (hexamethylenetetramine) of the thermosetting resin was dispersed in water was uniformly applied to the entire surface of the obtained fiber laminate. The fiber laminate was then removed from the papermaking mold and transferred to a dry mold heated to 220 ° C. As the dry mold, there was used a set of inside and outside corresponding to the structure shown in FIG. In the dry molding process, the fiber laminate was sandwiched between a pair of inner and outer dry molds, and the fiber laminate was dried while transferring the shape of the target structure. After performing pressure drying for a predetermined time (180 seconds), the obtained molded body was taken out of the drying mold and cooled to obtain a structure having a thickness of 1.2 mm in the form shown in FIG.

<鋳型の製造>
図1の構造体を、図2に示すように抜取模型の所定位置に配置し、図3のように耐熱性骨材(フラタリーサンド+フラン樹脂/硬化剤)を当該抜取模型の周囲に充填して造型し、前記耐熱性骨材が硬化後、図4のように抜取模型を抜型すると同時に該構造体を鋳型内に残置し、図5のとおり所定の形状に組み立てることで、鋳型を製造した。
<Manufacture of mold>
The structure shown in FIG. 1 is arranged at a predetermined position of the sampling model as shown in FIG. 2, and heat-resistant aggregate (flattery sand + furan resin / hardening agent) is filled around the sampling model as shown in FIG. After the heat-resistant aggregate has hardened, the extraction model is removed as shown in FIG. 4 and the structure is left in the mold and assembled into a predetermined shape as shown in FIG. did.

<鋳物の製造>
図5の鋳型に、鋳物材質FC−300、鋳込温度1380℃の溶融金属(溶湯)を注入し、凝固したのち、鋳型を壊して、鋳物を取り出した(図6)。
<Manufacture of castings>
A molten metal (molten metal) having a casting material FC-300 and a casting temperature of 1380 ° C. was poured into the mold of FIG. 5 and solidified, then the mold was broken and the casting was taken out (FIG. 6).

<結果>
図6に示す所定形状の鋳物が得られた。抜取模型の抜型作業は1回で済み、簡便であった。また図1〜2に示す突起Bにより、抜型時に構造体がずれることもなく寸法精度も良好であった。
<Result>
A casting having a predetermined shape shown in FIG. 6 was obtained. The extraction work of the extraction model was simple and simple. Also, the projection B shown in FIGS. 1 and 2 did not shift the structure during die cutting, and the dimensional accuracy was good.

〔比較例〕
実施例と同じ形状の鋳物を、「おいてこい」方案による鋳型製造方法で製作した。
[Comparative example]
A casting having the same shape as that of the example was manufactured by a mold manufacturing method according to the “retain” method.

<鋳型の製造>
図7に示すように主型模型と「おいてこい」とを用い、図8のように耐熱性骨材(フラタリーサンド+フラン樹脂/硬化剤)を充填して造型し、前記耐熱性骨材が硬化後、図9のように抜取模型及び「おいてこい」を抜型し、図10のとおり所定の形状に鋳型を組み立てることで、鋳型を製造した。
<Manufacture of mold>
As shown in FIG. 7, using the main model and “retained”, as shown in FIG. 8, filled with heat-resistant aggregate (flattery sand + furan resin / hardener) and molded, the heat-resistant bone After the material was cured, the extraction model and “retained” were extracted as shown in FIG. 9, and the mold was assembled into a predetermined shape as shown in FIG.

<鋳物の製造>
図10の鋳型に、実施例と同じ条件で溶融金属を注入して、鋳物を取り出した。
<Manufacture of castings>
The molten metal was poured into the mold of FIG. 10 under the same conditions as in the example, and the casting was taken out.

<結果>
図11に示す所定形状の鋳物が得られた。抜取模型の抜型作業は図9に示す通り主型模型で1回、更に「おいてこい」で2回を要し、「おいてこい」は横に抜き取ってから、手前に抜き取るという複雑な手順を強いられた。また、大型鋳型になるほど「おいてこい」を抜き取る作業は、鋳型の崩落等の危険性が増すが、本発明の場合は「おいてこい」の抜き取り作業が不要な為、非常に安全性に優れるものである。
<Result>
A casting having a predetermined shape shown in FIG. 11 was obtained. As shown in Fig. 9, the extraction of the sampling model requires one time for the main model and two times for the "retaining". The "retracting" is a complicated procedure in which it is extracted sideways and then extracted to the front. Forced. In addition, the larger the mold, the greater the risk of the “collapse” being extracted, but the risk of collapse of the mold increases. In the case of the present invention, the “collapse” is not necessary, so it is very safe. It is excellent.

本発明の鋳型の製造方法に用いられる構造体の一実施形態を模式的に示す図である。It is a figure which shows typically one Embodiment of the structure used for the manufacturing method of the casting_mold | template of this invention. 図1の構造体が配置された抜取模型の一実施形態を模式的に示す図である。It is a figure which shows typically one Embodiment of the extraction model in which the structure of FIG. 1 is arrange | positioned. 図2の抜取模型を用いて鋳型を造型する様子を示す概略図である。It is the schematic which shows a mode that a casting_mold | template is shape | molded using the extraction model of FIG. 図3により造型された鋳型から抜取模型を抜型する様子を示す概略図である。It is the schematic which shows a mode that the extraction model is extracted from the casting_mold | template shape | molded by FIG. 図4の鋳型(上型)を用いて得られた鋳型を模式的に示す図である。It is a figure which shows typically the casting_mold | template obtained using the casting_mold | template (upper mold | type) of FIG. 図5の鋳型を用いて鋳物を製造する方法を示す概略図である。It is the schematic which shows the method of manufacturing a casting using the casting_mold | template of FIG. 「おいてこい」を用いた従来の模型の一例を示す概略図である。It is the schematic which shows an example of the conventional model which used "remaining". 図7の模型を用いて鋳型を造型する様子を示す概略図である。It is the schematic which shows a mode that a casting_mold | template is shape | molded using the model of FIG. 図8により造型された鋳型から主型模型と「おいてこい」を抜型する様子を示す概略図である。It is the schematic which shows a mode that the main model and a "retaining" are extracted from the casting_mold | template shape | molded by FIG. 図9の鋳型(上型)を用いて得られた鋳型を模式的に示す図である。It is a figure which shows typically the casting_mold | template obtained using the casting_mold | template (upper mold | type) of FIG. 図10により得られた鋳型を用いて鋳物を製造する方法を示す概略図である。It is the schematic which shows the method of manufacturing a casting using the casting_mold | template obtained by FIG.

Claims (5)

耐熱性骨材と抜取模型とを用いて造型される鋳物製造用鋳型の製造方法であって、有機繊維、無機繊維及び熱硬化性樹脂を含有する構造体を、抜取模型に対して少なくとも一部が接するように配置し、さらに耐熱性骨材を前記構造体が配置された前記抜取模型の周囲に充填した後、抜取模型のみを抜型して、前記構造体を鋳型内に残置する鋳物製造用鋳型の製造方法。   A method for producing a casting mold that is formed using a heat-resistant aggregate and a sampling model, wherein a structure containing organic fibers, inorganic fibers, and a thermosetting resin is at least partly with respect to the sampling model. Is placed in contact with each other, and further filled with heat-resistant aggregate around the extraction model on which the structure is arranged, then only the extraction model is extracted, and the structure is left in the mold. Mold manufacturing method. 構造体が、更に無機粒子を含有する、請求項1記載の鋳物製造用鋳型の製造方法。   The manufacturing method of the casting mold for casting according to claim 1, wherein the structure further contains inorganic particles. 前記構造体が、耐熱性骨材と接する面に、耐熱性骨材と結合するための構造及び/又は接着層を有する、請求項1又は2記載の鋳物製造用鋳型の製造方法。   The method for producing a casting mold according to claim 1 or 2, wherein the structure has a structure and / or an adhesive layer for bonding to the heat-resistant aggregate on a surface in contact with the heat-resistant aggregate. 前記構造体が、前記有機繊維、前記無機繊維及び前記熱硬化性樹脂を少なくとも含む原料スラリーを用いた抄造工程を具備する製造方法により得られたものである、請求項1〜3の何れかに記載の鋳物製造用鋳型の製造方法。   The said structure is obtained by the manufacturing method which comprises the papermaking process using the raw material slurry which contains the said organic fiber, the said inorganic fiber, and the said thermosetting resin at least in any one of Claims 1-3. The manufacturing method of the casting mold for description. 請求項1〜4の何れかに記載の製造方法により得た鋳物製造用鋳型を用いる鋳物の製造方法。   A casting production method using the casting production mold obtained by the production method according to claim 1.
JP2005305896A 2005-10-20 2005-10-20 Method for producing mold for casting Pending JP2007111738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305896A JP2007111738A (en) 2005-10-20 2005-10-20 Method for producing mold for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305896A JP2007111738A (en) 2005-10-20 2005-10-20 Method for producing mold for casting

Publications (1)

Publication Number Publication Date
JP2007111738A true JP2007111738A (en) 2007-05-10

Family

ID=38094389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305896A Pending JP2007111738A (en) 2005-10-20 2005-10-20 Method for producing mold for casting

Country Status (1)

Country Link
JP (1) JP2007111738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108672652A (en) * 2018-05-29 2018-10-19 新乡市长城铸钢有限公司 A kind of formative technology of mill housing class product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108672652A (en) * 2018-05-29 2018-10-19 新乡市长城铸钢有限公司 A kind of formative technology of mill housing class product
CN108672652B (en) * 2018-05-29 2021-06-15 新乡市长城铸钢有限公司 Modeling process of rolling mill housing products

Similar Documents

Publication Publication Date Title
JP4675276B2 (en) Compact
JP4002200B2 (en) Papermaking parts for casting production
JP5007214B2 (en) Parts for removing foreign matter from molten metal
JP5680490B2 (en) Casting structure
JP5036762B2 (en) Casting parts
EP1754554B1 (en) Structure for casting production
JP6682159B2 (en) Method for manufacturing structure for casting production
WO2004043627A1 (en) Member for producing castings
JP3995649B2 (en) Molds or structures for casting production
JP4869786B2 (en) Casting structure
JP2007111738A (en) Method for producing mold for casting
JP4219157B2 (en) Molds and structures for casting production
JP4672289B2 (en) Casting manufacturing structure, manufacturing method thereof, and casting
JP4694347B2 (en) Manufacturing method of casting mold
JP4907326B2 (en) Casting manufacturing structure and casting manufacturing method
JP6741418B2 (en) Raw material for casting manufacturing structure, container for the raw material, raw material slurry, casting manufacturing structure, and method for manufacturing the raw material
JP4407962B2 (en) Papermaking parts for casting production
JP2023172399A (en) Structure for producing casting, method for producing the same, and method for producing casting using the same