JP2007040845A - Reaction vessel and analytical apparatus using the same - Google Patents

Reaction vessel and analytical apparatus using the same Download PDF

Info

Publication number
JP2007040845A
JP2007040845A JP2005225867A JP2005225867A JP2007040845A JP 2007040845 A JP2007040845 A JP 2007040845A JP 2005225867 A JP2005225867 A JP 2005225867A JP 2005225867 A JP2005225867 A JP 2005225867A JP 2007040845 A JP2007040845 A JP 2007040845A
Authority
JP
Japan
Prior art keywords
reaction
thin film
metal thin
liquid
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005225867A
Other languages
Japanese (ja)
Inventor
Yuji Ogawa
祐司 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005225867A priority Critical patent/JP2007040845A/en
Publication of JP2007040845A publication Critical patent/JP2007040845A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reaction vessel capable of making a liquid sample minute, and to provide an analytical apparatus capable of being made compact. <P>SOLUTION: The analyzing apparatus and the reaction vessel which has a sidewall and a bottom wall, to which the liquid sample including a specimen and a reagent is dispensed, and which holds a reaction liquid resulting from the reaction of the liquid sample, are provided. In the reaction vessel 15, the horizontal cross-sectional area of the upper section of the side wall is made larger than that of the lower section of the sidewall in order to be made stackable, and a portion or the whole of the bottom wall is made of a metal thin film 15b. The analyzing apparatus comprises a constant-temperature bath 9 for immersing the metal thin film of the reaction vessel in a transparent constant-temperature liquid Lt and for keeping the liquid sample at a prescribed temperature; a light source 6a for irradiating the metal thin film with light through the constant-temperature bath, at an incidence angle not smaller than the critical angle; a light-receiving element 6d for receiving light reflected by the metal thin film; and a control section which calculates a refractive index of the reaction liquid, by using a resonance angle of surface plasmon resonance caused by the light impinging on the metal thin film, and obtains the material concentration of the reaction liquid, based on the relation between the refractive index and absorbance of the reaction liquid at the measured resonance angle and the relation between the absorbance and the material concentration of the reaction liquid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、反応容器とこの反応容器を用いた分析装置に関するものである。   The present invention relates to a reaction vessel and an analyzer using the reaction vessel.

従来、血液等の生体試料(検体)を分析する分析装置は、反応容器に検体と試薬とをそれぞれ分注して反応させ、この反応液の吸光度を光電的に測定することによって反応液中の物質濃度を分析している。このとき、分析装置は、測定機構の簡略化の点で優れていることから反応液を反応容器に入れたままで測光する方式を採用し、種々の反応容器が提案されている(例えば、特許文献1参照)。   Conventionally, an analyzer for analyzing a biological sample (specimen) such as blood dispenses and reacts a specimen and a reagent in a reaction container, and the absorbance of the reaction liquid is measured photoelectrically. Analyzing substance concentration. At this time, since the analyzer is excellent in terms of simplification of the measurement mechanism, various types of reaction vessels have been proposed by adopting a method in which photometry is performed while the reaction solution is kept in the reaction vessel (for example, patent documents). 1).

特公平1−21455号公報Japanese Patent Publication No. 1-2455

ところで、従来の反応容器は、反応液の吸光度を測定するため直径2〜3mmの光束を反応液に透過させる必要がある。このため、従来の反応容器は、反応液の量を少なくとも数十μL必要とし、患者の肉体的負担軽減のための検体の微量化に伴う小型化が難しく、分析装置の小型化も難しいという問題があった。また、分析装置は、一度に多数の検体を扱う関係上、反応容器を多数使用するため、これら多数の反応容器を収容する広いスペースを必要とし、小型化が難しかった。   By the way, in order to measure the light absorbency of a reaction liquid, the conventional reaction container needs to permeate | transmit a light beam with a diameter of 2-3 mm to a reaction liquid. For this reason, the conventional reaction vessel requires at least several tens of μL of the reaction solution, and it is difficult to reduce the size of the sample due to the minute amount of the sample for reducing the physical burden on the patient, and it is also difficult to reduce the size of the analyzer. was there. In addition, since the analyzer uses a large number of reaction containers in view of handling a large number of samples at a time, it requires a wide space for accommodating the large number of reaction containers and is difficult to reduce in size.

本発明は、上記に鑑みてなされたものであって、液体試料の微量化が可能な反応容器と小型化が可能な分析装置を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a reaction vessel capable of reducing the amount of a liquid sample and an analyzer capable of being miniaturized.

上述した課題を解決し、目的を達成するために、請求項1に係る反応容器は、側壁と底壁とを有し、検体と試薬とを含む液体試料が分注され、前記液体試料が反応した反応液を保持する反応容器であって、前記側壁上部の水平方向の断面積を前記側壁下部の水平方向の断面積よりも大きく設定して積み重ね可能とすると共に、前記底壁の一部又は全部を金属薄膜としたことを特徴とする。   In order to solve the above-described problems and achieve the object, the reaction container according to claim 1 has a side wall and a bottom wall, dispenses a liquid sample containing a specimen and a reagent, and the liquid sample reacts. A reaction vessel for holding the reaction liquid, wherein the horizontal cross-sectional area of the upper side wall is set larger than the horizontal cross-sectional area of the lower side wall and can be stacked, and a part of the bottom wall or The whole is a metal thin film.

また、請求項2に係る反応容器は、上記の発明において、前記側壁は、積み重ねた他の容器の側壁との間に隙間を形成する凸部が外面に設けられていることを特徴とする。   The reaction container according to claim 2 is characterized in that, in the above-mentioned invention, the side wall is provided with a convex portion forming a gap with a side wall of another stacked container.

また、上述した課題を解決し、目的を達成するために、請求項3に係る分析装置は、容器に保持された検体と試薬とを含む液体試料を反応させ、反応液を分析する分析装置であって、前記反応容器の前記金属薄膜を透明な恒温液に浸し、前記液体試料を所定温度に保持する恒温槽と、前記恒温槽を介して前記金属薄膜に臨界角以上の入射角で光を照射する光源と、前記金属薄膜によって反射された光を受光する受光素子と、前記金属薄膜に照射された光の表面プラズモン共鳴の共鳴角から前記反応液の屈折率を算出し、予め測定しておいた前記共鳴角における前記反応液の屈折率と吸光度との関係並びに前記吸光度と前記反応液の物質濃度との関係から前記反応液の物質濃度を求める制御部と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, an analyzer according to claim 3 is an analyzer that analyzes a reaction liquid by reacting a liquid sample containing a specimen and a reagent held in a container. And immersing the metal thin film of the reaction vessel in a transparent thermostat, and holding the liquid sample at a predetermined temperature, and passing the light through the thermostat at an incident angle greater than a critical angle to the metal thin film. The refractive index of the reaction solution is calculated from the resonance angle of the surface plasmon resonance of the light source irradiated, the light receiving element that receives the light reflected by the metal thin film, and the light irradiated to the metal thin film, and measured in advance. A control unit for determining the substance concentration of the reaction solution from the relationship between the refractive index and the absorbance of the reaction solution at the resonance angle and the relationship between the absorbance and the substance concentration of the reaction solution. To do.

また、請求項4に係る分析装置は、上記の発明において、更に、前記反応容器を複数積み重ねて収納し、1つずつ供給する容器供給装置を備えていることを特徴とする。   According to a fourth aspect of the present invention, there is provided the analyzer according to the above invention, further comprising a container supply device that stores a plurality of the reaction containers stacked and supplies them one by one.

また、請求項5に係る分析装置は、上記の発明において、更に、測定が終了した前記反応容器を廃棄する廃棄装置を備えていることを特徴とする。   The analyzer according to claim 5 is characterized in that, in the above-mentioned invention, further comprises a discarding device for discarding the reaction container whose measurement has been completed.

本発明にかかる反応容器は、底壁の一部又は全部を金属薄膜としたので、表面プラズモン共鳴を利用することによって微量の液体試料であっても分析できるため、小型化が可能となる。また、この反応容器を用いた本発明の分析装置は、反応容器の金属薄膜を透明な恒温液に浸し、前記液体試料を所定温度に保持する恒温槽と、前記恒温槽を介して前記金属薄膜に臨界角以上の入射角で光を照射する光源と、前記金属薄膜によって反射された光を受光する受光素子と、前記金属薄膜に照射された光の表面プラズモン共鳴の共鳴角から前記反応液の屈折率を算出し、予め測定しておいた前記共鳴角における前記反応液の屈折率と吸光度との関係並びに前記吸光度と前記反応液の物質濃度との関係から前記反応液の物質濃度を求める制御部とを備えた。このため、本発明の分析装置は、検体を含む液体試料が微量であっても分析することができる。また、小型化される反応容器は、側壁上部の水平方向の断面積を前記側壁下部の水平方向の断面積よりも大きく設定して積み重ね可能とした。このため、本発明の分析装置は、複数の反応容器であってもスペースを取ることなくコンパクトに収容できるため、小型化が可能になるという効果を奏する。   Since the reaction container according to the present invention uses a metal thin film for a part or all of the bottom wall, it can be analyzed even with a small amount of liquid sample by utilizing surface plasmon resonance. Further, the analyzer of the present invention using this reaction vessel includes a constant temperature bath that holds the liquid sample at a predetermined temperature by immersing the thin metal film of the reaction vessel in a transparent constant temperature solution, and the metal thin film via the constant temperature bath. A light source that emits light at an incident angle greater than a critical angle, a light receiving element that receives light reflected by the metal thin film, and a surface plasmon resonance resonance angle of the light irradiated on the metal thin film. Control for calculating the refractive index and determining the substance concentration of the reaction liquid from the relation between the refractive index of the reaction liquid and the absorbance at the resonance angle measured in advance and the relation between the absorbance and the substance concentration of the reaction liquid. And equipped with. For this reason, the analyzer of the present invention can analyze even if the liquid sample containing the sample is in a very small amount. Further, the reaction vessel to be miniaturized can be stacked by setting the horizontal cross-sectional area of the upper side wall to be larger than the horizontal cross-sectional area of the lower side wall. For this reason, since the analyzer of the present invention can be accommodated in a compact manner without taking up space even with a plurality of reaction vessels, there is an effect that downsizing becomes possible.

以下、本発明の反応容器とこの反応容器を用いた分析装置にかかる実施の形態について、図面を参照しつつ詳細に説明する。図1は、本発明の分析装置の実施の形態を示す自動分析装置の概略構成図である。図2は、図1の自動分析装置の測光部、恒温槽及び測光部近傍のターンテーブルを断面にして示す拡大図である。図3は、図1の自動分析装置で使用する本発明の反応容器の斜視図である。   Hereinafter, embodiments of a reaction container of the present invention and an analyzer using the reaction container will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of an automatic analyzer showing an embodiment of the analyzer of the present invention. FIG. 2 is an enlarged view showing a cross section of the photometric unit, the thermostat, and the turntable in the vicinity of the photometric unit of the automatic analyzer shown in FIG. FIG. 3 is a perspective view of the reaction vessel of the present invention used in the automatic analyzer of FIG.

自動分析装置1は、図1に示すように、ターンテーブル2の周囲並びに下部に試料分注部3、試薬分注部4、攪拌部5、測光部6、廃棄装置7、容器供給装置8及び恒温槽9が配置され、制御部11と記憶部12を備えている。   As shown in FIG. 1, the automatic analyzer 1 includes a sample dispensing unit 3, a reagent dispensing unit 4, a stirring unit 5, a photometric unit 6, a discarding device 7, a container feeding device 8, and the periphery around and below the turntable 2. A thermostatic chamber 9 is disposed and includes a control unit 11 and a storage unit 12.

ターンテーブル2は、駆動手段2aによって回転軸2bを中心として回転され、外縁側は周方向に沿って反応容器15が等間隔で配置されている。ターンテーブル2は、図2に示すように、反応容器15を配置する部分に開口2cが形成されている。ここで、ターンテーブル2は、1回転毎に反応容器15の1個分多く回転する。即ち、図1に示すターンテーブル2は、周方向に16個の反応容器15が配置されているが、1回転したときは360°ではなく360°+反応容器15の1個分(=22.5°)多く回転する。   The turntable 2 is rotated around the rotating shaft 2b by the driving means 2a, and reaction vessels 15 are arranged at equal intervals along the circumferential direction on the outer edge side. As shown in FIG. 2, the turntable 2 has an opening 2 c in a portion where the reaction vessel 15 is disposed. Here, the turntable 2 rotates by one reaction container 15 every rotation. That is, in the turntable 2 shown in FIG. 1, 16 reaction vessels 15 are arranged in the circumferential direction, but when rotated once, instead of 360 °, 360 ° + one reaction vessel 15 (= 22. 5 °) rotate a lot.

試料分注部3は、血清等の生体試料(検体)を反応容器15に分注する部分であり、分注アーム3aの先端にプローブが設けられている。   The sample dispensing unit 3 is a part for dispensing a biological sample (specimen) such as serum into the reaction container 15, and a probe is provided at the tip of the dispensing arm 3a.

試薬分注部4は、試薬を反応容器15に分注する部分であり、分注アーム4aの先端に設けたプローブが所定の試薬容器から試薬を順次反応容器15に分注する。ここで、試薬分注部4は、図1に示す自動分析装置1では一箇所であるが、二箇所以上に設けて二種類以上の試薬を使用できるようにしてもよい。   The reagent dispensing unit 4 is a part for dispensing the reagent into the reaction container 15, and a probe provided at the tip of the dispensing arm 4 a dispenses the reagent from the predetermined reagent container to the reaction container 15 sequentially. Here, although the reagent dispensing part 4 is one place in the automatic analyzer 1 shown in FIG. 1, it may be provided at two places or more so that two or more kinds of reagents can be used.

攪拌部5は、反応容器15に分注された検体と試薬とを含む液体試料を攪拌する部分であり、例えば、ターンテーブル2の外縁下部に配置した音波発生素子によって反応容器15に保持された液体試料を音波によって非接触で攪拌する。   The agitating unit 5 is a part for agitating a liquid sample containing a specimen and a reagent dispensed in the reaction container 15. For example, the agitating part 5 is held in the reaction container 15 by a sound wave generating element arranged at the lower outer edge of the turntable 2. The liquid sample is stirred in a non-contact manner by sound waves.

測光部6は、図2に示すように、光源6a、レンズ6b、駆動部6c及び受光素子6dを有している。光源6aは、反応容器15の金属薄膜15bにp偏光した光を臨界角以上の入射角となるように照射する。レンズ6bは、光源6aが出射した光を集光させて金属薄膜15bの下面に照射する。駆動部6cは、光源6aの向きを変えることにより金属薄膜15bに入射する光の入射角を臨界角以上の角度範囲で連続的に変化させるアクチュエータであり、入射角を高精度に設定し、変更し得る角度ステージ等が使用される。受光素子6dは、金属薄膜15bが反射した光を受光し、吸光度に関する光信号として制御部11に出力する。ここで、入射角が測定できれば、受光素子6dが受光した反射光の反射角から入射角を求めてもよい。   As shown in FIG. 2, the photometry unit 6 includes a light source 6a, a lens 6b, a drive unit 6c, and a light receiving element 6d. The light source 6a irradiates the metal thin film 15b of the reaction vessel 15 with p-polarized light so that the incident angle is greater than the critical angle. The lens 6b collects the light emitted from the light source 6a and irradiates the lower surface of the metal thin film 15b. The drive unit 6c is an actuator that continuously changes the incident angle of light incident on the metal thin film 15b by changing the direction of the light source 6a in an angle range equal to or greater than the critical angle, and sets and changes the incident angle with high accuracy. A possible angle stage or the like is used. The light receiving element 6d receives the light reflected by the metal thin film 15b and outputs the light to the control unit 11 as an optical signal related to absorbance. Here, if the incident angle can be measured, the incident angle may be obtained from the reflection angle of the reflected light received by the light receiving element 6d.

廃棄装置7は、ターンテーブル2の回転によって搬送されてくる分析が終了した反応容器15を廃棄する。   The discarding device 7 discards the reaction container 15 that has been analyzed and is conveyed by the rotation of the turntable 2.

容器供給装置8は、図4及び図5に示すように、反応容器15の収納部8a、アーム8b,8c及びアーム8b,8cを個別に駆動する駆動部8dを備えている。アーム8b,8cは、先端部分が反応容器15の本体15aの側面形状に合わせて半円形に切り欠かれている。容器供給装置8は、収納部8aに収納した複数の反応容器15をアーム8bによって支持し、駆動部8dによってアーム8b,8cを図中左右方向に移動させることにより、反応容器15をターンテーブル2の開口2cに1つずつ供給する。   As shown in FIGS. 4 and 5, the container supply device 8 includes a storage unit 8 a, arms 8 b and 8 c and a drive unit 8 d that individually drives the arms 8 b and 8 c of the reaction container 15. The arms 8b and 8c are notched in a semicircular shape at the distal end portion according to the side shape of the main body 15a of the reaction vessel 15. The container supply device 8 supports a plurality of reaction vessels 15 accommodated in the accommodating portion 8a by an arm 8b, and moves the arms 8b and 8c in the left-right direction in the drawing by a drive portion 8d, thereby moving the reaction vessel 15 to the turntable 2. One by one is supplied to the openings 2c.

恒温槽9は、測光部6の光源6aが出射した光を金属薄膜15bに照射し、その反射光を受光素子6dで受光可能なように光学的に透明な素材からリング状に成形されており、ターンテーブル2の開口2cの下部に配置されている。恒温槽9は、図2に示すように、透明で、検体と試薬との反応液Lrや空気よりも屈折率の大きい、例えば、セダー油等の恒温液Ltを保持すると共に、温度制御装置10によって恒温液Ltを所定温度、例えば、37℃に保持している。従って、光源6aが出射した光は、恒温液Ltに入射する際に屈折し、臨界角以上の入射角となるように反応容器15の金属薄膜15bに照射される。また、反応容器15に分注された検体と試薬とを含む液体試料も37℃に保持される。このため、自動分析装置1は、反応容器15によって反応液Lrの共鳴角、従って反応液Lrの物質濃度を精度よく求めることができる。   The thermostatic chamber 9 is formed into a ring shape from an optically transparent material so that the light emitted from the light source 6a of the photometry unit 6 is irradiated onto the metal thin film 15b and the reflected light can be received by the light receiving element 6d. , Is disposed below the opening 2c of the turntable 2. As shown in FIG. 2, the thermostatic chamber 9 is transparent and holds a thermostatic liquid Lt such as cedar oil having a refractive index higher than that of the reaction liquid Lr of sample and reagent and air, and a temperature control device 10. Thus, the constant temperature liquid Lt is maintained at a predetermined temperature, for example, 37 ° C. Accordingly, the light emitted from the light source 6a is refracted when entering the constant temperature liquid Lt, and is applied to the metal thin film 15b of the reaction vessel 15 so as to have an incident angle greater than the critical angle. Further, the liquid sample containing the specimen and the reagent dispensed into the reaction container 15 is also maintained at 37 ° C. For this reason, the automatic analyzer 1 can accurately obtain the resonance angle of the reaction liquid Lr, and thus the substance concentration of the reaction liquid Lr, by the reaction vessel 15.

制御部11は、試料分注部3、試薬分注部4、攪拌部5、測光部6、廃棄装置7及び容器供給装置8と接続され、例えば、マイクロコンピュータ等が使用される。制御部11は、自動分析装置1の各部の作動を制御する。このとき、制御部11は、駆動部6cに出力する駆動信号をもとに金属薄膜15bにおける光の反射率が激減した際の金属薄膜15bへ入射する光の入射角θを測定する。この入射角θが、表面プラズモン共鳴現象が生じたときの共鳴角θspである。また、制御部11は、測定した共鳴角θspと既知の値から反応液Lrの屈折率を算出し、記憶部12に記憶した校正曲線等から反応液Lrの物質濃度を求める。記憶部12は、予め反応容器15に分注された検体と試薬との反応液Lrの屈折率と吸光度とに基づいて予め作成された校正曲線や校正表等が記憶されている。   The control unit 11 is connected to the sample dispensing unit 3, the reagent dispensing unit 4, the stirring unit 5, the photometric unit 6, the discarding device 7, and the container supply device 8. For example, a microcomputer or the like is used. The control unit 11 controls the operation of each unit of the automatic analyzer 1. At this time, the control unit 11 measures the incident angle θ of the light incident on the metal thin film 15b when the reflectance of the light on the metal thin film 15b is drastically reduced based on the drive signal output to the drive unit 6c. This incident angle θ is the resonance angle θsp when the surface plasmon resonance phenomenon occurs. Further, the control unit 11 calculates the refractive index of the reaction liquid Lr from the measured resonance angle θsp and a known value, and obtains the substance concentration of the reaction liquid Lr from a calibration curve or the like stored in the storage unit 12. The storage unit 12 stores a calibration curve, a calibration table, and the like prepared in advance based on the refractive index and absorbance of the reaction liquid Lr of the sample and reagent dispensed in advance in the reaction container 15.

反応容器15は、図3に示すように、円錐の頂部を切除した逆円錐台形状の部材からなる本体15aを側壁とし、本体15aの底面を金或いは銀等からなる厚さ数十nmの金属薄膜15bで覆って底壁としたものである。反応容器15は、使い捨てタイプの容器であり、安価に製造するため、本体15aは合成樹脂から成形する。反応容器15は、本体15a外面の適宜箇所に突起15cが設けられている。突起15cは、積み重ねた際に本体15a同士が密着して外れなくなることがないように他の反応容器15の本体15aとの間に隙間を形成する。従って、反応容器15は、凸部を突起15cに代えて周方向に延びる凸条としてもよい。反応容器15は、ターンテーブル2の開口2cに反応容器15を配置すると、底壁となる金属薄膜15bが恒温槽9の恒温液Ltに浸され、透明な恒温液Ltと金属薄膜15bが測光部6の光源6a及び受光素子6dと協働して表面プラズモン共鳴センサを構成する。   As shown in FIG. 3, the reaction vessel 15 has a main body 15a made of an inverted frustoconical member with the top of a cone cut as a side wall, and the bottom surface of the main body 15a is a metal with a thickness of several tens of nm made of gold or silver. The bottom wall is covered with the thin film 15b. The reaction container 15 is a disposable container, and the main body 15a is molded from a synthetic resin in order to be manufactured at a low cost. The reaction container 15 is provided with protrusions 15c at appropriate locations on the outer surface of the main body 15a. The protrusions 15c form a gap between the main bodies 15a of the other reaction vessels 15 so that the main bodies 15a do not come into close contact with each other when stacked. Therefore, the reaction vessel 15 may be a ridge extending in the circumferential direction instead of the protrusion 15c. When the reaction vessel 15 is arranged in the opening 2c of the turntable 2, the metal thin film 15b serving as the bottom wall is immersed in the constant temperature liquid Lt of the constant temperature bath 9, and the transparent constant temperature liquid Lt and the metal thin film 15b are measured by the photometric unit. The surface plasmon resonance sensor is configured in cooperation with the light source 6a and the light receiving element 6d.

以上のように構成される自動分析装置1は、ターンテーブル2の回転によって搬送される反応容器15に試料分注部3が検体を順次分注する。検体が分注された反応容器15は、ターンテーブル2の回転によって試薬分注部4の近傍へ搬送され、試薬分注部4のプローブから試薬が分注される。そして、試薬が分注された反応容器15は、攪拌部5において試薬と検体とが攪拌されて反応し、反応液が測光部6で測光されて入射角θと光透過部の屈折率とをもとに反応液中の物質濃度が分析される。そして、自動分析装置1は、ターンテーブル2の回転によって更に反応容器15を搬送し、廃棄装置7において分析が終了した反応容器15を廃棄した後、容器供給装置8によって新たな反応容器15が供給され、再度新たな検体の分析が行われる。   In the automatic analyzer 1 configured as described above, the sample dispensing unit 3 sequentially dispenses the sample into the reaction container 15 conveyed by the rotation of the turntable 2. The reaction container 15 into which the sample has been dispensed is conveyed to the vicinity of the reagent dispensing unit 4 by the rotation of the turntable 2, and the reagent is dispensed from the probe of the reagent dispensing unit 4. Then, in the reaction container 15 into which the reagent has been dispensed, the reagent and the sample are stirred and reacted in the stirring unit 5, and the reaction solution is measured by the photometric unit 6 to determine the incident angle θ and the refractive index of the light transmitting unit. Based on the analysis, the substance concentration in the reaction solution is analyzed. Then, the automatic analyzer 1 further conveys the reaction vessel 15 by the rotation of the turntable 2, discards the reaction vessel 15 that has been analyzed in the discarding device 7, and then supplies a new reaction vessel 15 by the vessel supply device 8. Then, a new sample is analyzed again.

このとき、容器供給装置8は、図6に示すように、ターンテーブル2の回転によって図4に示す反応容器15が試料分注部3側へ搬送されるまで停止している。そして、ターンテーブル2の回転によって反応容器15が配置されていない開口2cが移動してくると、容器供給装置8は、図7に示すように、下段のアーム8cを右方へ移動させる。これにより、容器供給装置8は、最下段の反応容器15を落下させて開口2cに配置すると共に、2段目以上の反応容器15を上段のアーム8bによって支持する。   At this time, as shown in FIG. 6, the container supply device 8 is stopped until the reaction container 15 shown in FIG. 4 is conveyed to the sample dispensing unit 3 side by the rotation of the turntable 2. Then, when the opening 2c in which the reaction vessel 15 is not arranged is moved by the rotation of the turntable 2, the vessel supply device 8 moves the lower arm 8c to the right as shown in FIG. Thereby, the container supply apparatus 8 drops the lowermost reaction container 15 and arranges it in the opening 2c, and supports the second and higher reaction containers 15 by the upper arm 8b.

次に、容器供給装置8は、図8に示すように、下段のアーム8cを左方へ移動させて元の位置へ戻す。このとき、開口2cに配置されていた反応容器15は、ターンテーブル2の回転によって試料分注部3側へ搬送されている。次いで、容器供給装置8は、図9に示すように、上段のアーム8bを右方へ移動させる。これにより、容器供給装置8は、上段のアーム8bによって支持していた複数の反応容器15を下段のアーム8cに移動させる。   Next, as shown in FIG. 8, the container supply device 8 moves the lower arm 8c to the left to return it to its original position. At this time, the reaction container 15 arranged in the opening 2 c is conveyed to the sample dispensing unit 3 side by the rotation of the turntable 2. Next, the container supply device 8 moves the upper arm 8b to the right as shown in FIG. Thereby, the container supply device 8 moves the plurality of reaction vessels 15 supported by the upper arm 8b to the lower arm 8c.

この後、容器供給装置8は、上段のアーム8bを左方へ移動させて元の位置へ戻し、図10に示すように、複数の反応容器15を上段と下段のアーム8b,8cによって支持する。そして、以下、同様の操作を繰り返すことにより、容器供給装置8は、収納部8aに収容した複数の反応容器15をターンテーブル2の開口2cに1つずつ供給してゆく。   Thereafter, the container supply device 8 moves the upper arm 8b to the left and returns it to the original position, and supports the plurality of reaction containers 15 by the upper and lower arms 8b and 8c as shown in FIG. . Subsequently, by repeating the same operation, the container supply device 8 supplies the reaction containers 15 accommodated in the accommodating portion 8a one by one to the opening 2c of the turntable 2.

このとき、反応容器15は、本体15aの底面を金属薄膜15bで覆って底壁としている。また、自動分析装置1は、反応容器15の金属薄膜15bを恒温槽9の恒温液Ltに浸し、光源6aを駆動部6cによって駆動することによって臨界角以上の角度で入射角θを連続的に変化させながらp偏光した光を金属薄膜15bに下方から照射する。このため、反応容器15は、自動分析装置1のターンテーブル2に配置すると、測光部6を通過する際に、光源6aから金属薄膜15bに臨界角以上の入射角θで光が照射される。すると、金属薄膜15b近傍の反応液中にエバネッセント波が発生し、金属薄膜15bの下面には表面プラズモン波が光のトンネル効果によって励起される。   At this time, the reaction vessel 15 has a bottom wall by covering the bottom surface of the main body 15a with the metal thin film 15b. Further, the automatic analyzer 1 continuously immerses the incident angle θ at an angle equal to or greater than the critical angle by immersing the metal thin film 15b of the reaction vessel 15 in the constant temperature liquid Lt of the constant temperature bath 9 and driving the light source 6a by the driving unit 6c. While changing, the p-polarized light is irradiated onto the metal thin film 15b from below. For this reason, when the reaction vessel 15 is disposed on the turntable 2 of the automatic analyzer 1, the light is irradiated from the light source 6 a to the metal thin film 15 b at an incident angle θ greater than the critical angle when passing through the photometric unit 6. Then, an evanescent wave is generated in the reaction solution near the metal thin film 15b, and a surface plasmon wave is excited on the lower surface of the metal thin film 15b by the light tunnel effect.

このとき、エバネッセント波と表面プラズモン波の波数が等しいと、表面プラズモン共鳴現象が生じ、照射光のエネルギーが表面プラズモン波の励起エネルギーとして使用される。このため、表面プラズモン共鳴現象が生じると、図11に示すように、共鳴が生じる特定の入射角、即ち、共鳴角θspにおいて、金属薄膜15bにおける光の反射率が著しく減少する。このとき、共鳴角θspは、反応液Lrの屈折率をns、恒温液Ltの屈折率をnt、金属薄膜15bの誘電率をεとすると、次式で与えられる。
θsp=sin-1〔1/nt{(ε×ns2)/(ε+ns2)}1/2〕……(1)
At this time, if the wave numbers of the evanescent wave and the surface plasmon wave are equal, a surface plasmon resonance phenomenon occurs, and the energy of the irradiation light is used as the excitation energy of the surface plasmon wave. For this reason, when the surface plasmon resonance phenomenon occurs, as shown in FIG. 11, the reflectance of light in the metal thin film 15b is remarkably reduced at a specific incident angle where resonance occurs, that is, the resonance angle θsp. At this time, the resonance angle θsp is given by the following equation, where ns is the refractive index of the reaction liquid Lr, nt is the refractive index of the constant temperature liquid Lt, and ε is the dielectric constant of the metal thin film 15b.
θsp = sin −1 [1 / nt {(ε × ns 2 ) / (ε + ns 2 )} 1/2 ] (1)

従って、共鳴角θspを測定すると、金属薄膜15bの誘電率ε,恒温液Ltの屈折率npは既知の値であるから、式(1)より反応液Lrの屈折率nsを算出することができる。このとき、反応液Lrの屈折率nsは、マクスウェルの方程式から媒質の誘電率で規定でき、生体物質による生物化学的反応の進行と媒質の誘電率、従って反応液Lrの物質濃度とは相関関係がある。このため、共鳴角θspにおける反応液Lrの屈折率nsと反応液Lrの吸光度との関係並びに吸光度と反応液Lrの物質濃度との関係を予め測定し、校正曲線或いは校正表として測定対象毎に記憶部12に記憶させておく。このようにすると、自動分析装置1は、数μL以下の微量な反応液であっても、求めた共鳴角θspにおける反応液Lrの屈折率nsをもとに制御部11において反応液Lrの物質濃度を求めることができる。但し、自動分析装置1は、反応液Lrの吸光度と共鳴角θspとの校正曲線を予め測定対象毎に記憶部12に記憶させておき、共鳴角θspをもとに制御部11において反応液Lrの吸光度を求めてもよい。   Accordingly, when the resonance angle θsp is measured, since the dielectric constant ε of the metal thin film 15b and the refractive index np of the constant temperature liquid Lt are known values, the refractive index ns of the reaction liquid Lr can be calculated from the equation (1). . At this time, the refractive index ns of the reaction liquid Lr can be defined by the dielectric constant of the medium from Maxwell's equation, and the correlation between the progress of the biochemical reaction by the biological material and the dielectric constant of the medium, and thus the substance concentration of the reaction liquid Lr. There is. Therefore, the relationship between the refractive index ns of the reaction solution Lr and the absorbance of the reaction solution Lr at the resonance angle θsp and the relationship between the absorbance and the substance concentration of the reaction solution Lr are measured in advance, and a calibration curve or a calibration table is obtained for each measurement target. The data is stored in the storage unit 12. In this way, the automatic analyzer 1 can control the substance of the reaction liquid Lr in the control unit 11 based on the refractive index ns of the reaction liquid Lr at the resonance angle θsp, even for a very small amount of reaction liquid of several μL or less. The concentration can be determined. However, the automatic analyzer 1 stores the calibration curve of the absorbance of the reaction solution Lr and the resonance angle θsp in advance in the storage unit 12 for each measurement target, and the control unit 11 uses the reaction solution Lr based on the resonance angle θsp. The absorbance may be determined.

このようにして表面プラズモン共鳴を利用して反応液の物質濃度を求める場合、反応液Lrは数μL以下の僅かな量でよいので、本体15a、従って反応容器15を小さくすることができるうえ、反応容器15は積み重ねることができるので、自動分析装置1を小型化することができる。しかも、反応容器15は、反応液が数μL以下であるため、用いる試薬の量も数μL以下と微量でよいので、自動分析装置1のランニングコストを低減することができる。   Thus, when calculating | requiring the substance concentration of a reaction liquid using surface plasmon resonance, since the reaction liquid Lr should just be a slight quantity of several microliters or less, the main body 15a and hence the reaction container 15 can be made small, Since the reaction containers 15 can be stacked, the automatic analyzer 1 can be downsized. In addition, since the reaction vessel 15 has a reaction solution of several μL or less, the amount of reagent used may be as small as several μL or less, so the running cost of the automatic analyzer 1 can be reduced.

また、反応容器15は、底壁となる金属薄膜15bを恒温液Ltに浸し、ターンテーブル2を回転させながら反応液Lrの共鳴角θspを測定することができる。従って、反応容器15を使用すると、自動分析装置1は、ターンテーブル2を停止させることなく、共鳴角θspを連続して測定することができるので、検体の高速処理が可能となり、従って従来と同じ時間で多くの検体を処理することができる。   The reaction vessel 15 can measure the resonance angle θsp of the reaction liquid Lr while immersing the metal thin film 15b serving as the bottom wall in the constant temperature liquid Lt and rotating the turntable 2. Therefore, when the reaction vessel 15 is used, the automatic analyzer 1 can continuously measure the resonance angle θsp without stopping the turntable 2, so that the sample can be processed at a high speed, and therefore the same as in the prior art. Many specimens can be processed in time.

ここで、本発明の反応容器は、図12に示す反応容器17のように、逆円錐台形状の側壁17aに連設される底壁17bの一部、即ち、中央に開口17cを有し、底壁17bの下面全体を金属箔膜17dで覆うことにより、底壁17bの一部を金属箔膜17dとしてもよい。このようにすると、反応容器17は、金属箔膜17dを底壁17bによって保護することができる。なお、側壁17aは、適宜箇所に突起17eを設ける。   Here, like the reaction vessel 17 shown in FIG. 12, the reaction vessel of the present invention has a part of the bottom wall 17b connected to the inverted frustoconical side wall 17a, that is, an opening 17c in the center, A part of the bottom wall 17b may be used as the metal foil film 17d by covering the entire lower surface of the bottom wall 17b with the metal foil film 17d. If it does in this way, the reaction container 17 can protect the metal foil film | membrane 17d with the bottom wall 17b. The side wall 17a is provided with a protrusion 17e at an appropriate place.

また、本発明の反応容器は、必ずしも側が壁逆円錐台形状である必要はなく、逆多角錐台形状、例えば、図13に示す反応容器18のように、逆四角錐台形状の側壁18aとし、側壁18aの底面を金或いは銀等からなる厚さ数十nmの金属薄膜18bで覆って底壁としてもよい。このとき、側壁18aは、適宜箇所に突起18cを設ける。また、反応容器18は、反応容器17のように、底壁の一部を金属薄膜としてもよい。   Further, the reaction container of the present invention does not necessarily have a wall inverted frustum shape on the side, but has an inverted polygonal frustum shape, for example, a side wall 18a having an inverted quadrangular frustum shape like the reaction container 18 shown in FIG. The bottom surface of the side wall 18a may be covered with a metal thin film 18b made of gold or silver and having a thickness of several tens of nanometers to form a bottom wall. At this time, the side wall 18a is provided with a protrusion 18c at an appropriate location. Further, like the reaction vessel 17, the reaction vessel 18 may have a part of the bottom wall made of a metal thin film.

本発明の分析装置の実施の形態を示す自動分析装置の概略構成図である。It is a schematic block diagram of the automatic analyzer which shows embodiment of the analyzer of this invention. 図1の自動分析装置の測光部、恒温槽及び測光部近傍のターンテーブルを断面にして示す拡大図である。FIG. 2 is an enlarged view showing a cross section of a photometric unit, a thermostat, and a turntable near the photometric unit of the automatic analyzer of FIG. 1. 図1の自動分析装置で使用する本発明の反応容器の斜視図である。It is a perspective view of the reaction container of this invention used with the automatic analyzer of FIG. 反応容器を配置したターンテーブルと共に容器供給装置を示した正面図である。It is the front view which showed the container supply apparatus with the turntable which has arrange | positioned the reaction container. 容器供給装置を反応容器と共に示した平面図である。It is the top view which showed the container supply apparatus with the reaction container. 図4に示す容器供給装置及びターンテーブルの作動による変化を示す図であり、図4に示す位置から変化した後の第一の状態を示す正面図である。It is a figure which shows the change by the action | operation of the container supply apparatus shown in FIG. 4, and a turntable, and is a front view which shows the 1st state after changing from the position shown in FIG. 図4に示す容器供給装置及びターンテーブルの作動による変化を示す図であり、図4に示す位置から変化した後の第二の状態を示す正面図である。It is a figure which shows the change by the action | operation of the container supply apparatus shown in FIG. 4, and a turntable, and is a front view which shows the 2nd state after changing from the position shown in FIG. 図4に示す容器供給装置及びターンテーブルの作動による変化を示す図であり、図4に示す位置から変化した後の第三の状態を示す正面図である。It is a figure which shows the change by the action | operation of the container supply apparatus shown in FIG. 4, and a turntable, and is a front view which shows the 3rd state after changing from the position shown in FIG. 図4に示す容器供給装置及びターンテーブルの作動による変化を示す図であり、図4に示す位置から変化した後の第四の状態を示す正面図である。It is a figure which shows the change by the action | operation of the container supply apparatus shown in FIG. 4, and a turntable, and is a front view which shows the 4th state after changing from the position shown in FIG. 図4に示す容器供給装置及びターンテーブルの作動による変化を示す図であり、図4に示す位置から変化した後の第五の状態を示す正面図である。It is a figure which shows the change by the action | operation of the container supply apparatus shown in FIG. 4, and a turntable, and is a front view which shows the 5th state after changing from the position shown in FIG. 共鳴角において光の反射率が著しく減少する一例を示す入射角に対する反射率の特性図である。It is a characteristic view of the reflectance with respect to the incident angle showing an example in which the reflectance of light is significantly reduced at the resonance angle. 反応容器の第一の変形例を示す断面図である。It is sectional drawing which shows the 1st modification of reaction container. 反応容器の第二の変形例を示す斜視図である。It is a perspective view which shows the 2nd modification of reaction container.

符号の説明Explanation of symbols

1 自動分析装置
2 ターンテーブル
2c 開口
3 試料分注部
4 試薬分注部
5 攪拌部
6 測光部
6a 光源
6b レンズ
6c 駆動部
6d 受光素子
7 廃棄装置
8 容器供給装置
9 恒温槽
10 温度制御装置
11 制御部
12 記憶部
15 反応容器
15a 本体
15b 金属薄膜
15c 突起
17 反応容器
17a 側壁
17b 底壁
17c 開口
17d 金属箔膜
17e 突起
18 反応容器
18a 側壁
18b 金属薄膜
18c 突起
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2 Turntable 2c Opening 3 Sample dispensing part 4 Reagent dispensing part 5 Stirring part 6 Photometry part 6a Light source 6b Lens 6c Drive part 6d Light receiving element 7 Discarding device 8 Container supply apparatus 9 Constant temperature bath 10 Temperature control apparatus 11 Control unit 12 Storage unit 15 Reaction vessel 15a Body 15b Metal thin film 15c Protrusion 17 Reaction vessel 17a Side wall 17b Bottom wall 17c Opening 17d Metal foil film 17e Protrusion 18 Reaction vessel 18a Side wall 18b Metal thin film 18c Protrusion

Claims (5)

側壁と底壁とを有し、検体と試薬とを含む液体試料が分注され、前記液体試料が反応した反応液を保持する反応容器であって、
前記側壁上部の水平方向の断面積を前記側壁下部の水平方向の断面積よりも大きく設定して積み重ね可能とすると共に、前記底壁の一部又は全部を金属薄膜としたことを特徴とする反応容器。
A reaction container having a side wall and a bottom wall, in which a liquid sample containing a specimen and a reagent is dispensed, and holds a reaction liquid reacted with the liquid sample,
The horizontal cross-sectional area of the upper part of the side wall is set larger than the horizontal cross-sectional area of the lower part of the side wall to enable stacking, and a part or all of the bottom wall is a metal thin film. container.
前記側壁は、積み重ねた他の容器の側壁との間に隙間を形成する凸部が外面に設けられていることを特徴とする請求項1に記載の反応容器。   The reaction container according to claim 1, wherein the side wall is provided with a convex portion on the outer surface to form a gap with a side wall of another stacked container. 容器に保持された検体と試薬とを含む液体試料を反応させ、反応液を分析する分析装置であって、
請求項1又は2に記載の反応容器の前記金属薄膜を透明な恒温液に浸し、前記液体試料を所定温度に保持する恒温槽と、
前記恒温槽を介して前記金属薄膜に臨界角以上の入射角で光を照射する光源と、
前記金属薄膜によって反射された光を受光する受光素子と、
前記金属薄膜に照射された光の表面プラズモン共鳴の共鳴角から前記反応液の屈折率を算出し、予め測定しておいた前記共鳴角における前記反応液の屈折率と吸光度との関係並びに前記吸光度と前記反応液の物質濃度との関係から前記反応液の物質濃度を求める制御部と、
を備えたことを特徴とする分析装置。
An analyzer for reacting a liquid sample containing a specimen and a reagent held in a container and analyzing the reaction solution,
A constant temperature bath for immersing the metal thin film of the reaction container according to claim 1 or 2 in a transparent constant temperature liquid and holding the liquid sample at a predetermined temperature;
A light source that irradiates the metal thin film with an incident angle greater than a critical angle through the thermostat; and
A light receiving element for receiving light reflected by the metal thin film;
The refractive index of the reaction solution is calculated from the resonance angle of surface plasmon resonance of light irradiated on the metal thin film, and the relationship between the refractive index and the absorbance of the reaction solution at the resonance angle measured in advance and the absorbance. And a control unit for obtaining the substance concentration of the reaction liquid from the relationship between the substance concentration of the reaction liquid,
An analyzer characterized by comprising:
更に、前記反応容器を複数積み重ねて収納し、1つずつ供給する容器供給装置を備えていることを特徴とする請求項3に記載の分析装置。   The analyzer according to claim 3, further comprising a container supply device that stores a plurality of the reaction containers stacked and supplies them one by one. 更に、測定が終了した前記反応容器を廃棄する廃棄装置を備えていることを特徴とする請求項3又は4に記載の分析装置。   The analyzer according to claim 3 or 4, further comprising a discarding device for discarding the reaction container after measurement.
JP2005225867A 2005-08-03 2005-08-03 Reaction vessel and analytical apparatus using the same Withdrawn JP2007040845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225867A JP2007040845A (en) 2005-08-03 2005-08-03 Reaction vessel and analytical apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225867A JP2007040845A (en) 2005-08-03 2005-08-03 Reaction vessel and analytical apparatus using the same

Publications (1)

Publication Number Publication Date
JP2007040845A true JP2007040845A (en) 2007-02-15

Family

ID=37798963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225867A Withdrawn JP2007040845A (en) 2005-08-03 2005-08-03 Reaction vessel and analytical apparatus using the same

Country Status (1)

Country Link
JP (1) JP2007040845A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047731A2 (en) * 2007-10-12 2009-04-16 Ecolab Inc. Multi-channel device and method for measuring optical properties of a liquid
JP2017032758A (en) * 2015-07-31 2017-02-09 オリンパス株式会社 Inverted type microscope and inverted type microscope system
WO2018070165A1 (en) * 2016-10-11 2018-04-19 昭和電工株式会社 Measurement device, production device for cyanohydrin-containing liquid, and measurement method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009047731A2 (en) * 2007-10-12 2009-04-16 Ecolab Inc. Multi-channel device and method for measuring optical properties of a liquid
WO2009047731A3 (en) * 2007-10-12 2009-09-24 Ecolab Inc. Multi-channel device and method for measuring optical properties of a liquid
JP2017032758A (en) * 2015-07-31 2017-02-09 オリンパス株式会社 Inverted type microscope and inverted type microscope system
WO2018070165A1 (en) * 2016-10-11 2018-04-19 昭和電工株式会社 Measurement device, production device for cyanohydrin-containing liquid, and measurement method

Similar Documents

Publication Publication Date Title
EP1154259B1 (en) Measuring apparatus including a measuring chip
JP5318206B2 (en) Automatic analyzer
EP1186881A1 (en) Measuring method and instrument utilizing total reflection attenuation
US20090069199A1 (en) Method and device for optical detection of substances in a liquid or gaseous medium
US20020149775A1 (en) Measuring sensor utilizing attenuated total reflection and measuring chip assembly
EP0855591A2 (en) Improvements in or relating to sensors
JP6991972B2 (en) Detection chip, detection system and detection method
US7545501B2 (en) Sensor unit for assay and prism
JP2007040845A (en) Reaction vessel and analytical apparatus using the same
JPWO2017057136A1 (en) Surface plasmon excitation enhanced fluorescence spectrometry method and measurement kit
JP2002372490A (en) Sensor utilizing total reflection attenuation and measurement chip assembly
JP2007198935A (en) Analyzer
JP2011064702A (en) Specimen optical information recognizing device and method of recognizing the same
JP2007047004A (en) Reactor and analyzer using it
WO2016093039A1 (en) Detection chip and detection method
JP2007163323A (en) Measuring method and biosensor
US6642058B2 (en) Analysis method using dry chemical analysis element
JP2007017310A (en) Analyzer
JP2000121552A (en) Spr sensor cell and immunoreaction measuring device using the same
WO2019221040A1 (en) Specimen detecting chip, and specimen detecting device employing same
JP6711285B2 (en) Detection method, detection device and chip
JP2007033130A (en) Autoanalyzer
JP4417215B2 (en) Biomolecular interaction measurement device
EP4036555A1 (en) Detection method and detection device
JP2000171391A (en) Spr sensor cell and immune reaction measuring device using it

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007