JP5368077B2 - Manufacturing method of casting structure - Google Patents

Manufacturing method of casting structure Download PDF

Info

Publication number
JP5368077B2
JP5368077B2 JP2008324852A JP2008324852A JP5368077B2 JP 5368077 B2 JP5368077 B2 JP 5368077B2 JP 2008324852 A JP2008324852 A JP 2008324852A JP 2008324852 A JP2008324852 A JP 2008324852A JP 5368077 B2 JP5368077 B2 JP 5368077B2
Authority
JP
Japan
Prior art keywords
casting
precursor
heating
temperature
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008324852A
Other languages
Japanese (ja)
Other versions
JP2010142857A (en
Inventor
雅之 大崎
義幸 木部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2008324852A priority Critical patent/JP5368077B2/en
Publication of JP2010142857A publication Critical patent/JP2010142857A/en
Application granted granted Critical
Publication of JP5368077B2 publication Critical patent/JP5368077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a structure for foundry production by which the amount of gas generated when casting a molten metal can be reduced and air permeability can be enhanced. <P>SOLUTION: The method of producing a structure for foundry production includes: (1) a first step of heating the precursor of a structure for foundry production which is made by using a composition containing inorganic particles, inorganic fibers, thermosetting resins, water-soluble polymers and thermally expandable particles to harden the thermosetting resins in the precursor; and (2) a second step of heating the resultant precursor at a temperature higher than that in the first step. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、鋳物の製造のために用いられる鋳物製造用構造体を製造する方法に関する。   The present invention relates to a method of manufacturing a casting manufacturing structure used for manufacturing a casting.

鋳物は、一般に、木型や金型などを元に、鋳物砂で内部にキャビティを有する鋳型を形成するとともに、必要に応じて該キャビティ内に中子を配した後、該キャビティに溶湯を供給して製造されている。   For castings, in general, a casting mold is used to form a mold with a cavity inside, based on a wooden mold or mold, and if necessary, a core is placed in the cavity and then molten metal is supplied to the cavity. Manufactured.

鋳物砂を用いた砂型は、通常の砂にバインダーを添加し、硬化させて形状を保持させているので、砂の再利用には再生処理工程が必須となる。更に、再生処理の際にダストなどの廃棄物が発生する。中子を砂型で製造する場合は、これらの不都合に加え、中子自身の重量に起因して取り扱いに難がある。更に、鋳込み時の強度保持と鋳込み後の中子除去性という相反する性能が要求される。   In the sand mold using the foundry sand, a binder is added to normal sand and cured to maintain the shape. Therefore, a recycling process is essential for reusing the sand. Furthermore, waste such as dust is generated during the regeneration process. When the core is manufactured in a sand mold, in addition to these disadvantages, handling is difficult due to the weight of the core itself. Furthermore, the contradictory performances of strength maintenance during casting and core removal after casting are required.

そこで本出願人は先に、有機繊維、無機繊維、無機粒子及び熱硬化性樹脂を含有する鋳物製造用構造体を提案した(特許文献1及び2参照)。この構造体は、鋳込時において熱間強度及び形状保持性に優れるという利点を有する。したがって、この構造体を用いて鋳物を製造すると、鋳造時に鋳物砂をバインダーで硬化させる必要がないので、鋳造後に機械的研磨によって砂を再生する必要がなく、従来に比べて廃棄物を低減できるという利点がある。   Therefore, the present applicant has previously proposed a casting manufacturing structure containing organic fibers, inorganic fibers, inorganic particles, and a thermosetting resin (see Patent Documents 1 and 2). This structure has the advantage of being excellent in hot strength and shape retention during casting. Therefore, when a casting is produced using this structure, it is not necessary to harden the foundry sand with a binder at the time of casting, so it is not necessary to regenerate the sand by mechanical polishing after casting, and waste can be reduced as compared with the conventional case. There is an advantage.

しかし、当該技術分野においては、中空形状や複雑な立体形状の鋳物を、高精度で、かつ高い表面平滑性で鋳造し得る技術がますます要求されている。   However, in this technical field, there is an increasing demand for a technology capable of casting a hollow or complex three-dimensional casting with high accuracy and high surface smoothness.

特開2005−349428号公報JP 2005-349428 A 特開2006−346747号公報JP 2006-346747 A

本発明の目的は、前述した従来技術よりも一層良好な鋳物を製造し得る技術を提供することにある。   An object of the present invention is to provide a technique capable of producing a casting that is better than the above-described conventional technique.

本発明は、無機粒子、無機繊維、熱硬化性樹脂、水溶性高分子及び熱膨張性粒子を含有する組成物を用いて製造された鋳物製造用構造体の前駆体を加熱して、該前駆体中の該熱硬化性樹脂を硬化させる第1の工程と、
第1の工程に付された後の前記前駆体を、第1の工程の加熱温度よりも高い温度で加熱する第2の工程とを含む鋳物製造用構造体の製造方法を提供するものである。
The present invention heats a precursor of a structure for producing a casting produced using a composition containing inorganic particles, inorganic fibers, a thermosetting resin, a water-soluble polymer, and thermally expandable particles, A first step of curing the thermosetting resin in the body;
There is provided a manufacturing method of a casting manufacturing structure including a second step of heating the precursor after being subjected to the first step at a temperature higher than the heating temperature of the first step. .

本発明によれば、溶湯を鋳込んだときに鋳物製造用構造体から生じるガスの発生量を低減でき、該構造体の通気性を高めることができる。したがって本発明に従い製造された鋳物製造用構造体を用いることで、ガスの発生に起因する鋳造の乱れが効果的に防止され、安定な鋳造を行うことができる。   According to the present invention, it is possible to reduce the amount of gas generated from the casting manufacturing structure when the molten metal is cast, and to increase the air permeability of the structure. Therefore, by using the casting manufacturing structure manufactured according to the present invention, casting disturbance due to gas generation is effectively prevented, and stable casting can be performed.

本発明の鋳物製造用構造体の製造方法は、第1の加熱工程と第2の加熱工程に大別される。第1の加熱工程は、目的とする鋳物製造用構造体の前駆体を加熱する工程である。第2の加熱工程は、第1の工程に付された前駆体を加熱して、目的とする鋳物製造用構造体を得る工程である。以下、それぞれの工程について説明する。   The manufacturing method of the structure for casting production according to the present invention is roughly divided into a first heating process and a second heating process. A 1st heating process is a process of heating the precursor of the target structure for casting manufacture. A 2nd heating process is a process of heating the precursor attached | subjected to the 1st process and obtaining the target structure for casting manufacture. Hereinafter, each process will be described.

第1の加熱工程においては、目的とする鋳物製造用構造体の前駆体を準備する。前駆体は、無機粒子、無機繊維、熱硬化性樹脂、水溶性高分子及び熱膨張性粒子を含有する組成物を用いて製造される。前駆体は、種々の方法で製造することができる。例えば成形原料として、無機粒子、無機繊維、熱硬化性樹脂、水溶性高分子、熱膨張性粒子及び分散媒を含有するドウ状の前駆体製造用組成物を調製し、この組成物を成形型に注入して前駆体を得る方法を採用することができる。この組成物には、必要に応じ、着色剤、離型剤等の他の成分を適宜の割合で添加することもできる。   In the first heating step, a precursor of a target casting manufacturing structure is prepared. The precursor is manufactured using a composition containing inorganic particles, inorganic fibers, a thermosetting resin, a water-soluble polymer, and thermally expandable particles. The precursor can be produced by various methods. For example, a dough-like precursor manufacturing composition containing inorganic particles, inorganic fibers, thermosetting resin, water-soluble polymer, thermally expandable particles, and a dispersion medium is prepared as a molding raw material, and this composition is molded into a mold. It is possible to adopt a method in which the precursor is obtained by being injected into the substrate. If necessary, other components such as a colorant and a release agent may be added to the composition at an appropriate ratio.

前駆体製造用組成物の調製においては、均一に混合できる観点及び成形性向上の観点から、無機粒子、無機繊維、熱硬化性樹脂、水溶性高分子及び熱膨張性粒子を、予め乾式で混合することが好ましい。混合物は次いで分散媒に分散される。得られた分散体を混練機で混練してドウ状の組成物に調製する。前駆体製造用組成物をドウ状に調製するとは、無機粒子、無機繊維、熱硬化性樹脂、水溶性高分子及び熱膨張性粒子と分散媒とを捏和混練し、流動性を有しながらも無機粒子、無機繊維、熱硬化性樹脂、水溶性高分子及び熱膨張性粒子と分散媒とが容易に分離することがない状態に調製することをいう。   In the preparation of the precursor production composition, inorganic particles, inorganic fibers, thermosetting resins, water-soluble polymers and thermally expandable particles are previously mixed in a dry manner from the viewpoint of uniform mixing and improved moldability. It is preferable to do. The mixture is then dispersed in a dispersion medium. The obtained dispersion is kneaded with a kneader to prepare a dough-like composition. Preparation of a precursor production composition in a dough shape means that inorganic particles, inorganic fibers, thermosetting resins, water-soluble polymers, thermally expandable particles, and a dispersion medium are kneaded and fluidized. The term “inorganic particle”, “inorganic fiber”, “thermosetting resin”, “water-soluble polymer”, “heat-expandable particle” and “dispersion medium” means that the dispersion medium is not easily separated.

前駆体の製造に使用される成形型は、目的とする前駆体に対応した形状のキャビティを有する主型と、必要に応じて中空を形成する芯材とによって構成されている。成形型には、例えばゲート等の開閉手段が設けられている。このゲートを開いた状態で、前駆体製造用組成物を成形型のキャビティ内に充填する。充填には例えば高圧エアを用いることができる。この場合には、エアの圧力を0.1〜3MPa程度にすることが好適である。このようにして、湿潤状態の前駆体が成形型内に形成される。ここで、鋳物製造用構造体のうち、第1の加熱工程の前と、第2の加熱工程の前のものを前駆体という。   A mold used for manufacturing the precursor is constituted by a main mold having a cavity having a shape corresponding to the target precursor, and a core material that forms a hollow if necessary. The molding die is provided with opening / closing means such as a gate. With the gate open, the precursor-producing composition is filled into the mold cavity. For example, high-pressure air can be used for filling. In this case, the air pressure is preferably about 0.1 to 3 MPa. In this way, a wet precursor is formed in the mold. Here, among the structures for manufacturing castings, those before the first heating step and before the second heating step are referred to as precursors.

前駆体の製造方法の別法として、先に述べた特許文献1及び2に記載されている湿式抄造法も採用することができる。湿式抄造法においては、無機粒子、無機繊維、熱硬化性樹脂、水溶性高分子、熱膨張性粒子及び分散媒を含有する前駆体製造用組成物のスラリーを調製し、得られたスラリーを成形型に供給して湿式抄造を行う。抄造工程では、例えば2個で一組をなす割型を突き合わせることにより、前駆体の外形に略対応した形状を有し、かつ外部に向けて開口するキャビティが内部に形成される成形型を用いる。各割型には、外部とキャビティとを連通する多数の連通孔を設けておくとともに、各割型の内面を、所定の大きさの網目を有するネットによって被覆しておく。そして、成形型のキャビティ内に所定量の原料スラリーを、送圧ポンプ等を用いて注入する。これとともに、連通孔を通じて分散媒を成形型の外に吸引排出し、ネットにスラリーの固形分を堆積させる。スラリーの加圧注入の圧力は0.01〜5MPa、特に0.01〜3MPaであることが好ましい。固形分が所定量堆積したら、スラリーの注入を停止し、次いでキャビティ内に空気を圧入して堆積物を所定の含水率になるまで脱水する。これよって、湿潤状態の前駆体が成形型内に形成される。   As another method of manufacturing the precursor, the wet papermaking method described in Patent Documents 1 and 2 described above can also be employed. In the wet papermaking method, a slurry of a precursor manufacturing composition containing inorganic particles, inorganic fibers, thermosetting resin, water-soluble polymer, thermally expandable particles and a dispersion medium is prepared, and the resulting slurry is molded. Supply to the mold for wet papermaking. In the paper making process, for example, a mold having a shape substantially corresponding to the outer shape of the precursor and a cavity that is open to the outside is formed inside by matching a pair of split molds. Use. Each split mold is provided with a large number of communication holes for communicating the outside and the cavity, and the inner surface of each split mold is covered with a net having a mesh of a predetermined size. Then, a predetermined amount of the raw material slurry is injected into the cavity of the mold using a pressure feed pump or the like. At the same time, the dispersion medium is sucked and discharged out of the mold through the communication hole, and the solid content of the slurry is deposited on the net. The pressure for the pressure injection of the slurry is preferably 0.01 to 5 MPa, particularly preferably 0.01 to 3 MPa. When a predetermined amount of solid content has accumulated, the slurry injection is stopped, and then air is injected into the cavity to dehydrate the deposit until a predetermined moisture content is obtained. As a result, a wet precursor is formed in the mold.

上述したいずれの方法を採用する場合においても、製造された前駆体を第1の加熱工程に付して、該前駆体に含まれている熱硬化性樹脂を硬化させる。加熱により熱硬化性樹脂が硬化することで、目的とする構造体の形状保持性が高まるとともに、熱膨張性粒子が膨張されながら乾燥成形が進行するので、成形型への前駆体の転写性が向上し、表面の平滑性に優れた鋳物製造用構造体の前駆体を得ることができる。   In the case of adopting any of the methods described above, the manufactured precursor is subjected to the first heating step, and the thermosetting resin contained in the precursor is cured. As the thermosetting resin is cured by heating, the shape retention of the target structure is enhanced, and the dry molding proceeds while the thermally expandable particles are expanded, so the transferability of the precursor to the mold is improved. It is possible to obtain a precursor for a casting manufacturing structure that is improved and has excellent surface smoothness.

第1の加熱工程における加熱は、前駆体を成形型内に保持した状態で行ってもよく、あるいは成形型から取り出して行ってもよい。上述のとおり、前駆体は湿潤状態で得られるので、その取り扱い性を考慮すると、前駆体を成形型内に保持した状態で加熱工程に付すことが有利である。   The heating in the first heating step may be performed in a state where the precursor is held in the mold, or may be performed after being taken out from the mold. As described above, since the precursor is obtained in a wet state, it is advantageous to subject it to the heating step in a state where the precursor is held in the mold in consideration of its handleability.

第1の工程における加熱温度は、前駆体に含まれている熱硬化性樹脂を硬化させ得る温度とする。この温度は、使用する熱硬化性樹脂の種類に応じて適切に決定することができる。熱硬化性樹脂の硬化温度をMc(℃)で表した場合、第1の工程における加熱温度は、Mc−50℃〜Mc+70℃、特にMc−50℃〜Mc+50℃であることが好ましい。加熱時間も、使用する熱硬化性樹脂の種類に応じて適切に決定することができる。一般に、前記の温度範囲を1〜180分間、特に5〜60分間保持することで、熱硬化性樹脂を十分に硬化させることができる。   The heating temperature in the first step is a temperature at which the thermosetting resin contained in the precursor can be cured. This temperature can be appropriately determined according to the type of thermosetting resin used. When the curing temperature of the thermosetting resin is expressed in Mc (° C.), the heating temperature in the first step is preferably Mc-50 ° C. to Mc + 70 ° C., particularly preferably Mc-50 ° C. to Mc + 50 ° C. The heating time can also be appropriately determined according to the type of thermosetting resin used. In general, the thermosetting resin can be sufficiently cured by maintaining the above temperature range for 1 to 180 minutes, particularly 5 to 60 minutes.

本発明において、熱硬化性樹脂の硬化温度とは、樹脂材料の硬化反応の測定に使用される示差走査熱量測定(DSC)により求められた温度である。すなわち、10mgの試料を昇温レートが5℃/分の条件で加熱する過程において得られる熱量と温度との関係を、縦軸に熱量、横軸に温度としたグラフにプロットすると一部に上に凸な曲線(発熱ピーク)が得られる。この上に凸な曲線のうち,ガラス転移温度以上において最も低温側で極大値となるときの温度を硬化温度とする。なお、フェノール樹脂は硬化の際に水分蒸発をともなうため、高圧示差走査熱量測定(PDSC)により求めることが、より望ましい。   In the present invention, the curing temperature of the thermosetting resin is a temperature obtained by differential scanning calorimetry (DSC) used for measurement of the curing reaction of the resin material. That is, the relationship between the amount of heat and temperature obtained in the process of heating a 10 mg sample at a temperature rising rate of 5 ° C./min is plotted on a graph with the amount of heat on the vertical axis and the temperature on the horizontal axis. A convex curve (exothermic peak) is obtained. Of these upwardly convex curves, the temperature at which the maximum value is reached at the lowest temperature above the glass transition temperature is taken as the curing temperature. In addition, since a phenol resin is accompanied by water evaporation at the time of hardening, it is more desirable to obtain | require by high pressure differential scanning calorimetry (PDSC).

第1の工程において準備する前駆体を、上述したいずれの方法によって製造する場合においても、前駆体製造用組成物における各成分の配合比(質量%)は、無機粒子、無機繊維、熱硬化性樹脂、水溶性高分子及び熱膨張性粒子の固形分総質量に対し、以下のとおりであることが好ましい。無機粒子については、40〜90質量%、特に60〜85質量%であることが、鋳込み時の構造体の形状保持性が良好になる点、及び構造体の表面性及び離型性が良好になる点から好ましい。無機繊維については、1〜20質量%、特に2〜16質量%であることが、構造体の成形性、及び鋳込み時の構造体の形状保持性が良好になる点から好ましい。熱硬化性樹脂については、1〜30質量%、特に2〜25質量%であることが、構造体の成形性及び表面平滑性、並びに鋳込み後の構造体の形状保持性が良好となる点から好ましい。水溶性高分子については、0.1〜10質量%、特に0.5〜7質量%であることが前駆体製造用組成物を成形型内に充填する際に、成形原料中の分散媒が分離することなく流動性が良好な状態で充填が可能になるとともに、得られる構造体の通気性が良好となるので好ましい。熱膨張性粒子については、0.1〜10質量%、特に0.1〜5質量%であることが、前駆体の成形型からの転写性、表面の平滑性が良好になる点から好ましい。   In the case where the precursor prepared in the first step is manufactured by any of the above-described methods, the blending ratio (% by mass) of each component in the precursor manufacturing composition is inorganic particles, inorganic fibers, and thermosetting. The total solid mass of the resin, water-soluble polymer and thermally expandable particles is preferably as follows. As for the inorganic particles, 40 to 90% by mass, particularly 60 to 85% by mass, the shape retention of the structure at the time of casting is good, and the surface property and releasability of the structure are good. This is preferable. About inorganic fiber, it is preferable that it is 1-20 mass%, especially 2-16 mass% from the point from which the moldability of a structure and the shape retainability of the structure at the time of casting become favorable. About a thermosetting resin, it is 1-30 mass%, especially 2-25 mass% from the point from which the moldability and surface smoothness of a structure, and the shape retainability of the structure after casting become favorable. preferable. Regarding the water-soluble polymer, the dispersion medium in the molding raw material is 0.1 to 10% by mass, particularly 0.5 to 7% by mass when the composition for precursor production is filled in the molding die. Filling is possible with good fluidity without separation, and the resulting structure has good air permeability, which is preferable. The heat-expandable particles are preferably 0.1 to 10% by mass, particularly 0.1 to 5% by mass from the viewpoint that the transferability of the precursor from the mold and the smoothness of the surface are improved.

前駆体製造用組成物に含まれる無機粒子は、目的とする鋳物製造用構造体の耐熱性を向上させるために用いられる。無機粒子としては、例えば黒鉛、黒曜石、雲母、ムライト、シリカ、マグネシア、タルク等が用いられる。これらのうち、耐焼着性の観点から、黒鉛を用いることが好ましい。一般に黒鉛は、鱗状黒鉛や土状黒鉛のように天然に産出されるものと、石油コークス、カーボンブラック又はピッチなどを原料に人工的に製造される人造黒鉛とに分類される。また鱗状黒鉛は、形状が薄片状であることが特徴である。鋳物製造用構造体の通気性を向上させ、鋳造中に発生するガスを効率的に外部へ放出させる観点からは、薄片状で平面的に積層しやすい鱗状黒鉛よりも、土状黒鉛及び人造黒鉛から選ばれる少なくとも一種を用いることが好ましい。更に、品質が安定し、鋳物製造用構造体の通気度を制御し易い観点から、人造黒鉛を用いることが一層好ましい。これらの無機粒子は単独で又は二種以上を併用しても良い。   The inorganic particles contained in the precursor production composition are used to improve the heat resistance of the target casting production structure. As the inorganic particles, for example, graphite, obsidian, mica, mullite, silica, magnesia, talc and the like are used. Of these, graphite is preferably used from the viewpoint of seizure resistance. In general, graphite is classified into those that are naturally produced such as scaly graphite and earthy graphite, and artificial graphite that is artificially produced from petroleum coke, carbon black, pitch, or the like. In addition, scaly graphite is characterized by a flake shape. From the viewpoint of improving the air permeability of the structure for casting production and efficiently releasing the gas generated during casting to the outside, earthy graphite and artificial graphite rather than scaly graphite that is easy to laminate in a flat shape It is preferable to use at least one selected from Furthermore, it is more preferable to use artificial graphite from the viewpoint of stable quality and easy control of the air permeability of the structure for producing castings. These inorganic particles may be used alone or in combination of two or more.

無機粒子の平均粒子径は、鋳物製造用構造体の通気性を向上させる観点から、80μm以上が好ましく、100μm以上がより好ましい。また、無機粒子の平均粒子径は、鋳物製造用構造体が鋳込み時においても十分な熱間強度を有する観点から、3000μm以下が好ましく、2500μm以下がより好ましい。かかる観点から、無機粒子の平均粒子径は、80〜3000μmが好ましく、100〜2500μmがより好ましい。   The average particle diameter of the inorganic particles is preferably 80 μm or more, and more preferably 100 μm or more, from the viewpoint of improving the air permeability of the structure for casting production. Further, the average particle diameter of the inorganic particles is preferably 3000 μm or less, more preferably 2500 μm or less, from the viewpoint that the structure for casting production has sufficient hot strength even when cast. From this viewpoint, the average particle diameter of the inorganic particles is preferably 80 to 3000 μm, and more preferably 100 to 2500 μm.

無機粒子の平均粒子径は、下記の第1の測度方法で測定し、呼び寸法425μm以上のふるい面上の粒子重量合計が、全試料質量の10%を超える場合は、第1の測定方法で算出される平均粒子径によって求める。そうでない場合は、下記の第2の測定方法で測定することにより求めることができる。   The average particle diameter of the inorganic particles is measured by the following first measurement method. When the total particle weight on the sieve surface having a nominal size of 425 μm or more exceeds 10% of the total sample mass, the first measurement method is used. The average particle size is calculated. Otherwise, it can be determined by measuring with the following second measurement method.

<第1の測定方法>
JIS Z2601(1993)「鋳物砂の試験方法」附属書2に規定する方法に基づいて測定し、重量累積50%をもって平均粒子径とした。重量累積は、各ふるい面上の粒子を、JIS Z2601(1993)解説表2に示す「径の平均Dn(mm)」とみなして計算した。
<First measurement method>
Measured based on the method specified in JIS Z2601 (1993) “Testing Method of Foundry Sand” Annex 2, and the average particle size was defined as 50% cumulative weight. The weight accumulation was calculated by regarding the particles on each sieve surface as “average diameter Dn (mm)” shown in Table 2 of JIS Z2601 (1993).

<第2の測定方法>
レーザー回折式粒度分布測定装置(堀場製作所製LA−920)を用いて測定された体積累積50%の平均粒子径である。分析条件は下記のとおりである。
・測定方法:フロー法
・屈折率:無機粒子によって変動(LA−920付属のマニュアル参照)
・分散媒:イオン交換水+ヘキサメタリン酸ナトリウム0.1質量%混合
・分散方法:攪拌、内蔵超音波3分
・試料濃度:2mg/100cc
<Second measurement method>
It is an average particle diameter of 50% of volume accumulation measured using a laser diffraction type particle size distribution measuring apparatus (LA-920 manufactured by Horiba Seisakusho). The analysis conditions are as follows.
・ Measurement method: Flow method ・ Refractive index: Varies depending on inorganic particles (Refer to the manual attached to LA-920)
・ Dispersion medium: Ion exchange water + 0.1% by mass of sodium hexametaphosphate ・ Dispersion method: Stirring, built-in ultrasonic wave 3 minutes ・ Sample concentration: 2 mg / 100cc

無機繊維は、主として鋳物製造用構造体の骨格をなすものである。無機繊維は、例えば鋳造時の溶融金属の熱によっても燃焼せずにその形状を維持する。無機繊維としては、炭素繊維、ロックウール等の人造鉱物繊維、セラミック繊維、天然鉱物繊維等が挙げられる。無機繊維は、一種又は二種以上を選択して用いることができる。これらの無機繊維のうち、熱硬化性樹脂の炭化に伴う収縮を効果的に抑える点から、高温でも高強度を有する繊維である炭素繊維を用いることが好ましい。炭素繊維としては、ピッチ系やポリアクリロニトリル(PAN)系の炭素繊維が更に好ましく、ポリアクリロニトリル(PAN)系の炭素繊維が一層好ましい。無機繊維は、鋳物製造用構造体の成形性及び均一性の観点から平均繊維長が0.5〜15mm、特に1〜8mmであることが好ましい。   Inorganic fibers mainly form a skeleton of a structure for producing castings. The inorganic fiber maintains its shape without being burned by the heat of the molten metal during casting, for example. Examples of the inorganic fiber include carbon fiber, artificial mineral fiber such as rock wool, ceramic fiber, and natural mineral fiber. One or two or more inorganic fibers can be selected and used. Among these inorganic fibers, it is preferable to use carbon fibers that are fibers having high strength even at high temperatures from the viewpoint of effectively suppressing shrinkage associated with carbonization of the thermosetting resin. As the carbon fibers, pitch-based and polyacrylonitrile (PAN) -based carbon fibers are more preferable, and polyacrylonitrile (PAN) -based carbon fibers are more preferable. The inorganic fibers preferably have an average fiber length of 0.5 to 15 mm, particularly 1 to 8 mm, from the viewpoint of moldability and uniformity of the structure for producing castings.

熱硬化性樹脂は、鋳物製造用構造体の常温強度及び熱間強度を維持させるとともに、鋳物製造用構造体の表面性を良好とし、鋳物製造用構造体を鋳型として用いて製造された鋳物の表面粗度を向上させるために用いられる。熱硬化性樹脂としては、例えばフェノール樹脂、エポキシ樹脂、フラン樹脂等が挙げられる。これらのうち、特に、鋳造時における熱硬化性樹脂の分解ガスの発生量が少なく、燃焼抑制効果があり、熱分解(炭化)後における残炭率が高く(例えば25%以上)、鋳物製造用構造体を鋳型に用いた場合に炭化皮膜を形成して良好な鋳肌を得ることができる点から、フェノール樹脂を用いることが好ましい。フェノール樹脂としては、硬化剤を必要とするノボラックフェノール樹脂及び硬化剤の必要ないレゾールフェノール樹脂のいずれもが用いられる。熱硬化性樹脂は、一種又は二種以上を選択して用いることができる。   The thermosetting resin maintains the normal temperature strength and hot strength of the casting manufacturing structure, improves the surface properties of the casting manufacturing structure, and uses the casting manufacturing structure as a mold. Used to improve surface roughness. Examples of the thermosetting resin include a phenol resin, an epoxy resin, and a furan resin. Among these, in particular, the amount of cracked gas generated from the thermosetting resin during casting is small, has a combustion suppressing effect, has a high residual carbon ratio after pyrolysis (carbonization) (for example, 25% or more), and is used for casting production. In the case where the structure is used as a mold, it is preferable to use a phenol resin because a carbonized film can be formed to obtain a good casting surface. As the phenol resin, both a novolak phenol resin that requires a curing agent and a resole phenol resin that does not require a curing agent are used. One or two or more thermosetting resins can be selected and used.

フェノール樹脂の中でも、レゾールフェノール樹脂を単独又は併用すると、酸やアミン等の硬化剤を必要とせず、鋳物製造用構造体成形時の臭気を低減でき、また鋳物製造用構造体を鋳型として用いた場合に鋳造欠陥を低減することができるので一層好ましい。レゾールフェノール樹脂としては、例えば、旭有機材工業(株)製商品名KL4000、エア・ウォーター(株)製ベルパール(登録商標)S−890などの市販品を用いることができる。   Among phenolic resins, when resole phenolic resin is used alone or in combination, it does not require curing agents such as acids and amines, can reduce odor when forming a casting production structure, and uses a casting production structure as a mold. In this case, casting defects can be reduced, which is more preferable. As the resole phenol resin, for example, commercially available products such as trade name KL4000 manufactured by Asahi Organic Materials Co., Ltd. and Belpearl (registered trademark) S-890 manufactured by Air Water Co., Ltd. can be used.

水溶性高分子は、鋳物製造用構造体の成形性を向上させるために用いられる。水溶性高分子は、組成物中においてポリマー分子鎖によるマトリクスを形成して分散媒との分離を抑制していると考えられる。また、組成物中の固形物の凝集を抑制し、該組成物の流動性を確保し、鋳物製造用構造体の成形性向上に寄与していると考えられる。本発明において水溶性高分子とは、通常(例えば25℃)の使用条件下で水を吸着又は吸収する高分子化合物を意味する。例えば、25℃の純水に対して1.0質量%以上溶解する水溶性高分子を用いることが好ましい。水溶性高分子としては、増粘性の多糖類、ポリビニルアルコール、ポリエチレングリコール等が挙げられる。これらの水溶性高分子のうち、成形性の向上の観点から増粘性の多糖類を用いることが好ましい。増粘性の多糖類とは、水系で増粘性を発現する多糖類である。例えば、キサンタンガム、タマリンドガム、ジェランガム、グアーガム、ローカストビーンガム、タラガム等のガム剤、カルボキシメチルセルロース(以下、「CMC」という)、ヒドロキシエチルセルロース等のセルロース誘導体、カラギーナン、プルラン、ペクチン、アルギン酸、寒天等が挙げられる。これら多糖類のうち、寒天のような天然物よりも、非天然物、例えばCMCのようなセルロース誘導体や化学修飾物を用いることが好ましい。前駆体製造用組成物における水溶性高分子の配合量を少量としても、その性能が発揮されるからである。水溶性高分子の重量平均分子量は、好ましくは1万〜300万であり、より好ましくは2万〜100万である。   The water-soluble polymer is used for improving the moldability of the structure for producing castings. The water-soluble polymer is considered to suppress separation from the dispersion medium by forming a matrix of polymer molecular chains in the composition. Moreover, it is thought that it contributes to the improvement of the moldability of the structure for casting production by suppressing the aggregation of solids in the composition, ensuring the fluidity of the composition. In the present invention, the water-soluble polymer means a polymer compound that adsorbs or absorbs water under normal use conditions (for example, 25 ° C.). For example, it is preferable to use a water-soluble polymer that dissolves 1.0 mass% or more in pure water at 25 ° C. Examples of water-soluble polymers include thickening polysaccharides, polyvinyl alcohol, and polyethylene glycol. Of these water-soluble polymers, it is preferable to use thickening polysaccharides from the viewpoint of improving moldability. A thickening polysaccharide is a polysaccharide that exhibits thickening in an aqueous system. For example, gum agents such as xanthan gum, tamarind gum, gellan gum, guar gum, locust bean gum, tara gum, carboxymethyl cellulose (hereinafter referred to as “CMC”), cellulose derivatives such as hydroxyethyl cellulose, carrageenan, pullulan, pectin, alginic acid, agar, etc. Can be mentioned. Among these polysaccharides, it is preferable to use a non-natural product such as a cellulose derivative such as CMC or a chemically modified product, rather than a natural product such as agar. This is because the performance is exhibited even when the amount of the water-soluble polymer in the precursor production composition is small. The weight average molecular weight of the water-soluble polymer is preferably 10,000 to 3,000,000, more preferably 20,000 to 1,000,000.

熱膨張性粒子は、上述した水溶性高分子と同様に、鋳物製造用構造体の成形性を向上させるために用いられる。熱膨張性粒子としては、熱可塑性樹脂の殻壁に、気化して膨張する膨張剤を内包したマイクロカプセルを用いることが好ましい。マイクロカプセルは、例えば80〜200℃で加熱すると、直径が3〜5倍、体積が50〜100倍に膨張することが好ましい。膨張前の熱膨張性粒子の平均粒径は、好ましくは5〜80μm、より好ましくは20〜50μmである。熱膨張性粒子の膨張がかかる範囲内であると、膨張による成形精度への悪影響を抑えた上で添加効果が十分に得られやすい。   The heat-expandable particles are used for improving the moldability of the structure for producing castings, similarly to the water-soluble polymer described above. As the heat-expandable particles, it is preferable to use microcapsules in which an expansion agent that expands by vaporization is encapsulated in the shell wall of a thermoplastic resin. When the microcapsule is heated at, for example, 80 to 200 ° C., it is preferable that the diameter expands 3 to 5 times and the volume 50 to 100 times. The average particle diameter of the thermally expandable particles before expansion is preferably 5 to 80 μm, more preferably 20 to 50 μm. When the expansion of the heat-expandable particles is within the range, the effect of addition can be sufficiently obtained while suppressing adverse effects on the molding accuracy due to expansion.

マイクロカプセルの殻壁を構成する熱可塑性樹脂としては、例えばポリスチレン、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、ポリ塩化ビニリデン、アクリロニトリル−塩化ビニリデン共重合体、エチレン−酢酸ビニル共重合体又はこれらの組合せ等が挙げられる。これらのうち、適切な膨張開始温度や高い膨張率が得られる観点から、アクリロニトリル若しくは塩化ビニリデンからなる重合体又はそれらを1つ以上含む共重合体で殻壁を構成することが好ましい。殻壁に内包される膨張剤としては、例えばプロパン、ブタン、ペンタン、ヘキサン、イソブタン、石油エーテル等の低沸点の有機溶剤が挙げられる。   Examples of the thermoplastic resin constituting the shell wall of the microcapsule include polystyrene, polyethylene, polypropylene, polyacrylonitrile, polyvinylidene chloride, acrylonitrile-vinylidene chloride copolymer, ethylene-vinyl acetate copolymer, or combinations thereof. It is done. Among these, from the viewpoint of obtaining an appropriate expansion start temperature and a high expansion coefficient, it is preferable that the shell wall is composed of a polymer made of acrylonitrile or vinylidene chloride or a copolymer containing one or more of them. Examples of the expanding agent included in the shell wall include low-boiling organic solvents such as propane, butane, pentane, hexane, isobutane, and petroleum ether.

上述の各成分とともに用いられ、前駆体製造用組成物を構成する分散媒としては、例えば水、エタノール、メタノール等の溶剤又はこれらの混合系等の水系の分散媒が挙げられる。成形体の品質の安定性、経済性、取り扱い易さ等の点から、特に水を用いることが好ましい。前駆体製造用組成物がドウ状のものである場合、前駆体製造用組成物における分散媒の量は、無機粒子、無機繊維、熱硬化性樹脂、水溶性高分子及び熱膨張性粒子の固形分総質量に対し、好ましくは10〜300質量%であり、更に好ましくは50〜250質量%であり、一層好ましくは100〜200質量%である。この範囲とすることで、無機粒子や無機繊維と分散媒とが容易に分離することがない状態になるように前駆体製造用組成物を調製することができる。前駆体製造用組成物が湿式抄造用のスラリーの状態である場合、前駆体製造用組成物における分散媒の量は、該分散媒の質量に対する、無機粒子、無機繊維、熱硬化性樹脂、水溶性高分子及び熱膨張性粒子の固形分総質量が、0.1〜3質量%、特に0.5〜2質量%となるような量であることが好ましい。   Examples of the dispersion medium used together with the above-described components and constituting the precursor production composition include water, a solvent such as ethanol and methanol, or an aqueous dispersion medium such as a mixed system thereof. It is particularly preferable to use water from the viewpoint of the stability of the quality of the molded article, the economical efficiency, the ease of handling, and the like. When the precursor production composition is dough-like, the amount of the dispersion medium in the precursor production composition is the solid content of inorganic particles, inorganic fibers, thermosetting resin, water-soluble polymer, and thermally expandable particles. Preferably it is 10-300 mass% with respect to a fraction total mass, More preferably, it is 50-250 mass%, More preferably, it is 100-200 mass%. By setting it as this range, the composition for precursor manufacture can be prepared so that it may be in the state where an inorganic particle or inorganic fiber, and a dispersion medium do not separate easily. When the composition for precursor production is in the state of a slurry for wet papermaking, the amount of the dispersion medium in the composition for precursor production is inorganic particles, inorganic fibers, thermosetting resin, water-soluble with respect to the mass of the dispersion medium. It is preferable that the total solid mass of the conductive polymer and the heat-expandable particles is 0.1 to 3% by mass, particularly 0.5 to 2% by mass.

第1の加熱工程において熱硬化性樹脂の硬化が行われた前駆体は、次いで第2の加熱工程に付される。第2の加熱工程は、第1の加熱工程に引き続く連続工程として行われてもよい。つまり、第1の加熱工程の後に、成形型の更に温度を上昇させて第2の加熱工程を行ってもよい。あるいは第1の加熱工程の完了後、前駆体を一旦室温まで放冷した後に改めて加熱を行ってもよい。前者の場合、前駆体を成形型内に保持した状態で、該前駆体を第2の加熱工程に付すことが好ましい。後者の場合には、前駆体を成形型内に保持した状態で、該前駆体を第2の加熱工程に付してもよく、あるいは前駆体を成形型から取り出して第2の加熱工程に付してもよい。   The precursor obtained by curing the thermosetting resin in the first heating step is then subjected to the second heating step. The second heating process may be performed as a continuous process following the first heating process. That is, after the first heating step, the second heating step may be performed by further raising the temperature of the mold. Alternatively, after the completion of the first heating step, the precursor may be once cooled to room temperature and then heated again. In the former case, it is preferable to subject the precursor to the second heating step in a state where the precursor is held in the mold. In the latter case, the precursor may be subjected to the second heating step with the precursor held in the mold, or the precursor may be taken out of the mold and subjected to the second heating step. May be.

第2の加熱工程は、第1の加熱工程の加熱温度よりも高い温度で行う。好ましくは、第1の加熱工程の加熱温度よりも40℃以上高い温度、更に好ましくは70℃以上、一層好ましくは80℃以上の高い温度で行う。第2の加熱工程を行うことで、水溶性高分子及び熱膨張性粒子の熱分解に起因するガスが型外に放出されるので、鋳型製造用構造体を用いて鋳物を鋳造するときに、これらの物質からガスが発生しづらくなるか、ガスが発生したとしても、その発生時期を遅らせることができるので、ガスの発生に起因する鋳造の乱れが効果的に防止され、安定な鋳造を行うことができる。また、熱硬化性樹脂の硬化が一層進行するので、目的とする鋳物製造用構造体の形状保持性が高まる。   The second heating step is performed at a temperature higher than the heating temperature of the first heating step. Preferably, it is performed at a temperature that is 40 ° C. or more higher than the heating temperature of the first heating step, more preferably 70 ° C. or more, and even more preferably 80 ° C. or more. By performing the second heating step, gas resulting from thermal decomposition of the water-soluble polymer and the thermally expandable particles is released out of the mold, so when casting a casting using the mold manufacturing structure, Since it is difficult to generate gas from these substances or even if gas is generated, the generation time can be delayed, so that the disturbance of casting due to the generation of gas is effectively prevented and stable casting is performed. be able to. Moreover, since the curing of the thermosetting resin further proceeds, the shape retention of the target structure for producing a casting is increased.

上述の観点から、第2の加熱工程における加熱は、前駆体中の熱硬化性樹脂の硬化温度よりも高い温度で、かつ水溶性高分子及び熱膨張性粒子の熱分解温度以上で行うことが好ましい。また、水溶性高分子及び熱膨張性粒子の熱分解温度とは、常圧下において、これらの物質を熱重量測定(TG)したときに、水分の蒸発温度以上で、重量変化の傾きが大きく変化する温度のことである。例えば、水分蒸発温度100℃以上であって、温度差が40℃の間での重量変化の割合が1%以上となる温度をもって、熱分解温度とすることができる。   From the above viewpoint, the heating in the second heating step may be performed at a temperature higher than the curing temperature of the thermosetting resin in the precursor and at or above the thermal decomposition temperature of the water-soluble polymer and the thermally expandable particles. preferable. The thermal decomposition temperature of water-soluble polymers and thermally expandable particles means that when these substances are thermogravimetrically measured (TG) under normal pressure, the slope of weight change greatly changes above the water evaporation temperature. It is the temperature to perform. For example, the temperature at which the water evaporation temperature is 100 ° C. or higher and the rate of weight change when the temperature difference is 40 ° C. is 1% or higher can be set as the thermal decomposition temperature.

第2の加熱工程における加熱温度及び時間は、得られる鋳物製造用構造体からのガス発生量及び該構造体の強度に関係する。加熱温度が高い場合や加熱時間が長い場合には、鋳物製造用構造体から発生するガスの量を低減させることはできるが、その反面、該構造体の強度が低下する傾向にある。該構造体の強度低下は、鋳造操作にマイナスに作用する。この観点から、第2の加熱工程における加熱は、得られる鋳物製造用構造体の曲げ強度が1MPa以上なる加熱温度及び/又は加熱時間で行うことが好ましい。   The heating temperature and time in the second heating step are related to the amount of gas generated from the resulting casting production structure and the strength of the structure. When the heating temperature is high or the heating time is long, the amount of gas generated from the casting production structure can be reduced, but on the other hand, the strength of the structure tends to be reduced. The decrease in strength of the structure negatively affects the casting operation. From this point of view, the heating in the second heating step is preferably performed at a heating temperature and / or a heating time at which the bending strength of the resulting casting manufacturing structure is 1 MPa or more.

以上の観点から、第2の加熱工程における温度の上限は、水溶性高分子及び熱膨張性粒子の熱分解温度のうち、高い方の熱分解温度をMd(℃)で表した場合、Md+180℃以下、特にMd+150℃以下とすることが好ましい。加熱時間は、熱硬化性樹脂、水溶性高分子及び熱膨張性粒子の種類にもよるが、一般に前記の温度範囲を1〜60分間、特に1〜30分間、とりわけ2〜10分間に保持することが好ましい。   From the above viewpoint, the upper limit of the temperature in the second heating step is Md + 180 ° C. when the higher thermal decomposition temperature of the water-soluble polymer and the thermally expandable particles is expressed in Md (° C.). In the following, it is particularly preferable to set Md + 150 ° C. or lower. Although the heating time depends on the type of thermosetting resin, water-soluble polymer and thermally expandable particles, the above temperature range is generally maintained for 1 to 60 minutes, particularly 1 to 30 minutes, especially 2 to 10 minutes. It is preferable.

このようにして目的とする鋳物製造用構造体が得られる。この構造体は、上述のとおり2つの加熱工程を経て得られたものなので、それに含まれる熱硬化性樹脂の硬化によって形状保持性が高く、また鋳造時にガスの発生量が少ないか、更に、通気性が高いものである。前駆体を、一度の加熱で第2の加熱工程の温度にまで加熱してしまうと、熱膨張性粒子の膨張が阻害され成形精度に悪影響を及ぼす。更に、分散媒の乾燥が急激に行われることで前駆体製造用組成物の流動性が低下し成形性が低下するという不都合がある。これに対して、2つの加熱工程を行う本実施形態の製造方法によれば、そのような不都合はない。   In this way, a target casting production structure is obtained. Since this structure was obtained through two heating steps as described above, the shape-retaining property is high due to the curing of the thermosetting resin contained therein, and the amount of gas generated during casting is low. It is highly probable. If the precursor is heated to the temperature of the second heating step by one heating, the expansion of the heat-expandable particles is hindered and adversely affects the molding accuracy. Furthermore, since the dispersion medium is rapidly dried, there is a disadvantage that the fluidity of the composition for producing a precursor is lowered and the moldability is lowered. On the other hand, according to the manufacturing method of this embodiment which performs two heating processes, there is no such inconvenience.

本実施形態に従い製造された鋳物製造用構造体の通気性に関し、後述する方法で測定された通気度は、好ましくは1〜500リットル/(cm2・分)、更に好ましくは2〜500リットル/(cm2・分)という高い値になる。したがって、本実施形態に従い製造された鋳物製造用構造体は、特に、複雑な形状の鋳物を造型するような厳しい条件で発生するガス欠陥の低減に顕著な効果を発揮する。 Regarding the air permeability of the casting production structure produced according to the present embodiment, the air permeability measured by the method described below is preferably 1 to 500 liters / (cm 2 · min), more preferably 2 to 500 liters / minute. It becomes a high value of (cm 2 · min). Therefore, the structure for manufacturing a casting manufactured according to the present embodiment exhibits a remarkable effect particularly in reducing gas defects generated under severe conditions such as molding a casting having a complicated shape.

鋳物製造用構造体の使用前(鋳造に供せられる前)の質量含水率は5質量%以下が好ましく、2質量%以下がより好ましい。含水率が低いほど、鋳造時の水蒸気に由来するガス発生量を低く抑えることができ、ガス欠陥を低減できる。   The mass water content before use of the structure for producing castings (before being used for casting) is preferably 5% by mass or less, and more preferably 2% by mass or less. The lower the moisture content, the lower the amount of gas generated due to the water vapor during casting, and the reduction of gas defects.

このようにして得られた鋳物製造用構造体には必要に応じてトリミングや薬剤の塗布等を行うことができる。この構造体中における無機粒子、無機繊維、熱硬化性樹脂の配合比(質量比率)は、無機粒子/無機繊維/熱硬化性樹脂=40〜90/1〜20/1〜30(質量比率)が好ましく、50〜85/2〜16/2〜25(質量比率)がより好ましく、50〜85/2〜16/2〜20(質量比率)が更に好ましい。また、構造体の厚さは0.2〜5mmが好ましく、0.7〜1.5mmがより好ましい。厚みがこの範囲内であると、熱膨張性粒子の膨張の成形性に及ぼす影響を抑えた上で、構造体の強度を十分に確保でき、鋳造時のガスの発生も抑えることができる。   Trimming, chemical application, etc. can be performed on the casting production structure thus obtained, as necessary. The blending ratio (mass ratio) of the inorganic particles, inorganic fibers, and thermosetting resin in this structure is inorganic particles / inorganic fibers / thermosetting resin = 40 to 90/1 to 20/1 to 30 (mass ratio). Is preferable, 50 to 85/2 to 16/2 to 25 (mass ratio) is more preferable, and 50 to 85/2 to 16/2 to 20 (mass ratio) is still more preferable. Moreover, 0.2-5 mm is preferable and, as for the thickness of a structure, 0.7-1.5 mm is more preferable. When the thickness is within this range, the strength of the structure can be sufficiently secured and the generation of gas during casting can be suppressed while suppressing the influence of the expansion of the thermally expandable particles on the moldability.

得られた鋳物製造用構造体は、内面に鋳物製品形状のキャビティを有する主型、その主型に入れて使用する中子、湯道などの注湯系部材、フィルター保持具等に適用することができる。特に、本実施形態で得られた鋳物製造用構造体を主型や中子として用いると、良好な鋳肌の鋳物を得ることができるので好ましい。とりわけ、本実施形態で得られた鋳物製造用構造体は、鋳物のガス欠陥低減効果に優れるので、注型時に溶湯金属に覆われてガス欠陥が発生しやすくなる中子への適用が好ましく、中空中子への適用がより好ましい。   The obtained structure for producing castings is applied to a main mold having a casting product-shaped cavity on the inner surface, a pouring member such as a core used in the main mold, a runner, a filter holder, and the like. Can do. In particular, it is preferable to use the casting production structure obtained in the present embodiment as a main mold or a core because a casting with a good casting surface can be obtained. In particular, the casting production structure obtained in the present embodiment is excellent in the gas defect reduction effect of the casting, and therefore is preferably applied to a core that is covered with a molten metal during casting and easily generates gas defects. Application to a hollow core is more preferable.

本実施形態で得られた鋳物製造用構造体を例えば主型として用いる場合には、該構造体を鋳物砂内の所定位置に埋設して造型すればよい。鋳物砂には、従来この種の鋳物の製造に用いられているものを特に制限なく用いることができる。そして、注湯口から溶融金属を注ぎ入れ、鋳込みを行う。このとき、本実施形態で得られた鋳物製造用構造体は、ガスの発生量が低減されており、またガスの発生時期が遅くなっており、更に通気性の高いものなので、鋳物のガス欠陥が低減されたものとなる。また、該構造体は、熱間強度が維持され、熱分解に伴う熱収縮が小さいので、該構造体のひび割れや該構造体自体の破損が抑制され、溶融金属の該構造体への差し込みや鋳物砂などの付着も生じにくい。   When the casting manufacturing structure obtained in the present embodiment is used as a main mold, for example, the structure may be formed by embedding the structure in a predetermined position in the casting sand. As the foundry sand, those conventionally used for the production of this type of casting can be used without particular limitation. Then, the molten metal is poured from the pouring gate and cast. At this time, the structure for casting production obtained in the present embodiment has a reduced gas generation amount, the generation time of the gas is delayed, and the gas permeability of the casting is higher because it is highly breathable. Is reduced. In addition, since the structure is maintained in hot strength and heat shrinkage due to thermal decomposition is small, cracks in the structure and damage to the structure itself are suppressed, and molten metal can be inserted into the structure. Adhesion of foundry sand is less likely to occur.

鋳込みを終えた後、所定の温度まで冷却し、鋳枠を解体して鋳物砂を取り除き、更にブラスト処理によって鋳物製造用構造体を取り除いて鋳物を露呈させる。このとき、熱硬化性樹脂は熱分解しているので、鋳物製造用構造体の除去処理は容易である。その後必要に応じて鋳物にトリミング処理等の後処理を施して鋳物の製造を完了する。   After the casting is completed, the casting is cooled to a predetermined temperature, the casting frame is disassembled to remove the casting sand, and the casting manufacturing structure is removed by blasting to expose the casting. At this time, since the thermosetting resin is thermally decomposed, the removal process of the casting manufacturing structure is easy. Thereafter, post-processing such as trimming is performed on the casting as necessary to complete the manufacturing of the casting.

更に好ましい鋳物の製造方法は、本実施形態で得られた鋳物製造用構造体を中空中子として使用する態様である。この場合には、鋳型内に中空中子を、該中空中子の開口部の少なくとも1つが鋳型外に開放するように配置し、次いで、鋳型内に溶融金属を注湯する。具体的には、中空中子を主型に配置し、必要によってはケレンにより中空中子を支持し、中空中子の開口部の少なくとも1つが鋳型外に開放するように配置し、次いで、鋳型内に溶融金属を注湯して鋳物を製造する方法が挙げられる。中空中子の開口部の少なくとも1つが鋳型外に開放するように配置する方法として、主型に中空中子の中空部と連通するように開口部を設ける方法を採用してもよい。   A more preferable method for producing a casting is an embodiment in which the structure for producing a casting obtained in the present embodiment is used as a hollow core. In this case, the hollow core is disposed in the mold so that at least one of the openings of the hollow core is open to the outside of the mold, and then molten metal is poured into the mold. Specifically, the hollow core is arranged in the main mold, and if necessary, the hollow core is supported by kelen, arranged so that at least one of the openings of the hollow core is opened outside the mold, and then the mold A method for producing a casting by pouring molten metal into the inside is mentioned. As a method for disposing at least one of the openings of the hollow core so as to open to the outside of the mold, a method of providing an opening in the main mold so as to communicate with the hollow portion of the hollow core may be employed.

以下、実施例により本発明を更に詳細に説明する。しかしながら、本発明の範囲はかかる実施例に制限されるものではない。特に断らない限り「%」は「質量%」を意味する。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples. Unless otherwise specified, “%” means “mass%”.

〔実施例1〕
(1)前駆体製造用組成物の調製
以下の表1に示す配合からなるドウ状の前駆体製造用組成物を調製した。なお、同表に記載のフェノール樹脂の硬化温度(Mc)は200℃であった。
[Example 1]
(1) Preparation of precursor production composition A dough-like precursor production composition having the composition shown in Table 1 below was prepared. In addition, the curing temperature (Mc) of the phenol resin described in the same table was 200 ° C.

Figure 0005368077
Figure 0005368077

(2)鋳物製造用構造体の製造
図1に示す中空棒状品に対応するキャビティを有する主型と、中空を形成する芯材とを備える成形型に、前駆体製造用組成物をエア圧力1MPaで充填し、前駆体を成形した。成形型は200℃に加熱しておいた(第1の加熱工程)。この加熱によって、前駆体に含まれている分散媒由来の蒸気や、フェノール樹脂由来のガスを成形型外へ放出させつつフェノール樹脂を硬化させた。乾燥時間は2分間とした。次いで、得られた前駆体を360℃に設定した熱風式加熱炉に3分間入れ、CMCや熱膨張性粒子由来のガスを成形型外へ放出させつつ、フェノール樹脂を更に硬化させた(第2の加熱工程)。このようにして目的とする鋳物製造用構造体を得た。
(2) Manufacture of a structure for casting production The composition for precursor production is applied to a mold having a cavity corresponding to the hollow rod-shaped product shown in FIG. And the precursor was molded. The mold was heated to 200 ° C. (first heating step). By this heating, the phenol resin was cured while releasing the vapor derived from the dispersion medium contained in the precursor and the gas derived from the phenol resin out of the mold. The drying time was 2 minutes. Next, the obtained precursor was placed in a hot-air heating furnace set at 360 ° C. for 3 minutes, and the phenol resin was further cured while releasing gas derived from CMC and thermally expandable particles out of the mold (second). Heating step). In this way, a target casting production structure was obtained.

〔実施例2ないし7〕
第2の加熱工程の条件として、以下の表2に示す条件を採用した以外は、実施例1と同様にして鋳物製造用構造体を得た。
[Examples 2 to 7]
As a condition of the second heating step, a casting manufacturing structure was obtained in the same manner as in Example 1 except that the conditions shown in Table 2 below were adopted.

〔比較例1〕
実施例1において、第1の加熱工程の温度を200℃とし、かつ第2の加熱工程を行わない以外は実施例1と同様にして鋳物製造用構造体を得た。
[Comparative Example 1]
In Example 1, the structure for casting production was obtained in the same manner as in Example 1 except that the temperature of the first heating step was set to 200 ° C. and the second heating step was not performed.

〔比較例2及び3〕
第2の加熱工程の条件として、以下の表2に示す条件を採用した以外は、実施例1と同様にして鋳物製造用構造体を得た。
[Comparative Examples 2 and 3]
As a condition of the second heating step, a casting manufacturing structure was obtained in the same manner as in Example 1 except that the conditions shown in Table 2 below were adopted.

〔評価〕
実施例1ないし7及び比較例1で得られた構造体について、曲げ強度及び通気度を以下の方法で測定した。それらの結果を表2に示す。また、実施例1及び比較例1で得られた構造体について、ガス発生量及びガス発生速度を以下の方法で測定した。その結果を図2に示す。
[Evaluation]
The structural bodies obtained in Examples 1 to 7 and Comparative Example 1 were measured for bending strength and air permeability by the following methods. The results are shown in Table 2. Moreover, about the structure obtained in Example 1 and Comparative Example 1, the gas generation amount and the gas generation speed were measured by the following methods. The result is shown in FIG.

〔曲げ強度〕
曲げ強度とは最大曲げ応力をいう。(株)オリエンテックの万能試験機(テンシロン)を用いて3点曲げ試験を行い、曲げ強度の測定を行った。すなわち、支点間距離を50mmに設定した該万能試験機付属の3点曲げ試験ジグ上に鋳物製造用構造体を設置し、支点間の中央部に上部から圧子を用いて鋳物用構造体に集中荷重を加えたときの最大荷重を測定し、下記式1より最大曲げ応力を算出した。なお、負荷速度は25mm/分で一定とした。
最大曲げ応力〔MPa〕=測定サンプルに加わる最大モーメント〔N・mm〕/測定サンプルの断面係数〔mm3〕 (1)
[Bending strength]
Bending strength refers to the maximum bending stress. A three-point bending test was performed using a universal testing machine (Tensilon) manufactured by Orientec Co., Ltd., and the bending strength was measured. That is, the casting manufacturing structure is installed on the three-point bending test jig attached to the universal testing machine with the distance between the fulcrums set to 50 mm, and concentrated on the casting structure using an indenter from the top in the center between the fulcrums. The maximum load when the load was applied was measured, and the maximum bending stress was calculated from the following formula 1. The load speed was constant at 25 mm / min.
Maximum bending stress [MPa] = Maximum moment applied to the measurement sample [N · mm] / Section modulus of the measurement sample [mm 3 ] (1)

〔通気度〕
JIS Z2601(1993)「鋳物砂の試験方法」に基づいて規定された、「消失模型用塗型剤の標準試験方法」(平成8年3月 社団法人日本鋳造工学会関西支部)の「5.通気度測定法」に従い、当該刊行物(24ページ図5−2)に記載された通気度測定装置(コンプレッサー空気通気方式)と同等原理の装置を用いて測定した。通気度Pは 「P=(V×h)/(p×a×t)」で表される。式中、Vは通過空気量(cm3)、hは試験片厚さ(cm)、Pは空気圧(cmH2O)、aは試験片断面積(cm2)、tはVが通過するに要する時間(min)である。試験片厚さは鋳物製造用構造体の肉厚、すなわち「(外径−中空部直径)/2」とし、試験片断面積は「中空部直径×円周率×長さ」とした。測定に際して、図3に示すとおり、鋳物製造用構造体の中空部に漏れなく接続できるよう、通気度試験器にゴムチューブ及び接続冶具(パッキン)を取り付けた。更に、鋳物製造用構造体の中空部片端に前記の接続冶具を隙間なく接続し、もう片端をパッキン等で塞ぎ空気の漏れを防いで測定を行った。
[Air permeability]
“5. Standard test method for disappearance model coating agent” (March 1996, Kansai Branch, Japan Foundry Engineering Society) defined based on JIS Z2601 (1993) “Testing method of foundry sand”. According to the method of measuring the air permeability, the air permeability was measured using a device having the same principle as the air permeability measuring device (compressor air ventilation method) described in the publication (FIG. 5-2 on page 24). The air permeability P is expressed by “P = (V × h) / (p × a × t)”. In the formula, V is the amount of air passing (cm 3 ), h is the thickness of the test piece (cm), P is the air pressure (cmH 2 O), a is the cross-sectional area of the test piece (cm 2 ), and t is required for V to pass. Time (min). The thickness of the test piece was the thickness of the structure for casting production, that is, “(outer diameter−hollow part diameter) / 2”, and the cross-sectional area of the test piece was “hollow part diameter × circumferential ratio × length”. At the time of measurement, as shown in FIG. 3, a rubber tube and a connecting jig (packing) were attached to the air permeability tester so that the hollow part of the casting manufacturing structure could be connected without leakage. Further, the measurement was carried out by connecting the above-mentioned connecting jig without gaps to one end of the hollow part of the structure for producing castings and closing the other end with packing or the like to prevent air leakage.

〔ガス発生量及びガス発生速度〕
HARRY W.DIETERT CO.製のガス圧力測定装置(機器名称:No.682 GAS PRESSURE TESTER)を用いて測定した。すなわち、炉内温度を予め1000℃に上昇、安定させておき、鋳物製造用構造体の任意の箇所から質量0.100gを採取することで測定サンプルとし、該測定サンプルを前記ガス圧力測定装置の所定の箇所に設置し、前記ガス圧力測定装置の取扱説明書に従い鋳物製造用構造体から発生するガスの発生量及びガス発生速度を測定した。なお、ガス発生量及びガス発生速度のデータ処理には、(株)島津製作所製のクロマトパックC−R4Aを用いた。
[Gas generation amount and gas generation speed]
HARRY W. DIETTER CO. It measured using the gas pressure measuring device made from a product (equipment name: No.682 GAS PRESURE TESTER). That is, the furnace temperature was raised to 1000 ° C. in advance and stabilized, and a mass of 0.100 g was taken from an arbitrary part of the casting manufacturing structure to obtain a measurement sample, and the measurement sample was used for the gas pressure measuring device. It installed in the predetermined location and measured the generation amount and gas generation rate of the gas which generate | occur | produce from the structure for casting manufacture according to the instruction manual of the said gas pressure measuring device. Note that Chromatopack C-R4A manufactured by Shimadzu Corporation was used for data processing of the gas generation amount and gas generation rate.

Figure 0005368077
Figure 0005368077

表2に示す結果から明らかなとおり、各実施例で得られた鋳物製造用構造体は、容易に崩壊し得ることのない1MPa以上の曲げ強度を有し、かつ通気度に関しては比較例1で得られた鋳物製造用構造体よりも値が大きい(通気度が高い)ことが判る。また、図2に示す結果から明らかなとおり、実施例1で得られた鋳物製造用構造体は、比較例1で得られた鋳物製造用構造体に比べ、ガスの発生量が少なく、かつガスの発生速度が遅いことが判る。   As is apparent from the results shown in Table 2, the structures for producing castings obtained in the respective examples have a bending strength of 1 MPa or more that does not easily collapse, and the air permeability is that of Comparative Example 1. It can be seen that the value is larger (the air permeability is higher) than the obtained structure for producing castings. Further, as is apparent from the results shown in FIG. 2, the structure for producing castings obtained in Example 1 has less gas generation than the structure for producing castings obtained in Comparative Example 1, and the gas It can be seen that the generation rate is slow.

図1は、実施例及び比較例で製造された鋳物製造用構造体に対応する中空棒状品の鋳物を示す模式図である。FIG. 1 is a schematic view showing a hollow bar-shaped casting corresponding to the casting manufacturing structure manufactured in Examples and Comparative Examples. 図2は、実施例1及び比較例1で得られた鋳物製造用構造体のガス発生量及びガス発生速度の測定結果を示すグラフである。FIG. 2 is a graph showing the measurement results of the gas generation rate and gas generation rate of the casting production structures obtained in Example 1 and Comparative Example 1. 図3は、各実施例及び比較例で得られた鋳物製造用構造体の通気度を測定するための装置を示す模式図である。FIG. 3 is a schematic view showing an apparatus for measuring the air permeability of the structure for producing castings obtained in each of Examples and Comparative Examples.

Claims (4)

無機粒子、無機繊維、熱硬化性樹脂、水溶性高分子及び熱膨張性粒子を含有する組成物を用いて製造された鋳物製造用構造体の前駆体を加熱して、該前駆体中の該熱硬化性樹脂を硬化させる第1の工程と、
第1の工程に付された後の前記前駆体を、第1の工程の加熱温度よりも高い温度で加熱する第2の工程とを含む鋳物製造用構造体の製造方法であって、
第2の工程における加熱を、前記前駆体中の前記熱硬化性樹脂の硬化温度よりも高い温度で、かつ前記水溶性高分子及び前記熱膨張性粒子の熱分解温度以上で行う鋳物製造用構造体の製造方法。
Heating a precursor of a structure for manufacturing a casting manufactured using a composition containing inorganic particles, inorganic fibers, a thermosetting resin, a water-soluble polymer and thermally expandable particles, A first step of curing the thermosetting resin;
A method for producing a casting manufacturing structure, comprising: a second step of heating the precursor after being subjected to the first step at a temperature higher than the heating temperature of the first step ;
A structure for casting production in which the heating in the second step is performed at a temperature higher than the curing temperature of the thermosetting resin in the precursor and at or above the thermal decomposition temperature of the water-soluble polymer and the thermally expandable particles. Body manufacturing method.
第2の工程における加熱を、得られる鋳物製造用構造体の曲げ強度が1MPa以上となる加熱温度及び/又は加熱時間で行う請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the heating in the second step is performed at a heating temperature and / or a heating time at which a bending strength of the resulting structure for producing a casting is 1 MPa or more. 第2の工程における加熱時間を1〜60分とする請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2 , wherein the heating time in the second step is 1 to 60 minutes. 前記水溶性高分子が、増粘性の多糖類である請求項1ないしのいずれか一項に記載の製造方法。 The method according to any one of claims 1 to 3 , wherein the water-soluble polymer is a thickening polysaccharide.
JP2008324852A 2008-12-22 2008-12-22 Manufacturing method of casting structure Expired - Fee Related JP5368077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008324852A JP5368077B2 (en) 2008-12-22 2008-12-22 Manufacturing method of casting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008324852A JP5368077B2 (en) 2008-12-22 2008-12-22 Manufacturing method of casting structure

Publications (2)

Publication Number Publication Date
JP2010142857A JP2010142857A (en) 2010-07-01
JP5368077B2 true JP5368077B2 (en) 2013-12-18

Family

ID=42563829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008324852A Expired - Fee Related JP5368077B2 (en) 2008-12-22 2008-12-22 Manufacturing method of casting structure

Country Status (1)

Country Link
JP (1) JP5368077B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746869C1 (en) * 2019-12-16 2021-04-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Stock mold

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276734A (en) * 1985-05-31 1986-12-06 Daiwa Eng Kk Mold forming method using heated metallic mold
JP2983416B2 (en) * 1993-06-29 1999-11-29 内外セラミックス株式会社 Mold structure
JPH11267789A (en) * 1998-03-24 1999-10-05 Gun Ei Chem Ind Co Ltd Composition for forming mold and forming method of mold using this composition
JP2002011544A (en) * 2000-06-30 2002-01-15 Kao Corp Composition for molding sweeping mold
JP3483033B2 (en) * 2001-04-11 2004-01-06 有限会社新成キャストエンジニアリング Raw organic binder for casting
JP2004001083A (en) * 2002-03-29 2004-01-08 Hitachi Metals Ltd Green sand core, method and device for molding it and cast member obtained by them
JP4675276B2 (en) * 2005-05-20 2011-04-20 花王株式会社 Compact
JP4869786B2 (en) * 2005-10-31 2012-02-08 花王株式会社 Casting structure
JP2008081917A (en) * 2006-08-31 2008-04-10 Kao Corp Papermaking mold and molded paper
JP5441402B2 (en) * 2008-01-22 2014-03-12 花王株式会社 Casting manufacturing structure, casting manufacturing structure composition, casting manufacturing structure manufacturing method, and casting manufacturing method

Also Published As

Publication number Publication date
JP2010142857A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP5441402B2 (en) Casting manufacturing structure, casting manufacturing structure composition, casting manufacturing structure manufacturing method, and casting manufacturing method
JP6682159B2 (en) Method for manufacturing structure for casting production
JP5680490B2 (en) Casting structure
JP4675276B2 (en) Compact
CN102976758B (en) Preparation method of macroporous interconnection SiC ceramics
JP2011056563A (en) Structure for producing casting
JP6235448B2 (en) Disappearance model coating composition
JP4869786B2 (en) Casting structure
JP5368077B2 (en) Manufacturing method of casting structure
JP5362531B2 (en) Manufacturing method of casting structure
JP5441387B2 (en) Manufacturing method of casting manufacturing structure, casting manufacturing structure, and casting manufacturing method
JP5473312B2 (en) Manufacturing method of casting structure
JP4672289B2 (en) Casting manufacturing structure, manufacturing method thereof, and casting
JP5099894B2 (en) Hollow molded body manufacturing apparatus and manufacturing method
JP6739973B2 (en) Method for manufacturing structure for casting production
CN117102435A (en) Structure for casting production
JP2011212877A (en) Method of manufacturing molded body
JP2009101553A (en) Apparatus and method for manufacturing hollow molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130912

R151 Written notification of patent or utility model registration

Ref document number: 5368077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees