JP2009098039A - Analysis vessel and analysis device - Google Patents

Analysis vessel and analysis device Download PDF

Info

Publication number
JP2009098039A
JP2009098039A JP2007270764A JP2007270764A JP2009098039A JP 2009098039 A JP2009098039 A JP 2009098039A JP 2007270764 A JP2007270764 A JP 2007270764A JP 2007270764 A JP2007270764 A JP 2007270764A JP 2009098039 A JP2009098039 A JP 2009098039A
Authority
JP
Japan
Prior art keywords
analysis
reagent
region
reaction chamber
carrying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007270764A
Other languages
Japanese (ja)
Other versions
JP5288768B2 (en
Inventor
Miho Okano
美保 岡野
Hiroshi Saeki
博司 佐伯
Yoshiyuki Fujii
善之 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007270764A priority Critical patent/JP5288768B2/en
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to PCT/JP2008/002779 priority patent/WO2009044552A1/en
Priority to US12/681,493 priority patent/US8415140B2/en
Priority to EP18188222.6A priority patent/EP3447494B1/en
Priority to EP16195057.1A priority patent/EP3141901B1/en
Priority to CN2008801022246A priority patent/CN101796420B/en
Priority to CN201210356041.5A priority patent/CN102879558B/en
Priority to CN201310374415.0A priority patent/CN103424543B/en
Priority to EP08836397.3A priority patent/EP2209008B1/en
Publication of JP2009098039A publication Critical patent/JP2009098039A/en
Priority to US13/770,499 priority patent/US8956879B2/en
Application granted granted Critical
Publication of JP5288768B2 publication Critical patent/JP5288768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analysis vessel capable of correctly measuring an optical path length even when reagents are supported in a reaction chamber. <P>SOLUTION: A reagent support area (22) to support a reagent (8) and an analysis area (21), adjacent to the reagent support area (22), where a mixture liquid flows into are provided in the single reaction chamber (5), therefore, analysis can be performed without effect of production variation by preliminarily measuring an optical path length of the analysis area (21) before flowing a mixture liquid in each analytical vessel having a production variation and compensating an absorbance of the analysis area (21), filled with the mixture liquid, by the optical path length. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、医療分野や環境分野などにおいて、液体試料中に含まれる特定成分の濃度を分析する分析装置で使用される分析容器に関するものである。   The present invention relates to an analysis container used in an analyzer for analyzing the concentration of a specific component contained in a liquid sample in the medical field, the environmental field, or the like.

従来、血液などの液体試料を分析する分析装置は、例えば特許文献1に見られるように構成されている。これは図16に示すように、分析容器の受液部40に注入された試料液Sを、前記分析容器の流路41を介して前記分析容器の反応室41Bへ遠心力、毛細管現象で移送し、反応室41Bにおいて、反応室41Bにセットされていた試薬部44と前記試料液Sとを反応させ反応室41Bの混合液に光学的にアクセスして前記混合液の呈色反応を読み取るように構成されている。   2. Description of the Related Art Conventionally, an analyzer for analyzing a liquid sample such as blood is configured as seen in Patent Document 1, for example. As shown in FIG. 16, the sample liquid S injected into the liquid receiver 40 of the analysis container is transferred to the reaction chamber 41B of the analysis container by centrifugal force and capillary action through the flow path 41 of the analysis container. In the reaction chamber 41B, the reagent part 44 set in the reaction chamber 41B and the sample solution S are reacted to optically access the mixed solution in the reaction chamber 41B to read the color reaction of the mixed solution. It is configured.

分析装置の前記光学的にアクセスとは、試薬が試料液Sによって溶解して呈色反応が起きている反応室41B内を、分析装置に搭載された光源で照射し、その反射光もしくは透過光を受光部で検出することで、その照射光量と検出光量との比の対数である吸光度:ABSは、
ABS = log10(I/O)
ここで、Iは照射光量(入射光量)、Oは検出光量(出射光量)
と、装置内に予め記憶されている吸光度と濃度との関係データ、いわゆる検量線から液体試料中の特定成分の濃度を換算する。
The optical access of the analyzer means that the reaction chamber 41B in which a color reaction occurs due to the reagent being dissolved by the sample solution S is irradiated with a light source mounted on the analyzer, and the reflected light or transmitted light thereof. Is detected by the light receiving unit, the absorbance: ABS, which is the logarithm of the ratio of the irradiation light amount and the detected light amount,
ABS = log 10 (I / O)
Here, I is an irradiation light amount (incident light amount), and O is a detected light amount (outgoing light amount).
Then, the concentration of the specific component in the liquid sample is converted from the relationship data between the absorbance and the concentration stored in advance in the apparatus, that is, a so-called calibration curve.

この分析容器は、流路41と反応室41B等を形成する各種の凹部が上面に形成されたベースと、このベースの前記上面に接着層で接着されるカバーとで構成されており、反応室41Bへの試薬44の担持は、カバーをベースの上面に接着する前に、反応室41Bに液体状の試薬を必要量だけ滴下し、自然乾燥または凍結乾燥した後に、前記ベースと前記カバーとを接着層で接着することで分析容器が完成する。
特開2004−150804号公報(図10)
This analysis container is composed of a base in which various recesses forming the flow channel 41 and the reaction chamber 41B and the like are formed on the upper surface, and a cover bonded to the upper surface of the base with an adhesive layer. The reagent 44 is supported on 41B by dropping a required amount of a liquid reagent into the reaction chamber 41B before adhering the cover to the upper surface of the base, and after naturally drying or freeze-drying, the base and the cover are attached. The analysis container is completed by bonding with the adhesive layer.
JP 2004-150804 A (FIG. 10)

試料液Sに含まれる特定成分の濃度は、前述のとおりの方法で換算されるが、これはランバード・ベールの法則にしたがって求められるものである。
ABS = ε・c・L
ここでABSは吸光度、εはモル吸光係数、cは測定対象物の濃度、Lは測定対象物の光路長である。この式を見てもわかるように、同じ濃度の測定対象物を測定したとしても分析容器の反応室41Bの光路長のばらつきにより、吸光度がそのばらつきに比例して誤差を含み、結果として検量線から換算される濃度にも誤差を含むことになる。
The concentration of the specific component contained in the sample solution S is converted by the method as described above, which is obtained according to the Lambert-Beer law.
ABS = ε ・ c ・ L
Here, ABS is the absorbance, ε is the molar extinction coefficient, c is the concentration of the measurement object, and L is the optical path length of the measurement object. As can be seen from this equation, even if the measurement object having the same concentration is measured, the absorbance includes an error in proportion to the variation due to the variation in the optical path length of the reaction chamber 41B of the analysis container. Therefore, the density converted from 1 also includes an error.

しかし光路長ばらつきは、部品のばらつきや貼り合わせ工程時に発生する貼り合わせばらつきなどで発生し、製造上の工夫だけでは完全には無くすことが出来ない。
そこで、分析精度の向上のためには、光路長を製造時に実測し、実測値を分析容器情報としてバーコード等にして分析容器へ書き込んでおき、分析時に補正を行う必要がある。
However, the optical path length variation occurs due to component variations or bonding variations that occur during the bonding process, and cannot be completely eliminated by manufacturing measures alone.
Therefore, in order to improve the analysis accuracy, it is necessary to actually measure the optical path length at the time of manufacture, write the actually measured value to the analysis container as analysis container information as a barcode, and perform correction at the time of analysis.

しかしながら、前記従来の構成では、貼り合わせ後にレーザを利用した非接触式の位置計測器を用いて光路長を測定しようとしても、反応室41Bに担持した試薬44によってレーザ光が阻害されるため、反応室の光路長を測定できない。   However, in the conventional configuration, even if an optical path length is measured using a non-contact type position measuring device using a laser after bonding, the laser beam is inhibited by the reagent 44 carried in the reaction chamber 41B. The optical path length of the reaction chamber cannot be measured.

また、試薬担持前に光路長を測定した場合、貼り合わせばらつきまでは考慮されないため、正しく光路長を測定できないという課題を有している。
本発明は、前記従来の課題を解決するもので、製造段階において反応室に試薬が担持されていても正しく光路長を測定できる分析容器を提供することを目的とする。
Further, when the optical path length is measured before the reagent is loaded, there is a problem that the optical path length cannot be measured correctly because the bonding variation is not taken into consideration.
An object of the present invention is to solve the above-mentioned conventional problems, and to provide an analytical container capable of correctly measuring an optical path length even when a reagent is carried in a reaction chamber in a production stage.

本発明の分析容器は、反応室に移送された液体試料と前記反応室にセットされた試薬との混合液に光学的にアクセスする読み取りに使用される分析容器であって、単一の前記反応室の中に、前記試薬を担持する試薬担持領域と、前記試薬担持領域に隣接し前記混合液が流入する分析領域とを設けたことを特徴とする。   The analysis container according to the present invention is an analysis container used for optical access to a liquid mixture of a liquid sample transferred to a reaction chamber and a reagent set in the reaction chamber, and the single reaction The chamber is provided with a reagent carrying area for carrying the reagent and an analysis area adjacent to the reagent carrying area and into which the mixed solution flows.

また、単一の前記反応室の底面と上面の少なくとも一方の面に凹凸を形成し、前記凹凸の一方を試薬担持領域とし、前記凹凸の他方を分析領域としたことを特徴とする。
また、単一の前記反応室の底面と上面の少なくとも一方の面に、同一レベルの前記試薬担持領域と前記分析領域を形成し、前記試薬担持領域と前記分析領域の境目に凸部または凹部を形成したことを特徴とする。
Further, it is characterized in that an unevenness is formed on at least one of the bottom surface and the upper surface of the single reaction chamber, and one of the unevenness is used as a reagent carrying region, and the other of the unevenness is used as an analysis region.
Further, the reagent carrying region and the analysis region at the same level are formed on at least one of the bottom surface and the top surface of the single reaction chamber, and a convex portion or a concave portion is formed at the boundary between the reagent carrying region and the analysis region. It is formed.

また、前記分析領域に疎水処理を施したことを特徴とする。
また、単一の前記反応室の中に、種類の異なる前記試薬を担持する複数の試薬担持領域を設けたことを特徴とする。
Further, the analysis region is subjected to a hydrophobic treatment.
Further, the present invention is characterized in that a plurality of reagent carrying regions for carrying the different types of reagents are provided in a single reaction chamber.

この構成によれば、単一の前記反応室の中に試薬担持領域を設けるとともに、試薬担持領域とは別に前記単一の前記反応室の中に混合液が流入する分析領域を設けたので、液体試料を反応室に送り込む前に前記分析領域を測定して光路長を測定できる。そして、液体試料が反応室に送り込まれて前記試薬担持領域の試薬と反応した混合液を、前記分析領域に受け入れて分析できる。   According to this configuration, the reagent carrying region is provided in the single reaction chamber, and the analysis region through which the mixed liquid flows into the single reaction chamber is provided separately from the reagent carrying region. The optical path length can be measured by measuring the analysis region before sending the liquid sample into the reaction chamber. Then, the liquid sample sent into the reaction chamber and reacted with the reagent in the reagent carrying region can be received and analyzed in the analysis region.

以下、本発明の分析容器を各実施の形態に基づいて説明する。
なお、ここでは血液等の液体試料中に含まれる特定成分の濃度を分析する分析装置で使用される分析容器の場合を例に挙げて説明する。
Hereinafter, the analysis container of the present invention will be described based on each embodiment.
Here, the case of an analysis container used in an analyzer that analyzes the concentration of a specific component contained in a liquid sample such as blood will be described as an example.

(実施の形態1)
図1〜図5は本発明の実施の形態1を示す。
この実施の形態1の分析容器は、図1(a)(b)に示すようにベース9にカバー10が貼り合わせて構成されている。ベース9のカバー10との貼り合わせ面には、一時的に液体試料を収容しておくための液体試料収容室4と、液体試料と試薬の呈色反応を光学的に検出するための複数の反応室5a,5b,5cと、余った液体試料を溜めておくための廃液溜6が形成されている。これらの各室は、ベース9に形成された凹部の開口をカバー10で閉塞することで形成されている。3aはカバー10の液体試料注入口2から受け入れた液体試料を液体試料収容室4へ送る第1流路、3bは液体試料収容室4から反応室5a,5b,5c,廃液溜6へ液体試料を送る第2流路であって、ベース9に形成された凹部の開口をカバー10で閉塞することで形成されている。
(Embodiment 1)
1 to 5 show Embodiment 1 of the present invention.
As shown in FIGS. 1A and 1B, the analysis container according to the first embodiment is configured by attaching a cover 10 to a base 9. The bonding surface of the base 9 with the cover 10 is provided with a liquid sample storage chamber 4 for temporarily storing the liquid sample, and a plurality of optical detections for optically detecting the color reaction of the liquid sample and the reagent. Reaction chambers 5a, 5b, 5c and a waste liquid reservoir 6 for storing excess liquid samples are formed. Each of these chambers is formed by closing a recess opening formed in the base 9 with a cover 10. 3a is a first flow path for sending a liquid sample received from the liquid sample inlet 2 of the cover 10 to the liquid sample storage chamber 4, and 3b is a liquid sample from the liquid sample storage chamber 4 to the reaction chambers 5a, 5b, 5c and the waste liquid reservoir 6. Is formed by closing the opening of the recess formed in the base 9 with the cover 10.

ベース9のカバー10との貼り合わせは、反応室5a,5b,5cとなるベース9の凹部に試薬8a,8b,8cを担持させた後に、UV接着剤、ホットメルト、両面テープなどの接着用の材料を用いて実行される。また、ベース9やカバー10の一部をレーザや超音波を用いて溶かして接合することもできる。   The base 9 is bonded to the cover 10 after the reagents 8a, 8b and 8c are carried in the recesses of the base 9 which become the reaction chambers 5a, 5b and 5c, followed by bonding of UV adhesive, hot melt, double-sided tape, etc. It is executed using the material. Further, a part of the base 9 and the cover 10 can be melted and joined using a laser or ultrasonic waves.

図2はベース9の詳細を示し、図3はベース9とカバー10との接着層11による貼り合わせ後の図2のB−B′で示す反応室5a付近の断面を示している。
反応室5aの凹部の底面には、中央に周囲よりレベルが高い分析領域21が形成されており、分析領域21を取り巻く溝には試薬8aが担持されており、この部分が分析領域21に隣接した試薬担持領域22となっている。
FIG. 2 shows details of the base 9, and FIG. 3 shows a cross section near the reaction chamber 5a indicated by BB 'in FIG. 2 after the base 9 and the cover 10 are bonded together by the adhesive layer 11. As shown in FIG.
An analysis region 21 having a higher level than the periphery is formed at the bottom of the concave portion of the reaction chamber 5 a, and a reagent 8 a is carried in a groove surrounding the analysis region 21, and this portion is adjacent to the analysis region 21. The reagent carrying region 22 is obtained.

反応室5b,5cの凹部も同様に形成されており、反応室5bの分析領域21を取り巻く溝に担持された試薬8bは試薬8aとは種類が異なっている。反応室5cの分析領域21を取り巻く溝に担持された試薬8cは試薬8a,8bとは種類が異なっている。   The recesses of the reaction chambers 5b and 5c are formed in the same manner, and the type of the reagent 8b carried in the groove surrounding the analysis region 21 of the reaction chamber 5b is different from that of the reagent 8a. The reagent 8c carried in the groove surrounding the analysis region 21 of the reaction chamber 5c is different from the reagents 8a and 8b.

図4(a)は分析領域21を取り巻く溝への試薬8を担持させる工程を示しており、試薬塗布機12によって液状の試薬8aを試薬担持領域22に必要量だけ滴下し、その後に自然乾燥あるいは凍結乾燥することで固形化し、固定される。   FIG. 4 (a) shows a step of loading the reagent 8 in the groove surrounding the analysis region 21, and a liquid reagent 8a is dropped in the reagent loading region 22 by a necessary amount by the reagent applicator 12, and then naturally dried. Alternatively, it is solidified and fixed by freeze-drying.

図4(b)は図4(a)のC−C′断面を示しており、各反応室5a,5b,5cの試薬担持領域22となる溝7a,7b,7cの深さdは50μm以上あれば試薬の担持に好適である。反応室5bの溝7b,反応室5cの溝7cへも同様にして試薬8b,8cが担持させてある。   FIG. 4 (b) shows the CC ′ cross section of FIG. 4 (a), and the depth d of the grooves 7a, 7b, 7c that form the reagent carrying regions 22 of the reaction chambers 5a, 5b, 5c is 50 μm or more. If present, it is suitable for carrying a reagent. Similarly, the reagents 8b and 8c are carried in the groove 7b of the reaction chamber 5b and the groove 7c of the reaction chamber 5c.

なお、試薬8a,8b,8cを試薬担持領域22に担持させる際に試薬が分析領域21に付着しないように、反応室5a,5b,5cの各分析領域21には予め疎水処理を施すことが好ましい。   It should be noted that each analysis region 21 of the reaction chambers 5a, 5b, and 5c is subjected to a hydrophobic treatment in advance so that the reagent does not adhere to the analysis region 21 when the reagents 8a, 8b, and 8c are supported on the reagent support region 22. preferable.

このようにして試薬を担持させた分析容器1における反応室5a,5b,5cの各分析領域21の光路長がレーザ光を利用して測定され、得られた光路長の実測値が分析容器情報としてバーコードにして分析容器に印刷される。   Thus, the optical path length of each analysis region 21 of the reaction chambers 5a, 5b, and 5c in the analysis container 1 carrying the reagent is measured using the laser beam, and the actual value of the obtained optical path length is the analysis container information. As a barcode and printed on the analysis container.

この光路長の測定を図5(a)に示すようにカバー10の側から計測を行う場合には、カバー10はレーザ測長機23から出射するレーザ光の波長は透過する材質で、かつ後に説明する分析装置での分析時に使用する発光ダイオード等の光源の波長の光も透過する材質で成形されている。ベース9は前記波長の光を透過する必要は無いが、分析装置での分析時に呈色反応を検出するため、受光部に入射する光量は一定光量確保する必要がある。ここでレーザ測長機23が検出した分析領域21の実測距離L1、レーザ測長機23が検出したカバー10の内側面10aの実測距離L2であった場合には、光路長(L1−L2)をバーコードにして分析容器に印刷する。   When the optical path length is measured from the side of the cover 10 as shown in FIG. 5A, the cover 10 is made of a material that transmits the wavelength of the laser light emitted from the laser length measuring instrument 23, and later. It is formed of a material that also transmits light having a wavelength of a light source such as a light-emitting diode that is used during analysis by the analyzer described. The base 9 does not need to transmit light having the above-mentioned wavelength, but in order to detect a color reaction at the time of analysis by the analyzer, it is necessary to secure a constant amount of light incident on the light receiving unit. Here, when the measured distance L1 of the analysis region 21 detected by the laser length measuring device 23 and the measured distance L2 of the inner surface 10a of the cover 10 detected by the laser length measuring device 23, the optical path length (L1-L2). Is printed as a barcode on the analysis container.

ベース9の材料に光を透過しない材料を使用して分析装置での分析時に呈色反応を反射式で測定する場合には、各分析領域21の面にアルミ等の蒸着を行うなどして、反応室を通過する光をカバー10の側に反射させ、カバー10の側に配置した受光部で検出する必要がある。ベース9、カバー10共に光を透過する材料で構成することもできる。   When using a material that does not transmit light for the material of the base 9 and measuring the color reaction in a reflective manner at the time of analysis with the analyzer, the surface of each analysis region 21 is vapor-deposited such as aluminum, Light passing through the reaction chamber needs to be reflected to the cover 10 side and detected by a light receiving unit disposed on the cover 10 side. Both the base 9 and the cover 10 may be made of a material that transmits light.

光路長の測定を図5(b)に示すようにベース9の側から計測を行う場合には、ベース9は計測に使用するレーザ光の波長を透過する材質で、かつ分析装置での分析時に使用する光源の波長の光も透過する必要がある。カバー10は光を透過する必要は無いが、カバー10の材料に光を透過しない材料を使用する場合、カバー10にアルミ等の蒸着を行うなどして、反応室を通過する光をベース9の側に反射させベース9の側に配置した受光部で検出する必要がある。ベース9、カバー10共に光を透過する材料で構成することもできる。   When the optical path length is measured from the side of the base 9 as shown in FIG. 5B, the base 9 is made of a material that transmits the wavelength of the laser beam used for the measurement, and is analyzed by the analyzer. It is also necessary to transmit light having the wavelength of the light source used. The cover 10 does not need to transmit light, but when a material that does not transmit light is used as the material of the cover 10, the light passing through the reaction chamber is made to pass through the reaction chamber by evaporating aluminum or the like on the cover 10. It is necessary to detect with a light receiving part that is reflected to the side and arranged on the base 9 side. Both the base 9 and the cover 10 may be made of a material that transmits light.

ここでレーザ測長機23が検出した分析領域21の実測距離L2、レーザ測長機23が検出したカバー10の内側面10aの実測距離L1であった場合には、光路長(L1−L2)をバーコードにして分析容器に印刷する。   Here, when the measured distance L2 of the analysis region 21 detected by the laser length measuring device 23 and the measured distance L1 of the inner surface 10a of the cover 10 detected by the laser length measuring device 23, the optical path length (L1-L2). Is printed as a barcode on the analysis container.

なお、分析容器情報の記録方法としては、バーコードに限らず、光路長の情報を記録したICタグ等のデータキャリアを分析容器に付属させて構成することもできる。
このようにして試薬を担持させた分析容器1を使用して、次のようにして分析処理が実行されている。
The method for recording the analysis container information is not limited to the barcode, and a data carrier such as an IC tag that records the optical path length information may be attached to the analysis container.
Using the analysis container 1 carrying the reagent in this way, analysis processing is performed as follows.

液体試料には、血液の血漿成分等が用いられ、遠心分離機で分離した血液の血漿成分をマイクロビペットなどで一定量抽出し、液体試料注入口2から注入する。液体試料注入口2から注入された液体試料は、毛細管現象で液体試料収容室4へ移送される。以降の液体試料の移送操作および分析は、分析容器を分析装置に挿入後、分析装置内にて行われる。   A blood plasma component or the like is used for the liquid sample, and a certain amount of blood plasma component separated by a centrifuge is extracted with a microbipet or the like and injected from the liquid sample inlet 2. The liquid sample injected from the liquid sample inlet 2 is transferred to the liquid sample storage chamber 4 by capillary action. Subsequent liquid sample transfer operations and analysis are performed in the analyzer after the analysis container is inserted into the analyzer.

図6に示すように分析装置100のターンテーブル103の上にターンテーブル103の回転軸102から離れた位置に分析容器1がセッティングされる。104はターンテーブル103を回転軸102の回りに駆動するモータで、鉛直方向から角度θだけ傾けて取り付けられている。ターンテーブル103には開口51,52が設けられており、発光ダイオード105から出射した光が、ターンテーブル103にセットされた分析容器1の反応室5a,5b,5cの各分析領域21の位置を透過してフォトディテクタ106で検出するよう配置されている。   As shown in FIG. 6, the analysis container 1 is set on the turntable 103 of the analyzer 100 at a position away from the rotating shaft 102 of the turntable 103. Reference numeral 104 denotes a motor that drives the turntable 103 around the rotation shaft 102, and is attached at an angle θ from the vertical direction. The turntable 103 is provided with openings 51 and 52, and the light emitted from the light emitting diode 105 indicates the position of each analysis region 21 in the reaction chambers 5a, 5b, and 5c of the analysis container 1 set on the turntable 103. It arrange | positions so that it may permeate | transmit and detect with the photodetector 106. FIG.

ターンテーブル103が回転することによって図2に示すように矢印A方向へ遠心力が生じ、液体試料収容室4の内部の液体試料の移送が行われ、液体試料が反応室5a,5b,5cへと運ばれる。   As the turntable 103 rotates, a centrifugal force is generated in the direction of arrow A as shown in FIG. 2, the liquid sample inside the liquid sample storage chamber 4 is transferred, and the liquid sample is transferred to the reaction chambers 5a, 5b, 5c. It is carried.

液体試料が反応室5a,5b,5cへ流れ込むことによって、試薬8a,8b,8cが液体試料によって溶け出し、その成分に応じて呈色反応が起きる。このときには、図7に示すように、分析領域21は試薬と液体試料の混合液15によって光路長方向に満たされ、気泡による隙間がないようにしなければならない。反応室内に気泡がある場合は、回転による遠心力を利用して混合液15を一方向へ寄せるなどして、分析領域21が混合液15で満たされ光路長方向に隙間が生じないようにする必要がある。各反応室5a,5b,5cの分析領域21が混合液15で満たされた状態で発光ダイオード105とフォトディテクタ106の間を通過するタイミングに分析装置100が読み取りを実行し、このときの吸光度と分析容器1から読み取った各反応室5a,5b,5cの光路長の情報などから液体試料中の特定成分の濃度を演算する。   When the liquid sample flows into the reaction chambers 5a, 5b, and 5c, the reagents 8a, 8b, and 8c are dissolved by the liquid sample, and a color reaction occurs according to the components. At this time, as shown in FIG. 7, the analysis region 21 must be filled with the mixed solution 15 of the reagent and the liquid sample in the optical path length direction so that there is no gap due to bubbles. If there are bubbles in the reaction chamber, the analysis region 21 is filled with the mixed solution 15 so as not to generate a gap in the optical path length direction by using the centrifugal force of rotation to bring the mixed solution 15 in one direction. There is a need. The analyzer 100 performs reading at the timing when the reaction region 5a, 5b, 5c passes between the light emitting diode 105 and the photodetector 106 in a state where the analysis region 21 of the reaction chamber 5a, 5b, 5c is filled with the mixed solution 15, and the absorbance and analysis at this time are performed. The concentration of the specific component in the liquid sample is calculated from the information on the optical path length of each reaction chamber 5a, 5b, 5c read from the container 1.

このように、反応室に試薬を担持させていたにもかかわらず試薬に妨げられることなく光路長を測定できるので、貼り合わせ工程の作業ばらつきによって接着層11の厚みばらつきが生じても、分析結果をより精度よく導き出すことが出来る。   In this way, the optical path length can be measured without being hindered by the reagent even though the reagent is carried in the reaction chamber. Therefore, even if the thickness of the adhesive layer 11 varies due to variations in the bonding process, the analysis results Can be derived more accurately.

(実施の形態2)
図3に示した実施の形態1では、分析領域21の高さが試薬担持領域22よりも高く形成されていたが、図8に示す本発明の実施の形態2では、この点が異なっている。
(Embodiment 2)
In the first embodiment shown in FIG. 3, the height of the analysis region 21 is formed higher than that of the reagent carrying region 22, but this point is different in the second embodiment of the present invention shown in FIG. .

図8(a)はベース9とカバー10とを張り合わして構成される分析容器1のベース9の平面図を示し、図8(b)は図8(a)の反応室5のD−D′に沿った試薬塗布前の断面図、図8(c)はカバー貼り付け後の断面図を示している。   FIG. 8A shows a plan view of the base 9 of the analysis container 1 configured by bonding the base 9 and the cover 10, and FIG. 8B shows a DD of the reaction chamber 5 in FIG. 8A. FIG. 8C is a cross-sectional view after applying the cover, along the cross-section before applying the reagent.

この実施の形態2では図8(a)(b)に示すように分析領域21と試薬担持領域22とを同一レベルに形成し、分析領域21と試薬担持領域22との境目に凸部24を形成し、前記試薬塗布機12によって液状の試薬8aを試薬担持領域22に必要量だけ滴下して図8(c)に示すように担持させることによっても、分析領域21への試薬8aの侵入を食い止めることができる。反応室5b,5cも同様である。   In the second embodiment, as shown in FIGS. 8A and 8B, the analysis region 21 and the reagent carrying region 22 are formed at the same level, and the convex portion 24 is formed at the boundary between the analysis region 21 and the reagent carrying region 22. Also, the reagent 8a is dropped into the reagent holding region 22 by the required amount by the reagent coating machine 12 and supported as shown in FIG. 8C, so that the reagent 8a enters the analysis region 21. I can stop. The same applies to the reaction chambers 5b and 5c.

(実施の形態3)
図3に示した実施の形態1では、分析領域21の高さが試薬担持領域22よりも高く形成されていたが、図9に示す本発明の実施の形態3では、この点が異なっている。
(Embodiment 3)
In the first embodiment shown in FIG. 3, the height of the analysis region 21 is formed higher than that of the reagent carrying region 22, but this point is different in the third embodiment of the present invention shown in FIG. .

図9(a)はベース9とカバー10とを張り合わして構成される分析容器1のベース9の平面図を示し、図9(b)は図9(a)の反応室5のE−E′に沿った試薬塗布前の断面図、図9(c)はカバー貼り付け後の断面図を示している。   FIG. 9A shows a plan view of the base 9 of the analysis container 1 configured by bonding the base 9 and the cover 10, and FIG. 9B shows the EE of the reaction chamber 5 in FIG. 9A. 'Is a cross-sectional view before applying a reagent, and Fig. 9 (c) is a cross-sectional view after attaching a cover.

この実施の形態3では図9(a)(b)に示すように分析領域21と試薬担持領域22とを同一レベルに形成し、分析領域21と試薬担持領域22の境目に凹部25を形成し、前記試薬塗布機12によって液状の試薬を試薬担持領域22に必要量だけ滴下して図9(c)に示すように担持させることによっても、分析領域21への試薬の侵入を食い止めることができる。反応室5b,5cも同様である。   In the third embodiment, as shown in FIGS. 9A and 9B, the analysis region 21 and the reagent carrying region 22 are formed at the same level, and a recess 25 is formed at the boundary between the analysis region 21 and the reagent carrying region 22. The reagent can be prevented from entering the analysis region 21 by dropping a required amount of the liquid reagent onto the reagent carrying region 22 by the reagent coating machine 12 and carrying it as shown in FIG. 9C. . The same applies to the reaction chambers 5b and 5c.

(実施の形態4)
上記の各実施の形態では分析領域21の外側を試薬担持領域22が取り巻く形状であったが、図10に示す本発明の実施の形態4では、この点が異なっている。
(Embodiment 4)
In each of the above embodiments, the reagent carrying region 22 is surrounded by the outside of the analysis region 21, but this point is different in the fourth embodiment of the present invention shown in FIG.

図10(a)はベース9とカバー10とを張り合わして構成される分析容器1のベース9の平面図を示し、図10(b)は図10(a)の反応室5cのF−F′断面を示している。   FIG. 10A shows a plan view of the base 9 of the analysis container 1 configured by bonding the base 9 and the cover 10, and FIG. 10B shows the FF in the reaction chamber 5c of FIG. 10A. ′ Shows a cross section.

この実施の形態4では図10(a)に示すように反応室5cの中で、分析容器1をターンテーブル103にセットして回転させることに発生する遠心力の方向Aの最外端に分析領域21よりも深い試薬担持領域22を形成し、この試薬担持領域22に試薬8cを担持させてある。反応室5a,5bも同様である。   In the fourth embodiment, as shown in FIG. 10A, analysis is performed at the outermost end in the direction A of the centrifugal force generated when the analysis container 1 is set on the turntable 103 and rotated in the reaction chamber 5c. A reagent carrying region 22 deeper than the region 21 is formed, and the reagent 8c is carried on the reagent carrying region 22. The same applies to the reaction chambers 5a and 5b.

なお、この実施の形態4では分析領域21と試薬担持領域22の高さが異なる場合を例に挙げて説明したが、分析領域21と試薬担持領域22の高さを同じに形成するとともに、実施の形態2の図8に見られた凸部24を前記遠心力の方向Aと交差する方向に設けて分析領域21と試薬担持領域22を区切ることによっても実現できる。   In the fourth embodiment, the case where the heights of the analysis region 21 and the reagent carrying region 22 are different from each other has been described as an example. However, the analysis region 21 and the reagent carrying region 22 are formed to have the same height. 8 can be realized by separating the analysis region 21 and the reagent-carrying region 22 by providing the convex portion 24 seen in FIG. 8 of the second embodiment in a direction crossing the direction A of the centrifugal force.

なお、この実施の形態4では分析領域21と試薬担持領域22の高さが異なる場合を例に挙げて説明したが、分析領域21と試薬担持領域22の高さを同じに形成するとともに、実施の形態3の図9に見られた凹部25を前記遠心力の方向Aと交差する方向に設けて分析領域21と試薬担持領域22を区切ることによっても実現できる。   In the fourth embodiment, the case where the heights of the analysis region 21 and the reagent carrying region 22 are different from each other has been described as an example. However, the analysis region 21 and the reagent carrying region 22 are formed to have the same height. 9 can be realized by separating the analysis region 21 and the reagent carrying region 22 by providing the recess 25 seen in FIG. 9 of the third embodiment in a direction crossing the direction A of the centrifugal force.

(実施の形態5)
上記の各実施の形態では分析領域21の外側を試薬担持領域22が取り巻く形状であったが、図11に示す本発明の実施の形態5では、この点が異なっている。
(Embodiment 5)
In each of the above-described embodiments, the reagent carrying region 22 surrounds the outside of the analysis region 21, but this point is different in the fifth embodiment of the present invention shown in FIG.

図11(a)はベース9とカバー10とを張り合わして構成される分析容器1のベース9の平面図を示し、図11(b)は図11(a)の反応室5cのG−G′断面を示している。   FIG. 11A shows a plan view of the base 9 of the analysis container 1 configured by bonding the base 9 and the cover 10, and FIG. 11B shows GG in the reaction chamber 5 c of FIG. 11A. ′ Shows a cross section.

この実施の形態5では図11(a)に示すように反応室5cの中で、反応室5cの中央にこの分析容器1をターンテーブル103にセットして回転させることに発生する遠心力の方向Aに沿って分析領域21を形成し、前記遠心力の方向Aに沿って分析領域21の両側に図11(b)に示すように分析領域21よりも深い試薬担持領域22を形成し、この試薬担持領域22に試薬8cを担持させてある。試薬担持領域22は分析領域21の前記両側ではなくて片側に形成しても良い。   In the fifth embodiment, as shown in FIG. 11A, in the reaction chamber 5c, the direction of centrifugal force generated when the analysis container 1 is set on the turntable 103 and rotated in the center of the reaction chamber 5c. An analysis region 21 is formed along A, and a reagent carrying region 22 deeper than the analysis region 21 is formed on both sides of the analysis region 21 along the centrifugal force direction A, as shown in FIG. The reagent 8c is carried on the reagent carrying region 22. The reagent carrying region 22 may be formed not on both sides of the analysis region 21 but on one side.

この実施の形態5において分析領域21の両側に試薬担持領域22を形成した場合、2つの試薬担持領域22に担持させる試薬の種類は同じであったが、分析領域21の両側に形成した試薬担持領域22に担持させる試薬の種類は異なっていても良い。   In the fifth embodiment, when the reagent carrying regions 22 are formed on both sides of the analysis region 21, the types of reagents carried on the two reagent carrying regions 22 are the same, but the reagent carrying formed on both sides of the analysis region 21 is the same. The type of reagent carried on the region 22 may be different.

なお、この実施の形態5では分析領域21と試薬担持領域22の高さが異なる場合を例に挙げて説明したが、分析領域21と試薬担持領域22の高さを同じに形成するとともに、実施の形態2の図8に見られた凸部24を前記遠心力の方向Aに沿った方向に設けて分析領域21と試薬担持領域22を区切ることによっても実現できる。   In the fifth embodiment, the case where the heights of the analysis region 21 and the reagent carrying region 22 are different from each other has been described as an example. However, the analysis region 21 and the reagent carrying region 22 are formed to have the same height. 8 can be realized by separating the analysis region 21 and the reagent carrying region 22 by providing the convex portions 24 seen in FIG. 8 of the second embodiment in the direction along the direction A of the centrifugal force.

なお、この実施の形態5では分析領域21と試薬担持領域22の高さが異なる場合を例に挙げて説明したが、分析領域21と試薬担持領域22の高さを同じに形成するとともに、実施の形態3の図9に見られた凹部25を前記遠心力の方向Aに沿った方向に設けて分析領域21と試薬担持領域22を区切ることによっても実現できる。   In the fifth embodiment, the case where the heights of the analysis region 21 and the reagent carrying region 22 are different from each other has been described as an example. However, the analysis region 21 and the reagent carrying region 22 are formed to have the same height. 9 can be realized by separating the analysis region 21 and the reagent-carrying region 22 by providing the recesses 25 seen in FIG. 9 of the third embodiment in the direction along the direction A of the centrifugal force.

(実施の形態6)
上記の各実施の形態ではベース9とカバー10とを張り合わして構成される分析容器1のベース9の側にだけ試薬担持領域22を形成したが、図12に示す本発明の実施の形態6では、この点が異なっている。
(Embodiment 6)
In each of the above-described embodiments, the reagent carrying region 22 is formed only on the base 9 side of the analysis container 1 configured by bonding the base 9 and the cover 10, but Embodiment 6 of the present invention shown in FIG. So this is different.

図12(a)はベース9とカバー10とを張り合わして構成される分析容器1の図3と同じ位置の断面図を示し、ベース9の側だけでなくカバー10の側にベース9の分析領域21と対向しない位置に溝26を形成し、この溝26に試薬8dを担持させて構成することもできる。反応室5a,5bも同様である。   FIG. 12A shows a cross-sectional view of the analysis container 1 constructed by bonding the base 9 and the cover 10 at the same position as that in FIG. 3, and the analysis of the base 9 is performed not only on the base 9 side but also on the cover 10 side. It is also possible to form the groove 26 at a position not facing the region 21 and to carry the reagent 8d in the groove 26. The same applies to the reaction chambers 5a and 5b.

この実施の形態6においてベース9の側の試薬8aとカバー10の側の試薬8dとは、種類が同じであっても、異なっていても良い。
なお、この実施の形態6の上記の説明では実施の形態1の変形例を説明したが、実施の形態2〜実施の形態5の各実施の形態においても、カバー10の側にも分析領域21と対向しない位置に溝を形成し、この溝に試薬を担持させて構成することもできる。
In the sixth embodiment, the reagent 8a on the base 9 side and the reagent 8d on the cover 10 side may be the same or different.
In the above description of the sixth embodiment, the modification of the first embodiment has been described. However, in each of the second to fifth embodiments, the analysis region 21 is also provided on the cover 10 side. It is also possible to form a groove at a position that does not face the substrate and to carry a reagent in this groove.

なお、この実施の形態6の上記の説明では実施の形態1の変形例を説明したが、実施の形態2〜実施の形態5の各実施の形態においても、カバー10の側にも分析領域と試薬担持領域とを区切る凸部または凹部を形成し、カバー10の側にも試薬を担持させて構成することもできる。   In the above description of the sixth embodiment, the modification of the first embodiment has been described. However, in each of the second to fifth embodiments, an analysis region is also provided on the cover 10 side. A convex portion or a concave portion that divides the reagent carrying region can be formed, and the reagent can also be carried on the cover 10 side.

(実施の形態7)
上記の実施の形態1の分析容器では、分析領域21の高さが試薬担持領域22よりも高く形成されていたが、図13に示す本発明の実施の形態7では、この点が異なっている。
(Embodiment 7)
In the analysis container of the first embodiment, the height of the analysis region 21 is formed higher than that of the reagent carrying region 22, but this point is different in the seventh embodiment of the present invention shown in FIG. .

実施の形態7のベース9の平面図は図2(a)と同じであって、反応室5のB−B′断面が図13に示すように分析領域21の高さが試薬担持領域22よりも低く形成されている。その他は実施の形態1と同じである。反応室5a,5bも同様である。   The plan view of the base 9 of the seventh embodiment is the same as FIG. 2A, and the cross section BB ′ of the reaction chamber 5 is as shown in FIG. Is also formed low. The rest is the same as in the first embodiment. The same applies to the reaction chambers 5a and 5b.

(実施の形態8)
上記の各実施の形態の分析容器では、単一の反応室に担持された試薬は、反応室に満たされた液体試料に一度に溶け込んで反応し、その後に分析装置によって分析領域の光透過量から一つの特定成分の濃度を分析するのに使用されていたが、図14と図15に示す本発明の実施の形態8は、特定成分の分析に試薬と液体試料との反応ステップとして2段階必要な場合を示している。
(Embodiment 8)
In the analysis container of each of the above embodiments, the reagent carried in a single reaction chamber dissolves and reacts with the liquid sample filled in the reaction chamber at a time, and then the light transmission amount of the analysis region is analyzed by the analyzer. However, in the eighth embodiment of the present invention shown in FIG. 14 and FIG. 15, there are two steps as a reaction step between a reagent and a liquid sample. Shows when necessary.

工程を追って説明する。
図14(a)はベース9とカバー10とを張り合わして構成される分析容器1のベース9の要部の斜視図を示す。この分析容器1を分析装置100の前記ターンテーブル103にセットした状態の断面図を図14(b)に示す。図14(b)のベース9は図14(a)のH−H′断面を示している。
The process will be described later.
FIG. 14A is a perspective view of the main part of the base 9 of the analysis container 1 configured by bonding the base 9 and the cover 10 together. FIG. 14B shows a cross-sectional view of the analysis container 1 set on the turntable 103 of the analyzer 100. The base 9 in FIG. 14B shows the HH ′ cross section in FIG.

図14(a)に示すように反応室5aとなるベース9の凹部には、ターンテーブル103の回転中心27に対して最外周部に分析領域21として形成された液受け部28と、ターンテーブル103の回転中心27に対して液受け部28に隣接して液受け部28よりも内周側に試薬担持領域22としての第1試薬担持領域22a,第2試薬担持領域22bとが形成されている。   As shown in FIG. 14 (a), in the recess of the base 9 that becomes the reaction chamber 5 a, a liquid receiving portion 28 formed as an analysis region 21 at the outermost peripheral portion with respect to the rotation center 27 of the turntable 103, and the turntable A first reagent carrying region 22a and a second reagent carrying region 22b as reagent carrying regions 22 are formed adjacent to the liquid receiving unit 28 and on the inner peripheral side of the liquid receiving unit 28 with respect to the rotation center 27 of 103. Yes.

液受け部28と第1,第2試薬担持領域22a,22bはカバー10で図9(b)に示すように閉塞されて反応室5aを形成しており、第1,第2試薬担持領域22a,22bとカバー10との内面との間には液体試料に対して毛細管力が作用する隙間29が形成されている。第1試薬担持領域22aにはカバー10をベース9に張り合わせる前に第1の試薬8aaを担持させてある。第2試薬担持領域22bには第1の試薬8aaとは種類の違う第2の試薬8abがカバー10をベース9に張り合わせる前に担持させてある。   The liquid receiving portion 28 and the first and second reagent carrying regions 22a and 22b are closed by the cover 10 as shown in FIG. 9B to form a reaction chamber 5a, and the first and second reagent carrying regions 22a. , 22b and the inner surface of the cover 10 is formed with a gap 29 in which a capillary force acts on the liquid sample. The first reagent carrying region 22 a carries the first reagent 8 aa before the cover 10 is attached to the base 9. A second reagent 8ab of a different type from the first reagent 8aa is carried on the second reagent carrying region 22b before the cover 10 is attached to the base 9.

液体試料を液受け部28に受け入れていない状態で、図5の場合と同様にレーザ測長機23を用いて光路長Lを測定し、その光路長Lをバーコードにして分析容器1に印刷または分析容器に付けたデータキャリアに記録する。   In a state where the liquid sample is not received in the liquid receiving portion 28, the optical path length L is measured using the laser length measuring machine 23 in the same manner as in FIG. 5, and the optical path length L is printed as a barcode on the analysis container 1. Or record it on a data carrier attached to the analysis container.

このようにして第1,第2試薬8aa,8abを担持させた分析容器1を使用して、次のようにして分析処理が実行されている。
液体試料には、血液の血漿成分等が用いられ、遠心分離機で分離した血液の血漿成分をマイクロビペットなどで一定量抽出し、分析容器1に注入する。注入された液体試料は、毛細管現象とターンテーブル103の回転によって発生する遠心力によって、流路3を介して図15(a)に示すように液受け部28に移送される。次に分析容器1が図15(b)に示すように第1試薬担持領域22aが下方になる位置でターンテーブル103を停止させる。これによって、液受け部28の液体試料30が第1試薬担持領域22aの隙間29に保持されて、この状態でターンテーブル103を規程時間停止させておくことで、液体試料30に第1の試薬8aaが溶け込んで反応する(第1反応)。
Using the analysis container 1 carrying the first and second reagents 8aa and 8ab in this way, analysis processing is performed as follows.
A blood plasma component or the like is used as the liquid sample, and a certain amount of the blood plasma component separated by the centrifuge is extracted with a microbipet or the like and injected into the analysis container 1. The injected liquid sample is transferred to the liquid receiving part 28 through the flow path 3 as shown in FIG. 15A due to the capillary action and the centrifugal force generated by the rotation of the turntable 103. Next, as shown in FIG. 15B, the turntable 103 is stopped at the position where the first reagent carrying region 22a is positioned downward. As a result, the liquid sample 30 of the liquid receiving portion 28 is held in the gap 29 of the first reagent holding region 22a, and the turntable 103 is stopped for a specified time in this state, so that the liquid sample 30 has the first reagent. 8aa melts and reacts (first reaction).

次にターンテーブル103を回転させると、第1試薬担持領域22aの隙間29に保持されていた混合液31が前記遠心力によって図15(c)に示すように液受け部28に移送される。   Next, when the turntable 103 is rotated, the liquid mixture 31 held in the gap 29 of the first reagent carrying region 22a is transferred to the liquid receiving portion 28 by the centrifugal force as shown in FIG.

次に、分析容器1が図15(d)に示すように第2試薬担持領域22bが下方になる位置でターンテーブル103を停止させる。これによって、液受け部28の混合液31が第2試薬担持領域22bの隙間29に保持されて、この状態でターンテーブル103を規程時間停止させておくことで、混合液31に第2の試薬8abが更に溶け込んで反応(第2反応)して混合液32となる。   Next, as shown in FIG. 15D, the turntable 103 is stopped at the position where the second reagent carrying region 22b is positioned downward as shown in FIG. As a result, the mixed solution 31 of the liquid receiving portion 28 is held in the gap 29 of the second reagent holding region 22b, and the turntable 103 is stopped for a specified time in this state, so that the second reagent is added to the mixed solution 31. 8ab further dissolves and reacts (second reaction) to become a mixed solution 32.

次にターンテーブル103を回転させると、第2試薬担持領域22bの隙間29に保持されていた混合液32が前記遠心力によって図15(e)に示すように液受け部28に移送される。分析装置100の前記発光ダイオード105とフォトディテクタ106の間を、液受け部28が第2の試薬8abが溶け込んだ混合液32で満たされた反応室5aが通過するタイミングに読み取りを実行し、このときの吸光度と分析容器1から予め読み取って保持している反応室5aの光路長Lの情報などから液体試料中の特定成分の濃度を演算する。   Next, when the turntable 103 is rotated, the liquid mixture 32 held in the gap 29 of the second reagent carrying region 22b is transferred to the liquid receiving portion 28 by the centrifugal force as shown in FIG. Reading is performed at a timing when the reaction chamber 5a filled with the mixed solution 32 in which the second reagent 8ab is dissolved passes through the space between the light emitting diode 105 and the photodetector 106 of the analyzing apparatus 100. The concentration of the specific component in the liquid sample is calculated from the absorbance of the light and the information of the optical path length L of the reaction chamber 5a read and held from the analysis container 1 in advance.

このように、反応室5aに第1,第2の試薬8aa,8abを担持させてたにもかかわらず試薬に妨げられることなく光路長を測定できるので、貼り合わせ工程の作業ばらつきによって接着層11の厚みばらつきが生じても、分析結果をより精度よく導き出すことが出来る。また、単一の反応室5aの中に種類の異なる試薬を担持する複数の試薬担持領域8aa,8abを設けたため、試薬と液体試料との反応ステップとして2段階必要な特定成分の分析を、分析装置100による分析容器1の姿勢制御によって、単一の反応室5aだけを使用して実施できる。反応室5b,5cも同様である。   In this way, the optical path length can be measured without being disturbed by the reagent despite the first and second reagents 8aa and 8ab being carried in the reaction chamber 5a. Even if thickness variations occur, analysis results can be derived more accurately. In addition, since a plurality of reagent-carrying regions 8aa and 8ab carrying different types of reagents are provided in a single reaction chamber 5a, the analysis of specific components required for two steps as a reaction step between the reagent and the liquid sample can be performed. By controlling the posture of the analysis container 1 by the apparatus 100, it can be carried out using only a single reaction chamber 5a. The same applies to the reaction chambers 5b and 5c.

なお、上記の各実施の形態において、分析の前処理の血球分離処理を分析容器1の外で行ったが、分析装置100に分析容器1をセットした後に、ターンテーブル103の回転制御によって分離してから反応室5a,5b,5cに移送するよう構成することもできる。   In each of the above-described embodiments, the blood cell separation process, which is a pretreatment for analysis, is performed outside the analysis container 1. However, after the analysis container 1 is set in the analyzer 100, separation is performed by rotation control of the turntable 103. It can also be configured so as to be transferred to the reaction chambers 5a, 5b, 5c.

また、上記の各実施の形態において、反応室5a,5b,5cへの液体試料の移送をターンテーブル103の回転に伴う遠心力を用いたが、遠心力によらずにポンプを用いて液体試料を反応室へ移送するように構成することもできる。   In each of the above embodiments, the liquid sample is transferred to the reaction chambers 5a, 5b, and 5c using the centrifugal force accompanying the rotation of the turntable 103. Can also be configured to be transferred to the reaction chamber.

なお、実施の形態1〜実施の形態5,実施の形態7では、単一の反応室5a,5b,5cの底面(ベース9の側)と上面(カバー10の側)の底面に凹凸を形成し、前記凹凸の一方を試薬担持領域とし、前記凹凸の他方を分析領域としたが、単一の反応室5a,5b,5cの底面(ベース9の側)と上面(カバー10の側)の上面に凹凸を形成し、前記凹凸の一方を試薬担持領域とし、前記凹凸の他方を分析領域として構成することもできる。   In the first to fifth embodiments and the seventh embodiment, irregularities are formed on the bottom surfaces of the single reaction chambers 5a, 5b, and 5c (base 9 side) and the top surface (cover 10 side). One of the concaves and convexes is used as a reagent-carrying region and the other of the concaves and convexes is used as an analysis region. The bottom surface (base 9 side) and the top surface (cover 10 side) of the single reaction chambers 5a, 5b, and 5c. Concavities and convexities are formed on the upper surface, and one of the concavities and convexities can be used as a reagent carrying region, and the other concavity and convexity can be configured as an analysis region.

本発明は、生物などから採取した試料あるいは汚水などの中の各種の成分の濃度を測定する分析装置の分析精度の向上に寄与することができる。   INDUSTRIAL APPLICABILITY The present invention can contribute to improving the analysis accuracy of an analyzer that measures the concentration of various components in a sample collected from a living organism or sewage.

本発明の実施の形態1における分析容器の分解斜視図と組立斜視図The exploded perspective view and assembly perspective view of the analysis container in Embodiment 1 of this invention 同実施の形態におけるベースの平面図Plan view of base in the same embodiment 図2のB−B′線に沿った要部の拡大断面図The expanded sectional view of the principal part along the BB 'line of FIG. 同実施の形態における試薬塗布工程の斜視図とそのC−C′断面図The perspective view of the reagent application | coating process in the same embodiment, and its CC 'sectional drawing 同実施の形態における試薬と液体試料の混合液と光路長の関係を説明する断面図Sectional drawing explaining the relationship between the liquid mixture of a reagent and a liquid sample, and an optical path length in the embodiment 同実施の形態における分析容器をセットした分析装置の断面図Sectional drawing of the analyzer which set the analysis container in the embodiment 同実施の形態における分析容器をセットした分析装置での分析中の断面図Sectional view during analysis in the analyzer with the analysis container set in the same embodiment 本発明の実施の形態2の分析容器の反応室のカバー貼り付け前の平面図とそのD−D′に沿った試薬塗布前とカバー貼り付け後の断面図Plan view before attaching the cover of the reaction chamber of the analysis container according to the second embodiment of the present invention, and sectional view before and after applying the reagent along the DD ' 本発明の実施の形態3の分析容器の反応室のカバー貼り付け前の平面図とそのE−E′に沿った試薬塗布前とカバー貼り付け後の断面図Plan view before attaching the cover of the reaction chamber of the analysis container according to Embodiment 3 of the present invention, and sectional view before applying the reagent along the line EE ′ and after attaching the cover 本発明の実施の形態4におけるベースの平面図とF−F′に沿った断面図Plan view of base and sectional view along FF ′ in embodiment 4 of the present invention 本発明の実施の形態5におけるベースの平面図とG−G′に沿った断面図Plan view of base and sectional view along GG 'in embodiment 5 of the present invention 本発明の実施の形態6の分析容器の断面図Sectional drawing of the analytical container of Embodiment 6 of this invention 本発明の実施の形態7の分析容器の反応室の断面図Sectional drawing of the reaction chamber of the analysis container of Embodiment 7 of this invention 本発明の実施の形態8の分析容器の反応室のベース側の斜視図と分析装置にセットした分析容器の反応室の断面図The perspective view of the base side of the reaction chamber of the analysis container of Embodiment 8 of this invention, and sectional drawing of the reaction chamber of the analysis container set to the analyzer 同実施の形態の分析装置による分析容器の姿勢制御工程の説明図Explanatory drawing of the attitude | position control process of the analysis container by the analyzer of the embodiment 従来の分析容器の平面図Plan view of a conventional analytical container

符号の説明Explanation of symbols

1 分析容器
2 液体試料注入口
3a 第1流路
3b 第2流路
4 液体試料収容室
5a,5b,5c 反応室
6 廃液溜
7a,7b,7c 溝
8a,8b,8c,8d 試薬
8aa,8ab 第1,第2の試薬
9 ベース
10 カバー
11 接着層
12 試薬塗布機
21 分析領域
22 試薬担持領域
22a 第1試薬担持領域(試薬担持領域)
22b 第2試薬担持領域(試薬担持領域)
23 レーザ測長機
24 凸部
25 凹部
26 溝
27 ターンテーブル103の回転中心
28 液受け部(分析領域)
29 隙間
30 液体試料
31,32 混合液
51,52 開口
100 分析装置
102 回転軸
103 ターンテーブル
104 モータ
105 発光ダイオード
106 フォトディテクタ
A 遠心力の方向
L 光路長
DESCRIPTION OF SYMBOLS 1 Analysis container 2 Liquid sample inlet 3a 1st flow path 3b 2nd flow path 4 Liquid sample storage chamber 5a, 5b, 5c Reaction chamber 6 Waste liquid reservoir 7a, 7b, 7c Groove 8a, 8b, 8c, 8d Reagent 8aa, 8ab First and second reagents 9 Base 10 Cover 11 Adhesive layer 12 Reagent applicator 21 Analysis area 22 Reagent carrying area 22a First reagent carrying area (reagent carrying area)
22b Second reagent carrying area (reagent carrying area)
23 Laser length measuring machine 24 Convex part 25 Concave part 26 Groove 27 Rotation center 28 of turntable 103 Liquid receiving part (analysis region)
29 Clearance 30 Liquid sample 31, 32 Mixed solution 51, 52 Opening 100 Analyzer 102 Rotating shaft 103 Turntable 104 Motor 105 Light emitting diode 106 Photo detector A Direction of centrifugal force L Optical path length

Claims (6)

反応室に移送された液体試料と前記反応室にセットされた試薬との混合液に光学的にアクセスする読み取りに使用される分析容器であって、
単一の前記反応室の中に、
前記試薬を担持する試薬担持領域と、
前記試薬担持領域に隣接し前記混合液が流入する分析領域と
を設けた分析容器。
An analytical container used for reading to optically access a liquid mixture of a liquid sample transferred to a reaction chamber and a reagent set in the reaction chamber,
In a single said reaction chamber,
A reagent carrying region carrying the reagent;
An analysis container provided with an analysis region adjacent to the reagent carrying region and into which the mixed solution flows.
単一の前記反応室の底面と上面の少なくとも一方の面に凹凸を形成し、前記凹凸の一方を試薬担持領域とし、前記凹凸の他方を分析領域とした
請求項1記載の分析容器。
The analysis container according to claim 1, wherein irregularities are formed on at least one of a bottom surface and an upper surface of the single reaction chamber, one of the irregularities is used as a reagent carrying region, and the other of the irregularities is used as an analysis region.
単一の前記反応室の底面と上面の少なくとも一方の面に、同一レベルの前記試薬担持領域と前記分析領域を形成し、前記試薬担持領域と前記分析領域の境目に凸部または凹部を形成した
請求項1記載の分析容器。
The reagent carrying region and the analysis region having the same level are formed on at least one of the bottom surface and the top surface of the single reaction chamber, and a convex portion or a concave portion is formed at the boundary between the reagent carrying region and the analysis region. The analysis container according to claim 1.
前記分析領域に疎水処理を施した
請求項2または請求項3記載の分析容器。
The analysis container according to claim 2 or claim 3, wherein the analysis region is subjected to a hydrophobic treatment.
単一の前記反応室の中に、種類の異なる前記試薬を担持する複数の試薬担持領域を設けた
請求項1記載の分析容器。
The analysis container according to claim 1, wherein a plurality of reagent carrying regions for carrying the different types of reagents are provided in a single reaction chamber.
請求項1〜請求項5のいずれかに記載の分析容器と、
回転軸芯を持ち前記分析容器を保持する回転体と、
前記分析容器に遠心力が作用するように前記回転体を回転させる回転駆動部と、
前記分析容器の前記操作チャンバ内の液体に光学的にアクセスして測定する測定手段と
を有する分析装置。
The analysis container according to any one of claims 1 to 5,
A rotating body having a rotation axis and holding the analysis container;
A rotation drive unit that rotates the rotating body so that centrifugal force acts on the analysis container;
And an analyzer that optically accesses and measures the liquid in the operation chamber of the analysis container.
JP2007270764A 2007-10-04 2007-10-18 Analysis container and analyzer Active JP5288768B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2007270764A JP5288768B2 (en) 2007-10-18 2007-10-18 Analysis container and analyzer
EP08836397.3A EP2209008B1 (en) 2007-10-04 2008-10-03 Analysis device, and analysis apparatus and method using the same
EP18188222.6A EP3447494B1 (en) 2007-10-04 2008-10-03 Analysis method using analysis device
EP16195057.1A EP3141901B1 (en) 2007-10-04 2008-10-03 Analysis device, and analysis apparatus and method using the same
CN2008801022246A CN101796420B (en) 2007-10-04 2008-10-03 Analysis device, and analysis apparatus and analysis method using the same
CN201210356041.5A CN102879558B (en) 2007-10-04 2008-10-03 Analysis device, and analysis apparatus and analysis method using the same
PCT/JP2008/002779 WO2009044552A1 (en) 2007-10-04 2008-10-03 Analysis device, and analysis apparatus and method using the same
US12/681,493 US8415140B2 (en) 2007-10-04 2008-10-03 Analysis device, and analysis apparatus and method using the same
CN201310374415.0A CN103424543B (en) 2007-10-04 2008-10-03 Analysis method using analysis device
US13/770,499 US8956879B2 (en) 2007-10-04 2013-02-19 Analysis device and method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270764A JP5288768B2 (en) 2007-10-18 2007-10-18 Analysis container and analyzer

Publications (2)

Publication Number Publication Date
JP2009098039A true JP2009098039A (en) 2009-05-07
JP5288768B2 JP5288768B2 (en) 2013-09-11

Family

ID=40701181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270764A Active JP5288768B2 (en) 2007-10-04 2007-10-18 Analysis container and analyzer

Country Status (1)

Country Link
JP (1) JP5288768B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001530A1 (en) * 2009-07-03 2011-01-06 株式会社ティー・ティー・エム Instrument for analyzing body fluid components
WO2014017018A1 (en) * 2012-07-24 2014-01-30 パナソニック株式会社 Analytical device
WO2014078779A1 (en) * 2012-11-16 2014-05-22 Lightstat, Llc Disposable sample collection method and apparatus
JP2017122617A (en) * 2016-01-06 2017-07-13 シャープ株式会社 Container for component analysis and component analysis system
EP3766581A1 (en) * 2019-07-17 2021-01-20 Commissariat à l'Energie Atomique et aux Energies Alternatives Microfluidic device including a reaction chamber for amplification
JP2021051077A (en) * 2019-09-25 2021-04-01 林, 文貴Lin, Wen−Guay Test strip and method for manufacturing the same
JP2021131393A (en) * 2016-02-04 2021-09-09 ノヴァ バイオメディカル コーポレイション Replaceable cuvette assembly mountable in absorbance measurement system for measuring hemoglobin parameters in whole blood or bilirubin parameters in whole blood

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291163A (en) * 1988-02-11 1989-11-22 Intracel Corp Method and apparatus for performing chemical reaction and biochemical reaction by porous carrier phase
JPH05240892A (en) * 1992-02-28 1993-09-21 Sanyo Electric Co Ltd Indicator for load capacity
JPH075178A (en) * 1993-03-17 1995-01-10 Miles Inc Method for executing analysis and test and reaction container thereof
WO1995018216A1 (en) * 1993-12-30 1995-07-06 Nitta Gelatin Inc. Process for embedding culture of animal cells
JPH10206417A (en) * 1997-01-24 1998-08-07 Advance Co Ltd Blood chemical analysis material and blood chemical analysis method
JP2002221485A (en) * 2000-11-22 2002-08-09 Minolta Co Ltd Micro chip
JP2004301733A (en) * 2003-03-31 2004-10-28 Dkk Toa Corp Analyzer and analyzing method
JP2005114468A (en) * 2003-10-06 2005-04-28 Sony Corp Manufacturing method of substrate for bioassay using lyophilic processing and substrate for bioassay
JP2005181350A (en) * 2005-03-22 2005-07-07 Tohoku Techno Arch Co Ltd Analyzing method using projecting region
JP2005274241A (en) * 2004-03-23 2005-10-06 Advance Co Ltd Biological information detection unit
JP2005345464A (en) * 2004-05-06 2005-12-15 Matsushita Electric Ind Co Ltd Sensor, measuring apparatus and measurement method
JP2005345160A (en) * 2004-05-31 2005-12-15 Advance Co Ltd Biological information analyzing unit
JP2006145450A (en) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Optical analytical device
JP2007010319A (en) * 2005-06-28 2007-01-18 Advance Co Ltd Biochemical analyzer
JP2007040833A (en) * 2005-08-03 2007-02-15 Advance Co Ltd Biochemical analyzer
JP2007078676A (en) * 2005-08-19 2007-03-29 Matsushita Electric Ind Co Ltd Device for analytical use, and analyzing apparatus using this
JP2007127495A (en) * 2005-11-02 2007-05-24 Matsushita Electric Ind Co Ltd Disk for sample analysis

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291163A (en) * 1988-02-11 1989-11-22 Intracel Corp Method and apparatus for performing chemical reaction and biochemical reaction by porous carrier phase
JPH05240892A (en) * 1992-02-28 1993-09-21 Sanyo Electric Co Ltd Indicator for load capacity
JPH075178A (en) * 1993-03-17 1995-01-10 Miles Inc Method for executing analysis and test and reaction container thereof
WO1995018216A1 (en) * 1993-12-30 1995-07-06 Nitta Gelatin Inc. Process for embedding culture of animal cells
JPH10206417A (en) * 1997-01-24 1998-08-07 Advance Co Ltd Blood chemical analysis material and blood chemical analysis method
JP2002221485A (en) * 2000-11-22 2002-08-09 Minolta Co Ltd Micro chip
JP2004301733A (en) * 2003-03-31 2004-10-28 Dkk Toa Corp Analyzer and analyzing method
JP2005114468A (en) * 2003-10-06 2005-04-28 Sony Corp Manufacturing method of substrate for bioassay using lyophilic processing and substrate for bioassay
JP2005274241A (en) * 2004-03-23 2005-10-06 Advance Co Ltd Biological information detection unit
JP2005345464A (en) * 2004-05-06 2005-12-15 Matsushita Electric Ind Co Ltd Sensor, measuring apparatus and measurement method
JP2005345160A (en) * 2004-05-31 2005-12-15 Advance Co Ltd Biological information analyzing unit
JP2006145450A (en) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Optical analytical device
JP2005181350A (en) * 2005-03-22 2005-07-07 Tohoku Techno Arch Co Ltd Analyzing method using projecting region
JP2007010319A (en) * 2005-06-28 2007-01-18 Advance Co Ltd Biochemical analyzer
JP2007040833A (en) * 2005-08-03 2007-02-15 Advance Co Ltd Biochemical analyzer
JP2007078676A (en) * 2005-08-19 2007-03-29 Matsushita Electric Ind Co Ltd Device for analytical use, and analyzing apparatus using this
JP2007127495A (en) * 2005-11-02 2007-05-24 Matsushita Electric Ind Co Ltd Disk for sample analysis

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001530A1 (en) * 2009-07-03 2011-01-06 株式会社ティー・ティー・エム Instrument for analyzing body fluid components
JP5339554B2 (en) * 2009-07-03 2013-11-13 株式会社ティー・ティー・エム Body fluid component analyzer
WO2014017018A1 (en) * 2012-07-24 2014-01-30 パナソニック株式会社 Analytical device
CN103890591A (en) * 2012-07-24 2014-06-25 松下电器产业株式会社 Analytical device
JP5705329B2 (en) * 2012-07-24 2015-04-22 パナソニックヘルスケアホールディングス株式会社 Analytical device
US9145579B2 (en) 2012-07-24 2015-09-29 Panasonic Healthcare Co., Ltd. Analyzing device
JPWO2014017018A1 (en) * 2012-07-24 2016-07-07 パナソニックヘルスケアホールディングス株式会社 Analytical device
WO2014078779A1 (en) * 2012-11-16 2014-05-22 Lightstat, Llc Disposable sample collection method and apparatus
JP2017122617A (en) * 2016-01-06 2017-07-13 シャープ株式会社 Container for component analysis and component analysis system
JP2021131393A (en) * 2016-02-04 2021-09-09 ノヴァ バイオメディカル コーポレイション Replaceable cuvette assembly mountable in absorbance measurement system for measuring hemoglobin parameters in whole blood or bilirubin parameters in whole blood
JP7266063B2 (en) 2016-02-04 2023-04-27 ノヴァ バイオメディカル コーポレイション A replaceable cuvette assembly mountable in an absorbance measurement system for measuring whole blood hemoglobin parameters or whole blood bilirubin parameters
EP4071460B1 (en) * 2016-02-04 2024-09-11 Nova Biomedical Corporation A replacable cuvette assembly
EP3766581A1 (en) * 2019-07-17 2021-01-20 Commissariat à l'Energie Atomique et aux Energies Alternatives Microfluidic device including a reaction chamber for amplification
FR3098827A1 (en) * 2019-07-17 2021-01-22 Commissariat à l'Energie Atomique et aux Energies Alternatives Microfluidic device including amplification reaction
US11505823B2 (en) 2019-07-17 2022-11-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Microfluidic device including an amplification reaction chamber
JP2021051077A (en) * 2019-09-25 2021-04-01 林, 文貴Lin, Wen−Guay Test strip and method for manufacturing the same

Also Published As

Publication number Publication date
JP5288768B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5288768B2 (en) Analysis container and analyzer
US7599275B2 (en) Optical discs for measuring analytes
JP4702182B2 (en) Optical analysis device and optical analysis apparatus
US8267318B2 (en) Liquid barcode and liquid barcode reader
US7542383B2 (en) Optical disc assemblies for performing assays
JPWO2008053743A1 (en) Microchip and analyzer using the same
WO2002046762A2 (en) Optical disc assemblies for performing assays
US20050048595A1 (en) Bioassay unit and substrate for bioassay
PT103601A (en) DETECTION DEVICE BASED ON SURFACE PLASMA RESONANCE EFFECT
JP5182664B2 (en) Microchip and method of using the same
JP3926171B2 (en) Analysis equipment
JP2013532824A (en) Measuring cassette and measuring device for detecting target molecules in a liquid specimen by measuring fluorescence emission after excitation in an evanescent field
US20120200856A1 (en) Sample analysis apparatus
JP2011021954A (en) Analysis device and method
JP2006258696A (en) Analysis disc and analyzer using the same
JP2012255773A (en) Sample analyzing disk and method for manufacturing sample analyzing disk
JP2007333440A (en) Sample measuring method, and sample measuring device
JP4670015B2 (en) Photodetection type molecular sensor and molecular detection method
JP2007040845A (en) Reaction vessel and analytical apparatus using the same
JP2009236504A (en) Analyzer
EP2320232B1 (en) Liquid sample analysis device
JP4216233B2 (en) Analysis substrate and analyzer
JP4802654B2 (en) Analysis equipment
JP5207709B2 (en) Analytical device, analytical apparatus and analytical method using the same
JP2006145452A (en) Chamber for liquid inspection, liquid analyzing apparatus using chamber for liquid inspection, and thickness measurement method of chamber for liquid inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130604

R151 Written notification of patent or utility model registration

Ref document number: 5288768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250