WO2011001530A1 - Instrument for analyzing body fluid components - Google Patents

Instrument for analyzing body fluid components Download PDF

Info

Publication number
WO2011001530A1
WO2011001530A1 PCT/JP2009/062189 JP2009062189W WO2011001530A1 WO 2011001530 A1 WO2011001530 A1 WO 2011001530A1 JP 2009062189 W JP2009062189 W JP 2009062189W WO 2011001530 A1 WO2011001530 A1 WO 2011001530A1
Authority
WO
WIPO (PCT)
Prior art keywords
body fluid
reagent
coating layer
reaction chamber
sealing plate
Prior art date
Application number
PCT/JP2009/062189
Other languages
French (fr)
Japanese (ja)
Inventor
務 臼井
伸一 横山
Original Assignee
株式会社ティー・ティー・エム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ティー・ティー・エム filed Critical 株式会社ティー・ティー・エム
Priority to JP2011520720A priority Critical patent/JP5339554B2/en
Priority to PCT/JP2009/062189 priority patent/WO2011001530A1/en
Publication of WO2011001530A1 publication Critical patent/WO2011001530A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • G01N33/54387Immunochromatographic test strips
    • G01N33/54388Immunochromatographic test strips based on lateral flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0825Test strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0677Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers

Definitions

  • the present invention relates to a body fluid component analyzer that can easily and quickly measure a specific component in a body fluid.
  • a body fluid component analyzer configured to measure a component to be analyzed by the above is widely used.
  • HDL-C cholesterol
  • HDL-C high-density lipoprotein
  • the difference in the specificity of the surfactant with respect to the lipoprotein can be obtained without requiring fractionation.
  • a specimen-like analytical instrument using a so-called direct method of selectively measuring HDL-C is known (see Patent Document 1).
  • the analytical instrument disclosed in Patent Document 1 first reacts a dropped fluid sample with a reagent that prevents dissolution of lipoproteins other than HDL, and then reacts with HDL.
  • the reagent is configured to react with a reagent for measuring cholesterol after reacting with a reagent with high solubilization performance.
  • each reaction is performed along the traveling direction of the body fluid sample. It was necessary to arrange a reagent for waking up in a layered manner at a predetermined position of the porous body. Moreover, since the movement of the body fluid sample depends on the chromatographic action in the porous body, it is difficult to control the reaction time to be constant.
  • Patent Document 2 discloses an analytical instrument for analyzing glucose in a body fluid using a reductase.
  • ascorbic acid contained in the body fluid has a reducing property, and thereby the reducing color former is colored. Therefore, ascorbic acid causes a positive error in measurement.
  • glucose in a body fluid is analyzed using oxidase, ascorbic acid causes a negative error in measurement because peroxidase and ascorbic acid compete and compete for hydrogen peroxide.
  • a first reaction for removing an inhibitor contained in the body fluid sample is caused, and after the first reaction is completed, the component to be analyzed is measured.
  • a procedure for causing the second reaction is required.
  • this analysis procedure is to be carried out with a simple instrument, it is necessary to separate the chamber for causing the first reaction and the chamber for causing the second reaction, and precise liquid feeding control is possible. There was a problem that a separate device was required.
  • a body fluid component that has a simple structure, can perform an analysis with a simple operation without requiring precise liquid feeding control, and can quickly obtain a highly accurate analysis result. Analytical instruments were required.
  • the problem to be solved by the present invention is that it has a simple structure, can perform an analysis with a simple operation without requiring precise liquid feeding control, and quickly obtains a highly accurate analysis result. It is an object of the present invention to provide a body fluid component analyzer.
  • the present invention has been made to solve the above problems, and the invention according to claim 1 includes a sample supply port through which a bodily fluid sample is supplied, a flow path extending from the sample supply port, A reaction chamber communicating with the flow path, a first reagent provided in the reaction chamber, and a second reagent provided separately from the first reagent, the surface of which is covered with a coating layer,
  • the said coating layer is a body fluid component analysis instrument characterized by containing the coating layer dissolving agent which does not melt
  • the first reagent when the body fluid sample is supplied to the sample supply port and then sent to the reaction chamber, the first reagent is first dissolved in the body fluid sample, the first reaction starts, and the first reaction ends. After that, the coating layer is dissolved by the coating layer dissolving agent contained in the first reagent, the second reagent is exposed, the second reagent is dissolved in the body fluid sample, and the second reaction is started. That is, it is possible to provide a body fluid component analysis instrument capable of sequentially causing a plurality of reactions in one reaction chamber without providing a plurality of reaction chambers inside the instrument and without performing precise liquid feeding. it can.
  • the invention according to claim 2 is characterized in that the coating layer comprises a salt of alginic acid and a divalent metal, and the coating layer solubilizer comprises a salt of ethylenediaminetetraacetic acid and an alkali metal.
  • This is a device for analyzing body fluid components.
  • the bivalent metal in the coating layer is removed by the complexing reaction of ethylenediaminetetraacetic acid, in which the first reagent is dissolved in the body fluid sample flowing into the reaction chamber and released into the reaction chamber.
  • the invention described in claim 3 is the body fluid component analyzing instrument according to claim 2, wherein the coating layer is made of calcium alginate.
  • the invention according to claim 4 is characterized in that the second reagent contains sodium alginate and the coating layer is formed by dropping calcium chloride onto the surface of the second reagent. It is an analytical instrument for the body fluid component described.
  • the invention according to claim 5 is characterized in that the wall surface surrounding the reaction chamber has water impermeability, and at least a part of the wall surface has air permeability. It is a device for analyzing body fluid components.
  • a body fluid component analyzing instrument capable of reliably transferring a body fluid sample to the reaction chamber by simply pressurizing the sample supply port without performing precise liquid feeding control. can do.
  • the invention according to claim 6 is a water-impermeable and air-permeable ventilation plate, a water-permeable and air-impermeable first sealing plate disposed so as to abut against one plate surface of the ventilation plate, A second sealing plate that is impermeable to water and impermeable to air, and has a through hole that penetrates in the plate thickness direction.
  • the reaction chamber is defined by a hole, the first sealing plate, and the second sealing plate, the first reagent is attached to the first sealing plate, and the second reagent is the second sealing. 6.
  • the first reagent is attached to the first sealing plate
  • the second reagent is attached to the second sealing plate
  • the coating layer is further formed. It is possible to provide a body fluid component analysis instrument that can be configured by laminating a stop plate and a second sealing plate.
  • the invention according to claim 7 is the body fluid component according to claim 6, wherein a portion of the first sealing plate and the second sealing plate adjacent to the reaction chamber has light permeability. It is an analytical instrument.
  • the seventh aspect of the present invention it is possible to provide a body fluid component analysis instrument capable of analyzing a body fluid component by measuring the optical change amount in the reaction chamber after the second reaction is completed. .
  • the first reagent when a body fluid sample is supplied to the sample supply port and then sent to the reaction chamber, the first reagent is first dissolved in the body fluid sample, the first reaction starts, and the first reaction is completed.
  • the coating layer is dissolved by the coating layer solubilizing agent, and the second reagent is exposed, the second reagent is dissolved in the body fluid sample, and the second reaction starts. That is, it is possible to provide a body fluid component analysis instrument capable of analyzing a body fluid component without providing a plurality of reaction chambers inside the instrument and without performing precise liquid feeding.
  • FIG. 2 is a cross-sectional view showing an AA cross section in FIG. 1. It is a disassembled perspective view which shows the analytical instrument of the bodily fluid component which concerns on embodiment of this invention.
  • FIG. 2 is an enlarged cross-sectional view of the reaction chamber in the AA cross-section in FIG. 1, showing dissolution of the reagent after the body fluid sample has flowed into the reaction chamber.
  • FIG. 1 is a plan view of a humor component analyzing instrument according to the present embodiment
  • FIG. 2 is a sectional view showing a section AA in FIG. 1
  • FIG. 3 is an analysis of a humor component according to the present embodiment.
  • FIG. 4 is an enlarged cross-sectional view of the reaction chamber in the AA cross section in FIG. 1, showing the dissolution of the reagent after the body fluid sample flows into the reaction chamber.
  • a plasma sample is dropped as a body fluid sample and glucose is measured.
  • the body fluid component analysis instrument 1 is configured by laminating a first sealing plate 11, a ventilation plate 12, and a second sealing plate 13. Yes.
  • One plate surface 12a of the ventilation plate 12 and the inner plate surface 11a of the first sealing plate 11 abut, and the other plate surface 12b of the ventilation plate 12 and the inner plate surface 13a of the second sealing plate 13 Are brought into contact with each other through an adhesive layer (not shown) such as a double-sided tape.
  • the first sealing plate 11 is provided with a through hole 21 penetrating in the plate thickness direction to form the sample supply port 2.
  • the ventilation plate 12 is also provided with a through hole 22 penetrating in the thickness direction substantially concentrically with the through hole 21, and a groove 31 extends from the through hole 22.
  • a region surrounded by the groove 31 and the inner plate surface 11 a of the first sealing plate 11 and the inner plate surface 13 a of the second sealing plate 13 defines the flow path 3 extending from the sample supply port 2. ing.
  • a blood cell separation membrane (not shown) for separating blood cell components is installed at the sample supply port 2, and a whole blood sample is dropped onto the blood cell separation membrane so that a body fluid sample from which the blood cell components have been removed is supplied to the sample supply port 2. It can also be configured to flow in.
  • the ventilation plate 12 is provided with a through hole 41 that communicates with the groove 31 and penetrates in the thickness direction. A region surrounded by the through hole 41, the inner plate surface 11 a of the first sealing plate 11 and the inner plate surface 13 a of the second sealing plate 13 divides the reaction chamber 4.
  • a first reagent 42 is attached to the inner plate surface 11 a of the first sealing plate 11, and a second reagent is attached to the inner plate surface 13 a of the second sealing plate 13.
  • Reagent 43 is attached.
  • a coating layer 44 is provided so as to cover the surface of the second reagent 43. With this configuration, the first reagent 42 and the second reagent 43 can be easily provided separately in the reaction chamber 4.
  • the second reagent 43 and the coating layer 44 can be provided on the inner plate surface 11 a of the first sealing plate 11, and the first reagent 42 can be provided on the inner plate surface 13 a of the second sealing plate 13. These reagents can also be provided separately at different positions in the reaction chamber 4. Further, at least the through-hole 41 of the first sealing plate 11 and the second sealing plate 13 so that light reaches the reaction chamber 4 from the outside when measuring the optical change amount in the reaction chamber 4 after the reaction. A portion that is substantially concentric with the reaction chamber 4, that is, a portion adjacent to the reaction chamber 4 is configured to have optical transparency.
  • a non-light-transmitting film (not shown) provided with an aperture is attached to the first sealing plate 11 and the second sealing plate 13, or light is transmitted around a region that provides light-transmitting properties.
  • the size of the light-transmitting part can be set, for example, by applying a paint having no property (not shown).
  • first sealing plate 11 and the second sealing plate 13 are impermeable and impermeable to water, plastic materials such as polyethylene terephthalate (PET) and AS resin are easy to process. Is preferred. However, the present invention is not limited to this as long as a flow path in which the body fluid sample does not leak can be formed.
  • PET polyethylene terephthalate
  • AS resin AS resin
  • the ventilation plate 12 is impermeable and breathable, and a porous material that is impermeable and breathable is preferably used.
  • the processing of the holes and grooves is easy, and part of the wall surface surrounding the reaction chamber 4 has air permeability, and air escapes from here, so that the body fluid sample is transferred to the reaction chamber 4 without providing an air vent hole or the like. Because it becomes possible to do.
  • As the water-impermeable and air-permeable porous material polytetrafluoroethylene (PTFE), cellulose acetate and cellulose mixed ester subjected to water repellent treatment, and the like are preferably used.
  • An air vent hole communicating from the wall surface of the reaction chamber 4 to the outside can also be provided.
  • the ventilation plate 12 is made of an impermeable and impermeable material in place of the impermeable and breathable material. It can also be used.
  • the first reagent 42 is configured to dissolve in the body fluid sample to generate a first reaction
  • the second reagent 43 is configured to dissolve in the body fluid sample after the first reaction is completed to generate a second reaction.
  • the first reaction is a reaction in which an inhibitor that inhibits the measurement of the component to be analyzed is removed
  • the second reaction is an optical characteristic or electrical characteristic so that the component to be analyzed can be measured. It is a reaction in which the physical quantity changes.
  • the body fluid sample exhibits changes in physical quantities such as optical characteristics and electrical characteristics. Therefore, the body fluid components can be analyzed by measuring the changes.
  • the body fluid component can be analyzed by measuring the optical change amount of the body fluid sample after the second reaction is completed.
  • by providing an electrode or the like in the reaction chamber 4 it is possible to measure a change in electrical characteristics and analyze a body fluid component.
  • the surface of the second reagent 43 is covered with a coating layer 44, and the coating layer 44 is made of a material that does not dissolve even when it comes into contact with a body fluid sample.
  • the first reagent 42 contains a coating layer dissolving agent that dissolves the coating layer 44. That is, after the first reaction is completed, the coating layer 44 is dissolved by the action of the coating layer dissolving agent dissolved in the body fluid sample, the second reagent 43 is exposed, and the second reagent 43 is dissolved in the body fluid sample. Two reactions begin. By adjusting the thickness of the coating layer 44 and the concentration of the coating layer solubilizing agent contained in the first reagent 42, the time from when the body fluid sample flows into the reaction chamber 4 until the second reagent 43 is exposed is adjusted.
  • the coating layer 44 is made of a salt of alginic acid and a divalent metal
  • the coating layer dissolving agent contained in the first reagent 42 is made of a salt of ethylenediaminetetraacetic acid and an alkali metal.
  • the coating layer 44 is not dissolved by contact with only the body fluid sample, but the coating layer 44 is formed by a complexing reaction of ethylenediaminetetraacetic acid as a coating layer dissolving agent contained in the first reagent 42 dissolved in the body fluid sample.
  • the bivalent metal is removed, the coating layer 44 is destroyed, and the second reagent 43 is exposed.
  • the second reagent 43 is allowed to contain sodium alginate, and the second reagent 43 is attached to the second sealing plate 13, and then the surface thereof is applied.
  • the surface of the second reagent 43 is changed to calcium alginate, so that the coating layer 44 made of calcium alginate that does not affect the reaction covers the surface of the second reagent 43 by a simple method. It can be formed and is preferred.
  • the thickness of the coating layer 44 to be formed can be adjusted by adjusting the concentration of sodium alginate in the second reagent 43 and the concentration of calcium chloride dropped onto the second reagent 43. Furthermore, by adjusting the concentration of ethylenediaminetetraacetic acid contained in the first reagent 42, the time from when the body fluid sample flows into the reaction chamber 4 until the second reagent 43 is exposed can be easily controlled. it can.
  • the first reagent 42 when glucose is measured using a reductase, the first reagent 42 contains glucose dehydrogenase and diaphorase, and removes ascorbic acid, which is an inhibitory factor. It is preferable that the second reagent 43 is prepared so as to contain acid oxidase, and the second reagent 43 is prepared so as to contain a reducing color former.
  • the first reagent 42 is prepared to contain ascorbate oxidase and an oxidative condensation color former, and the second reagent 43 contains glucose oxidase and peroxidase. It is preferred to prepare to contain. This is because ascorbic acid is removed before the glucose oxidase reaction proceeds so as not to cause a decrease in coloration due to competition between ascorbic acid and peroxidase.
  • HDL-C may be configured as an analysis target.
  • the first reagent 42 is prepared so as to contain a reagent such as a surfactant that prevents the dissolution of lipoproteins other than HDL
  • the second reagent 43 is a surfactant having high solubilizing performance with respect to HDL.
  • a reagent for enzyme measurement for cholesterol measurement may be prepared.
  • a bodily fluid sample made of plasma is dropped onto the sample supply port 2, and then the sample supply port 2 is pressurized.
  • a blood cell separation membrane is installed in the sample supply port 2
  • a whole blood sample can be dropped onto the blood cell separation membrane as a body fluid sample, and the body fluid sample from which the blood cell component has been removed by the blood cell separation membrane is It flows into the sample supply port 2.
  • FIG. 4 shows an enlarged cross-sectional view of the reaction chamber 4 after the body fluid sample flows into the reaction chamber 4.
  • 5 indicates a body fluid sample.
  • FIG. 4A is a view immediately after the body fluid sample 5 flows into the reaction chamber 4.
  • the first reagent 42 starts to dissolve in the body fluid sample 5 by contacting the body fluid sample 5.
  • the second reagent 43 is covered with the coating layer 44, and the coating layer 44 is not dissolved by contact with only the body fluid sample 5, the second reagent 43 is not yet exposed. As time passes, the first reagent 42 is completely dissolved in the body fluid sample 5 (see FIG. 4B).
  • the first reaction proceeds by dissolving the first reagent 42 in the body fluid sample 5, and the inhibitory factor present in the body fluid sample 5 that inhibits the measurement of the component to be analyzed is removed.
  • the coating layer solubilizer contained in the first reagent 42 dissolves into the body fluid sample 5 and the coating layer 44 is dissolved by the coating layer solubilizer.
  • the second reagent 43 is exposed.
  • the first reaction has been completed and the inhibitor has already been removed.
  • the exposed second reagent 43 is dissolved in the body fluid sample 5, and the second reaction proceeds. Then, with the passage of time, the second reagent 43 is completely dissolved in the body fluid sample 5, and the second reaction is also completed (see FIG. 4C).
  • the component to be analyzed can be measured by a change in physical quantities such as optical characteristics and electrical characteristics.
  • the optical characteristic of the body fluid sample 5 is changed by the second reaction, and the component to be analyzed can be measured by measuring the change of the optical characteristic in the reaction chamber 4. Yes.
  • the subject of analysis was glucose.
  • a sample with a known glucose concentration added with ascorbic acid as an inhibitor was applied to Examples and Comparative Examples. Specifically, the glucose concentration was common at 100 mg / dL, and the comparison was performed using three types of samples having ascorbic acid concentrations of 0 mg / dL, 10 mg / dL, and 20 mg / dL, respectively.
  • the gap between the reaction chambers 4, that is, the distance between the inner plate surface 11 a of the first sealing plate 11 and the inner plate surface 13 a of the second sealing plate 13 is 150 ⁇ m, and the sample is placed in the reaction chamber 4. After the transfer, the first reagent 42 and the second reagent 43 were dissolved, and then the absorbance was measured by irradiating the reaction chamber 4 with light of 630 nm.
  • said 2nd reagent and 1st coating layer formation agent were prepared, and it adhered to the 2nd sealing plate 13 (300nL was dripped at a cell part of 1.4mm, and it dried naturally in 10% RH environment). Thereafter, when 150 nL of calcium chloride as the second coating layer forming agent is dropped onto this surface and naturally dried in a 10% RH environment, the surfaces of the second reagent and the first coating layer forming agent are changed to calcium alginate. Thus, a coating layer covering the surface of the second reagent is formed.
  • FIG. 5 and FIG. 6 show the results of comparison between the measured values using the body fluid component analyzer according to the example and the measured values using the body fluid component analyzer according to the comparative example.
  • FIG. 5 is a graph showing changes in absorbance over time in Examples and Comparative Examples.
  • FIG. 6 is a diagram showing changes in absorbance depending on the concentration of ascorbic acid in samples in Examples and Comparative Examples.
  • the horizontal axis in FIG. 5 shows the elapsed time after a sample flows into the reaction chamber 4, and the vertical axis
  • the horizontal axis in FIG. 6 indicates the concentration of ascorbic acid, and the vertical axis indicates the absorbance.
  • the absorbance begins to rise immediately after the sample flows into the reaction chamber 4, and the absorbance varies depending on the concentration of ascorbic acid. As the absorbance increases, the higher the concentration of ascorbic acid, the higher the absorbance.
  • the absorbance is substantially unchanged for about 60 seconds after the sample flows into the reaction chamber 4. This is because the second reagent 43 does not dissolve in the sample and the second reaction does not occur due to the presence of the coating layer 44, and during this about 60 seconds, the first reagent 42 dissolves in the sample, and the coating layer 44 It shows that dissolution is progressing gradually. And the coating layer 44 is destroyed, the 2nd reagent 43 begins to melt
  • the change in absorbance with time in the three samples is almost the same regardless of the concentration of ascorbic acid. This indicates that the change in absorbance in the second reaction is not affected because ascorbic acid, which is an inhibitory factor, has already been oxidatively decomposed by the first reaction prior to the second reaction.
  • FIG. 6 shows the change in absorbance with the concentration of ascorbic acid.
  • the absorbance after 300 seconds has passed since the sample flowed into the reaction chamber 4, and for the example, the absorbance of the sample after 360 seconds has passed into the reaction chamber 4.
  • the dissolution of the second reagent 43 starts after about 60 seconds from the flow of the sample into the reaction chamber 4, in both the comparative example and the example, the dissolution of the second reagent 43 starts approximately.
  • the absorbance after 300 seconds is shown.
  • the absorbance measurement value tended to increase in positive error as the concentration of ascorbic acid increased, but in the examples, the absorbance measurement value was almost constant regardless of the ascorbic acid concentration. It has become. That is, by using the body fluid component analysis instrument according to the present invention, after the first reaction for removing the inhibitory factor is completed, the second reaction in which the change in absorbance occurs can be started, and a highly accurate body fluid component It is shown that the analysis of

Abstract

Provided is an instrument for analyzing body fluid components which has a simple structure, enables the performance of an analysis using a simple procedure without a need for precise control of liquid-feeding, and makes it possible to quickly acquire highly accurate analytical data. An instrument for analyzing body fluid components provided with a sample inlet port (2) from which a body fluid sample is supplied into the inside and a reaction chamber (4) communicating therewith through a channel (3) extending therefrom, wherein a first reagent (42) and a second reagent (43) surface-coated with a coating layer (44) are contained in the reaction chamber (4) in an isolated state from each other, the coating layer (44) remains insoluble upon contact with the body fluid sample alone, and the first reagent (42) contains a coating layer-solubilizing agent capable of solubilizing the coating layer.  Owing to this constitution, reactions of the body fluid sample with multiple kinds of reagents can be successively conducted in a single reaction chamber and body fluid components can be analyzed at a high accuracy without forming a plural number of reaction chambers within the instrument or conducting precise liquid-feeding.

Description

体液成分の分析器具Body fluid component analyzer
 本発明は、体液中の特定成分の迅速かつ高精度な測定を、簡易に実施することができる体液成分の分析器具に関する。 The present invention relates to a body fluid component analyzer that can easily and quickly measure a specific component in a body fluid.
 体液中の特定成分の分析を迅速かつ高精度に実施することができる簡便な装置として、体液試料を滴下してその内部で複数の反応を起こさせ、反応後の体液試料の物理量を測定することによって分析対象の成分を測定できるように構成された体液成分の分析器具が、広く用いられている。 As a simple device that can quickly and accurately perform analysis of specific components in body fluids, drop body fluid samples to cause multiple reactions inside them, and measure physical quantities of body fluid samples after reaction A body fluid component analyzer configured to measure a component to be analyzed by the above is widely used.
 例えば、分析対象が高比重リポ蛋白(以下HDLと称す)中のコレステロール(以下HDL-Cと称す)である場合、分画を必要とすることなくリポ蛋白に対する界面活性剤の特異性の差を利用し選択的にHDL-Cを測定するという、いわゆる直接法を利用した、試験片状の分析器具が知られている(特許文献1参照)。特許文献1に開示される分析器具は、HDL-Cを特異的に測定するために、滴下された体液試料に対し、まずHDL以外のリポ蛋白の溶解を妨げる試薬を反応させ、次にHDLに対する可溶化性能が高い試薬を反応させた後、コレステロール測定用酵素試薬と反応させるよう構成されている。しかし、分析対象の成分を測定するために複数の異なる反応を所定の順に起こさせる必要があるため、特許文献1に開示される分析器具では、体液試料の進行方向に沿って、それぞれの反応を起こすための試薬を多孔質体の所定の位置に層状に配置する必要があった。また、体液試料の移動は多孔質体の中でのクロマト作用に依存するため、反応時間を一定に制御することが困難であった。 For example, when the analysis target is cholesterol (hereinafter referred to as HDL-C) in high-density lipoprotein (hereinafter referred to as HDL), the difference in the specificity of the surfactant with respect to the lipoprotein can be obtained without requiring fractionation. A specimen-like analytical instrument using a so-called direct method of selectively measuring HDL-C is known (see Patent Document 1). In order to specifically measure HDL-C, the analytical instrument disclosed in Patent Document 1 first reacts a dropped fluid sample with a reagent that prevents dissolution of lipoproteins other than HDL, and then reacts with HDL. The reagent is configured to react with a reagent for measuring cholesterol after reacting with a reagent with high solubilization performance. However, since it is necessary to cause a plurality of different reactions to occur in a predetermined order in order to measure a component to be analyzed, in the analytical instrument disclosed in Patent Document 1, each reaction is performed along the traveling direction of the body fluid sample. It was necessary to arrange a reagent for waking up in a layered manner at a predetermined position of the porous body. Moreover, since the movement of the body fluid sample depends on the chromatographic action in the porous body, it is difficult to control the reaction time to be constant.
 また、分析対象がグルコースである場合については、体液中のグルコースを簡単に測定できる分析器具も知られている(特許文献2参照)。特許文献2では、還元酵素を用いて体液中のグルコースを分析する分析器具が開示されているが、体液に含まれるアスコルビン酸は還元性を有しており、これにより還元発色剤が呈色するため、アスコルビン酸は測定における正誤差の要因となる。また、酸化酵素を用いて体液中のグルコースを分析する形態とした場合、過酸化水素をペルオキシターゼとアスコルビン酸とが競合して奪い合うため、アスコルビン酸は測定における負誤差の要因となる。そこで、特許文献2に開示される分析器具では、アスコルビン酸の還元性の影響を除去するために、体液試料をアスコルビン酸オキシターゼが備えられた試料処理室に一定時間滞留させることによって、体液試料とアスコルビン酸オキシターゼとを反応させてアスコルビン酸を酸化分解し、その後精密な送液制御をおこなって測光室に体液試料を移送し、測光室にて呈色反応を起こさせるという構成が採用されている。すなわち、従来の分析器具においては、阻害因子を除去する第一反応を起こす室と、分析対象の成分を測定するための第二反応を起こす室とを分離して設ける必要があった。また、分析器具内部で微量の体液試料を移送するために、精密な送液制御が可能な装置を別途必要としていた。 Also, when the analysis target is glucose, an analytical instrument that can easily measure glucose in a body fluid is also known (see Patent Document 2). Patent Document 2 discloses an analytical instrument for analyzing glucose in a body fluid using a reductase. However, ascorbic acid contained in the body fluid has a reducing property, and thereby the reducing color former is colored. Therefore, ascorbic acid causes a positive error in measurement. Further, when glucose in a body fluid is analyzed using oxidase, ascorbic acid causes a negative error in measurement because peroxidase and ascorbic acid compete and compete for hydrogen peroxide. Therefore, in the analytical instrument disclosed in Patent Document 2, in order to remove the effect of reducing ascorbic acid, the bodily fluid sample is retained in the sample processing chamber equipped with ascorbic acid oxidase for a certain period of time. A structure is adopted in which ascorbic acid is reacted with ascorbic acid oxidase to oxidatively decompose ascorbic acid, and then a body fluid sample is transferred to the photometric chamber by performing precise liquid feeding control to cause a color reaction in the photometric chamber. . That is, in the conventional analytical instrument, it is necessary to separately provide a chamber for causing the first reaction for removing the inhibitor and a chamber for causing the second reaction for measuring the component to be analyzed. Further, in order to transfer a small amount of body fluid sample inside the analytical instrument, a separate device capable of precise liquid feeding control is required.
 上述の通り、体液中の特定の成分を分析しようとすると、まず体液試料に含まれる阻害因子を除去する第一反応を起こし、第一反応が完了した後で、分析対象の成分を測定するための第二反応を起こさせるような手順を必要とする場合がある。そして、この分析の手順を簡易な器具により実施しようとする場合、第一反応を起こす室と第二反応を起こす室とを分離して設ける必要がある上に、精密な送液制御が可能な装置を別途必要とするという問題があった。 As described above, when trying to analyze a specific component in a body fluid, first, a first reaction for removing an inhibitor contained in the body fluid sample is caused, and after the first reaction is completed, the component to be analyzed is measured. In some cases, a procedure for causing the second reaction is required. When this analysis procedure is to be carried out with a simple instrument, it is necessary to separate the chamber for causing the first reaction and the chamber for causing the second reaction, and precise liquid feeding control is possible. There was a problem that a separate device was required.
 そこで、簡易な構造を有し、精密な送液制御を必要とすることなく、簡易な操作で分析を実施することができ、精度が高い分析結果を迅速に得ることができるような、体液成分の分析器具が求められていた。 Therefore, a body fluid component that has a simple structure, can perform an analysis with a simple operation without requiring precise liquid feeding control, and can quickly obtain a highly accurate analysis result. Analytical instruments were required.
特許第3686326号公報Japanese Patent No. 3686326 特許第3480876号公報Japanese Patent No. 3480876
 本発明が解決しようとする課題は、簡易な構造を有し、精密な送液制御を必要とすることなく、簡易な操作で分析を実施することができ、精度が高い分析結果を迅速に得ることができるような、体液成分の分析器具を提供することである。 The problem to be solved by the present invention is that it has a simple structure, can perform an analysis with a simple operation without requiring precise liquid feeding control, and quickly obtains a highly accurate analysis result. It is an object of the present invention to provide a body fluid component analyzer.
 本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、体液試料が内部に供給される試料供給口と、前記試料供給口から延出する流路と、前記流路に連通する反応室と、前記反応室に設けられた第一試薬と、前記第一試薬から離隔して設けられ、その表面が被覆層により覆われている第二試薬とを備え、前記被覆層は前記体液試料のみと接触しても溶解せず、前記第一試薬が前記被覆層を溶解する被覆層溶解剤を含有することを特徴とする体液成分の分析器具である。 The present invention has been made to solve the above problems, and the invention according to claim 1 includes a sample supply port through which a bodily fluid sample is supplied, a flow path extending from the sample supply port, A reaction chamber communicating with the flow path, a first reagent provided in the reaction chamber, and a second reagent provided separately from the first reagent, the surface of which is covered with a coating layer, The said coating layer is a body fluid component analysis instrument characterized by containing the coating layer dissolving agent which does not melt | dissolve even if it contacts only with the said body fluid sample, and said 1st reagent melt | dissolves the said coating layer.
 請求項1に記載の発明によれば、試料供給口に体液試料を供給した後反応室に送液すると、まず体液試料に第一試薬が溶解して第一反応が始まり、第一反応が終了した後第一試薬に含まれる被覆層溶解剤により被覆層が溶解し第二試薬が露出し、体液試料に第二試薬が溶解して第二反応が始まる。すなわち、器具の内部を複数の反応室を設けることなく、また精密な送液を行うことなく、一つの反応室内で複数の反応を順次起こすことが可能な体液成分の分析器具を提供することができる。 According to the first aspect of the present invention, when the body fluid sample is supplied to the sample supply port and then sent to the reaction chamber, the first reagent is first dissolved in the body fluid sample, the first reaction starts, and the first reaction ends. After that, the coating layer is dissolved by the coating layer dissolving agent contained in the first reagent, the second reagent is exposed, the second reagent is dissolved in the body fluid sample, and the second reaction is started. That is, it is possible to provide a body fluid component analysis instrument capable of sequentially causing a plurality of reactions in one reaction chamber without providing a plurality of reaction chambers inside the instrument and without performing precise liquid feeding. it can.
 請求項2に記載の発明は前記被覆層がアルギン酸と二価金属との塩からなり、前記被覆層溶解剤がエチレンジアミン四酢酸とアルカリ金属との塩からなることを特徴とする請求項1に記載の体液成分の分析器具である。 The invention according to claim 2 is characterized in that the coating layer comprises a salt of alginic acid and a divalent metal, and the coating layer solubilizer comprises a salt of ethylenediaminetetraacetic acid and an alkali metal. This is a device for analyzing body fluid components.
 請求項2に記載の発明によれば、反応室に流入した体液試料に第一試薬が溶解して反応室内に放出されるエチレンジアミン四酢酸の錯化反応により、被覆層の二価金属が除去されて被覆層が破壊され、第二試薬が反応室内で露出するよう構成された体液成分の分析器具を提供することができる。 According to the invention described in claim 2, the bivalent metal in the coating layer is removed by the complexing reaction of ethylenediaminetetraacetic acid, in which the first reagent is dissolved in the body fluid sample flowing into the reaction chamber and released into the reaction chamber. Thus, it is possible to provide a body fluid component analyzing instrument configured such that the coating layer is broken and the second reagent is exposed in the reaction chamber.
 請求項3に記載の発明は、前記被覆層がアルギン酸カルシウムからなることを特徴とする請求項2に記載の体液成分の分析器具である。 The invention described in claim 3 is the body fluid component analyzing instrument according to claim 2, wherein the coating layer is made of calcium alginate.
 請求項3に記載の発明によれば、第二試薬を安全にかつ確実に被覆する被覆層を備えた体液成分の分析器具を提供することができる。 According to the invention of claim 3, it is possible to provide a body fluid component analysis instrument provided with a coating layer for safely and reliably coating the second reagent.
 請求項4に記載の発明は、前記第二試薬がアルギン酸ナトリウムを含有し、前記被覆層が前記第二試薬の表面に塩化カルシウムを滴下することにより形成されることを特徴とする請求項3に記載の体液成分の分析器具である。 The invention according to claim 4 is characterized in that the second reagent contains sodium alginate and the coating layer is formed by dropping calcium chloride onto the surface of the second reagent. It is an analytical instrument for the body fluid component described.
 請求項4に記載の発明によれば、簡便な方法で、第二試薬の表面を覆う被覆層を形成することが可能な体液成分の分析器具を提供することができる。 According to the invention described in claim 4, it is possible to provide a body fluid component analyzing instrument capable of forming a coating layer covering the surface of the second reagent by a simple method.
 請求項5に記載の発明は、前記反応室を取り囲む壁面が不通水性を有し、かつ前記壁面の少なくとも一部が通気性を有することを特徴とする請求項1~4のいずれかに記載の体液成分の分析器具である。 The invention according to claim 5 is characterized in that the wall surface surrounding the reaction chamber has water impermeability, and at least a part of the wall surface has air permeability. It is a device for analyzing body fluid components.
 請求項5に記載の発明によれば、精密な送液制御をすることなく、試料供給口を与圧するだけで体液試料を確実に反応室に移送することが可能な体液成分の分析器具を提供することができる。 According to the fifth aspect of the present invention, there is provided a body fluid component analyzing instrument capable of reliably transferring a body fluid sample to the reaction chamber by simply pressurizing the sample supply port without performing precise liquid feeding control. can do.
 請求項6に記載の発明は、不通水性であり通気性の通気プレートと、前記通気プレートの一の板面に当接するよう配置され、不通水性であり不通気性の第一封止プレートと、前記通気プレートの他の板面に当接するよう配置され、不通水性であり不通気性の第二封止プレートとを備え、前記通気プレートは板厚方向に貫通する貫通孔を有し、前記貫通孔と前記第一封止プレートと前記第二封止プレートとにより前記反応室が区画され、前記第一試薬が前記第一封止プレートに付着されており、前記第二試薬が前記第二封止プレートに付着されていることを特徴とする請求項5に記載の体液成分の分析器具である。 The invention according to claim 6 is a water-impermeable and air-permeable ventilation plate, a water-permeable and air-impermeable first sealing plate disposed so as to abut against one plate surface of the ventilation plate, A second sealing plate that is impermeable to water and impermeable to air, and has a through hole that penetrates in the plate thickness direction. The reaction chamber is defined by a hole, the first sealing plate, and the second sealing plate, the first reagent is attached to the first sealing plate, and the second reagent is the second sealing. 6. The body fluid component analysis instrument according to claim 5, which is attached to a stop plate.
 請求項6に記載の発明によれば、第一封止プレートに第一試薬を付着し、第二封止プレートに第二試薬を付着しさらに被覆層を形成した後、通気プレートと第一封止プレートと第二封止プレートとを積層することによって構成することが可能な体液成分の分析器具を提供することができる。 According to the sixth aspect of the present invention, the first reagent is attached to the first sealing plate, the second reagent is attached to the second sealing plate, and the coating layer is further formed. It is possible to provide a body fluid component analysis instrument that can be configured by laminating a stop plate and a second sealing plate.
 請求項7に記載の発明は、前記第一封止プレートおよび第二封止プレートのうち、前記反応室に隣接する部分が光透過性を有することを特徴とする請求項6に記載の体液成分の分析器具である。 The invention according to claim 7 is the body fluid component according to claim 6, wherein a portion of the first sealing plate and the second sealing plate adjacent to the reaction chamber has light permeability. It is an analytical instrument.
 請求項7に記載の発明によれば、第二反応が終了した後反応室の光学的変化量を測定することにより体液成分を分析することが可能な体液成分の分析器具を提供することができる。 According to the seventh aspect of the present invention, it is possible to provide a body fluid component analysis instrument capable of analyzing a body fluid component by measuring the optical change amount in the reaction chamber after the second reaction is completed. .
 本発明によれば、試料供給口に体液試料を供給した後反応室に送液すると、まず体液試料に第一試薬が溶解して第一反応が始まり、第一反応が終了した後第一試薬に含まれる被覆層溶解剤により被覆層が溶解し第二試薬が露出し、体液試料に第二試薬が溶解して第二反応が始まる。すなわち、器具の内部を複数の反応室を設けることなく、また精密な送液を行うことなく、体液成分を分析することが可能な体液成分の分析器具を提供することができる。 According to the present invention, when a body fluid sample is supplied to the sample supply port and then sent to the reaction chamber, the first reagent is first dissolved in the body fluid sample, the first reaction starts, and the first reaction is completed. The coating layer is dissolved by the coating layer solubilizing agent, and the second reagent is exposed, the second reagent is dissolved in the body fluid sample, and the second reaction starts. That is, it is possible to provide a body fluid component analysis instrument capable of analyzing a body fluid component without providing a plurality of reaction chambers inside the instrument and without performing precise liquid feeding.
本発明の実施の形態に係る体液成分の分析器具を示す平面図である。It is a top view which shows the analytical instrument of the bodily fluid component which concerns on embodiment of this invention. 図1におけるA-A断面を示す断面図である。FIG. 2 is a cross-sectional view showing an AA cross section in FIG. 1. 本発明の実施の形態に係る体液成分の分析器具を示す分解斜視図である。It is a disassembled perspective view which shows the analytical instrument of the bodily fluid component which concerns on embodiment of this invention. 図1におけるA-A断面のうち反応室を拡大した拡大断面図であって、体液試料が反応室に流入した後の試薬の溶解を示した図である。FIG. 2 is an enlarged cross-sectional view of the reaction chamber in the AA cross-section in FIG. 1, showing dissolution of the reagent after the body fluid sample has flowed into the reaction chamber. 本発明の実施例および比較例における、吸光度の時間変化を示す図である。It is a figure which shows the time change of the light absorbency in the Example and comparative example of this invention. 本発明の実施例および比較例における、試料中のアスコルビン酸の濃度による吸光度の変化を示す図である。It is a figure which shows the change of the light absorbency by the density | concentration of the ascorbic acid in a sample in the Example and comparative example of this invention.
 次に、この発明の実施の形態について図面に基づき説明する。なお、以下に述べる実施の形態は、本発明の好適な実施の形態であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。 Next, an embodiment of the present invention will be described with reference to the drawings. The embodiments described below are preferred embodiments of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention is particularly limited in the following description. As long as there is no description which limits, it is not restricted to these aspects.
 図1~図3に、本発明に係る体液成分の分析器具の実施の形態を示す。図1は本実施の形態に係る体液成分の分析器具の平面図であり、図2は図1におけるA-A断面を示す断面図であり、図3は本実施の形態に係る体液成分の分析器具の分解斜視図である。また、図4に、図1におけるA-A断面のうち反応室を拡大した拡大断面図において、体液試料が反応室に流入した後の試薬の溶解を示す。なお、本実施の形態は、体液試料として血漿試料を滴下してグルコースを測定する形態となっている。 1 to 3 show an embodiment of a body fluid component analyzer according to the present invention. FIG. 1 is a plan view of a humor component analyzing instrument according to the present embodiment, FIG. 2 is a sectional view showing a section AA in FIG. 1, and FIG. 3 is an analysis of a humor component according to the present embodiment. It is a disassembled perspective view of an instrument. FIG. 4 is an enlarged cross-sectional view of the reaction chamber in the AA cross section in FIG. 1, showing the dissolution of the reagent after the body fluid sample flows into the reaction chamber. In the present embodiment, a plasma sample is dropped as a body fluid sample and glucose is measured.
 まず、本実施の形態に係る体液成分の分析器具の構造について説明する。図1~3に示すように、本実施の形態に係る体液成分の分析器具1は、第一封止プレート11と、通気プレート12と、第二封止プレート13とが積層されて構成されている。通気プレート12の一の板面12aと第一封止プレート11の内方板面11aとが当接し、通気プレート12の他の板面12bと第二封止プレート13の内方板面13aとが当接し、当接する面同士は両面テープなどの接着層(図示なし)を介して互いに接着されて構成されている。 First, the structure of the body fluid component analyzer according to this embodiment will be described. As shown in FIGS. 1 to 3, the body fluid component analysis instrument 1 according to the present embodiment is configured by laminating a first sealing plate 11, a ventilation plate 12, and a second sealing plate 13. Yes. One plate surface 12a of the ventilation plate 12 and the inner plate surface 11a of the first sealing plate 11 abut, and the other plate surface 12b of the ventilation plate 12 and the inner plate surface 13a of the second sealing plate 13 Are brought into contact with each other through an adhesive layer (not shown) such as a double-sided tape.
 第一封止プレート11には板厚方向に貫通する貫通孔21が設けられており、試料供給口2を形成している。通気プレート12にも貫通孔21と略同心位置に板厚方向に貫通する貫通孔22が設けられ、貫通孔22からは溝31が延出している。溝31と第一封止プレート11の内方板面11aおよび第二封止プレート13の内方板面13aとで囲まれた領域が、試料供給口2から延出する流路3を区画している。 The first sealing plate 11 is provided with a through hole 21 penetrating in the plate thickness direction to form the sample supply port 2. The ventilation plate 12 is also provided with a through hole 22 penetrating in the thickness direction substantially concentrically with the through hole 21, and a groove 31 extends from the through hole 22. A region surrounded by the groove 31 and the inner plate surface 11 a of the first sealing plate 11 and the inner plate surface 13 a of the second sealing plate 13 defines the flow path 3 extending from the sample supply port 2. ing.
 なお、試料供給口2に血球成分を分離する血球分離膜(図示なし)を設置し、全血試料を当該血球分離膜に滴下して、血球成分が除去された体液試料が試料供給口2に流入するよう構成することも可能である。 A blood cell separation membrane (not shown) for separating blood cell components is installed at the sample supply port 2, and a whole blood sample is dropped onto the blood cell separation membrane so that a body fluid sample from which the blood cell components have been removed is supplied to the sample supply port 2. It can also be configured to flow in.
 通気プレート12には溝31と連通し、板厚方向に貫通する貫通孔41が設けられている。貫通孔41と第一封止プレート11の内方板面11aおよび第二封止プレート13の内方板面13aとで囲まれた領域が反応室4を区画している。反応室4の中において、第一封止プレート11の内方板面11aには、第一試薬42が付着されているとともに、第二封止プレート13の内方板面13aには、第二試薬43が付着されている。さらに、被覆層44が第二試薬43の表面を覆うよう設けられている。この構成により、第一試薬42と第二試薬43とを反応室4内において離隔して設けることが容易となる。 The ventilation plate 12 is provided with a through hole 41 that communicates with the groove 31 and penetrates in the thickness direction. A region surrounded by the through hole 41, the inner plate surface 11 a of the first sealing plate 11 and the inner plate surface 13 a of the second sealing plate 13 divides the reaction chamber 4. In the reaction chamber 4, a first reagent 42 is attached to the inner plate surface 11 a of the first sealing plate 11, and a second reagent is attached to the inner plate surface 13 a of the second sealing plate 13. Reagent 43 is attached. Furthermore, a coating layer 44 is provided so as to cover the surface of the second reagent 43. With this configuration, the first reagent 42 and the second reagent 43 can be easily provided separately in the reaction chamber 4.
 なお、第二試薬43および被覆層44を第一封止プレート11の内方板面11aに、第一試薬42を第二封止プレート13の内方板面13aに設けることも可能であるし、反応室4内における別の位置にこれらの試薬を離隔して設けることも可能である。また、反応後の反応室4における光学的変化量を測定する際に外部から反応室4まで光が到達するよう、第一封止プレート11および第二封止プレート13のうち、少なくとも貫通孔41と略同心位置にある部分、すなわち反応室4に隣接する部分については、光透過性を有するよう構成されている。開孔が設けられた光透過性を有さない膜(図示なし)を第一封止プレート11および第二封止プレート13に貼着したり、光透過性を付与する領域の周囲に光透過性を有さない塗料(図示なし)を塗布することなどによって、光透過性を有する部分の大きさを設定することができる。 The second reagent 43 and the coating layer 44 can be provided on the inner plate surface 11 a of the first sealing plate 11, and the first reagent 42 can be provided on the inner plate surface 13 a of the second sealing plate 13. These reagents can also be provided separately at different positions in the reaction chamber 4. Further, at least the through-hole 41 of the first sealing plate 11 and the second sealing plate 13 so that light reaches the reaction chamber 4 from the outside when measuring the optical change amount in the reaction chamber 4 after the reaction. A portion that is substantially concentric with the reaction chamber 4, that is, a portion adjacent to the reaction chamber 4 is configured to have optical transparency. A non-light-transmitting film (not shown) provided with an aperture is attached to the first sealing plate 11 and the second sealing plate 13, or light is transmitted around a region that provides light-transmitting properties. The size of the light-transmitting part can be set, for example, by applying a paint having no property (not shown).
 次に各構成要素の材質について説明する。第一封止プレート11および第二封止プレート13は不通気性でありかつ不通水性であり、材質としては、ポリエチレンテレフタレート(PET)やAS樹脂のようなプラスチック材料が、加工が容易であるため好適である。しかし、体液試料が漏出することがない流路を形成することができれば、これに限定されるものではない。 Next, the material of each component will be described. Since the first sealing plate 11 and the second sealing plate 13 are impermeable and impermeable to water, plastic materials such as polyethylene terephthalate (PET) and AS resin are easy to process. Is preferred. However, the present invention is not limited to this as long as a flow path in which the body fluid sample does not leak can be formed.
 通気プレート12は不通水性であるとともに通気性であり、材質としては、不通水性であり通気性のある多孔質材が好適に用いられる。孔および溝の加工が容易であり、反応室4を取り囲む壁面の一部が通気性を有することになり、ここから空気が逃げるため、空気抜き孔等を設けることなく体液試料を反応室4まで移送することが可能となるからである。不通水性で通気性のある多孔質材として、ポリテトラフルオロエチレン(PTFE)や、撥水処理を施したセルロースアセテートおよびセルロース混合エステルなどが、好適に使用される。なお、反応室4の壁面から外部に連通する空気抜き孔を設けることもでき、その場合通気プレート12について、不通水性であり通気性のある材料に代えて不通気性でありかつ不通水性の材料を用いることも可能となる。 The ventilation plate 12 is impermeable and breathable, and a porous material that is impermeable and breathable is preferably used. The processing of the holes and grooves is easy, and part of the wall surface surrounding the reaction chamber 4 has air permeability, and air escapes from here, so that the body fluid sample is transferred to the reaction chamber 4 without providing an air vent hole or the like. Because it becomes possible to do. As the water-impermeable and air-permeable porous material, polytetrafluoroethylene (PTFE), cellulose acetate and cellulose mixed ester subjected to water repellent treatment, and the like are preferably used. An air vent hole communicating from the wall surface of the reaction chamber 4 to the outside can also be provided. In this case, the ventilation plate 12 is made of an impermeable and impermeable material in place of the impermeable and breathable material. It can also be used.
 第一試薬42は、体液試料に溶解して第一反応が発生するよう、第二試薬43は、第一反応が終了した後の体液試料に溶解して第二反応が発生するよう構成されている。なお、第一反応は、分析対象の成分の測定を阻害する阻害因子が除去される反応であり、第二反応は、分析対象の成分が測定可能となるように、光学的特性や電気的特性などの物理量が変化する反応である。第二反応が終了した後、体液試料は光学的特性や電気的特性などの物理量の変化を呈するため、その変化量を測定することにより体液成分を分析することができる。本実施の形態では、第二反応が終了した後の体液試料の光学的変化量を測定することにより体液成分を分析することができる。なお、反応室4に電極などを設けることによって、電気的特性の変化を測定して体液成分を分析するよう構成することも可能である。 The first reagent 42 is configured to dissolve in the body fluid sample to generate a first reaction, and the second reagent 43 is configured to dissolve in the body fluid sample after the first reaction is completed to generate a second reaction. Yes. The first reaction is a reaction in which an inhibitor that inhibits the measurement of the component to be analyzed is removed, and the second reaction is an optical characteristic or electrical characteristic so that the component to be analyzed can be measured. It is a reaction in which the physical quantity changes. After the second reaction is completed, the body fluid sample exhibits changes in physical quantities such as optical characteristics and electrical characteristics. Therefore, the body fluid components can be analyzed by measuring the changes. In the present embodiment, the body fluid component can be analyzed by measuring the optical change amount of the body fluid sample after the second reaction is completed. In addition, by providing an electrode or the like in the reaction chamber 4, it is possible to measure a change in electrical characteristics and analyze a body fluid component.
 第二試薬43は、その表面が被覆層44により覆われており、被覆層44は体液試料と接触しても溶解しないような材質で構成されている。第一試薬42は被覆層44を溶解する被覆層溶解剤を含有している。すなわち、第一反応が終了した後、体液試料に溶け出した被覆層溶解剤の作用により被覆層44が溶解して第二試薬43が露出し、体液試料に第二試薬43が溶解して第二反応が始まる。なお、被覆層44の厚さおよび第一試薬42に含まれる被覆層溶解剤の濃度を調節することによって、体液試料が反応室4に流入してから第二試薬43が露出するまでの時間をコントロールすることが可能である。本実施形態では、被覆層44はアルギン酸と二価金属との塩からなり、第一試薬42に含まれる被覆層溶解剤はエチレンジアミン四酢酸とアルカリ金属との塩からなる。この構成によると、体液試料のみとの接触によっても被覆層44は溶解しないが、体液試料に溶解した第一試薬42に含まれる被覆層溶解剤のエチレンジアミン四酢酸の錯化反応により、被覆層44の二価金属が除去されて被覆層44が破壊され、第二試薬43が露出することになる。 The surface of the second reagent 43 is covered with a coating layer 44, and the coating layer 44 is made of a material that does not dissolve even when it comes into contact with a body fluid sample. The first reagent 42 contains a coating layer dissolving agent that dissolves the coating layer 44. That is, after the first reaction is completed, the coating layer 44 is dissolved by the action of the coating layer dissolving agent dissolved in the body fluid sample, the second reagent 43 is exposed, and the second reagent 43 is dissolved in the body fluid sample. Two reactions begin. By adjusting the thickness of the coating layer 44 and the concentration of the coating layer solubilizing agent contained in the first reagent 42, the time from when the body fluid sample flows into the reaction chamber 4 until the second reagent 43 is exposed is adjusted. It is possible to control. In this embodiment, the coating layer 44 is made of a salt of alginic acid and a divalent metal, and the coating layer dissolving agent contained in the first reagent 42 is made of a salt of ethylenediaminetetraacetic acid and an alkali metal. According to this configuration, the coating layer 44 is not dissolved by contact with only the body fluid sample, but the coating layer 44 is formed by a complexing reaction of ethylenediaminetetraacetic acid as a coating layer dissolving agent contained in the first reagent 42 dissolved in the body fluid sample. The bivalent metal is removed, the coating layer 44 is destroyed, and the second reagent 43 is exposed.
 第二試薬43を被覆層44で覆う方法は任意であるが、第二試薬43にアルギン酸ナトリウムを含有させておき、第二試薬43を第二封止プレート13に付着させた後、その表面に塩化カルシウムを滴下すると、第二試薬43の表面がアルギン酸カルシウムに変化するため、簡便な方法で、反応に影響を及ぼさないアルギン酸カルシウムからなる被覆層44が、第二試薬43の表面を覆うように形成することができ、好適である。なお、第二試薬43中のアルギン酸ナトリウムの濃度および第二試薬43に滴下する塩化カルシウムの濃度を調節することによって、形成される被覆層44の厚さを調節することができる。そしてさらに、第一試薬42に含まれるエチレンジアミン四酢酸の濃度を調節することにより、体液試料が反応室4に流入してから第二試薬43が露出するまでの時間を、容易にコントロールすることができる。 Although the method of covering the second reagent 43 with the coating layer 44 is arbitrary, the second reagent 43 is allowed to contain sodium alginate, and the second reagent 43 is attached to the second sealing plate 13, and then the surface thereof is applied. When calcium chloride is added dropwise, the surface of the second reagent 43 is changed to calcium alginate, so that the coating layer 44 made of calcium alginate that does not affect the reaction covers the surface of the second reagent 43 by a simple method. It can be formed and is preferred. The thickness of the coating layer 44 to be formed can be adjusted by adjusting the concentration of sodium alginate in the second reagent 43 and the concentration of calcium chloride dropped onto the second reagent 43. Furthermore, by adjusting the concentration of ethylenediaminetetraacetic acid contained in the first reagent 42, the time from when the body fluid sample flows into the reaction chamber 4 until the second reagent 43 is exposed can be easily controlled. it can.
 なお、本実施の形態において、還元酵素を使用してグルコースを測定する場合、第一試薬42は、グルコース脱水素酵素とジアホラーゼとを含有しつつ、阻害因子であるアスコルビン酸を除去するため、アスコルビン酸オキシターゼをも含有するよう調製し、第二試薬43は、還元発色剤を含有するよう調製するのが好適である。また、酸化酵素を使用してグルコースを測定する場合には、第一試薬42は、アスコルビン酸オキシターゼと酸化縮合発色剤とを含有するよう調製し、第二試薬43はグルコース酸化酵素とペルオキシターゼとを含有するよう調製するのが好適である。アスコルビン酸とペルオキシダーゼとの競合によって呈色の低下を生じないよう、グルコース酸化酵素の反応が進む前にアスコルビン酸を除去するためである。 In the present embodiment, when glucose is measured using a reductase, the first reagent 42 contains glucose dehydrogenase and diaphorase, and removes ascorbic acid, which is an inhibitory factor. It is preferable that the second reagent 43 is prepared so as to contain acid oxidase, and the second reagent 43 is prepared so as to contain a reducing color former. When glucose is measured using an oxidase, the first reagent 42 is prepared to contain ascorbate oxidase and an oxidative condensation color former, and the second reagent 43 contains glucose oxidase and peroxidase. It is preferred to prepare to contain. This is because ascorbic acid is removed before the glucose oxidase reaction proceeds so as not to cause a decrease in coloration due to competition between ascorbic acid and peroxidase.
 ここで、本実施の形態における分析対象であるグルコースに代えて、HDL-Cを分析対象とするよう構成することもできる。この場合、第一試薬42については、HDL以外のリポ蛋白の溶解を妨げる界面活性剤などの試薬を含有するよう調製し、第二試薬43については、HDLに対する可溶化性能が高い界面活性剤などの試薬とコレステロール測定用酵素試薬とを含有するよう調製すればよい。 Here, instead of glucose as an analysis target in the present embodiment, HDL-C may be configured as an analysis target. In this case, the first reagent 42 is prepared so as to contain a reagent such as a surfactant that prevents the dissolution of lipoproteins other than HDL, and the second reagent 43 is a surfactant having high solubilizing performance with respect to HDL. And a reagent for enzyme measurement for cholesterol measurement may be prepared.
 次に、本実施の形態に係る体液成分の器具を用いた分析の手順および体液成分の分析器具の作用について、図1~4に基づいて説明する。 Next, an analysis procedure using the body fluid component device and the operation of the body fluid component analysis device according to the present embodiment will be described with reference to FIGS.
 まず、血漿から成る体液試料を試料供給口2に滴下し、その後試料供給口2を与圧する。なおここで、試料供給口2に血球分離膜を設置した場合には、体液試料として全血試料を血球分離膜に滴下することができ、血球分離膜により血球成分が除去された体液試料が、試料供給口2に流入することになる。 First, a bodily fluid sample made of plasma is dropped onto the sample supply port 2, and then the sample supply port 2 is pressurized. Here, when a blood cell separation membrane is installed in the sample supply port 2, a whole blood sample can be dropped onto the blood cell separation membrane as a body fluid sample, and the body fluid sample from which the blood cell component has been removed by the blood cell separation membrane is It flows into the sample supply port 2.
 通気プレート12は通気性を有しつつ不通水性を有し、そのため反応室4の壁面も通気性を有するため、体液試料は流路3を通り反応室4に流入し、そこに留まる。体液試料が反応室4に流入してから以降の反応室4の拡大断面図を図4に示す。図4において5は体液試料を指す。図4(a)は体液試料5が反応室4に流入した直後の図である。 The aeration plate 12 has air permeability while impervious to water. Therefore, the wall surface of the reaction chamber 4 is also air permeable, so that the body fluid sample flows into the reaction chamber 4 through the flow path 3 and remains there. FIG. 4 shows an enlarged cross-sectional view of the reaction chamber 4 after the body fluid sample flows into the reaction chamber 4. In FIG. 4, 5 indicates a body fluid sample. FIG. 4A is a view immediately after the body fluid sample 5 flows into the reaction chamber 4.
 反応室4において、体液試料5と接触することによって、第一試薬42が体液試料5に溶解し始める。一方、第二試薬43は被覆層44により覆われており、また被覆層44は体液試料5のみとの接触によっても溶解しないため、第二試薬43はまだ露出しない。そして時間の経過により、第一試薬42は体液試料5に完全に溶解する(図4(b)参照)。 In the reaction chamber 4, the first reagent 42 starts to dissolve in the body fluid sample 5 by contacting the body fluid sample 5. On the other hand, since the second reagent 43 is covered with the coating layer 44, and the coating layer 44 is not dissolved by contact with only the body fluid sample 5, the second reagent 43 is not yet exposed. As time passes, the first reagent 42 is completely dissolved in the body fluid sample 5 (see FIG. 4B).
 第一試薬42が体液試料5に溶解することによって第一反応が進行し、体液試料5中に存在する、分析対象の成分の測定を阻害する阻害因子が除去される。それと同時に、第一試薬42に含まれている被覆層溶解剤が体液試料5に溶け出し、被覆層溶解剤による被覆層44の溶解が進行する。そして被覆層44が破壊されると第二試薬43が露出する。この段階で第一反応は終了しており、すでに阻害因子は除去されている。露出した第二試薬43は体液試料5に溶解してゆき、第二反応が進行する。そして時間の経過により第二試薬43は体液試料5に完全に溶解し、第二反応も終了する(図4(c)参照)。第二反応が終了すると、光学的特性や電気的特性などの物理量の変化により分析対象の成分が測定可能となる。本実施の形態では、第二反応により体液試料5の光学的特性が変化し、反応室4における光学的特性の変化を測定することによって、分析対象の成分を測定することができるよう構成されている。 The first reaction proceeds by dissolving the first reagent 42 in the body fluid sample 5, and the inhibitory factor present in the body fluid sample 5 that inhibits the measurement of the component to be analyzed is removed. At the same time, the coating layer solubilizer contained in the first reagent 42 dissolves into the body fluid sample 5 and the coating layer 44 is dissolved by the coating layer solubilizer. When the coating layer 44 is broken, the second reagent 43 is exposed. At this stage, the first reaction has been completed and the inhibitor has already been removed. The exposed second reagent 43 is dissolved in the body fluid sample 5, and the second reaction proceeds. Then, with the passage of time, the second reagent 43 is completely dissolved in the body fluid sample 5, and the second reaction is also completed (see FIG. 4C). When the second reaction is completed, the component to be analyzed can be measured by a change in physical quantities such as optical characteristics and electrical characteristics. In the present embodiment, the optical characteristic of the body fluid sample 5 is changed by the second reaction, and the component to be analyzed can be measured by measuring the change of the optical characteristic in the reaction chamber 4. Yes.
(実施例)
 ここで、本発明に係る分析器具の効果を確認するため、本実施の形態に係る体液成分の分析器具の具体的実施例と、比較例とを用いて試料を分析し、その結果について比較を行った。
(Example)
Here, in order to confirm the effect of the analytical instrument according to the present invention, a sample is analyzed using a specific example of the analytical instrument for body fluid components according to the present embodiment and a comparative example, and the results are compared. went.
 分析対象はグルコースとした。グルコース濃度が既知の試料に、阻害因子であるアスコルビン酸を添加したものを、実施例および比較例に適用した。具体的には、グルコース濃度が100mg/dLで共通であり、アスコルビン酸の濃度がそれぞれ0mg/dL、10mg/dLおよび20mg/dLの、三種の試料を用いて比較した。また、反応室4の隙間、すなわち第一封止プレート11の内方板面11aと第二封止プレート13の内方板面13aとの間の距離は150μmであり、反応室4に試料を移送して第一試薬42および第二試薬43を溶解した後、反応室4に630nmの光を照射して吸光度を測定した。 The subject of analysis was glucose. A sample with a known glucose concentration added with ascorbic acid as an inhibitor was applied to Examples and Comparative Examples. Specifically, the glucose concentration was common at 100 mg / dL, and the comparison was performed using three types of samples having ascorbic acid concentrations of 0 mg / dL, 10 mg / dL, and 20 mg / dL, respectively. Further, the gap between the reaction chambers 4, that is, the distance between the inner plate surface 11 a of the first sealing plate 11 and the inner plate surface 13 a of the second sealing plate 13 is 150 μm, and the sample is placed in the reaction chamber 4. After the transfer, the first reagent 42 and the second reagent 43 were dissolved, and then the absorbance was measured by irradiating the reaction chamber 4 with light of 630 nm.
 本実施例に用いた第一試薬、第二試薬および被覆層の調製を以下に示す。 Preparation of the first reagent, the second reagent, and the coating layer used in this example is shown below.
(第一試薬)
グルコース脱水素酵素 120U/L(反応時)
ジアホラーゼ 40U/L(反応時)
PIPES緩衝剤 150mM(反応時)
アスコルビン酸オキシターゼ 1000U/L(反応時)
エチレンジアミン四酢酸二ナトリウム 0.5%(反応時)
ソルビトール 2%(反応時)
(First reagent)
Glucose dehydrogenase 120U / L (during reaction)
Diaphorase 40U / L (during reaction)
PIPES buffer 150 mM (during reaction)
Ascorbate oxidase 1000 U / L (during reaction)
Ethylenediaminetetraacetic acid disodium 0.5% (during reaction)
Sorbitol 2% (during reaction)
(第二試薬および第一被覆層形成剤)
酸化型ニコチンアミドアデニンジヌクレオチド(β-NAD) 20mM(反応時)
水溶性テトラゾリウム塩(WST-8) 40mM(反応時)
アルギン酸ナトリウム 1%(反応時)
(Second reagent and first coating layer forming agent)
Oxidized nicotinamide adenine dinucleotide (β-NAD) 20 mM (during reaction)
Water-soluble tetrazolium salt (WST-8) 40 mM (during reaction)
Sodium alginate 1% (during reaction)
(第二被覆層形成剤)
塩化カルシウム 0.5%(反応時)
(Second coating layer forming agent)
Calcium chloride 0.5% (during reaction)
 なお、上記の、第二試薬および第一被覆層形成剤を調製し第二封止プレート13に付着(1.4mmのセル部に300nLを滴下し、10%RH環境下にて自然乾燥)した後、この表面に上記第二被覆層形成剤たる塩化カルシウムを150nL滴下して、10%RH環境下にて自然乾燥すると、第二試薬および第一被覆層形成剤の表面がアルギン酸カルシウムに変化して、第二試薬の表面を覆う被覆層が形成される。 In addition, said 2nd reagent and 1st coating layer formation agent were prepared, and it adhered to the 2nd sealing plate 13 (300nL was dripped at a cell part of 1.4mm, and it dried naturally in 10% RH environment). Thereafter, when 150 nL of calcium chloride as the second coating layer forming agent is dropped onto this surface and naturally dried in a 10% RH environment, the surfaces of the second reagent and the first coating layer forming agent are changed to calcium alginate. Thus, a coating layer covering the surface of the second reagent is formed.
 (比較例)
 比較例としては、上記実施例での第一試薬におけるアスコルビン酸オキシターゼと、第二被覆膜形成剤とを除いたものを用いた。
(Comparative example)
As a comparative example, what remove | excluded the ascorbate oxidase in the 1st reagent in the said Example and the 2nd coating film formation agent was used.
 実施例に係る体液成分の分析器具を用いた測定値と、比較例に係る体液成分の分析器具を用いた測定値との比較結果を、図5および図6に示す。図5は、実施例および比較例における吸光度の時間変化を示す図である。図6は、実施例および比較例における試料中のアスコルビン酸の濃度による吸光度の変化を示す図である。なお、図5における横軸は試料が反応室4に流入してからの経過時間を示し、縦軸は吸光度を示している。図6における横軸はアスコルビン酸の濃度を示し、縦軸は吸光度を示している。 FIG. 5 and FIG. 6 show the results of comparison between the measured values using the body fluid component analyzer according to the example and the measured values using the body fluid component analyzer according to the comparative example. FIG. 5 is a graph showing changes in absorbance over time in Examples and Comparative Examples. FIG. 6 is a diagram showing changes in absorbance depending on the concentration of ascorbic acid in samples in Examples and Comparative Examples. In addition, the horizontal axis in FIG. 5 shows the elapsed time after a sample flows into the reaction chamber 4, and the vertical axis | shaft has shown the light absorbency. The horizontal axis in FIG. 6 indicates the concentration of ascorbic acid, and the vertical axis indicates the absorbance.
 図5に示すように、比較例では、反応室4に試料が流入してすぐに吸光度が上昇し始めており、またアスコルビン酸の濃度によって吸光度が異なっており、三種の試料いずれについても時間の経過とともに吸光度が上昇していくが、アスコルビン酸の濃度が高いほど高い吸光度で推移していることがわかる。 As shown in FIG. 5, in the comparative example, the absorbance begins to rise immediately after the sample flows into the reaction chamber 4, and the absorbance varies depending on the concentration of ascorbic acid. As the absorbance increases, the higher the concentration of ascorbic acid, the higher the absorbance.
 これに対して実施例では、反応室4に試料が流入してから約60秒間は吸光度がほぼ不変である。これは、被覆層44の存在により第二試薬43が試料に溶解せず第二反応が起こらないためであり、この約60秒間の間に第一試薬42が試料に溶解し、被覆層44の溶解が徐々に進行していることを示している。そして、被覆層44が破壊されて第二試薬43が試料に溶解し始め、第二反応が進行するに従って吸光度が上昇する。 In contrast, in the example, the absorbance is substantially unchanged for about 60 seconds after the sample flows into the reaction chamber 4. This is because the second reagent 43 does not dissolve in the sample and the second reaction does not occur due to the presence of the coating layer 44, and during this about 60 seconds, the first reagent 42 dissolves in the sample, and the coating layer 44 It shows that dissolution is progressing gradually. And the coating layer 44 is destroyed, the 2nd reagent 43 begins to melt | dissolve in a sample, and a light absorbency increases as 2nd reaction advances.
 そして実施例では、三種の試料における吸光度の時間変化は、アスコルビン酸の濃度に違いによらずほぼ同じである。これは、第二反応に先立つ第一反応によって阻害因子たるアスコルビン酸がすでに酸化分解されているため、第二反応における吸光度変化に影響を及ぼしていないことを示している。 In the examples, the change in absorbance with time in the three samples is almost the same regardless of the concentration of ascorbic acid. This indicates that the change in absorbance in the second reaction is not affected because ascorbic acid, which is an inhibitory factor, has already been oxidatively decomposed by the first reaction prior to the second reaction.
 図6はアスコルビン酸の濃度による吸光度の変化を示している。なお、比較例については、試料が反応室4に流入してから300秒経過後の吸光度を、実施例については試料が反応室4に360秒経過後の吸光度を示している。実施例については、試料が反応室4に流入してから約60秒経過後に第二試薬43の溶解が始まるため、比較例および実施例いずれについても、第二試薬43の溶解が始まってから約300秒経過後の吸光度を示している。図示の通り、比較例では、アスコルビン酸の濃度の増加に従って吸光度の測定値は正誤差が増加する傾向が見られたが、実施例ではアスコルビン酸の濃度にかかわらず吸光度の測定値はほぼ一定となっている。すなわち、本発明に係る体液成分の分析器具を用いることにより、阻害因子の除去を行う第一反応が終了した後、吸光度の変化が生じる第二反応を開始することができ、高精度な体液成分の分析が可能となっていることが示されている。 FIG. 6 shows the change in absorbance with the concentration of ascorbic acid. For the comparative example, the absorbance after 300 seconds has passed since the sample flowed into the reaction chamber 4, and for the example, the absorbance of the sample after 360 seconds has passed into the reaction chamber 4. In the example, since the dissolution of the second reagent 43 starts after about 60 seconds from the flow of the sample into the reaction chamber 4, in both the comparative example and the example, the dissolution of the second reagent 43 starts approximately. The absorbance after 300 seconds is shown. As shown in the figure, in the comparative example, the absorbance measurement value tended to increase in positive error as the concentration of ascorbic acid increased, but in the examples, the absorbance measurement value was almost constant regardless of the ascorbic acid concentration. It has become. That is, by using the body fluid component analysis instrument according to the present invention, after the first reaction for removing the inhibitory factor is completed, the second reaction in which the change in absorbance occurs can be started, and a highly accurate body fluid component It is shown that the analysis of
   1 体液成分の分析器具
  11 第一封止プレート
  12 通気プレート
  13 第二封止プレート
   2 試料供給口
  21 貫通孔
  22 貫通孔
   3 流路
  31 溝
   4 反応室
  41 貫通孔
  42 第一試薬
  43 第二試薬
  44 被覆層
   5 体液試料
DESCRIPTION OF SYMBOLS 1 Analyzing instrument of body fluid component 11 1st sealing plate 12 Ventilation plate 13 2nd sealing plate 2 Sample supply port 21 Through hole 22 Through hole 3 Channel 31 Groove 4 Reaction chamber 41 Through hole 42 First reagent 43 Second reagent 44 Coating layer 5 Body fluid sample

Claims (7)

  1.  体液試料が内部に供給される試料供給口と、
     前記試料供給口から延出する流路と、
     前記流路に連通する反応室と、
     前記反応室に設けられた第一試薬と、
     前記第一試薬から離隔して設けられ、その表面が被覆層により覆われている第二試薬とを備え、
     前記被覆層は前記体液試料のみと接触しても溶解せず、
     前記第一試薬が前記被覆層を溶解する被覆層溶解剤を含有する
     ことを特徴とする体液成分の分析器具。
    A sample supply port through which a body fluid sample is supplied;
    A flow path extending from the sample supply port;
    A reaction chamber communicating with the flow path;
    A first reagent provided in the reaction chamber;
    A second reagent provided separately from the first reagent, the surface of which is covered with a coating layer;
    The coating layer does not dissolve even when contacted only with the body fluid sample,
    The first reagent contains a coating layer dissolving agent that dissolves the coating layer.
  2.  前記被覆層がアルギン酸と二価金属との塩からなり、
     前記被覆層溶解剤がエチレンジアミン四酢酸とアルカリ金属との塩からなる
     ことを特徴とする請求項1に記載の体液成分の分析器具。
    The coating layer comprises a salt of alginic acid and a divalent metal;
    The body fluid component analysis instrument according to claim 1, wherein the coating layer solubilizer comprises a salt of ethylenediaminetetraacetic acid and an alkali metal.
  3.  前記被覆層がアルギン酸カルシウムからなる
     ことを特徴とする請求項2に記載の体液成分の分析器具。
    The body fluid component analysis instrument according to claim 2, wherein the coating layer is made of calcium alginate.
  4.  前記第二試薬がアルギン酸ナトリウムを含有し、
     前記被覆層が前記第二試薬の表面に塩化カルシウムを滴下することにより形成される
     ことを特徴とする請求項3に記載の体液成分の分析器具。
    The second reagent contains sodium alginate;
    The body fluid component analysis instrument according to claim 3, wherein the coating layer is formed by dropping calcium chloride onto the surface of the second reagent.
  5.  前記反応室を取り囲む壁面が不通水性を有し、かつ前記壁面の少なくとも一部が通気性を有する
     ことを特徴とする請求項1~4のいずれかに記載の体液成分の分析器具。
    5. The body fluid component analysis instrument according to claim 1, wherein a wall surface surrounding the reaction chamber is impermeable to water, and at least a part of the wall surface is air permeable.
  6.  不通水性であり通気性の通気プレートと、
     前記通気プレートの一の板面に当接するよう配置され、不通水性であり不通気性の第一封止プレートと、
     前記通気プレートの他の板面に当接するよう配置され、不通水性であり不通気性の第二封止プレートとを備え、
     前記通気プレートは板厚方向に貫通する貫通孔を有し、
     前記貫通孔と前記第一封止プレートと前記第二封止プレートとにより前記反応室が区画され、
     前記第一試薬が前記第一封止プレートに付着されており、
     前記第二試薬が前記第二封止プレートに付着されている
     ことを特徴とする請求項1~5のいずれかに記載の体液成分の分析器具。
    Impervious and breathable ventilation plates;
    A first sealing plate that is disposed so as to abut against one plate surface of the ventilation plate and is impermeable and impermeable to water;
    A second sealing plate which is disposed so as to abut against the other plate surface of the ventilation plate, and is impermeable and impermeable.
    The ventilation plate has a through-hole penetrating in the thickness direction,
    The reaction chamber is partitioned by the through hole, the first sealing plate, and the second sealing plate,
    The first reagent is attached to the first sealing plate;
    The body fluid component analysis instrument according to any one of claims 1 to 5, wherein the second reagent is attached to the second sealing plate.
  7.  前記第一封止プレートおよび第二封止プレートのうち、前記反応室に隣接する部分が光透過性を有する
     ことを特徴とする請求項6に記載の体液成分の分析器具。
    The part adjacent to the reaction chamber of the first sealing plate and the second sealing plate has light permeability. The body fluid component analysis instrument according to claim 6.
PCT/JP2009/062189 2009-07-03 2009-07-03 Instrument for analyzing body fluid components WO2011001530A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011520720A JP5339554B2 (en) 2009-07-03 2009-07-03 Body fluid component analyzer
PCT/JP2009/062189 WO2011001530A1 (en) 2009-07-03 2009-07-03 Instrument for analyzing body fluid components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/062189 WO2011001530A1 (en) 2009-07-03 2009-07-03 Instrument for analyzing body fluid components

Publications (1)

Publication Number Publication Date
WO2011001530A1 true WO2011001530A1 (en) 2011-01-06

Family

ID=43410628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062189 WO2011001530A1 (en) 2009-07-03 2009-07-03 Instrument for analyzing body fluid components

Country Status (2)

Country Link
JP (1) JP5339554B2 (en)
WO (1) WO2011001530A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115246A (en) * 2012-12-12 2014-06-26 Ttm:Kk Body fluid inspection instrument
WO2021220730A1 (en) * 2020-04-30 2021-11-04 ウシオ電機株式会社 Component measurement method and component measurement strip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160724A (en) * 1996-12-03 1998-06-19 Kdk Corp Test piece
JP4231104B2 (en) * 2006-09-26 2009-02-25 パナソニック株式会社 Immunosensor and measurement method using the same
WO2009037784A1 (en) * 2007-09-21 2009-03-26 Tya K. K. Analytical instrument for body fluid component
WO2009037785A1 (en) * 2007-09-21 2009-03-26 Tya K. K. Method of examining instrument for analyzing body fluid and instrument for analyzing body fluid
JP2009098039A (en) * 2007-10-18 2009-05-07 Panasonic Corp Analysis vessel and analysis device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160724A (en) * 1996-12-03 1998-06-19 Kdk Corp Test piece
JP4231104B2 (en) * 2006-09-26 2009-02-25 パナソニック株式会社 Immunosensor and measurement method using the same
WO2009037784A1 (en) * 2007-09-21 2009-03-26 Tya K. K. Analytical instrument for body fluid component
WO2009037785A1 (en) * 2007-09-21 2009-03-26 Tya K. K. Method of examining instrument for analyzing body fluid and instrument for analyzing body fluid
JP2009098039A (en) * 2007-10-18 2009-05-07 Panasonic Corp Analysis vessel and analysis device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOBASLIJA, M. ET AL.: "Removable Colored Coatings Based on Calcium Alginate Hydrogels", BIOMACROMOL., vol. 7, no. 8, 2006, pages 2357 - 2361 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115246A (en) * 2012-12-12 2014-06-26 Ttm:Kk Body fluid inspection instrument
WO2021220730A1 (en) * 2020-04-30 2021-11-04 ウシオ電機株式会社 Component measurement method and component measurement strip

Also Published As

Publication number Publication date
JP5339554B2 (en) 2013-11-13
JPWO2011001530A1 (en) 2012-12-10

Similar Documents

Publication Publication Date Title
AU2004200506B2 (en) Method for Reducing Effect of Hematocrit on Measurement of an Analyte in Whole Blood, and Test Kit and Test Article Useful in the Method
CA1315181C (en) Test strip device with volume metering capillary gap
JPWO2007116909A1 (en) Sample solution analysis panel
EP0698413B1 (en) Biological fluid analyzing device and method
AU778966B2 (en) Electrochemical test strip for use in analyte determination
EP2803992B1 (en) Sample analyzing method by capillary electrophoresis method
JP2007248101A (en) Inspection instrument of liquid fluid and inspection method using it
EP2144057A1 (en) Analysis chip and analysis apparatus
KR20010040357A (en) Microfabricated aperture-based sensor
US7439033B2 (en) Method and test strip for determining a fluid analyte
JPWO2010010881A1 (en) Method for measuring components in blood using hemolyzed whole blood and kit thereof
NZ299104A (en) Reagent test strip
JPH02150751A (en) Implement and method for analyzing specific component in liquid sample
JP5339554B2 (en) Body fluid component analyzer
US8999124B2 (en) Detection device
WO2009110089A1 (en) Instrument for analyzing body fluid
EP2617834B1 (en) Method for producing dry reagent, dry reagent, and analysis tool using same
JPH09105750A (en) Measuring method corrected in hematocrit value
JP4945709B2 (en) Liquid fluid inspection instrument and inspection method
JP4657084B2 (en) Sample analysis disc
JP2005315818A (en) Liquid sample analyzing tool
US20220168727A1 (en) Biosensor for detection of analytes in a fluid
EP3404418A2 (en) A diagnostic strip for determining the amount of sarcosine, creatinine and hydrogen peroxide in a biological or environmental sample
EP3264081B1 (en) Dry chemical test strip with multiple layers of membranes based on concentration gradient
Baniya et al. Lab‐on‐a‐chip for hydrogen sulphide detection—Part I: Sulphide separation from plasma sample

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520720

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09846823

Country of ref document: EP

Kind code of ref document: A1