JP2009101553A - Apparatus and method for manufacturing hollow molding - Google Patents

Apparatus and method for manufacturing hollow molding Download PDF

Info

Publication number
JP2009101553A
JP2009101553A JP2007274243A JP2007274243A JP2009101553A JP 2009101553 A JP2009101553 A JP 2009101553A JP 2007274243 A JP2007274243 A JP 2007274243A JP 2007274243 A JP2007274243 A JP 2007274243A JP 2009101553 A JP2009101553 A JP 2009101553A
Authority
JP
Japan
Prior art keywords
molding
molded body
core material
gate
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007274243A
Other languages
Japanese (ja)
Inventor
Masayuki Osaki
雅之 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007274243A priority Critical patent/JP2009101553A/en
Publication of JP2009101553A publication Critical patent/JP2009101553A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing a hollow molding by which the hollow molding can be suitably manufactured without reducing productivity by suppressing damage due to steam generated during heating molding. <P>SOLUTION: The manufacturing apparatus of the hollow molding has a molding mold 2 which has a cavity 20 inside, a core material 3 which is inserted in the cavity 20, an opening/closing means 4 which opens and closes a gate 21 of the molding mold 2 and a molding material supply means 5 which supplies a molding raw material in the cavity 20 through the gate 21. A top end part 30 of the core material 3 and/or a cross section of a gate 22 of the core material 3 in the molding mold 2 have a shape which gradually narrows towards an insertion direction of the core material 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、中空成形体、特に、鋳物製造用の鋳型又は構造体(以下、鋳型等ともいう。)に好適な中空成形体の製造装置及び製造方法に関する。   The present invention relates to a hollow molded body, in particular, a manufacturing apparatus and a manufacturing method for a hollow molded body suitable for a casting mold or structure (hereinafter, also referred to as a mold).

一般的な鋳物の製造方法において中空形状の鋳物を鋳造する場合には、鋳物砂で中子を形成し、主型内に該中子をセットし、溶融金属を鋳込み、冷却後に型を開いて鋳物を脱型した後、中子を崩壊、除去し所望の鋳物を得ている。   When casting a hollow casting in a general casting manufacturing method, a core is formed with foundry sand, the core is set in a main mold, molten metal is cast, and the mold is opened after cooling. After demolding the casting, the core is disintegrated and removed to obtain the desired casting.

ところで、中子は、通常の砂にバインダーを添加した鋳物砂を硬化させることによって賦形されているので、鋳造時にアミン等の分解ガスが発生する課題があった。また、脆いため、主型へセットするときや、ケレンを装着するとき、さらに注湯時に破損しやすい点が課題としてあった。さらに、砂を再利用する場合には再生処理が必要となるが、この再生処理の際にダストなどの廃棄物が発生する問題も生じている。   By the way, since the core is shaped by curing casting sand obtained by adding a binder to normal sand, there is a problem that a decomposition gas such as amine is generated during casting. Moreover, since it was fragile, when it set to the main type | mold, or when kelen was mounted | worn, the point which was easy to break at the time of pouring was a subject. Furthermore, when sand is reused, a regeneration process is required. However, there is a problem that waste such as dust is generated during the regeneration process.

出願人は、下記特許文献1に記載の技術を提案している。この技術は、鋳造に用いる鋳型等を、有機繊維、無機繊維及び熱硬化性樹脂を含む成形体で構成したものである。この技術による成形体は、従来の鋳砂を用いた鋳型等に比べ、薄肉・軽量で加工性に優れている。また上述の廃棄物が発生する問題もない。しかし、この成形体は、抄造により製造するため、より簡便な方法で成形体を製造できる技術が望まれていた。また、抄造による製造では、成形体の肉厚が大きく変化するような複雑な形状を成形することが困難であった。   The applicant has proposed the technique described in Patent Document 1 below. In this technique, a mold or the like used for casting is formed of a molded body containing organic fibers, inorganic fibers, and a thermosetting resin. The molded body by this technique is thin and lightweight and excellent in workability as compared with a mold using conventional casting sand. Further, there is no problem that the above-mentioned waste is generated. However, since this molded body is manufactured by papermaking, a technique capable of manufacturing the molded body by a simpler method has been desired. Moreover, in the manufacture by papermaking, it has been difficult to form a complicated shape in which the thickness of the molded body varies greatly.

一方、特許文献2、3には、原料を射出成形し、成形体を成形する技術が提案されている。しかし、これらの技術は、成形体の肉厚が大きく変化するような複雑な形状を成形する観点では好適であるが、中空成形体の製造技術についての開示がなく、原料に起因した蒸気発生による、該中空成形体の破損を抑えることができなかった。   On the other hand, Patent Documents 2 and 3 propose techniques for forming a molded body by injection molding a raw material. However, these techniques are suitable from the viewpoint of molding a complicated shape in which the thickness of the molded body changes greatly, but there is no disclosure about the manufacturing technology of the hollow molded body, and it is due to the generation of steam caused by the raw material. The breakage of the hollow molded body could not be suppressed.

特開2004−181472号公報JP 2004-181472 A 特開平11−280000号公報JP-A-11-280000 特開2003−71897号公報JP 2003-71897 A

従って、本発明は、上記課題に鑑みてなされたものであり、中空成形体をその加熱成形時において発生する蒸気による損傷を抑えて好適に、生産性を低下させることなく製造することができる中空成形体の製造装置及び製造方法を提供することを目的とするものである。   Accordingly, the present invention has been made in view of the above problems, and a hollow molded body that can be suitably manufactured without reducing the productivity by suppressing damage caused by steam generated during the heat molding. It aims at providing the manufacturing apparatus and manufacturing method of a molded object.

本発明は、内部にキャビティを有する成形型と、前記キャビティ内に挿入される芯材と、前記成形型のゲートを開閉する開閉手段と、前記ゲートを通じて前記キャビティ内に成形原料を供給する成形原料供給手段とを備えている中空成形体の製造装置であって、前記芯材の先端部及び/又は前記成形型における前記芯材の出入口の断面が、該芯材の挿入方向に向けて漸次狭まる形態を有している中空成形体の製造装置を提供することにより、前記目的を達成したものである。   The present invention provides a molding die having a cavity therein, a core material inserted into the cavity, an opening / closing means for opening and closing the gate of the molding die, and a molding raw material for supplying the molding raw material into the cavity through the gate. An apparatus for manufacturing a hollow molded body comprising a supply means, wherein a cross-section of a distal end portion of the core material and / or an entrance / exit of the core material in the molding die is gradually narrowed in an insertion direction of the core material. The object is achieved by providing an apparatus for producing a hollow molded body having a form.

また、本発明は、上記本発明の中空成形体の製造装置を使用し、前記成形型の前記キャビティ内に前記芯材を挿入した状態で、前記ゲートを通じて前記キャビティ内に成形原料を加圧充填し、前記ゲートを閉じて前記成形原料を加熱成形している間に、前記芯材を前記成形型から引き出して該芯材と前記出入口との隙間から蒸気抜きを行った後、前記成形原料を引き続き加熱して乾燥する中空成形体の製造方法を提供することにより、前記目的を達成したものである。   Further, the present invention uses the above-described hollow molded body manufacturing apparatus of the present invention, and press-fills the molding raw material into the cavity through the gate with the core material inserted into the cavity of the mold. Then, while the gate is closed and the forming raw material is heat-molded, the core material is pulled out from the mold, and steam is evacuated from the gap between the core material and the inlet / outlet, and then the forming raw material is The object is achieved by providing a method for producing a hollow molded body that is subsequently heated and dried.

本発明によれば、中空成形体をその加熱成形時において発生する蒸気による損傷を抑えて好適に製造することができる中空成形体の製造装置及び製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing apparatus and manufacturing method of a hollow molded object which can suppress the damage by the vapor | steam which generate | occur | produces at the time of the thermoforming, and can be manufactured suitably are provided.

以下本発明を、その好ましい実施形態に基づき説明する。   Hereinafter, the present invention will be described based on preferred embodiments thereof.

まず、本発明の中空成形体の製造装置をその好ましい実施形態に基づいて図面を参照しながら説明する。   First, the manufacturing apparatus of the hollow molded object of this invention is demonstrated, referring drawings based on the preferable embodiment.

図1〜5は、本発明の中空成形体の製造装置(以下、単に製造装置ともいう。)の一実施形態の模式図である。これらの図において、符号1は製造装置、10は中空成形体(以下、単に成形体ともいう。)、100は成形原料(後述の成形体製造用組成物に分散媒を添加して調製された原料)を示している。   1 to 5 are schematic views of an embodiment of a hollow molded body manufacturing apparatus (hereinafter also simply referred to as a manufacturing apparatus) according to the present invention. In these drawings, reference numeral 1 is a manufacturing apparatus, 10 is a hollow molded body (hereinafter also simply referred to as a molded body), and 100 is a raw material for molding (prepared by adding a dispersion medium to a composition for manufacturing a molded body described later). Raw material).

図1に示すように、製造装置1は、内部にキャビティ20を有する成形型2と、成形型2のキャビティ20内に挿入される芯材3と、成形型2のゲート(以下、ゲート孔ともいう。)21の開閉手段4と、キャビティ20内に成形原料を供給する成形原料供給手段5とを備えている。   As shown in FIG. 1, the manufacturing apparatus 1 includes a molding die 2 having a cavity 20 therein, a core 3 inserted into the cavity 20 of the molding die 2, and a gate of the molding die 2 (hereinafter also referred to as a gate hole). 21) the opening / closing means 4 and the molding raw material supply means 5 for supplying the molding raw material into the cavity 20.

成形型2は、一対で一組の割型2A、2Bから構成される。成形型2は、これらの割型を組み合わせることによって、内部にキャビティ20が形成されるとともに、キャビティ20に通じるゲート孔(ゲート)21及び芯材3の出入口22が形成される。各割型の内面で作られるキャビティ20の形成面が、成形体10の外形形状に対応している。割型2Bには、ゲート孔21に通じる成形原料注入口23が形成されている。割型は、アルミニウム合金やステンレス鋼等の金属で構成される。成形型2は、図示しない型締め手段のプラテンに取り付けられ、上下方向に開閉される。また、各割型は、図示しない加熱手段によって所定の温度に加熱される。   The mold 2 is composed of a pair of split molds 2A and 2B. By combining these split molds, the mold 2 has a cavity 20 formed therein, and a gate hole (gate) 21 leading to the cavity 20 and an entrance / exit 22 of the core material 3 are formed. The formation surface of the cavity 20 formed by the inner surface of each split mold corresponds to the outer shape of the molded body 10. In the split mold 2 </ b> B, a forming raw material inlet 23 leading to the gate hole 21 is formed. The split mold is made of a metal such as an aluminum alloy or stainless steel. The mold 2 is attached to a platen of mold clamping means (not shown), and is opened and closed in the vertical direction. Each split mold is heated to a predetermined temperature by a heating means (not shown).

芯材3の先端部30の断面は、芯材3の挿入方向に向けて漸次狭まる形態を有している。該先端部30の稜線31は、曲線でも直線でも良いが、本実施形態では、芯材3は、先端部30にテーパー部32(稜線31が直線)を有している棒状の形態を有している。この芯材3の外表面が成形体10の中空部分の内表面の形状に対応している。芯材3は、図示しない駆動手段によって前後(図1の左右方向)に駆動され、成形型2の出入口22を通してキャビティ20に出し入れされる。   The cross-section of the distal end portion 30 of the core material 3 has a form that gradually narrows in the insertion direction of the core material 3. The ridge line 31 of the tip 30 may be a curve or a straight line, but in the present embodiment, the core material 3 has a rod-like form having a taper portion 32 (the ridge line 31 is a straight line) at the tip 30. ing. The outer surface of the core material 3 corresponds to the shape of the inner surface of the hollow portion of the molded body 10. The core material 3 is driven back and forth (in the left-right direction in FIG. 1) by driving means (not shown), and is put into and out of the cavity 20 through the entrance / exit 22 of the mold 2.

ゲートの開閉手段4は、ゲート孔21内を摺動するゲートピン40を備えている。ゲートピン40は図示しない駆動手段によって前後(図1の左右方向)に駆動され、先端部分が成形型2のゲート孔21内を摺動する。   The gate opening / closing means 4 includes a gate pin 40 that slides in the gate hole 21. The gate pin 40 is driven back and forth (left and right direction in FIG. 1) by a driving means (not shown), and the tip portion slides inside the gate hole 21 of the mold 2.

成形原料の供給手段5は、いわゆる流体圧シリンダー・ピストンユニットで構成されている。成形原料の供給手段5は、成形原料が収容されるシリンダー50と、シリンダー50内で摺動するピストン51と、ピストン51で押された成形原料を吐出するノズル52とを備えている。成形原料の供給手段は、ノズル52が、成形原料注入口23に挿入された状態で、シリンダー50内に加圧空気等の流体が供給されることによって、ピストン51が上昇し、シリンダー50内の成形原料100がノズル52を通じてゲート孔21に供給される。   The molding material supply means 5 is constituted by a so-called fluid pressure cylinder / piston unit. The molding material supply means 5 includes a cylinder 50 in which the molding material is accommodated, a piston 51 that slides in the cylinder 50, and a nozzle 52 that discharges the molding material pressed by the piston 51. The molding material supply means is configured such that when the nozzle 52 is inserted into the molding material inlet 23 and a fluid such as pressurized air is supplied into the cylinder 50, the piston 51 rises, The forming material 100 is supplied to the gate hole 21 through the nozzle 52.

製造装置1は、成形型2、芯材3、ゲート開閉手段4及び成形原料の供給手段5を後述するような手順に従って作動させるシーケンサーを備えた制御手段(図示せず)を備えている。   The manufacturing apparatus 1 includes control means (not shown) including a sequencer that operates the mold 2, the core material 3, the gate opening / closing means 4, and the forming raw material supply means 5 according to a procedure described later.

次に、本発明の中空成形体の製造方法を、前記製造装置1を使用し、鋳造に使用される中空の中子の製造方法に適用した実施形態に基づいて、図1〜図5を参照しながら説明する。   Next, referring to FIGS. 1 to 5, based on an embodiment in which the manufacturing method of the hollow molded body of the present invention is applied to the manufacturing method of a hollow core used for casting using the manufacturing apparatus 1. While explaining.

本実施形態の中空成形体の製造方法は、まず、成形原料を調製する。成形原料の調製では、無機粉体を主成分とし、無機繊維、熱硬化性樹脂及び水溶性のバインダーを予め乾式で混合する。熱膨張性粒子を含ませる場合には、この乾式混合のときに含ませる。そしてこれらの混合物(成形体製造用組成物)を、分散媒に分散させて混練機で混練し、成形原料をドウ状に調製する。ここで、無機粉体を主成分とするとは、成形体に含まれる全成分中で無機粉体が、質量比率で最も多いことを意味する。   In the method for producing a hollow molded body of the present embodiment, first, a forming raw material is prepared. In the preparation of the forming raw material, inorganic powder is a main component, and inorganic fibers, a thermosetting resin, and a water-soluble binder are mixed in advance by a dry method. When the thermally expandable particles are included, they are included at the time of this dry mixing. And these mixtures (composition for molded object manufacture) are disperse | distributed to a dispersion medium, and it knead | mixes with a kneader, and prepares a shaping | molding raw material in dough shape. Here, having inorganic powder as a main component means that the inorganic powder is the largest in mass ratio among all components contained in the molded body.

ここで、成形原料をドウ状に調製するとは、粉体及び繊維組成物と分散媒を捏和混練し、流動性を有しながらも粉体及び繊維組成物と分散媒が容易に分離することがない状態に調製することをいう。   Here, preparing the forming raw material in a dough shape means that the powder, the fiber composition, and the dispersion medium are kneaded gently, and the powder, the fiber composition, and the dispersion medium are easily separated while having fluidity. It means to prepare in the state without.

前記分散媒としては、水、エタノール、メタノール等の溶剤又はこれらの混合系等の水系の分散媒が挙げられる。成形の安定性、成形体の品質の安定性、費用、取り扱い易さ等の点から特に水が好ましい。   Examples of the dispersion medium include water, a solvent such as ethanol and methanol, and an aqueous dispersion medium such as a mixed system thereof. Water is particularly preferable from the viewpoints of molding stability, stability of the quality of the molded body, cost, ease of handling, and the like.

前記無機粉体としては、黒鉛(例えば鱗状黒鉛等)、黒曜石、雲母、滑石(タルク)、ムライト、シリカ、マグネシア等が挙げられる。無機粉体は、一種又は二種以上を選択して用いることができる。成形性、コストの点から黒鉛を用いることが好ましい。   Examples of the inorganic powder include graphite (for example, scaly graphite), obsidian, mica, talc, mullite, silica, magnesia, and the like. One or more inorganic powders can be selected and used. From the viewpoint of moldability and cost, it is preferable to use graphite.

前記無機繊維は、主として成形体の骨格をなし、例えば、鋳造時の溶融金属の熱によっても燃焼せずにその形状を維持する。前記無機繊維としては、炭素繊維、ロックウール等の人造鉱物繊維、セラミック繊維、天然鉱物繊維が挙げられる。前記無機繊維は、一種又は二種以上を選択して用いることができる。これらの中でも、前記熱硬化性樹脂の炭化に伴う収縮を効果的に抑える点から高温でも高強度を有するピッチ系やポリアクリロニトリル(PAN)系の炭素繊維を用いることが好ましい。   The inorganic fiber mainly forms a skeleton of a molded body, and maintains its shape without being burned by the heat of molten metal during casting, for example. Examples of the inorganic fibers include artificial mineral fibers such as carbon fibers and rock wool, ceramic fibers, and natural mineral fibers. One or two or more inorganic fibers can be selected and used. Among these, it is preferable to use pitch-based or polyacrylonitrile (PAN) -based carbon fibers having high strength even at high temperatures from the viewpoint of effectively suppressing shrinkage associated with carbonization of the thermosetting resin.

前記無機繊維は、鋳型等の成形性、均一性の観点から平均繊維長が0.5〜15mm、特に1〜8mmであるものが好ましい。   The inorganic fiber preferably has an average fiber length of 0.5 to 15 mm, particularly 1 to 8 mm, from the viewpoint of moldability and uniformity of a mold or the like.

前記熱硬化性樹脂は、成形体の常温強度及び熱間強度を維持させるとともに、成形体の表面性を良好とし、成形体を鋳型として用いた場合に鋳物の表面粗度を向上させる上で必要な成分である。前記熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、フラン樹脂等が挙げられる。これらの中でも、特に、可燃ガスの発生が少なく、燃焼抑制効果があり、熱分解(炭化)後における残炭率が25%以上と高く、成形体を鋳型に用いた場合に炭化皮膜を形成して良好な鋳肌を得ることができる点からフェノール樹脂を用いることが好ましい。フェノール樹脂には、硬化剤を必要とするノボラックフェノール樹脂、硬化剤の必要ないレゾールタイプ等のフェノール樹脂が用いられる。前記熱硬化性樹脂は、一種又は二種以上を選択して用いることができる。   The thermosetting resin is necessary for maintaining the normal temperature strength and hot strength of the molded body, improving the surface properties of the molded body, and improving the surface roughness of the casting when the molded body is used as a mold. Is an essential ingredient. Examples of the thermosetting resin include a phenol resin, an epoxy resin, and a furan resin. Among these, in particular, there is little generation of combustible gas, there is a combustion suppressing effect, the residual carbon ratio after pyrolysis (carbonization) is as high as 25% or more, and a carbonized film is formed when the molded body is used as a mold. It is preferable to use a phenol resin from the viewpoint that a good casting surface can be obtained. As the phenol resin, a novolak phenol resin that requires a curing agent or a resol type phenol resin that does not require a curing agent is used. The said thermosetting resin can select and use 1 type, or 2 or more types.

前記水溶性のバインダーとしては、増粘性の多糖類、ポリビニルアルコール、ポリエチレングリコール等が挙げられる。前記多糖類には、キサンタンガム、タマリンドガム、ジェランガム、グアーガム、ローカストビーンガム、タラガム等のガム剤、カルボキシメチルセルロース、ヒドロキシエチルセルロース等のセルロース誘導体、カラギーナン、プルラン、ペクチン、アルギン酸、寒天等が挙げられる。これら多糖類の中でも寒天の様な天然物よりも、非天然物例えば、カルボキシメチルセルロースの様なセルロース誘導体や化学修飾物は、成形体製造用組成物における水溶性のバインダーの配合比を少量でその性能を発揮することができる観点で良好である。   Examples of the water-soluble binder include thickening polysaccharides, polyvinyl alcohol, and polyethylene glycol. Examples of the polysaccharide include gum agents such as xanthan gum, tamarind gum, gellan gum, guar gum, locust bean gum and tara gum, cellulose derivatives such as carboxymethyl cellulose and hydroxyethyl cellulose, carrageenan, pullulan, pectin, alginic acid and agar. Among these polysaccharides, non-natural products such as cellulose derivatives and chemically modified products such as carboxymethyl cellulose are used in a small amount of the water-soluble binder in the composition for producing molded products, rather than natural products such as agar. It is favorable from the viewpoint of exhibiting performance.

前記成形体製造用組成物において、前記無機粉体、前記無機繊維、前記熱硬化性樹脂、及び前記水溶性のバインダー(固形分)の総質量に対し、各成分の配合比(質量比率)は、無機粉体/無機繊維/熱硬化性樹脂/水溶性のバインダー(固形分)=40〜90/1〜20/1〜30/1〜10(質量比率)が好ましく、50〜85/2〜16/2〜25/1〜5(質量比率)がより好ましく、50〜85/2〜16/2〜20/1〜5(質量比率)がさらに好ましい。(ただし上記質量比率の合計は100である。)   In the composition for manufacturing a molded body, the mixing ratio (mass ratio) of each component is based on the total mass of the inorganic powder, the inorganic fiber, the thermosetting resin, and the water-soluble binder (solid content). Inorganic powder / inorganic fiber / thermosetting resin / water-soluble binder (solid content) = 40 to 90/1 to 20/1 to 30/1 to 10 (mass ratio) is preferable, and 50 to 85/2 16/2 to 25/1 to 5 (mass ratio) is more preferable, and 50 to 85/2 to 16/2 to 20/1 to 5 (mass ratio) is more preferable. (However, the sum of the mass ratios is 100.)

前記無機粉体の配合比が前記範囲であると、鋳込み時での形状保持性、成形品の表面性が良好となり、また成形後の離型性も好適となる。前記無機繊維の配合比が前記範囲であると、成形性、鋳込み時の形状保持性が良好である。前記熱硬化性樹脂の配合比が前記範囲であると、鋳型の成形性、鋳込み後の形状保持性、表面平滑性が良好である。前記水溶性のバインダーの配合比が前記範囲であると、成形原料を成形型内に充填する際に、成形原料の流動性が良好な状態で充填可能となり、成形体の成形性が良好となる。   When the blending ratio of the inorganic powder is within the above range, the shape retention at the time of casting and the surface property of the molded product are good, and the releasability after molding is also suitable. When the blending ratio of the inorganic fibers is within the above range, moldability and shape retention during casting are good. When the blending ratio of the thermosetting resin is within the above range, moldability, shape retention after casting, and surface smoothness are good. When the blending ratio of the water-soluble binder is within the above range, when the molding raw material is filled in the molding die, the molding raw material can be filled with good fluidity, and the moldability of the molded body is improved. .

前記成形原料において熱膨張性粒子を含ませる場合、該熱膨張性粒子としては、熱可塑性樹脂の殻壁に、気化して膨張する膨張剤を内包したマイクロカプセルが好ましい。該マイクロカプセルは、80〜200℃で加熱すると、直径が好ましくは3〜5倍、体積が好ましくは50〜100倍に膨張し、膨張前の平均粒径が好ましくは5〜80μm、より好ましくは20〜50μmの粒子が好ましい。熱膨張性粒子の膨張が斯かる範囲であると膨張による成形精度への悪影響を抑えた上で添加効果が十分に得ることができる。前記熱膨張性粒子は、膨張前の平均直径が好ましくは5〜80μm、より好ましくは20〜50μmのものが好ましい。   When heat-expandable particles are included in the forming raw material, the heat-expandable particles are preferably microcapsules in which an expansion agent that expands by vaporization is encapsulated in the shell wall of a thermoplastic resin. When the microcapsule is heated at 80 to 200 ° C., the diameter preferably expands to 3 to 5 times, the volume preferably expands to 50 to 100 times, and the average particle diameter before expansion is preferably 5 to 80 μm, more preferably Particles of 20-50 μm are preferred. When the expansion of the thermally expandable particles is within such a range, the effect of addition can be sufficiently obtained while suppressing the adverse effect on the molding accuracy due to the expansion. The thermally expandable particles preferably have an average diameter before expansion of 5 to 80 μm, more preferably 20 to 50 μm.

前記マイクロカプセルの殻壁を構成する熱可塑性樹脂としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、アクリロニトリル−塩化ビニリデン共重合体、エチレン−酢酸ビニル共重合体又はこれらの組み合わせが挙げられる。前記殻壁に内包される膨張剤としては、プロパン、ブタン、ペンタン、イソブタン、石油エーテル等の低沸点の有機溶剤が挙げられる。   Examples of the thermoplastic resin constituting the shell wall of the microcapsule include polystyrene, polyethylene, polypropylene, polyacrylonitrile, acrylonitrile-vinylidene chloride copolymer, ethylene-vinyl acetate copolymer, or combinations thereof. Examples of the expanding agent contained in the shell wall include low-boiling organic solvents such as propane, butane, pentane, isobutane, and petroleum ether.

前記熱膨張性粒子は、前記無機粉体、前記無機繊維、前記熱硬化性樹脂及び前記水溶性のバインダーの総質量に対し、0.5〜10%(質量%)含んでいることが好ましく、1〜5%(質量%)含んでいることがより好ましい。熱膨張性粒子を斯かる範囲で含んでいると膨張により成形原料が型の細部にわたり充填され、型の形状を忠実に転写でき、添加効果が十分に得られる。また、前記範囲の場合には大量の熱膨張性粒子を含まないため、過膨張を防ぐことができ、余分な冷却時間を必要としないため、高い生産性を維持することができる。   The thermally expandable particles preferably include 0.5 to 10% (% by mass) with respect to the total mass of the inorganic powder, the inorganic fiber, the thermosetting resin, and the water-soluble binder. It is more preferable to contain 1 to 5% (mass%). When the thermally expandable particles are contained in such a range, the molding raw material is filled in the details of the mold by expansion, and the shape of the mold can be faithfully transferred, and the effect of addition can be sufficiently obtained. In the case of the above range, since a large amount of thermally expandable particles is not included, overexpansion can be prevented and no extra cooling time is required, so that high productivity can be maintained.

本実施形態の成形体には、前記各成分以外に、着色剤、離型剤、コロイダルシリカ等の他の成分を適宜の割合で添加することもできる。また、本実施形態の成形体には、その効果に悪影響を及ぼさない範囲で有樹繊維を含ませることができる。前記有機繊維には、紙繊維(パルプ繊維)、フィブリル化した合成繊維、再生繊維(例えば、レーヨン繊維)等が挙げられる。有機繊維は、一種又は二種以上を選択して用いることができる。成形性、乾燥後の強度、コストの点から、紙繊維が好ましい。   In addition to the components described above, other components such as a colorant, a release agent, and colloidal silica can be added to the molded body of the present embodiment at an appropriate ratio. Moreover, the molded object of this embodiment can contain a tree fiber in the range which does not exert a bad influence on the effect. Examples of the organic fiber include paper fiber (pulp fiber), fibrillated synthetic fiber, and regenerated fiber (for example, rayon fiber). One or two or more organic fibers can be selected and used. Paper fiber is preferable from the viewpoints of moldability, strength after drying, and cost.

次に、図1に示すように成形型2を型締めするとともに、芯材3及びゲートピン40をセットする。このときの成形型の温度は分散媒の蒸発、熱硬化性樹脂の硬化速度、熱膨張性粒子の膨張速度、成形原料の焦げ付き等を考慮すると、120〜250℃が好ましい。そして、図2に示すように、前記成形原料の供給手段5のピストン51を上昇させることによって、成形原料100を成形原料注入口23から成形型2内に加圧しながら充填する。成形原料の供給手段5の加圧流体にエアを使用した場合には、エア圧は0.5〜3MPaが好ましい。また、成形型2内への成形原料の充填圧力は、充填している間は変化するが、最大充填圧力は前記エア圧と等しい。   Next, as shown in FIG. 1, the mold 2 is clamped and the core material 3 and the gate pin 40 are set. The temperature of the molding die at this time is preferably 120 to 250 ° C. in consideration of evaporation of the dispersion medium, curing rate of the thermosetting resin, expansion rate of the thermally expandable particles, burning of the forming raw material, and the like. Then, as shown in FIG. 2, the molding material 100 is filled into the molding die 2 while being pressurized from the molding material inlet 23 by raising the piston 51 of the molding material supply means 5. When air is used for the pressurized fluid of the forming raw material supply means 5, the air pressure is preferably 0.5 to 3 MPa. Further, the filling pressure of the forming raw material into the mold 2 changes while filling, but the maximum filling pressure is equal to the air pressure.

次に、図3に示すように、ゲートピン40を前記駆動手段によって前進させキャビティ20を密閉状態とする。   Next, as shown in FIG. 3, the gate pin 40 is moved forward by the driving means so that the cavity 20 is sealed.

所定時間の加熱後、成形体10内部からの蒸気を抜くために、成形途中に一旦、芯材3を前記駆動手段によって後退させ、図4に示すように、テーパー部32が出入口22にかかるところで芯材3の引き出しを停止する。そして、蒸気抜きを行い、急激な脱気による成形体10の損傷を抑える。   After the heating for a predetermined time, the core material 3 is once retracted by the driving means during the molding in order to remove the vapor from the inside of the molded body 10, and as shown in FIG. The drawing of the core material 3 is stopped. Then, steam is vented to prevent damage to the molded body 10 due to rapid deaeration.

前記蒸気は成形原料に前記の分散媒を含んでいる為に発生するが、分散媒の蒸気以外のガスが発生しても前記の蒸気抜きを行なうことによって、成形型から排出することができる。分散媒の蒸気以外のガスとしては、前記熱硬化性樹脂としてフェノール樹脂を使用した場合には、ホルマリンガス、フリーフェノールガス等が発生し、さらに前記熱膨張性粒子からは該粒子に使用しているマイクロカプセル内部の炭化水素ガス等が発生する。   The steam is generated because the forming raw material contains the dispersion medium. Even if a gas other than the dispersion medium vapor is generated, the steam can be discharged from the mold by performing the steam removal. As a gas other than the vapor of the dispersion medium, when phenol resin is used as the thermosetting resin, formalin gas, free phenol gas, etc. are generated, and further, the thermally expandable particles are used for the particles. The hydrocarbon gas inside the microcapsule is generated.

必要な蒸気抜きを行った後、所定時間の加熱を続けて成形体の乾燥を行う。そして、図5に示すように、ゲートピン40を後退させ、成形型2を開き、成形体10を取り出す。成形体10は、冷却後必要に応じてトリミング、薬剤の塗布、再加熱処理等の後処理を行って製造を完了する。   After performing necessary steam removal, the molded body is dried by continuing heating for a predetermined time. Then, as shown in FIG. 5, the gate pin 40 is retracted, the mold 2 is opened, and the molded body 10 is taken out. The molded body 10 is post-cooled and subjected to post-processing such as trimming, chemical application, and reheating as necessary after completion of cooling.

本実施形態の中空成形体の製造方法は、成形体10の加熱成形後に芯材3を引き出し、出入口22の内周とテーパー部32との隙間から成形体10の内部からの蒸気抜きを行った後、成形体10を引き続き加熱して乾燥を行うので、蒸気爆発などによる成形体の損傷を抑えて高速で製造することができる。   In the manufacturing method of the hollow molded body of the present embodiment, the core material 3 is pulled out after the molded body 10 is heat-molded, and steam is extracted from the inside of the molded body 10 through the gap between the inner periphery of the entrance / exit 22 and the tapered portion 32. Thereafter, since the molded body 10 is continuously heated and dried, damage to the molded body due to vapor explosion or the like can be suppressed and the molded body 10 can be manufactured at high speed.

図6は、このようにして製造された成形体の模式図である。成形体10の先端部101は閉じており、後端部102は開いている。また、成形体10は外径が太くなる部分を有しており、本実施形態では後端部102の外径が他の部分よりも太く形成されている。   FIG. 6 is a schematic view of a molded body manufactured in this manner. The front end 101 of the molded body 10 is closed and the rear end 102 is open. Moreover, the molded object 10 has a part where an outer diameter becomes thick, and in this embodiment, the outer diameter of the rear-end part 102 is formed thicker than another part.

また、成形体10は、水を含む成形原料から製造された場合は、該成形体の使用前(鋳造に供せられる前)の質量含水率は5%以下が好ましく、2%以下がより好ましい。含水率が低いほど、鋳造時の熱硬化性樹脂の熱分解(炭化)に起因するガス発生量を低く抑えることができる。   Moreover, when the molded object 10 is manufactured from the shaping | molding raw material containing water, 5% or less is preferable and the moisture content before using of this molded object (before using for casting) is preferable, and 2% or less is more preferable. . The lower the moisture content, the lower the amount of gas generated due to thermal decomposition (carbonization) of the thermosetting resin during casting.

また、成形体10は、無機粉体を主成分とし、無機繊維、熱硬化性樹脂、及び水溶性のバインダーを含有しており、軽量であり、常温強度が高く、ケレンなどを使用して中子として使用する時等の取り扱い性に優れている。また、使用時において熱分解に伴うガスの発生が少ないため、環境に及ぼす悪影響を低く抑えることができる。また、寸法精度が高く、熱間強度も高いので、高精度の鋳物を安定的に製造することができる。特に、熱膨張性粒子を含ませた場合には、細部にわたって成形精度の高い成形体であるので、より高精度の鋳物を製造することができる。また、内部が中空であり、鋳造時に発生するガスを中空部から外部へと効率よく排出でき、また、より軽量であり、使用後は、ブラスト処理等によって容易に細かくすることができ、鋳造後の取り扱いにも優れている。   Further, the molded body 10 is mainly composed of inorganic powder, contains inorganic fibers, a thermosetting resin, and a water-soluble binder, is lightweight, has high normal temperature strength, and uses kelen or the like. Excellent handling when used as a child. Moreover, since there is little generation | occurrence | production of the gas accompanying thermal decomposition at the time of use, the bad influence on an environment can be restrained low. In addition, since the dimensional accuracy is high and the hot strength is high, a highly accurate casting can be stably manufactured. In particular, when the thermally expandable particles are included, since the molded body has high molding accuracy over the details, a casting with higher accuracy can be manufactured. Also, the inside is hollow, and the gas generated during casting can be efficiently discharged from the hollow part to the outside, and it is lighter and can be easily made fine by blasting after use. Also excellent in handling.

本発明は、前記実施形態に制限されるものではなく、本発明の趣旨を逸脱しない範囲において適宜変更することができる。   The present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the spirit of the present invention.

前記実施形態では、芯材の先端部の断面が、該芯材の挿入方向に向けて漸次狭まる形態(先端部にテーパー部を有する形態)としたが、芯材の先端部の断面を斯かる形態にする代わりに、芯材の出入口の断面が、該芯材の挿入方向に向けて漸次狭まる形態とすることもでき、さらに芯材の先端部の断面と芯材の出入口断面の両方を該芯材の挿入方向に向けて、漸次狭まる形態とすることもできる。   In the above-described embodiment, the cross section of the tip of the core material is gradually narrowed toward the insertion direction of the core material (the taper portion is provided at the tip), but the cross section of the tip of the core material is used. Instead of the shape, the cross-section of the core material entrance and exit may be gradually narrowed in the direction of insertion of the core material, and both the cross-section of the tip of the core material and the cross-section of the core material It can also be made into the form which narrows gradually toward the insertion direction of a core material.

本発明の中空成形体の製造装置及び製造方法は、前記実施形態のような鋳造に使用される中子の他、鋳型(主型)、湯道、湯止り、受口、湯口、湯口底、せき、ガス抜き、揚り、押湯等の構造体及びその他の付帯構造体の用途に好適である。また、耐熱性を要する鋳造分野以外の用途にも適用でき、その用途に応じた形状の細部にわたって成形精度の高いものとすることができる。   In addition to the core used for casting as in the above-described embodiment, the hollow molded body manufacturing apparatus and manufacturing method of the present invention include a mold (main mold), a runner, a hot water stop, a receiving port, a gate, a gate bottom, It is suitable for the use of structures such as cough, degassing, frying, and hot water, and other incidental structures. Further, it can be applied to uses other than the casting field requiring heat resistance, and high molding accuracy can be achieved over the details of the shape according to the use.

また、本発明の製造装置及び製造方法は、前記実施形態におけるような、前記無機粉体、前記無機繊維、前記熱硬化性樹脂、前記水溶性のバインダー(固形分)、及び前記熱膨張性粒子を含む成形原料を用いた中空成形体の製造に好適であるが、それ以外の成形原料を使用した中空成形体の製造にも適用することができる。
例えば、有機繊維とでんぷんの混合物を、水を分散媒として混練したもの等を成形原料とする成形体の製造にも適用することができる。
Further, the manufacturing apparatus and the manufacturing method of the present invention are the same as in the embodiment described above, in which the inorganic powder, the inorganic fiber, the thermosetting resin, the water-soluble binder (solid content), and the thermally expandable particles. Although it is suitable for the manufacture of a hollow molded body using a molding raw material containing, it can also be applied to the manufacture of a hollow molded body using other molding raw materials.
For example, the present invention can also be applied to the production of a molded body using a mixture of organic fiber and starch kneaded with water as a dispersion medium.

以下、本発明を実施例によりさらに具体的に説明する。なお、本発明は、本実施例に何ら制限されない。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not restrict | limited to a present Example at all.

下記実施例、及び比較例1〜比較例3のようにして、下記組成の成形原料から下記の寸法形状のキャビティを有する成形型を用いて成形体の成形を行い、成形の可否、得られた成形体の外観を評価し、それらの結果を表1に示した。   As in the following Examples and Comparative Examples 1 to 3, a molded body was molded from a molding raw material having the following composition using a molding die having a cavity with the following dimensions and shape, and whether or not molding was possible was obtained. The appearance of the molded body was evaluated, and the results are shown in Table 1.

〔実施例〕
<成形体製造用組成物及び成形原料の調製>
無機粉体、無機繊維、熱硬化性樹脂、水溶性のバインダー及び熱膨張性粒子の配合率(質量比率)が下記の値の成形体製造用組成物を調製した後、この成形体製造用組成物に分散媒としての水を添加し水分率約45%(無機粉体、無機繊維、熱硬化性樹脂及び水溶性のバインダーの合計質量に対し水が45質量%)の成形原料を調整した。
〔Example〕
<Preparation of molding composition and molding raw material>
After preparing the composition for manufacturing a molded body having a blending ratio (mass ratio) of inorganic powder, inorganic fiber, thermosetting resin, water-soluble binder and thermally expandable particles as follows, this composition for manufacturing the molded body Water as a dispersion medium was added to the product to prepare a forming raw material having a moisture content of about 45% (water was 45% by mass with respect to the total mass of inorganic powder, inorganic fiber, thermosetting resin and water-soluble binder).

〔成形体製造用組成物の配合成分〕
無機粉体:黒鉛
無機繊維:PAN炭素繊維(東レ(株)製、商品名「トレカチョップ」)、繊維長:3mm、収縮率:0.1%)
熱硬化性樹脂:フェノール樹脂(エア・ウォーター・ベルパール(株)製「S890」)
水溶性のバインダー:カルボキシルメチルセルロース(第一工業製薬(株)製セロゲンHE−1500F)
熱膨張性粒子:熱膨張性マイクロカプセル(松本油脂製薬(株)製、商品名「マツモトマイクロズフェアF−105D」
成分質量配合率(%):無機粉体/無機繊維/熱硬化性樹脂/水溶性のバインダー/熱膨張性粒子=82/4/10/2/2
分散媒:水
[Compositional components of the composition for forming a molded body]
Inorganic powder: Graphite Inorganic fiber: PAN carbon fiber (manufactured by Toray Industries, Inc., trade name “Treka chop”), fiber length: 3 mm, shrinkage: 0.1%)
Thermosetting resin: Phenolic resin ("S890" manufactured by Air Water Bell Pearl Co., Ltd.)
Water-soluble binder: Carboxymethyl cellulose (Serogen HE-1500F manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
Thermally expandable particles: Thermally expandable microcapsules (manufactured by Matsumoto Yushi Seiyaku Co., Ltd., trade name “Matsumoto Microsphere F-105D”)
Component mass blending ratio (%): inorganic powder / inorganic fiber / thermosetting resin / water-soluble binder / heat-expandable particles = 82/4/10/2/2
Dispersion medium: water

〔成形体の成形条件〕
成形原料供給手段のエア圧力:1MPa
成形型温度:200℃
加熱時間:150秒
蒸気抜き時間:10秒
加熱乾燥時間:20秒
[Molding conditions of molded body]
Air pressure of forming raw material supply means: 1 MPa
Mold temperature: 200 ° C
Heating time: 150 seconds Steam venting time: 10 seconds Heating and drying time: 20 seconds

〔成形体の寸法形状〕
図6のような先端部が閉じた中空棒状形状の成形体を得た。
外径=14mm(後端部102を除いた部分)、全長=300mm、中空部径=8mm、中空部長さ=290mm
〔成形の状況〕
上述した成形条件に従い成形を行なった結果、表1に示すように成形体の外観が良好な所望の成形体を得ることができた。
[Dimensional shape of the molded body]
As shown in FIG. 6, a hollow rod-shaped molded body having a closed tip was obtained.
Outer diameter = 14 mm (excluding the rear end portion 102), total length = 300 mm, hollow portion diameter = 8 mm, hollow portion length = 290 mm
[Molding status]
As a result of molding according to the molding conditions described above, as shown in Table 1, a desired molded body having a good appearance of the molded body could be obtained.

〔比較例1〕
実施例と同一の成形原料にて成形条件を変えて成形体を作製した。具体的には、芯材を後退させず、蒸気抜き操作を行わない条件にて成形を実施した。
[Comparative Example 1]
Molded bodies were produced by changing the molding conditions using the same molding raw materials as in the examples. Specifically, the molding was performed under the condition that the core material was not retracted and the steam venting operation was not performed.

〔成形体の成形条件〕
加熱時間:180秒
蒸気抜き時間:0秒
乾燥時間:0秒
〔成形の状況〕
上記の所定加熱時間の後、成形型を開放したところ内部蒸気の圧力により成形体が爆発し、成形体を得ることができなかった。
[Molding conditions of molded body]
Heating time: 180 seconds Steam venting time: 0 seconds Drying time: 0 seconds [Situation of molding]
After the predetermined heating time, when the mold was opened, the molded body exploded due to the pressure of the internal steam, and the molded body could not be obtained.

〔比較例2〕
実施例と同一の成形原料にて成形条件を変えて成形体を作製した。具体的には、実施例と同じ加熱時間の後、芯材3をテーパー部32が出入口22にかかるところで引き出しを停止することなく、一気に引き抜いた。
[Comparative Example 2]
Molded bodies were produced by changing the molding conditions using the same molding raw materials as in the examples. Specifically, after the same heating time as in the example, the core material 3 was pulled out at a stretch without stopping the drawing where the tapered portion 32 hits the entrance 22.

〔成形体の成形条件〕
加熱時間:150秒
〔成形の状況〕
上記の所定加熱時間の後、芯材を引き抜いたところ、内部蒸気の開放とともに成形内の成形原料が出入口22より噴出し、成形体を得ることができなかった。
[Molding conditions of molded body]
Heating time: 150 seconds [Situation of molding]
When the core material was pulled out after the above-mentioned predetermined heating time, the molding raw material in the molding was ejected from the inlet / outlet 22 as the internal steam was released, and a molded body could not be obtained.

〔比較例3〕
実施例と同一の成形原料にて成形条件を変えて成形体を作製した。具体的には、芯材を後退させず、蒸気抜き操作を行わない条件にて加熱時間を長くして成形を実施した。
[Comparative Example 3]
Molded bodies were produced by changing the molding conditions using the same molding raw materials as in the examples. Specifically, the molding was carried out by extending the heating time under the condition that the core material was not retracted and the steam venting operation was not performed.

〔成形体の成形条件〕
加熱時間:600秒
〔成形の状況〕
上述した成形条件に従い成形を行なった結果、表1に示すように、外観が良好な所望の成形体を得ることができた。しかし、加熱時間が実施例の4倍を要した。
[Molding conditions of molded body]
Heating time: 600 seconds [Situation of molding]
As a result of molding according to the molding conditions described above, as shown in Table 1, a desired molded article having a good appearance could be obtained. However, the heating time required 4 times as long as the Example.

Figure 2009101553
Figure 2009101553

<結果>
表1に示したように、比較例1、比較例2では所望の成形体を得ることができなかった。また比較例3のように加熱時間を著しく長くすることで成形体を得ることができるが、生産性が著しく低下してしまい、本発明の装置、方法の有効性が確認されるものであった。
<Result>
As shown in Table 1, in Comparative Examples 1 and 2, a desired molded product could not be obtained. In addition, a molded body can be obtained by significantly increasing the heating time as in Comparative Example 3, but the productivity is significantly reduced, and the effectiveness of the apparatus and method of the present invention is confirmed. .

本発明の成形体の製造方法は、成形体を鋳型等として使用する場合の該成形体の製造に特に好適であり、それ以外にも、容器、道具、部品等の各種の成形体の製造に適用することもできる。   The method for producing a molded article of the present invention is particularly suitable for producing the molded article when the molded article is used as a mold or the like, and in addition to that, for producing various molded articles such as containers, tools and parts. It can also be applied.

本発明の中空成形体の製造装置の一実施形態を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically one Embodiment of the manufacturing apparatus of the hollow molded object of this invention. 同製造装置を使用した本発明の中空成形体の製造方法の一実施形態における成形原料の供給工程を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the supply process of the shaping | molding raw material in one Embodiment of the manufacturing method of the hollow molded object of this invention using the manufacturing apparatus. 同製造装置を使用した本発明の中空成形体の製造方法の一実施形態における成形工程を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the formation process in one Embodiment of the manufacturing method of the hollow molded object of this invention using the manufacturing apparatus. 同製造装置を使用した本発明の中空成形体の製造方法の一実施形態における加熱乾燥工程を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the heat drying process in one Embodiment of the manufacturing method of the hollow molded object of this invention using the manufacturing apparatus. 同製造装置を使用した本発明の中空成形体の製造方法の一実施形態における脱型工程を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the demolding process in one Embodiment of the manufacturing method of the hollow molded object of this invention using the manufacturing apparatus. 本発明の中空成形体の製造方法により製造された中空成形体の一実施形態を示す半断面図である。It is a half sectional view showing one embodiment of the hollow fabrication object manufactured by the manufacturing method of the hollow fabrication object of the present invention.

符号の説明Explanation of symbols

1 成形体の製造装置
2 成形型
2A、2B 割型
20 キャビティ
21 ゲート孔(ゲート)
22 出入口
3 芯材
30 先端部
31 稜線
32 テーパー部
4 ゲート開閉手段
40 ゲートピン
5 成形原料供給手段
50 シリンダー
51 ピストン
52 ノズル
10 成形体
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of molded object 2 Mold 2A, 2B Split mold 20 Cavity 21 Gate hole (gate)
22 Entrance / Exit 3 Core Material 30 Tip Part 31 Ridge Line 32 Tapered Part 4 Gate Opening / Closing Means 40 Gate Pin 5 Molding Raw Material Supply Means 50 Cylinder 51 Piston 52 Nozzle 10 Molded Body

Claims (3)

内部にキャビティを有する成形型と、前記キャビティ内に挿入される芯材と、前記成形型のゲートを開閉する開閉手段と、前記ゲートを通じて前記キャビティ内に成形原料を供給する成形原料供給手段とを備えている中空成形体の製造装置であって、
前記芯材の先端部及び/又は前記成形型における前記芯材の出入口の断面が、該芯材の挿入方向に向けて漸次狭まる形態を有している中空成形体の製造装置。
A molding die having a cavity inside; a core material inserted into the cavity; an opening / closing means for opening and closing a gate of the molding die; and a molding raw material supply means for supplying a molding raw material into the cavity through the gate. An apparatus for manufacturing a hollow molded body, comprising:
An apparatus for producing a hollow molded body, wherein a tip end portion of the core material and / or a cross section of an entrance / exit of the core material in the molding die gradually narrows in an insertion direction of the core material.
前記芯材の先端部にテーパー部を有している請求項1に記載の中空成形体の製造装置。   The manufacturing apparatus of the hollow molded object of Claim 1 which has a taper part in the front-end | tip part of the said core material. 請求項1に記載の中空成形体の製造装置を使用し、
前記成形型の前記キャビティ内に前記芯材を挿入した状態で、前記ゲートを通じて前記キャビティ内に成形原料を加圧充填し、前記ゲートを閉じて前記成形原料を加熱成形している間に、前記芯材を前記成形型から引き出して該芯材と前記出入口との隙間から蒸気抜きを行った後、前記成形原料を引き続き加熱して乾燥する中空成形体の製造方法。
Using the hollow molded body manufacturing apparatus according to claim 1,
While the core material is inserted into the cavity of the molding die, the molding material is pressurized and filled into the cavity through the gate, and the molding material is heated and molded while the gate is closed. A method for producing a hollow molded body in which a core material is pulled out from the mold and subjected to vapor removal from a gap between the core material and the inlet / outlet, and then the molding material is continuously heated and dried.
JP2007274243A 2007-10-22 2007-10-22 Apparatus and method for manufacturing hollow molding Pending JP2009101553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007274243A JP2009101553A (en) 2007-10-22 2007-10-22 Apparatus and method for manufacturing hollow molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007274243A JP2009101553A (en) 2007-10-22 2007-10-22 Apparatus and method for manufacturing hollow molding

Publications (1)

Publication Number Publication Date
JP2009101553A true JP2009101553A (en) 2009-05-14

Family

ID=40703846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274243A Pending JP2009101553A (en) 2007-10-22 2007-10-22 Apparatus and method for manufacturing hollow molding

Country Status (1)

Country Link
JP (1) JP2009101553A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151773A (en) * 1975-06-13 1976-12-27 Curetti Ennio Glauco Process for making plastic object * apparatus used for said process and object made thereby
JP2003011197A (en) * 2001-06-29 2003-01-15 Mitsubishi Materials Corp Mold device for molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151773A (en) * 1975-06-13 1976-12-27 Curetti Ennio Glauco Process for making plastic object * apparatus used for said process and object made thereby
JP2003011197A (en) * 2001-06-29 2003-01-15 Mitsubishi Materials Corp Mold device for molding

Similar Documents

Publication Publication Date Title
JP5441402B2 (en) Casting manufacturing structure, casting manufacturing structure composition, casting manufacturing structure manufacturing method, and casting manufacturing method
JP4675276B2 (en) Compact
JP4601531B2 (en) MANUFACTURING METHOD AND DEVICE FOR FIBER MOLDED ARTICLE, FIBER MOLDING INTERMEDIATE AND FIBER MOLDED
CN100551581C (en) Formed body and manufacture method thereof
CN101607301B (en) Soluble core and preparation method thereof
EP2939759B1 (en) Method for producing structure for casting and structure such as mold
JPH0419183B2 (en)
US11007566B2 (en) Casting green sand mold, and method for producing cast article using it
JP4869786B2 (en) Casting structure
JP5099894B2 (en) Hollow molded body manufacturing apparatus and manufacturing method
JP2009101553A (en) Apparatus and method for manufacturing hollow molding
JP2011056563A (en) Structure for producing casting
JP4980811B2 (en) Mold and composite mold
JP5441387B2 (en) Manufacturing method of casting manufacturing structure, casting manufacturing structure, and casting manufacturing method
JP5368077B2 (en) Manufacturing method of casting structure
JP5755575B2 (en) Mold release method
JP5473312B2 (en) Manufacturing method of casting structure
JP5419429B2 (en) Molded object for mold, method for producing molded object for mold, and method for producing casting
JP5755574B2 (en) Mold release device
JP2011121105A (en) Method for producing structure for producing casting
JP6728550B2 (en) Method for removing mold remaining in casting
JP2011212877A (en) Method of manufacturing molded body
JP2013152018A (en) Railway vehicle brake shoe and method of manufacturing the same, and ceramic block for railway vehicle brake shoe and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121030