JP2009099862A - 制御回路および温度制御方法 - Google Patents

制御回路および温度制御方法 Download PDF

Info

Publication number
JP2009099862A
JP2009099862A JP2007271594A JP2007271594A JP2009099862A JP 2009099862 A JP2009099862 A JP 2009099862A JP 2007271594 A JP2007271594 A JP 2007271594A JP 2007271594 A JP2007271594 A JP 2007271594A JP 2009099862 A JP2009099862 A JP 2009099862A
Authority
JP
Japan
Prior art keywords
temperature
wavelength
filter
semiconductor laser
laser element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007271594A
Other languages
English (en)
Inventor
Shinta Kawanishi
慎太 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007271594A priority Critical patent/JP2009099862A/ja
Publication of JP2009099862A publication Critical patent/JP2009099862A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】広い周囲温度範囲においてCML技術を好適に実現できる制御回路および温度制御方法を提供する。
【解決手段】強度変調された信号光を出力するレーザダイオード(LD)、LDと光学的に結合されたエタロンフィルタ、LDの温度を調整するためのペルチェ素子、及びエタロンフィルタの温度を調整するためのペルチェ素子を含む光送信器において、当該光送信器の周囲温度が所定温度を超えていない場合には、エタロンフィルタの第1の閾値波長λC1がオン強度時のピーク波長λとオフ強度時のピーク波長λとの間に位置するように、また、周囲温度が所定温度を超えている場合には、第2の閾値波長λC2(>λC1)が波長λと波長λとの間に位置するように、LD及びエタロンフィルタの各温度を制御する。
【選択図】図8

Description

本発明は、光送信器における半導体レーザ素子およびフィルタの各温度を制御するための制御回路および温度制御方法に関するものである。
光通信システムに用いられる光送信器において、高い周波数でオン/オフ変調された駆動電流をレーザダイオード(以下、LDとする)に供給することにより、高速の信号光を出力する方式(いわゆる直接変調方式)がある。しかし、このような直接変調方式では、駆動電流がオンレベルの時とオフレベルの時とでLDの活性媒質内のキャリア密度が異なり、発光波長が僅かにシフトする。なお、このような現象は、一般的にチャープ(または波長チャープ)と呼ばれている。信号光を伝搬する光ファイバには分散特性があり、信号光の波長によって光ファイバ伝搬時の光速が僅かに異なるので、チャープを含む信号光を光ファイバを介して受信すると、受光波形に乱れが生じてしまう。したがって、長距離伝送を行う場合には、一般的に直接変調方式は用いられず、LDから出力された光をEA(Electro-Absorption)変調器或いはMZ(Mach-Zender)変調器により変調する。しかし、現在の技術ではEA変調器およびMZ変調器のいずれを利用した場合であっても伝送距離は100kmが限界であり、また、EA変調器やMZ変調器を用いると光送信器の小型化が困難となる。
そこで、CML(Chirp-Managed Directly Modulated Laser)技術が注目されている(例えば非特許文献1)。CML技術とは、LDを直接変調して信号光を生成し、急峻な閾値特性を有する波長選択フィルタ(エタロンフィルタ等)をこの信号光に通過させて、駆動電流がオフレベルのときの波長の光を遮断することにより、チャープの影響を抑制する技術である。この技術によれば、光送信器の小型化を図りつつ100km〜200km程度の伝送距離が期待できる。
一方、LDの発光波長はその温度によっても変動することが知られている。波長分割多重(WDM:Wavelength Division Multiplexing)光通信システムでは、LDの発光波長の変動を防ぐため、ペルチェ素子を使ってLDの温度を一定範囲内に制御している(例えば特許文献1,2)。
Yasuhiro Matsui et al., "Chirp-Managed Directly Modulated Laser (CML)",IEEE Photonics Technology Letters, Vol. 18, No. 2, January 15, 2006 特開2000−208866号公報 特開2006−202992号公報
CML技術においてチャープの影響を効果的に抑制するためには、LDの波長シフトが波長選択フィルタの閾値波長を跨ぐように、LDの発光波長および波長選択フィルタの閾値波長を精度よく制御する必要がある。LDの発光波長および波長選択フィルタの閾値波長は温度によって変動するので、これらを精度よく制御するためにLDおよび波長選択フィルタのそれぞれにペルチェ素子(熱電変換素子)が設けられる。しかし、ペルチェ素子の温度制御能力には限界があり、例えば吸熱面と放熱面との温度差が50℃を超えると、制御対象物(LD、波長選択フィルタ)の温度を一定範囲に保つことが困難となる。したがって、CML技術において光送信器の周囲温度が大きく変化した場合、チャープによる信号光の波長シフトと波長選択フィルタの閾値波長との関係を適切に制御することが困難となる。このような場合、信号光がオン時およびオフ時の双方において波長選択フィルタを通過してしまい受信側の受光波形に乱れが生じるか、或いは、信号光がオン時およびオフ時の双方において波長選択フィルタによって遮断されてしまい、受信側で信号光を受信できなくなるといった不都合が生じる。
本発明は、上記した問題点を鑑みてなされたものであり、広い周囲温度範囲においてCML技術を好適に実現できる制御回路および温度制御方法を提供することを目的とする。
上記した課題を解決するために、本発明による制御回路は、第1の波長で第1の光強度の状態と第2の波長で第2の光強度の状態との間で変調された信号光を出力する半導体レーザ素子、半導体レーザ素子と光学的に結合され、ほぼ同様の透過率を与える第1および第2の閾値波長を有し波長に対して周期的な透過特性を示すフィルタ、半導体レーザ素子の温度を調整するための第1のペルチェ素子、フィルタの温度を調整するための第2のペルチェ素子、並びに半導体レーザ素子およびフィルタの周囲温度を検出する温度検出手段を含む光送信器における半導体レーザ素子およびフィルタの各温度を制御するための制御回路であって、第1のペルチェ素子に第1の電力を供給する第1のペルチェ駆動部と、第2のペルチェ素子に第2の電力を供給する第2のペルチェ駆動部と、を備え、周囲温度が所定温度を超えていない第1の場合には、半導体レーザ素子およびフィルタの各温度を、第1の閾値波長が第1の波長と第2の波長との間に位置するように第1および第2の電力を制御し、周囲温度が所定温度を超えている第2の場合には、半導体レーザ素子およびフィルタの各温度を、第2の閾値波長が第1の波長と第2の波長との間に位置するように第1および第2の電力を制御することを特徴とする。
また、本発明による温度制御方法は、第1の波長で第1の光強度の状態と、第2の波長で第2の光強度の状態との間で変調された信号光を出力する半導体レーザ素子、半導体レーザ素子と光学的に結合され、ほぼ同様の透過率を与える第1および第2の閾値波長を有し波長に対して周期的な透過特性を示すフィルタ、半導体レーザ素子の温度を調整するための第1のペルチェ素子、およびフィルタの温度を調整するための第2のペルチェ素子を含む光送信器における半導体レーザ素子およびフィルタの各温度を制御する方法であって、半導体レーザ素子およびフィルタの周囲温度が所定温度を超えていない第1の場合には、第1の閾値波長が第1の波長と第2の波長との間に位置するように半導体レーザ素子およびフィルタの各温度を制御し、周囲温度が所定温度を超えている第2の場合には、第2の閾値波長が第1の波長と第2の波長との間に位置するように半導体レーザ素子およびフィルタの各温度を制御することを特徴とする。
上記の制御回路および温度制御方法においては、半導体レーザ素子およびフィルタの周囲温度が所定温度を超えていない第1の場合と、周囲温度が所定温度を超えている第2の場合とで制御動作(制御方法)が異なっている。すなわち、第1の場合には、フィルタの第1の閾値波長が第1の波長と第2の波長との間に位置するように、半導体レーザ素子およびフィルタの各温度が制御される。これにより、周囲温度が比較的低い場合に、第1および第2の波長のうち何れか一方の波長の光のみを通過させるCML技術を好適に実現できる。
また、第2の場合には、第1の閾値波長と異なる第2の閾値波長が第1の波長と第2の波長との間に位置するように、半導体レーザ素子およびフィルタの各温度が制御される。すなわち、周囲温度が比較的高温になった場合には、半導体レーザ素子の発光波長を長波長側へ変動させ、エタロンフィルタの第1の閾値波長に相当する通過帯域より長波長側の、第2の閾値波長に相当する通過帯域を用いてCML技術を実現している。半導体レーザ素子の発光波長を長波長側へ変動させるとは、すなわち半導体レーザ素子の目標温度をより高く設定することに他ならず、第1のペルチェ素子の負荷を軽減し、その能力の範囲内で半導体レーザ素子の温度を好適に制御することが可能となる。したがって、上記した制御回路および温度制御方法によれば、広い周囲温度範囲においてCML技術を好適に実現できる。
上述した制御回路は、第1および第2の場合の双方に亘ってフィルタの温度が略一定となるように第2の電力を制御してもよい。同様に、温度制御方法においては、第1および第2の場合の双方に亘ってフィルタの温度を略一定に制御してもよい。
また、前述したように、ペルチェ素子の温度制御能力には限界があり、吸熱面と放熱面との温度差が50℃を超えると、LDの温度を一定に保つことが困難となる。したがって、上述した制御回路は、周囲温度が75℃を超えている場合に、半導体レーザ素子の温度が25℃を超える温度に近づくように第1の電力を制御することが好ましい。同様に、上述した温度制御方法においては、周囲温度が75℃を超えている場合に、半導体レーザ素子の温度を25℃を超える温度に制御することが好ましい。
本発明による制御回路および温度制御方法によれば、広い周囲温度範囲においてCML技術を好適に実現できる。
以下、添付図面を参照しながら本発明による制御回路および温度制御方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
図1は、本実施形態に係る温度制御回路10が搭載された光送信器1の内部構成を概略的に示すブロック図である。光送信器1は、外部から電気的な送信信号Txを受け、この送信信号Txに応じて変調された信号光Lを光ファイバFに提供する。この光ファイバFは図示しない光受信器に接続されており、該光受信器に信号光Lが送信される。信号光Lは、例えば図2に示すように、オン強度(第1の光強度)Ponおよびオフ強度(第2の光強度)Poffでもって強度変調される。
図1を参照すると、光送信器1は、CML光源装置3、レーザ駆動回路5、および温度制御回路10を備えている。CML光源装置3は、信号光Lを生成するためのモジュールであり、半導体レーザ素子(LD)31を含んで構成されている。LD31は光ファイバFの一端と光結合されており、LD31から出射された信号光Lは光ファイバFに入射する。
レーザ駆動回路5は、CML光源装置3のLD31に駆動電流Idを供給するための回路である。レーザ駆動回路5は、光送信器1の外部から送信信号Txを受け、この送信信号Txに応じた変調電流を生成する。また、レーザ駆動回路5は、定電流であるバイアス電流を生成する。レーザ駆動回路5は、これらの変調電流およびバイアス電流を重ね合わせることにより、駆動電流Idを生成する。また、レーザ駆動回路5は、信号光Lの強度(または、その相当値)を検出するフォトダイオード(以下、PDという)から強度信号Spdを受け、この強度信号Spdに基づいて、信号光Lの強度が一定値に近づくように駆動電流Idの大きさを制御する。
温度制御回路10は、CML光源装置3に含まれるLD31およびエタロンフィルタ(後述)の温度を所定温度に制御するための制御回路である。CML光源装置3の内部には図示しない2つのペルチェ素子(熱電変換素子)が設けられており、温度制御回路10は、これらのペルチェ素子に電力(ペルチェ電流Ip1,Ip2)を供給することによりLD31およびエタロンフィルタの温度を制御する。また、温度制御回路10は、CML光源装置3の内部に設けられたサーミスタなどの温度検知素子から温度信号St1,St2を受け、これらの温度信号St1,St2に基づいて、ペルチェ電流Ip1,Ip2の向きおよび大きさを制御する。
図3は、CML光源装置3の内部構成を具体的に示す図である。図3を参照すると、CML光源装置3は、LD31、第1のレンズ32a、第2のレンズ32b、第1のアイソレータ33a、第2のアイソレータ33b、ビームスプリッタ34、エタロンフィルタ35、および出射窓36を有している。また、CML光源装置3は、第1のペルチェ素子37a、第2のペルチェ素子37b、温度検知素子38a,38b、およびPD39a,39bを有している。CML光源装置3が有するこれらの構成要素は、全てケース30の内部に収容されている。
LD31は、いわゆる分布帰還型(Distributed Feedback:DFB)の半導体レーザ素子である。LD31の光出射面31aは、第1のレンズ32aおよび第1のアイソレータ33aを介してビームスプリッタ34の一方の面34aと光学的に結合されている。ビームスプリッタ34の一方の面34aはPD39aとも光結合されており、LD31から出射された信号光Lの一部は、ビームスプリッタ34により反射されてPD39aに入射する。PD39aは、入射した光の強度に応じた信号(強度信号)Spdを生成し、強度信号Spdを図1に示したレーザ駆動回路5に提供する。
ビームスプリッタ34の他方の面34bはエタロンフィルタ35(OSR:Optical Spectral Reshaping)に光結合されており、ビームスプリッタ34を透過した信号光Lはエタロンフィルタ35に入射する。そして、信号光Lのうち或る波長帯域の成分のみがエタロンフィルタ35を通過し、第2のレンズ32b、出射窓36、および第2のアイソレータ33bを通ってファイバスタブ41に達する。ファイバスタブ41には光ファイバF(図1参照)が接続され、エタロンフィルタ35を通過した信号光Lは光ファイバFに入射する。なお、ビームスプリッタ34の他方の面34bはPD39bとも光結合されており、信号光Lのうちエタロンフィルタ35によって反射された波長成分の光は、ビームスプリッタ34を介してPD39bに入射する。
第1のペルチェ素子37aは、LD31の温度を調整するための構成要素である。第1のペルチェ素子37aの一方の面上にはLD31が配置されており、第1のペルチェ素子37aの一方の面と他方の面との間で吸放熱が行われることによってLD31の温度が調整される。第1のペルチェ素子37aの吸放熱動作は、図1に示した温度制御回路10から提供されるペルチェ電流Ip1により制御される。また、LD31の近傍には温度検知素子38aが配置されており、温度検知素子38aからは、LD31の現在の温度を示す温度信号St1(図1参照)が温度制御回路10へ出力される。
第2のペルチェ素子37bは、エタロンフィルタ35の温度を調整するための構成要素である。第2のペルチェ素子37bの一方の面上にはエタロンフィルタ35が配置されており、第2のペルチェ素子37bの一方の面と他方の面との間で吸放熱が行われることによってエタロンフィルタ35の温度が調整される。第2のペルチェ素子37bの吸放熱動作は、図1に示した温度制御回路10から提供されるペルチェ電流Ip2により制御される。また、エタロンフィルタ35の近傍には温度検知素子38bが配置されており、温度検知素子38bからは、エタロンフィルタ35の現在の温度を示す温度信号St2(図1参照)が温度制御回路10へ出力される。
図4は、温度制御回路10の内部構成を示す図である。なお、図4にはCML光源装置3も併せて示されている。図4を参照すると、温度制御回路10は、第1のペルチェ駆動部11、第2のペルチェ駆動部12、温度検知素子13、および制御部14を有している。第1のペルチェ駆動部11は、LD31の温度を調整する第1のペルチェ素子37aにペルチェ電流Ip1(第1の電力)を供給する。第2のペルチェ駆動部12は、エタロンフィルタ35の温度を調整する第2のペルチェ素子37bにペルチェ電流Ip2(第2の電力)を供給する。温度検知素子13は、本実施形態における温度検出手段であり、LD31およびエタロンフィルタ35の周囲温度またはその相当温度(本実施形態では光送信器1の周囲温度)を検出する。制御部14は、ペルチェ電流Ip1およびIp2の大きさを制御することにより、LD31およびエタロンフィルタ35の温度を制御する。
第1のペルチェ駆動部11は、ディジタル−アナログ変換器(DAC)111と、差動増幅器112と、自動温度制御(ATC:Auto Temperature Control)回路113とを含む。DAC111は、制御部14から提供されたLD31の目標温度に関する信号(目標信号St01)をディジタル信号からアナログ信号へ変換して差動増幅器112へ提供する。差動増幅器112は、温度検知素子38aから提供された温度信号St1と目標信号St01との差を生成し、ATC回路113へ提供する。ATC回路113は、温度信号St1と目標信号St01との差がゼロに近づくようにペルチェ電流Ip1を生成し、第1のペルチェ素子37aに供給する。
第2のペルチェ駆動部12は、DAC121と、差動増幅器122と、ATC回路123とを含む。DAC121は、制御部14から提供されたエタロンフィルタ35の目標温度に関する信号(目標信号St02)をディジタル信号からアナログ信号へ変換して差動増幅器122へ提供する。差動増幅器122は、温度検知素子38bから提供された温度信号St2と目標信号St02との差を生成し、ATC回路123へ提供する。ATC回路123は、温度信号St2と目標信号St02との差がゼロに近づくようにペルチェ電流Ip2を生成し、第2のペルチェ素子37bに供給する。
温度検知素子13は、光送信器1の図示しないケース(筐体)に近接して配置されており、光送信器1のケースの温度を、LD31およびエタロンフィルタ35の周囲温度に相当する温度として検出する。温度検知素子13は、光送信器1のケース温度を示す温度信号St3を制御部14へ提供する。
制御部14は、例えば、所定のプログラムを格納したメモリと、該所定のプログラムを読み出して実行するCPUとを含むディジタル演算処理回路からなる。制御部14は、温度検知素子13から提供された温度信号St3に基づいて、LD31の目標温度(目標信号St01)およびエタロンフィルタ35の目標温度(目標信号St02)を設定する。
ここで、一般的なCML技術について詳細に説明し、その問題点を述べたのち、本実施形態に係る温度制御方法について、温度制御回路10の動作とともに説明する。
CML技術とは、波長チャープによる信号波形の変化を抑えるための技術であり、直接変調されたLDの光信号に、急峻な閾値特性を有する光学フィルタ(例えばエタロンフィルタ)を通過させ、オフレベルの際の発光波長を遮断することで、オンレベルの際の発光波長のみを光送信器から出力させる技術である。
図5は、CML技術を説明するための図である。光送信器においてLDを直接変調すると、駆動電流がオンレベルの時とオフレベルの時とでLDの活性媒質内のキャリア密度が異なり、発光波長が僅かにシフトする。すなわち、図5(a)に示すように、信号光がハイレベル(強度PH、第1の光強度)のときには信号光のピーク波長は所定値λ(第1の波長)となるが、信号光がローレベル(強度PL、第2の光強度)のときには信号光のピーク波長はλより短いλ(第2の波長)へシフトする。このような状態の信号光を光ファイバを介して受信すると、光ファイバが有する分散によって波長λの光と波長λの光とが重なってしまい、受信波形に乱れが生じることとなる。
そこで、CML技術ではエタロンフィルタ等の光学フィルタを利用して、信号光から波長λ付近の光をカットする。すなわち、図5(b)に示すように、光学フィルタの通過帯域Aと非通過帯域との境界である閾値波長λの両側に波長λおよび波長λがそれぞれ設定されるように、光学フィルタの特性と信号光の波長との相互関係を調整する。これにより、信号光のうち波長λの光(すなわちローレベル時の光)は光学フィルタにより遮断され、波長λの光(すなわちハイレベル時の光)のみが光学フィルタを通過する。したがって、光学フィルタの通過光を光送信器の出力とすれば、図5(c)に示すように、光送信器から出力される信号光からシフト分が取り除かれ、波長チャープを好適に抑えることができる。
なお、図5(b)では、波長λが通過帯域Aに含まれ、波長λが通過帯域Aから除外されるように相互関係が設定されているが、波長λが通過帯域Aから除外され、波長λが通過帯域Aに含まれるように相互関係が設定されてもよい。この場合、光学フィルタの反射光を光送信器の出力とすることにより、図5(c)に示すような特性を有する信号光を光送信器から出力することができる。
しかしながら、従来のCML技術には次の問題点がある。すなわち、CML技術においてチャープの影響を効果的に抑制するためには、LDの発光波長と光学フィルタの閾値波長との相互関係を精度よく制御する必要がある。そして、これらの波長は温度によって変動するので、精度よく制御するために、LDおよび光学フィルタのそれぞれにペルチェ素子が設けられる(図2に示した第1のペルチェ素子37aおよび第2のペルチェ素子37bがこれに相当する)。しかし、ペルチェ素子の温度制御能力には限界があり、例えば吸熱面と放熱面との温度差が50℃を超えると、制御対象物(LDおよび光学フィルタ)の温度を一定範囲に保つことが困難となる。図6は、このような状況の一例を説明するための図であり、横軸は光送信器のケース温度を示しており、縦軸はペルチェ電流の大きさを示している。例えばLDの目標温度が25℃である場合、ケース温度が75℃を超えるとペルチェ電流の必要量は急激に増加する。このことは、LDの温度を目標温度に近づけることが困難な状況であることを示している。したがって、従来のCML技術においては、LDおよび光学フィルタの周囲温度が大きく変化した場合、LDの発光波長と光学フィルタの閾値波長との相互関係を適切に制御することが困難となる。
そこで、本実施形態の温度制御回路10および温度制御方法においては、上述した問題点を解決するために以下に述べる三つの動作(方法)のうち何れかを実行する。
[LD目標温度を変更する]
まず、LD31の目標温度を変更する動作(方法)について説明する。図7は、LDおよびエタロンフィルタからなる光学系において、LDの発光波長を変化させたときのエタロンフィルタの通過光の強度を示すグラフの一例を示す図であり、エタロンフィルタの光学特性の典型例を表している。図7に示すように、エタロンフィルタは、波長に対して周期的な透過特性を示す。すなわち、エタロンフィルタは、複数の通過帯域Bを有しており、これら複数の通過帯域Bが一定の波長間隔λでもって存在している。本動作(方法)においては、温度制御回路10の制御部14(図4参照)が、次のようにしてLD31およびエタロンフィルタ35の各温度を制御する。すなわち、温度検知素子13により検知される光送信器1のケース温度が所定温度を超えていない場合(第1の場合)には、図8に示すグラフG1のように、エタロンフィルタ35の第1の閾値波長λC1が、信号光Lのオン強度時のピーク波長λとオフ強度時のピーク波長λとの間に位置するように、LD31の温度を制御する。そして、光送信器1のケース温度が所定温度を超えている場合(第2の場合)には、図8に示すグラフG2のように、第1の閾値波長λC1とほぼ同様の透過率を与える第2の閾値波長λC2(>λC1)が波長λと波長λとの間に位置するように、LD31の目標温度をより高温側に変更する。なお、本動作(方法)においては、第1および第2の場合の双方に亘ってエタロンフィルタ35の温度は略一定に制御される。
ここで、図9は、LDおよびエタロンフィルタからなる光学系において、LDの温度を変化させたときのエタロンフィルタの通過光の強度を示すグラフの一例である。図9を参照すると、LDの温度が15.5℃、20.5℃、および25.5℃(5℃間隔)のときに通過光の強度が極大となっており、これらのLD温度に相当する発光波長においてエタロンフィルタの透過率がピークとなっていることがわかる。例えばこの光学系に上述の動作(方法)を適用する場合には、光送信器のケース温度が所定温度を超えた際に、LDの目標温度を5×n[℃](nは自然数)上昇させるとよい。
上述の動作(方法)によれば、光送信器1のケース温度が所定温度を超えていない第1の場合には、第1の閾値波長λC1を境に信号光Lのオフレベル時の波長成分がエタロンフィルタ35により遮断され、オンレベル時の波長成分がエタロンフィルタ35を通過することができるので、CML技術を好適に実現できる。また、光送信器1のケース温度が所定温度を超えている第2の場合、すなわち光送信器1の周囲温度が大きく変化した場合には、LD31の発光波長を長波長側へ変動させ、エタロンフィルタ35の第1の閾値波長λC1に相当する通過帯域より長波長側の、第2の閾値波長λC2に相当する通過帯域を用いてCML技術を実現している。LD31の発光波長を長波長側へ変動させるとは、すなわちLD31の目標温度をより高く設定することに他ならず、第1のペルチェ素子37aの負荷を軽減し、その能力の範囲内でLD31の温度を好適に制御することが可能となる。したがって、この温度制御回路10および温度制御方法によれば、広い周囲温度範囲においてCML技術を好適に実現できる。また、ペルチェ電流の節減、ATC回路113および123の誤動作の防止、LD31の誤動作や故障の防止、並びにLD31の発光特性の維持にも寄与できる。
なお、ペルチェ素子は、その吸熱面と放熱面との温度差が50℃を超えると、LDの温度を一定に保つことが困難となる。したがって、上述した動作(方法)において、周囲温度が75℃を超えている場合には、LD31の目標温度を25℃を超える温度に設定することが好ましい。
[エタロン目標温度を変更する]
続いて、エタロンフィルタ35の目標温度を変更する動作(方法)について説明する。本動作(方法)においては、制御部14(図4参照)が、次のようにしてLD31およびエタロンフィルタ35の各温度を制御する。すなわち、光送信器1のケース温度が所定温度を超えていない第1の場合には、図10(a)に示すように、エタロンフィルタ35の或る閾値波長λが、信号光Lのオン強度時のピーク波長λとオフ強度時のピーク波長λとの間に位置するように、エタロンフィルタ35の温度を制御する。そして、光送信器1のケース温度が所定温度を超えている第2の場合には、図10(b)に示すように、エタロンフィルタ35の目標温度をより高温側に変更することにより、当該通過帯域B1をより長波長側へ移動させると共に、当該通過帯域B1より短波長側の通過帯域B2を、その境界が上記閾値波長λと略一致するように長波長側へ移動させる。なお、本動作(方法)においては、第1および第2の場合の双方に亘ってLD31の温度は略一定に制御される。
上述の動作(方法)によれば、光送信器1のケース温度に応じてエタロンフィルタ35の目標温度を変更することにより、第2のペルチェ素子37bの負荷を軽減し、その能力の範囲内でエタロンフィルタ35の温度を好適に制御することが可能となる。したがって、この温度制御回路10および温度制御方法によれば、広い周囲温度範囲においてCML技術を好適に実現できる。
[LD目標温度およびエタロン目標温度の双方を変更する]
続いて、LD31の目標温度およびエタロンフィルタ35の目標温度の双方を変更する動作(方法)について説明する。本動作(方法)においては、制御部14(図4参照)が、次のようにしてLD31およびエタロンフィルタ35の各温度を制御する。すなわち、光送信器1のケース温度が所定温度を超えていない第1の場合には、図11(a)に示すように、エタロンフィルタ35の第1の閾値波長λC1が、信号光Lのオン強度時のピーク波長λとオフ強度時のピーク波長λとの間に位置するように、LD31およびエタロンフィルタ35の各温度を制御する。そして、光送信器1のケース温度が所定温度を超えている第2の場合には、図11(b)に示すように、第2の閾値波長λC2(>λC1、但し図8に示した波長λC2と値が異なってもよい)が波長λと波長λとの間に位置するようにLD31の目標温度をより高温側に変更すると共に、エタロンフィルタ35の目標温度をより高温側に変更することにより、当該通過帯域B1を、その境界が上記閾値波長λC2と一致するように長波長側へ移動させる。
上述の動作(方法)によれば、光送信器1のケース温度に応じてLD31およびエタロンフィルタ35の各目標温度を変更することにより、第1のペルチェ素子37aおよび第2のペルチェ素子37bの負荷を軽減し、その能力の範囲内でLD31およびエタロンフィルタ35の温度を好適に制御することが可能となる。したがって、この温度制御回路10および温度制御方法によれば、広い周囲温度範囲においてCML技術を好適に実現できる。
本発明による制御回路および温度制御方法は、上記した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記実施形態では制御部14がメモリおよびCPUを含むディジタル演算処理回路からなる場合を例示したが、本発明に係る制御部はこれに限らず、メモリやCPUを含まないディジタル回路やアナログ回路によって構成されてもよい。また、上記実施形態では、第1及び第2のペルチェ素子それぞれに供給される第1及び第2の電力を一つの制御部が制御しているが、本発明に係る制御部は、第1の電力を制御する部分と第2の電力を制御する部分とに分かれていてもよい。
図1は、実施形態に係る温度制御回路が搭載された光送信器の内部構成を概略的に示すブロック図である。 図2は、信号光Lの波形の一例を示す図である。 図3は、CML光源装置の内部構成を具体的に示す図である。 図4は、温度制御回路の内部構成を示す図である。 図5は、CML技術を説明するための図である。 図6は、ペルチェ素子の温度制御能力の限界を説明するための図である。 図7は、LDおよびエタロンフィルタからなる光学系において、LDの発光波長を変化させたときのエタロンフィルタの通過光の強度を示すグラフの一例を示す図であり、エタロンフィルタの光学特性の典型例を表している。 図8は、温度制御回路の動作および温度制御方法の一つ(LD目標温度を変更する)を説明するための図である。 図9は、LDおよびエタロンフィルタからなる光学系において、LDの温度を変化させたときのエタロンフィルタの通過光の強度を示すグラフの一例である。 図10(a),(b)は、温度制御回路の動作および温度制御方法の他の一つ(エタロン目標温度を変更する)を説明するための図である。 図11(a),(b)は、温度制御回路の動作および温度制御方法の更に他の一つ(LD目標温度およびエタロン目標温度の双方を変更する)を説明するための図である。
符号の説明
1…光送信器、3…CML光源装置、5…レーザ駆動回路、10…温度制御回路、11…第1のペルチェ駆動部、12…第2のペルチェ駆動部、13,38a,38b…温度検知素子、14…制御部、30…ケース、32a,32b…レンズ、33a,33b…アイソレータ、34…ビームスプリッタ、35…エタロンフィルタ、36…出射窓、37a…第1のペルチェ素子、37b…第2のペルチェ素子、41…ファイバスタブ、112,122…差動増幅器、113,123…ATC回路、Id…駆動電流、Ip1,Ip2…ペルチェ電流、L…信号光、Tx…送信信号。

Claims (6)

  1. 第1の波長で第1の光強度の状態と第2の波長で第2の光強度の状態との間で変調された信号光を出力する半導体レーザ素子、前記半導体レーザ素子と光学的に結合され、ほぼ同様の透過率を与える第1および第2の閾値波長を有し波長に対して周期的な透過特性を示すフィルタ、前記半導体レーザ素子の温度を調整するための第1のペルチェ素子、前記フィルタの温度を調整するための第2のペルチェ素子、並びに前記半導体レーザ素子および前記フィルタの周囲温度を検出する温度検出手段を含む光送信器における前記半導体レーザ素子および前記フィルタの各温度を制御するための制御回路であって、
    前記第1のペルチェ素子に第1の電力を供給する第1のペルチェ駆動部と、
    前記第2のペルチェ素子に第2の電力を供給する第2のペルチェ駆動部と、
    を備え、
    前記周囲温度が所定温度を超えていない第1の場合には、前記半導体レーザ素子および前記フィルタの各温度を、前記第1の閾値波長が前記第1の波長と前記第2の波長との間に位置するように前記第1および第2の電力を制御し、
    前記周囲温度が前記所定温度を超えている第2の場合には、前記半導体レーザ素子および前記フィルタの各温度を、前記第2の閾値波長が前記第1の波長と前記第2の波長との間に位置するように前記第1および第2の電力を制御することを特徴とする、制御回路。
  2. 前記第1および第2の場合の双方に亘って前記フィルタの温度が略一定となるように前記第2の電力を制御することを特徴とする、請求項1に記載の制御回路。
  3. 前記周囲温度が75℃を超えている場合に、前記半導体レーザ素子の温度が25℃を超える温度に近づくように前記第1の電力を制御することを特徴とする、請求項1または2に記載の制御回路。
  4. 第1の波長で第1の光強度の状態と、第2の波長で第2の光強度の状態との間で変調された信号光を出力する半導体レーザ素子、前記半導体レーザ素子と光学的に結合され、ほぼ同様の透過率を与える第1および第2の閾値波長を有し波長に対して周期的な透過特性を示すフィルタ、前記半導体レーザ素子の温度を調整するための第1のペルチェ素子、および前記フィルタの温度を調整するための第2のペルチェ素子を含む光送信器における前記半導体レーザ素子および前記フィルタの各温度を制御する方法であって、
    前記半導体レーザ素子および前記フィルタの周囲温度が所定温度を超えていない第1の場合には、前記第1の閾値波長が前記第1の波長と前記第2の波長との間に位置するように前記半導体レーザ素子および前記フィルタの各温度を制御し、
    前記周囲温度が前記所定温度を超えている第2の場合には、前記第2の閾値波長が前記第1の波長と前記第2の波長との間に位置するように前記半導体レーザ素子および前記フィルタの各温度を制御することを特徴とする、温度制御方法。
  5. 前記第1および第2の場合の双方に亘って前記フィルタの温度を略一定に制御することを特徴とする、請求項4に記載の温度制御方法。
  6. 前記周囲温度が75℃を超えている場合に、前記半導体レーザ素子の温度を25℃を超える温度に制御することを特徴とする、請求項4または5に記載の温度制御方法。
JP2007271594A 2007-10-18 2007-10-18 制御回路および温度制御方法 Pending JP2009099862A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271594A JP2009099862A (ja) 2007-10-18 2007-10-18 制御回路および温度制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271594A JP2009099862A (ja) 2007-10-18 2007-10-18 制御回路および温度制御方法

Publications (1)

Publication Number Publication Date
JP2009099862A true JP2009099862A (ja) 2009-05-07

Family

ID=40702559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271594A Pending JP2009099862A (ja) 2007-10-18 2007-10-18 制御回路および温度制御方法

Country Status (1)

Country Link
JP (1) JP2009099862A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002903A (ja) * 2011-06-15 2013-01-07 Jeol Ltd 放射線検出装置および放射線分析装置
JP2015144190A (ja) * 2014-01-31 2015-08-06 住友電工デバイス・イノベーション株式会社 波長可変レーザの制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002903A (ja) * 2011-06-15 2013-01-07 Jeol Ltd 放射線検出装置および放射線分析装置
JP2015144190A (ja) * 2014-01-31 2015-08-06 住友電工デバイス・イノベーション株式会社 波長可変レーザの制御方法

Similar Documents

Publication Publication Date Title
US7526150B2 (en) Deployment of electro-optic amplitude varying elements (AVES) and electro-optic multi-functional elements (MFES) in photonic integrated circuits (PICS)
US9515728B2 (en) Light source module and optical transceiver
JP5785589B2 (ja) バースト光信号送信装置及びバースト光信号送信装置の制御方法
JP3745097B2 (ja) 波長のモニタリング及び波長制御のための光デバイス
US8249465B2 (en) Light transmitting apparatus and method for controlling the same
JPH10123471A (ja) 光送信機
JP2007109765A (ja) 波長可変光送信器および光送受信器
US8718476B2 (en) Tunable optical discriminator
JP2013168500A (ja) 光半導体装置
JP2009004903A (ja) 光データリンク及び光出力制御方法
US8036534B2 (en) Optical transmitter outputting a plurality of signal light with a preset wavelength span
US9711942B2 (en) Laser apparatus and optical transmitter
US20080193145A1 (en) Optical transmitting apparatus and temperature controlling method used therefor
JP6038059B2 (ja) 波長可変光源および波長可変光源モジュール
JP5109566B2 (ja) 光送信機
JP4690569B2 (ja) 半導体レーザ装置及びそれを用いた光送信装置。
JP2009099862A (ja) 制御回路および温度制御方法
US20130279912A1 (en) Bandwidth efficient dual carrier
JP2009033556A (ja) 光送信器
KR20110067777A (ko) 광송수신 제어장치
Mita et al. N2a-compliant SFP+ OLT transceiver for high power budget XG-PON systems
JP5395235B2 (ja) 波長可変光送信器および光送受信器
JP2000036794A (ja) 光伝送装置
JP5672552B2 (ja) 光モジュール
JP2009159476A (ja) 光送信機、及び、光送信機の駆動方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305