JP2009097749A - Absorption type refrigerating device - Google Patents

Absorption type refrigerating device Download PDF

Info

Publication number
JP2009097749A
JP2009097749A JP2007267729A JP2007267729A JP2009097749A JP 2009097749 A JP2009097749 A JP 2009097749A JP 2007267729 A JP2007267729 A JP 2007267729A JP 2007267729 A JP2007267729 A JP 2007267729A JP 2009097749 A JP2009097749 A JP 2009097749A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
solution
refrigeration apparatus
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007267729A
Other languages
Japanese (ja)
Other versions
JP5098561B2 (en
Inventor
Mitsushi Kawai
満嗣 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007267729A priority Critical patent/JP5098561B2/en
Publication of JP2009097749A publication Critical patent/JP2009097749A/en
Application granted granted Critical
Publication of JP5098561B2 publication Critical patent/JP5098561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve efficiency of cold utilization-side device and to reduce initial costs and running costs of the entire refrigerating system by controlling a refrigerating capacity of an absorption type refrigerating device without depending on operating conditions at a cold utilization-side device side, in the absorption type refrigerating device driven by exhaust heat of an engine. <P>SOLUTION: A refrigerant absorbing capacity of an absorber is controlled to be reduced, and simultaneously a refrigerating capacity of the absorption type refrigerating device is reduced, when a temperature of a cooled fluid at an outlet of an evaporator becomes a set temperature calculated on the basis of an outside air temperature, or less. Further when the temperature becomes higher than the set temperature, the refrigerant absorbing capacity of the absorber is reduced, and simultaneously a refrigerating capacity of the absorption type refrigerating device is increased. According to this constitution, improvement of efficiency of the cold utilization-side device, and reduction of the initial costs and running costs of the entire refrigerating system can be combined though the refrigerating capacity of the absorption type refrigerating device is controlled without depending on the operating conditions at the cold utilization-side device side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は、エンジンの排熱で駆動される吸収式冷凍装置に関するものである。   The present invention relates to an absorption refrigeration apparatus driven by engine exhaust heat.

従来の空冷吸収式冷凍装置は、吸収器で冷媒蒸気を吸収しながら溶液を空冷フィンで冷却する直接空冷方式であり、吸収器では、冷媒蒸気の吸収と吸収溶液の冷却を同時に行うことからその性能向上には気液界面の拡大が重要である。しかし、そのためには、上下の吸収器ヘッダーや吸収器伝熱管の壁面に流れる溶液に吸収させる冷媒蒸気の圧力損失を低下させるための大口径伝熱管、また蒸発器との冷媒蒸気連絡管の大口径化等が必要であって、装置の小型化への制約が大きい。   The conventional air-cooled absorption refrigeration system is a direct air-cooling method in which the solution is cooled by air-cooling fins while absorbing the refrigerant vapor by the absorber, and the absorber absorbs the refrigerant vapor and cools the absorbed solution at the same time. Expansion of the gas-liquid interface is important for performance improvement. However, for that purpose, large-diameter heat transfer tubes for reducing the pressure loss of the refrigerant vapor absorbed by the solution flowing on the upper and lower absorber headers and the wall of the absorber heat transfer tube, and the large size of the refrigerant vapor communication tube with the evaporator are used. It is necessary to reduce the diameter of the device, and there is a great restriction on downsizing the device.

これに対して、吸収器に流入する溶液を空冷冷却器で過冷却し、吸収器内では単に冷媒蒸気を吸収させるだけで、吸収熱は過冷却された溶液の顕熱で取り去る間接空冷(溶液分離冷却)方式は、吸収器が従来よりも小型化されるので、小型の空冷吸収式冷凍装置では最も有利な方式と考えられる。   On the other hand, the solution flowing into the absorber is supercooled by an air-cooled cooler, and the refrigerant heat is simply absorbed in the absorber, and the absorbed heat is removed by sensible heat of the supercooled solution (solution The separation cooling method is considered to be the most advantageous method for a small air-cooled absorption refrigeration apparatus because the absorber is made smaller than before.

そして、この間接空冷方式の空冷吸収式冷凍装置をエンジンの排熱を利用して駆動すれば、装置の小型化と低コスト化が図れるので、従来の単に温熱を利用する形態から、温熱を冷熱に変換して利用する形態へ簡単に変更でき、排熱の有効利用が促進され、省エネ、CO2削減に大きく寄与できるものと考えられる。   If this indirect air-cooled air-cooled absorption refrigeration system is driven by using exhaust heat from the engine, the size and cost of the apparatus can be reduced. It can be easily changed to a form to be converted to use, the effective use of exhaust heat is promoted, and it can be considered that it can greatly contribute to energy saving and CO2 reduction.

ところで、この間接空冷方式の空冷吸収式冷凍装置の従来例としては、例えば、特許文献1に示されるものがあるが、この従来例のものでは、吸収器としては溶液を噴霧する方式のものを採用しているが、2重効用サイクルで、且つバーナにより溶液を加熱する従来の直火方式であり、排熱を利用した例は見当たらない。   By the way, as a conventional example of this indirect air cooling type air cooling absorption refrigeration apparatus, for example, there is one disclosed in Patent Document 1, but in this conventional example, an absorber is a type that sprays a solution. Although it is adopted, it is a conventional direct-fire method in which a solution is heated by a burner with a double-effect cycle, and there is no example using exhaust heat.

また、エンジンで圧縮式冷凍装置を駆動し、その排熱で吸収式冷凍装置を駆動し、その冷熱で圧縮式冷凍装置の冷媒を過冷却することで圧縮式冷凍装置の性能を向上させるようにした吸収式冷凍装置と圧縮式冷凍装置との組み合わせた冷凍システムの従来例としては、例えば、特許文献2に示されるものなど、多数の例がある。   Also, the compression refrigeration unit is driven by the engine, the absorption refrigeration unit is driven by the exhaust heat, and the refrigerant of the compression refrigeration unit is supercooled by the cold heat so that the performance of the compression refrigeration unit is improved. As a conventional example of a refrigeration system in which an absorption refrigeration apparatus and a compression refrigeration apparatus are combined, there are many examples such as that shown in Patent Document 2, for example.

特開平7−98163号公報JP-A-7-98163 特開平9−53864号公報JP-A-9-53864

ところで、エンジンの排熱で駆動される吸収式冷凍装置に、該吸収式冷凍装置において発生した冷熱を利用する冷熱利用側機器、例えば、エンジンで駆動される圧縮式冷凍装置を組み合せたシステムにおいて、上掲の従来例では、単にその排熱を利用した吸収式冷凍装置の冷熱で圧縮式冷凍装置の冷媒を過冷却するようにしたものである。   By the way, in a system in which an absorption refrigeration apparatus driven by exhaust heat of an engine is combined with a cold heat utilization side device that uses cold generated in the absorption refrigeration apparatus, for example, a compression refrigeration apparatus driven by an engine, In the conventional example described above, the refrigerant of the compression refrigeration apparatus is supercooled simply by the cold heat of the absorption refrigeration apparatus using the exhaust heat.

ところが、このような冷凍システムにおいては、外気温度が低下した場合とか、圧縮式冷凍装置が部分負荷となったような場合には、該圧縮式冷凍装置の凝縮器出口の冷媒温度(即ち、凝縮温度)が低下することから、特に外気温度の低下と圧縮式冷凍装置の部分負荷とが重なった場合には、この圧縮式冷凍装置の凝縮器出口の冷媒温度の低下が大きくなるため、吸収式冷凍装置の蒸発温度、もしくは蒸発器の出口における被冷却流体温度(圧縮式冷凍装置の冷媒温度)も低下し、該蒸発温度もしくは被冷却流体温度が予め設定される値(即ち、外気温と圧縮式冷凍装置の負荷に基づいて設定される温度値)よりも低下したような場合には、吸収式冷凍装置の冷凍能力が余剰状態となり、該吸収式冷凍装置側の冷媒に無駄が生じることになる。   However, in such a refrigeration system, when the outside air temperature decreases or when the compression refrigeration apparatus becomes a partial load, the refrigerant temperature (that is, condensation) at the condenser outlet of the compression refrigeration apparatus. In particular, when the decrease in the outside air temperature and the partial load of the compression refrigeration unit overlap, the decrease in the refrigerant temperature at the condenser outlet of the compression refrigeration unit increases. The evaporation temperature of the refrigeration apparatus or the temperature of the fluid to be cooled at the outlet of the evaporator (the refrigerant temperature of the compression refrigeration apparatus) also decreases, and the evaporation temperature or the temperature of the fluid to be cooled is a preset value (that is, the outside air temperature and the compression temperature). When the temperature is lower than the temperature value set based on the load of the refrigerating apparatus, the refrigerating capacity of the absorption refrigerating apparatus becomes an excessive state, and the refrigerant on the absorption refrigerating apparatus side is wasted. Become

一方、外気温が上昇した場合や、圧縮式冷凍装置の負荷が増加したような場合には、圧縮式冷凍装置の凝縮器出口の冷媒温度が上昇するため、吸収式冷凍装置の蒸発温度、もしくは蒸発器の出口における被冷却流体温度も上昇し、該蒸発温度もしくは被冷却流体温度が予め設定される値よりも上昇したような場合には、吸収式冷凍装置の冷凍能力が不足する状態となることから、冷凍能力を迅速に高める必要がある。   On the other hand, when the outside air temperature rises or when the load of the compression refrigeration apparatus increases, the refrigerant temperature at the condenser outlet of the compression refrigeration apparatus rises, so the evaporation temperature of the absorption refrigeration apparatus, or When the temperature of the fluid to be cooled at the outlet of the evaporator also rises and the evaporation temperature or the temperature of the fluid to be cooled rises above a preset value, the refrigeration capacity of the absorption refrigeration apparatus becomes insufficient. Therefore, it is necessary to quickly increase the refrigerating capacity.

従って、大能力の排熱駆動の吸収式冷凍装置を設置することなく圧縮式冷凍装置の効率を向上させてランニングコストの低減を図るためには、圧縮式冷凍装置側の運転条件の変化に対応させて吸収式冷凍装置の冷凍能力を制御することが必要である。   Therefore, in order to improve the efficiency of the compression refrigeration system and reduce the running cost without installing a large capacity exhaust heat driven absorption refrigeration system, respond to changes in the operating conditions on the compression refrigeration system side. Therefore, it is necessary to control the refrigeration capacity of the absorption refrigeration apparatus.

この場合、吸収式冷凍装置の冷凍能力の制御を、圧縮式冷凍装置側の運転条件、例えば、外気温と上記圧縮式冷凍装置の凝縮器の出口側における冷媒温度(凝縮温度)を検出し、これを用いて吸収式冷凍装置の冷凍能力(吸収式冷凍装置に要求される冷凍能力)を算出し、これに基づいて制御することが考えられるが、係る制御手法によれば、上記吸収式冷凍装置側の条件に加えて、上記圧縮式冷凍装置側の条件を常に検出する必要があり、制御系が複雑になり、コストアップを招来する一つの原因にもなる。特に、例えば、吸収式冷凍装置と圧縮式冷凍装置を組み合わせた冷凍システムが同一の管理領域内に複数存在し、これら各冷凍システムにおける吸収式冷凍装置の冷凍能力をそれぞれ個別に圧縮式冷凍装置側の運転条件に対応させて制御する場合には、制御系がさらに複雑となり、多くの管理コストを必要とし、更なるコストアップを招来することになる。   In this case, the control of the refrigeration capacity of the absorption refrigeration apparatus is performed by detecting the operating conditions on the compression refrigeration apparatus side, for example, the outside air temperature and the refrigerant temperature (condensation temperature) on the outlet side of the condenser of the compression refrigeration apparatus, It is conceivable to use this to calculate the refrigeration capacity of the absorption refrigeration system (the refrigeration capacity required for the absorption refrigeration system) and control based on this, but according to such a control method, the absorption refrigeration system In addition to the conditions on the apparatus side, it is necessary to always detect the conditions on the compression refrigeration apparatus side, which complicates the control system and causes a cost increase. In particular, for example, a plurality of refrigeration systems combining an absorption refrigeration system and a compression refrigeration system exist in the same management area, and the refrigeration capacity of the absorption refrigeration system in each of these refrigeration systems is individually set on the compression refrigeration system side. When the control is performed in accordance with the operating conditions, the control system becomes more complicated, requires a lot of management costs, and further increases the cost.

そこで本願発明は、エンジンの排熱で駆動される吸収式冷凍装置において、該吸収式冷凍装置の冷凍能力を、該吸収式冷凍装置で発生した冷熱を利用する冷熱利用側機器側の運転条件に基づくことなく制御することで、該冷熱利用側機器の効率の向上と、冷凍システム全体のイニシャルコスト及びランニングコストの低減を図り得るようにした吸収式冷凍装置を提供することを目的としてなされたものである。   Accordingly, the present invention relates to an absorption refrigeration apparatus driven by exhaust heat of the engine, wherein the refrigeration capacity of the absorption refrigeration apparatus is set to the operating conditions on the cold heat utilization side equipment side that uses the cold generated by the absorption refrigeration apparatus. An object of the present invention is to provide an absorption refrigeration apparatus that can improve the efficiency of the cold energy utilization side device and reduce the initial cost and running cost of the entire refrigeration system by controlling without using the system. It is.

本願発明ではかかる課題を解決するための具体的手段として次のような構成を採用している。   In the present invention, the following configuration is adopted as a specific means for solving such a problem.

本願の第1の発明では、エンジンの排熱を受けて作動する発生器と、凝縮器と、冷媒を一過性で蒸発させる蒸発器と、流下液膜式の吸収器と、該吸収器に入る吸収溶液を過冷却する空冷過冷却器を備えた排熱駆動の吸収式冷凍装置において、上記凝縮器から上記蒸発器に至る配管途中に冷媒タンクと冷媒電磁弁を順次設ける一方、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させることで上記吸収器の能力を増減して吸収式冷凍装置の冷凍能力を制御するものとし、上記蒸発器の出口における被冷却流体の温度が、設定温度もしくは外気温度に基づいて設定される設定温度以下となった場合に、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて該吸収器の冷媒吸収能力を減少させる制御を行なうと同時に、上記冷媒電磁弁を閉として上記蒸発器に流入する冷媒量を減少させて吸収式冷凍装置の冷凍能力を減少させるとともに、上記冷媒タンクに上記凝縮器からの冷媒を溜める一方、上記温度が上記設定温度以上となった場合には、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて上記吸収器の冷媒吸収能力を増加させると同時に、上記冷媒電磁弁を開として上記冷媒タンクに溜められた冷媒を上記蒸発器に流入させて冷媒流量を増加させることで吸収式冷凍装置の冷凍能力を増加させる制御を行なうことを特徴としている。   In the first invention of the present application, a generator that operates in response to exhaust heat of the engine, a condenser, an evaporator that temporarily evaporates the refrigerant, a falling liquid film type absorber, and the absorber In an exhaust heat-driven absorption refrigeration apparatus having an air-cooled supercooler for supercooling an absorbing solution that enters, a refrigerant tank and a refrigerant electromagnetic valve are sequentially provided in the middle of a pipe from the condenser to the evaporator, while the absorber The refrigeration capacity of the absorption refrigeration system is controlled by changing the temperature of the supercooling solution flowing into the gas and / or the flow rate of the supercooling solution to control the refrigeration capacity of the absorption refrigeration system. When the temperature of the cooling fluid falls below the set temperature set based on the set temperature or the outside air temperature, the temperature of the supercooled solution flowing into the absorber and / or the flow rate of the supercooled solution is changed to Reduced refrigerant absorption capacity of absorber At the same time, the refrigerant solenoid valve is closed to reduce the amount of refrigerant flowing into the evaporator, thereby reducing the refrigeration capacity of the absorption refrigeration apparatus and storing the refrigerant from the condenser in the refrigerant tank. On the other hand, when the temperature is equal to or higher than the set temperature, the refrigerant absorption capacity of the absorber is increased by changing the temperature of the supercooling solution flowing into the absorber and / or the flow rate of the supercooling solution. At the same time, the refrigerant solenoid valve is opened, and the refrigerant stored in the refrigerant tank is caused to flow into the evaporator to increase the refrigerant flow rate, thereby increasing the refrigeration capacity of the absorption refrigeration apparatus. .

係る構成によれば、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて上記吸収器の冷媒吸収能力を増減し吸収式冷凍装置の冷凍能力を制御するものとすることで、エンジンによって駆動される冷熱利用側機器の負荷に影響されることがないことから、冷凍能力の制御に際して排熱の入力制御を特に必要とせず、制御の簡略化によって低コスト化が可能となる。   According to such a configuration, the temperature of the supercooled solution flowing into the absorber and / or the flow rate of the supercooled solution is changed to increase or decrease the refrigerant absorption capacity of the absorber to control the refrigeration capacity of the absorption refrigeration apparatus. As a result, it is not affected by the load on the cold-use side device driven by the engine, so input control of exhaust heat is not particularly required when controlling the refrigerating capacity, and the cost is reduced by simplifying the control. Is possible.

また、上記蒸発器の出口における被冷却流体の温度が上記設定温度もしくは外気温度に基づいて設定される設定温度以下となった場合に、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて該吸収器の冷媒吸収能力を減少させる制御を行なうと同時に、上記冷媒電磁弁を閉として上記蒸発器に流入する冷媒量を減少させて吸収式冷凍装置の冷凍能力を減少させることで、上記吸収式冷凍装置の冷凍能力を設定温度もしくは外気温度に基づく上記設定温度によって簡易的に制御しているにも拘らず、該吸収式冷凍装置の冷凍能力を上記冷熱利用側機器側の冷熱要求度に可及的に対応させることができ、制御系の簡略化と冷熱利用側機器の効率の向上が両立できる。   Further, when the temperature of the fluid to be cooled at the outlet of the evaporator becomes equal to or lower than the set temperature set based on the set temperature or the outside air temperature, the temperature and / or excess of the supercooled solution flowing into the absorber. Control is performed to change the flow rate of the cooling solution to reduce the refrigerant absorption capacity of the absorber, and at the same time, the refrigerant electromagnetic valve is closed to reduce the amount of refrigerant flowing into the evaporator, thereby reducing the refrigeration capacity of the absorption refrigeration apparatus Although the refrigeration capacity of the absorption refrigeration apparatus is simply controlled by the set temperature based on the set temperature or the outside air temperature, the refrigeration capacity of the absorption refrigeration apparatus is It is possible to cope with the degree of cooling demand on the side equipment side as much as possible, and both simplification of the control system and improvement in efficiency of the equipment on the side of cooling use can be achieved.

さらに、この場合、上記冷媒タンクに上記凝縮器からの冷媒を溜めることで、該吸収式冷凍装置側における無効冷媒量を減少させることができる。   Further, in this case, the amount of ineffective refrigerant on the absorption refrigeration apparatus side can be reduced by storing the refrigerant from the condenser in the refrigerant tank.

一方、上記温度が上記設定温度以上となった場合には、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて上記吸収器の冷媒吸収能力を増加させると同時に、上記冷媒電磁弁を開として上記冷媒タンクに溜められた冷媒を上記蒸発器に流入させて冷媒流量を増加させ、吸収式冷凍装置の冷凍能力を増加させることで、上記冷熱利用側機器への冷熱供給量が増加し、該冷熱利用側機器の性能が、上記の制御を行なわない通常状態よりも向上することになる。   On the other hand, when the temperature is equal to or higher than the set temperature, the refrigerant absorption capacity of the absorber is increased by changing the temperature of the supercooling solution flowing into the absorber and / or the flow rate of the supercooling solution. At the same time, the refrigerant solenoid valve is opened to allow the refrigerant stored in the refrigerant tank to flow into the evaporator to increase the refrigerant flow rate, thereby increasing the refrigeration capacity of the absorption refrigeration apparatus, thereby providing the cold heat utilization side device. As a result, the cold heat supply amount is increased, and the performance of the cold heat utilization side device is improved as compared with the normal state in which the above control is not performed.

また、上記吸収式冷凍装置の冷凍能力を、上記冷熱利用側機器側の条件に依らずに、上記吸収式冷凍装置側の条件によって制御することで、制御系の簡略化によってコストダウンが図られ、例えば、吸収式冷凍装置と冷熱利用側機器を組み合わせた冷凍システムが同一の管理領域内に複数存在するような場合には、上記効果がより顕著となる。   In addition, by controlling the refrigeration capacity of the absorption refrigeration apparatus according to the conditions on the absorption refrigeration apparatus side without depending on the conditions on the cold energy utilization side equipment side, the cost can be reduced by simplifying the control system. For example, when a plurality of refrigeration systems in which an absorption refrigeration apparatus and a cold energy utilization side device are combined exist in the same management area, the above effect becomes more remarkable.

以上の相乗効果として、吸収式冷凍装置で発生した冷熱を利用する冷熱利用側機器の効率の向上を図ることができるとともに、冷凍システム全体のイニシャルコスト及びランニングコストの低減が促進される。   As the above synergistic effect, it is possible to improve the efficiency of the cold-use side equipment that uses the cold generated in the absorption refrigeration apparatus, and promote the reduction of the initial cost and running cost of the entire refrigeration system.

本願の第2の発明に係る吸収式冷凍装置では、上記第1の発明に係る吸収式冷凍装置において、上記冷媒電磁弁を開から閉とする場合の温度と、閉から開とする場合の温度を、同一温度又は異なる温度とするとともに、上記温度を予め設定した設定値もしくは外気温度に基づいて設定される値としたことを特徴としている。   In the absorption refrigeration apparatus according to the second invention of the present application, in the absorption refrigeration apparatus according to the first invention, the temperature when the refrigerant solenoid valve is opened from the closed state and the temperature when the refrigerant electromagnetic valve is opened from the closed state Are set to the same temperature or different temperatures, and the temperature is set to a preset value or a value set based on the outside air temperature.

係る構成によれば、例えば、上記冷媒電磁弁を開から閉とする場合と閉から開とする場合の設定温度を同一温度とした場合には、これを異なる温度とする場合に比して制御の簡略化、延いては装置の低コスト化が図れるが電磁弁の開閉動作が頻繁となる。また、上記冷媒電磁弁を開から閉とする場合と閉から開とする場合の設定温度を異なる温度とした場合、例えば、上記冷媒電磁弁を開から閉とする場合(即ち、冷媒タンクへの冷媒の貯留開始)の設定温度を、該冷媒電磁弁を閉から開とする場合(即ち、冷媒タンクに貯留した冷媒の流出開始)の設定温度よりも低く設定した場合には、冷凍能力の増加制御がより早期に開始され、迅速な冷凍能力の増加が実現される。   According to such a configuration, for example, when the set temperature when the refrigerant solenoid valve is opened from the closed to the closed temperature is set to the same temperature, control is performed as compared with the case where the set temperature is different. However, although the cost of the apparatus can be reduced, the solenoid valve is frequently opened and closed. Further, when the set temperature when the refrigerant solenoid valve is changed from open to closed and when the set temperature is changed from closed to open, for example, when the refrigerant electromagnetic valve is changed from open to closed (that is, to the refrigerant tank) When the set temperature at the start of refrigerant storage is set lower than the set temperature when the refrigerant solenoid valve is opened from the closed state (that is, the start of outflow of refrigerant stored in the refrigerant tank), the refrigeration capacity increases. Control is started earlier and a rapid increase in refrigeration capacity is realized.

また、上記温度を予め設定した設定値もしくは外気温度に基づいて設定される値としたことで、例えば、吸収式冷凍装置側の条件とか冷熱利用側機器側の条件を加味して上記温度を設定し温度制御する場合に比して、上記吸収式冷凍装置の冷凍能力の制御系の構成が極めて簡単となり、イニシャルコストの大幅な低減が可能となるとともに、冷凍能力の制御における迅速性が確保される。尚、設定値の精度が不足する可能性のある場合には外気温度に基づいて設定される値とすれば良い。   Also, by setting the temperature to a preset value or a value set based on the outside air temperature, for example, the temperature is set in consideration of the conditions on the absorption refrigeration equipment side or the conditions on the side of the cold energy utilization side. However, compared with the case of temperature control, the configuration of the control system for the refrigeration capacity of the absorption refrigeration apparatus is extremely simple, and the initial cost can be greatly reduced, and the speed of the refrigeration capacity can be controlled quickly. The If there is a possibility that the accuracy of the set value is insufficient, a value set based on the outside air temperature may be used.

本願の第3の発明に係る吸収式冷凍装置では、上記第1又は第2の発明に係る吸収式冷凍装置において、上記冷媒電磁弁の開閉を、上記蒸発器の蒸発温度の検出値と予め設定した設定値もしくは外気温度に基づく設定値を対比して、又は上記蒸発器の出口と入口における被冷却流体の温度差の検出値と予め設定した設定値もしくは外気温度に基づく設定値を対比して、行なうことを特徴としている。   In the absorption refrigeration apparatus according to the third invention of the present application, in the absorption refrigeration apparatus according to the first or second invention, the opening and closing of the refrigerant solenoid valve is preset with the detected value of the evaporation temperature of the evaporator. Or a set value based on the outside air temperature, or a detected value of the temperature difference between the fluid to be cooled at the outlet and the inlet of the evaporator and a preset value or a set value based on the outside air temperature. It is characterized by doing.

係る構成によれば、上記冷媒電磁弁の開閉が、上記蒸発器の蒸発温度、又は上記蒸発器の出口と入口における被冷却流体の温度差によって行なわれ、上記冷熱利用側機器における条件は何等関与しないので、上記冷媒電磁弁の開閉制御をより迅速に行なうことができ、その結果、上記冷媒電磁弁を閉として冷媒タンクへ冷媒を貯留して上記蒸発器における蒸発能力を減少させることによる上記吸収式冷凍装置の冷凍能力の減少制御と、上記冷媒電磁弁を開として冷媒タンクに貯留した冷媒を蒸発器側へ流出させて上記蒸発器における蒸発能力を増加させることによる上記吸収式冷凍装置の冷凍能力の増加制御の応答性が向上し、冷凍能力の緻密且つ迅速な制御が可能となる。   According to such a configuration, the opening and closing of the refrigerant solenoid valve is performed by the evaporation temperature of the evaporator or the temperature difference between the fluids to be cooled at the outlet and the inlet of the evaporator, and the conditions in the cold energy utilization side device are not related at all. Therefore, the opening and closing control of the refrigerant solenoid valve can be performed more quickly, and as a result, the absorption by reducing the evaporation capability of the evaporator by storing the refrigerant in the refrigerant tank with the refrigerant solenoid valve closed. Control of the refrigerating capacity of the refrigerating apparatus, and the refrigerating of the absorption refrigerating apparatus by increasing the evaporating capacity in the evaporator by opening the refrigerant solenoid valve and causing the refrigerant stored in the refrigerant tank to flow out to the evaporator side. Responsiveness of the increase control of the capacity is improved, and the refrigeration capacity can be precisely and quickly controlled.

本願の第4の発明に係る吸収式冷凍装置では、上記第1、第2又は第3の発明に係る吸収式冷凍装置において、上記冷媒タンクに堰を設け、該堰を越流させて上記蒸発器に冷媒を流入させるとともに、上記冷媒電磁弁の開閉によって上記蒸発器への冷媒流量を増減させるようにしたことを特徴としている。   In the absorption refrigeration apparatus according to the fourth invention of the present application, in the absorption refrigeration apparatus according to the first, second, or third invention, a weir is provided in the refrigerant tank, and the dam is overflowed to evaporate the evaporation. The refrigerant flows into the evaporator, and the refrigerant flow rate to the evaporator is increased or decreased by opening or closing the refrigerant solenoid valve.

係る構成によれば、上記冷媒電磁弁が閉から開とされた時点、即ち、上記冷媒タンクに冷媒を貯留した後に貯留された冷媒を上記蒸発器側へ流す時点では、常に上記冷媒タンクには冷媒が貯留されているので、該冷媒電磁弁の開作動と同時に上記蒸発器側へ十分な量の冷媒が流され、冷凍能力の増加制御がより一層迅速且つ確実に行なわれ、始動時やエンジンの発停が多い場合等での効果が大きくなる。   According to such a configuration, at the time when the refrigerant solenoid valve is opened from the closed state, that is, at the time when the refrigerant stored after the refrigerant is stored in the refrigerant tank is flowed to the evaporator side, the refrigerant tank is always provided in the refrigerant tank. Since the refrigerant is stored, a sufficient amount of refrigerant is caused to flow to the evaporator side simultaneously with the opening operation of the refrigerant solenoid valve, and the increase control of the refrigerating capacity is performed more quickly and reliably. The effect becomes large when there are many start / stops.

本願の第5の発明に係る吸収式冷凍装置では、上記第1、第2、第3又は第4の発明に係る吸収式冷凍装置において、上記冷媒タンクが満杯となった後の余剰冷媒を、上記蒸発器の下部に、又は直接に上記吸収器の希溶液溜まりに流入させることを特徴としている。   In the absorption refrigeration apparatus according to the fifth invention of the present application, in the absorption refrigeration apparatus according to the first, second, third, or fourth invention, the surplus refrigerant after the refrigerant tank is full, It is characterized in that it flows into the lower part of the evaporator or directly into the dilute solution reservoir of the absorber.

係る構成によれば、余剰冷媒を、上記蒸発器の下部に、又は直接に上記吸収器の希溶液溜まりに流入させて該希溶液溜まり内の吸収希溶液に混合させることで、吸収溶液の濃度変化を抑えることができるので過度に溶液を濃縮することもなく、蒸発器での冷媒凍結や発生器での高濃度化による溶液の結晶が回避できる。   According to such a configuration, surplus refrigerant is allowed to flow into the lower part of the evaporator or directly into the dilute solution pool of the absorber and mixed with the dilute solution in the dilute solution pool, so that the concentration of the absorbent solution Since the change can be suppressed, the solution crystal can be avoided without excessively concentrating the solution and by freezing the refrigerant in the evaporator or increasing the concentration in the generator.

本願の第6の発明に係る吸収式冷凍装置では、上記第1、第2、第3、第4又は第5の発明に係る吸収式冷凍装置において、上記吸収式冷凍装置の運転・停止を上記発生器の溶液温度で制御するものとし、上記エンジンが停止状態であっても上記溶液温度が所定温度以上で且つ上記冷媒タンクの冷媒貯留能力に余裕がある場合には上記冷媒電磁弁を閉として、上記冷媒タンクが満杯となるまで吸収式冷凍装置を運転、又は溶液ポンプのみを運転し、上記発生器の溶液温度が上記所定温度以下になれば、上記冷媒タンクの冷媒貯留能力に余裕があっても上記吸収式冷凍装置の運転、又は溶液ポンプの運転を停止することを特徴としている。   In the absorption refrigeration apparatus according to the sixth invention of the present application, in the absorption refrigeration apparatus according to the first, second, third, fourth, or fifth invention, the operation / stop of the absorption refrigeration apparatus is performed as described above. It is controlled by the solution temperature of the generator, and even if the engine is stopped, the refrigerant solenoid valve is closed if the solution temperature is equal to or higher than a predetermined temperature and the refrigerant tank has sufficient refrigerant storage capacity. If the absorption refrigeration apparatus is operated until the refrigerant tank is full, or only the solution pump is operated, and the solution temperature of the generator falls below the predetermined temperature, there is a margin in the refrigerant storage capacity of the refrigerant tank. However, the operation of the absorption refrigeration apparatus or the operation of the solution pump is stopped.

係る構成によれば、上記エンジンが停止状態であっても、冷媒の発生が可能な状態で且つ上記冷媒タンクへの冷媒の貯留が可能な場合には、上記冷媒タンクに冷媒が溜められることから、無効冷媒量を少なくして冷媒、すなわちエンジンの排熱の有効利用を図ることができると同時に始動やエンジンの発停が多い場合の効率向上に大きく寄与するものである。   According to such a configuration, even when the engine is stopped, the refrigerant is stored in the refrigerant tank when the refrigerant can be generated and the refrigerant can be stored in the refrigerant tank. The amount of the ineffective refrigerant can be reduced to effectively use the refrigerant, that is, the exhaust heat of the engine, and at the same time, it greatly contributes to the improvement in efficiency when the engine is started or the engine starts and stops frequently.

本願の第7の発明に係る吸収式冷凍装置では、上記第1、第2、第3、第4、第5又は第6の発明に係る吸収式冷凍装置において、上記冷媒タンクから上記蒸発器へ流入する冷媒流量の増減制御を、該冷媒タンクから蒸発器に至る配管の途中に設けた冷媒流量制御弁の開閉によって、又は上記冷媒タンクに設けた堰を越流させて上記蒸発器に冷媒を流入させるものにおいては該堰の上流側部分から上記蒸発器に至る配管の途中に設けた冷媒流量制御弁の開閉によって、それぞれ行なうことを特徴としている。   In the absorption refrigeration apparatus according to the seventh invention of the present application, in the absorption refrigeration apparatus according to the first, second, third, fourth, fifth or sixth invention, from the refrigerant tank to the evaporator. Control of increase / decrease in the flow rate of the flowing refrigerant is performed by opening / closing a refrigerant flow control valve provided in the middle of the pipe from the refrigerant tank to the evaporator, or by allowing a weir provided in the refrigerant tank to flow over the refrigerant. What is made to flow in is characterized by being performed by opening and closing a refrigerant flow rate control valve provided in the middle of the pipe from the upstream portion of the weir to the evaporator.

係る構成によれば、上記蒸発器への冷媒の流入量を細かく増減制御することができることから、吸収式冷凍装置の冷凍能力の制御を、上記冷熱利用側機器側の負荷の変化に対応させて緻密に制御することができる。   According to such a configuration, since the amount of refrigerant flowing into the evaporator can be finely increased / decreased, the control of the refrigeration capacity of the absorption refrigeration apparatus is made to correspond to the change in the load on the cold-use side device side. It can be precisely controlled.

本願の第8の発明に係る吸収式冷凍装置では、上記第1、第2、第3、第4、第5、第6又は第7の発明に係る吸収式冷凍装置において、上記空冷過冷却器に備えられたファンの発停又は風量の増減によって上記吸収器に流入する上記過冷却溶液の温度を変化させることで冷凍能力を制御することを特徴としている。   In the absorption refrigeration apparatus according to the eighth invention of the present application, in the absorption refrigeration apparatus according to the first, second, third, fourth, fifth, sixth or seventh invention, the air-cooled supercooler. The refrigerating capacity is controlled by changing the temperature of the supercooled solution flowing into the absorber according to the start / stop of the fan or the increase / decrease of the air volume.

係る構成によれば、過冷却溶液の温度を変化させての冷凍能力の制御が、間接空冷方式の特性を生かして、上記ファンの発停又は風量の増減によって極めて容易且つ迅速に行なえることから、吸収式冷凍装置の能力制御範囲を最少能力まで低下させることができ、延いては、冷熱利用側機器の能力を限界まで利用することが可能となる。   According to such a configuration, the control of the refrigerating capacity by changing the temperature of the supercooled solution can be performed very easily and quickly by making use of the characteristics of the indirect air cooling system and by the start / stop of the fan or the increase / decrease of the air volume. The capacity control range of the absorption refrigeration apparatus can be reduced to the minimum capacity, and as a result, the capacity of the cold energy utilization side equipment can be utilized to the limit.

本願の第9の発明に係る吸収式冷凍装置では、上記第1、第2、第3、第4、第5、第6又は第7の発明に係る吸収式冷凍装置において、上記空冷過冷却器の入口側又は出口側に設けた流量調整弁によって上記吸収器に流入する過冷却溶液の流量を変化させることで冷凍能力を制御することを特徴としている。   In the absorption refrigeration apparatus according to the ninth invention of the present application, in the absorption refrigeration apparatus according to the first, second, third, fourth, fifth, sixth or seventh invention, the air-cooled supercooler. The refrigerating capacity is controlled by changing the flow rate of the supercooled solution flowing into the absorber by a flow rate adjusting valve provided on the inlet side or the outlet side of the gas.

係る構成によれば、冷凍能力の制御が、流量調整弁による過冷却溶液の流量調整によって極めて容易且つ迅速に行なえることから、吸収式冷凍装置の能力制御範囲を最少能力まで低下させることができ、延いては、冷熱利用側機器の能力を限界まで利用することが可能となる。   According to such a configuration, the refrigeration capacity can be controlled very easily and quickly by adjusting the flow rate of the supercooled solution using the flow rate adjusting valve, so that the capacity control range of the absorption refrigeration system can be reduced to the minimum capacity. As a result, it becomes possible to use the capacity of the cold energy utilization side device to the limit.

本願の第10の発明に係る吸収式冷凍装置では、上記第1、第2、第3、第4、第5、第6又は第7の発明に係る吸収式冷凍装置において、冷媒蒸気を吸収した上記吸収器からの希溶液と、上記発生器で冷媒蒸気を発生し且つ溶液熱交換器での熱交換によって温度が低下した濃溶液との混合溶液を吸引及び吐出する溶液ポンプの流量を増減することで冷凍能力を制御することを特徴としている。   In the absorption refrigeration apparatus according to the tenth invention of the present application, in the absorption refrigeration apparatus according to the first, second, third, fourth, fifth, sixth or seventh invention, the refrigerant vapor is absorbed. Increase or decrease the flow rate of the solution pump that sucks and discharges the mixed solution of the diluted solution from the absorber and the concentrated solution that generates refrigerant vapor in the generator and whose temperature is reduced by heat exchange in the solution heat exchanger. It is characterized by controlling the refrigerating capacity.

係る構成によれば、上記溶液ポンプの流量を増減させることで、容易且つ迅速に冷凍能力を制御できることから、吸収式冷凍装置の能力制御範囲を最少能力まで低下させることができ、延いては、冷熱利用側機器の能力を限界まで利用することが可能となる。   According to such a configuration, by increasing or decreasing the flow rate of the solution pump, the refrigeration capacity can be controlled easily and quickly, so that the capacity control range of the absorption refrigeration apparatus can be reduced to the minimum capacity, It becomes possible to use the capacity of the cold energy utilization side equipment to the limit.

本願の第11の発明に係る吸収式冷凍装置では、エンジンの排熱を受けて作動する発生器と、凝縮器と、下部の冷媒溜りに溜まった冷媒を冷媒ポンプで上部へ循環させて散布し蒸発させる蒸発器と、流下液膜式の吸収器と、該吸収器に入る吸収溶液を過冷却する空冷過冷却器を備えた排熱駆動の吸収式冷凍装置において、上記蒸発器の上記冷媒溜りの容量を一定量に設定し余剰冷媒は上記吸収器の下部の希溶液溜りに流入させる一方、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させることで上記吸収器の能力を増減して吸収式冷凍装置の冷凍能力を制御するものとし、上記蒸発器の出口における被冷却流体の温度が、予め設定された設定温度もしくは外気温度に基づいて設定される設定温度以下となった場合に、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて該吸収器の冷媒吸収能力を減少させる制御を行なうと同時に、上記冷媒ポンプを停止させ又は循環している冷媒流量を減少させて、上記蒸発器への冷媒の流入を停止させ又は冷媒の流入量を減少させることで吸収式冷凍装置の冷凍能力を減少させる一方、上記温度が上記設定温度以上となった場合には、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて該吸収器の冷媒吸収能力を増加させる制御を行なうと同時に、上記冷媒ポンプを運転し又は循環している冷媒流量を増加させて、上記蒸発器へ冷媒を流入させ又は冷媒の流入量を増加させることで吸収式冷凍装置の冷凍能力を増加させる制御を行なうことを特徴としている。   In the absorption refrigeration apparatus according to the eleventh invention of the present application, the generator that operates by receiving exhaust heat from the engine, the condenser, and the refrigerant accumulated in the lower refrigerant reservoir are circulated to the upper part by a refrigerant pump and dispersed. An exhaust heat driven absorption refrigeration apparatus comprising an evaporator to be evaporated, a falling liquid film type absorber, and an air-cooled supercooler for supercooling an absorbing solution entering the absorber, wherein the refrigerant reservoir of the evaporator The amount of the refrigerant is set to a constant amount, and the surplus refrigerant is allowed to flow into the dilute solution reservoir below the absorber, while the temperature of the supercooling solution flowing into the absorber and / or the flow rate of the supercooling solution is changed. It is assumed that the absorption capacity of the absorption refrigeration system is controlled by increasing or decreasing the capacity of the absorber, and the temperature of the fluid to be cooled at the outlet of the evaporator is set based on a preset set temperature or an outside air temperature When the temperature falls below The temperature of the supercooled solution flowing into the absorber and / or the flow rate of the supercooled solution is changed to reduce the refrigerant absorption capacity of the absorber, and at the same time, the refrigerant pump is stopped or circulated. The refrigerant flow rate is decreased, the refrigerant flow into the evaporator is stopped, or the refrigerant flow rate is decreased, thereby reducing the refrigeration capacity of the absorption refrigeration system, while the temperature is equal to or higher than the set temperature. In this case, the temperature of the supercooled solution flowing into the absorber and / or the flow rate of the supercooled solution is changed to increase the refrigerant absorption capacity of the absorber, and at the same time, the refrigerant pump is operated. Alternatively, control is performed to increase the refrigeration capacity of the absorption refrigeration system by increasing the flow rate of the circulating refrigerant and allowing the refrigerant to flow into the evaporator or increasing the amount of refrigerant flowing into the evaporator. .

係る構成によれば、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて上記吸収器の冷媒吸収能力を増減し吸収式冷凍装置の冷凍能力を制御するものとすることで、エンジンによって駆動される冷熱利用側機器の負荷に影響されることがないことから、冷凍能力の制御に際して排熱の入力制御を特に必要とせず、制御の簡略化によって低コスト化が可能となる。   According to such a configuration, the temperature of the supercooled solution flowing into the absorber and / or the flow rate of the supercooled solution is changed to increase or decrease the refrigerant absorption capacity of the absorber to control the refrigeration capacity of the absorption refrigeration apparatus. As a result, it is not affected by the load on the cold-use side device driven by the engine, so input control of exhaust heat is not particularly required when controlling the refrigerating capacity, and the cost is reduced by simplifying the control. Is possible.

また、上記蒸発器の出口における被冷却流体の温度が上記設定温度もしくは外気温度に基づいて算出される設定温度以下となった場合に、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて該吸収器の冷媒吸収能力を減少させる制御を行なうと同時に、上記冷媒ポンプを停止させ又は循環している冷媒流量を減少させ、上記蒸発器への冷媒の流入を停止させ又は冷媒の流入量を減少させて吸収式冷凍装置の冷凍能力を減少させることで、上記吸収式冷凍装置の冷凍能力を設定温度もしくは外気温度に基づく上記設定温度によって簡易的に制御しているにも拘らず、該吸収式冷凍装置の冷凍能力を上記冷熱利用側機器側の冷熱要求度に対応させることができる。   In addition, when the temperature of the fluid to be cooled at the outlet of the evaporator becomes equal to or lower than the preset temperature calculated based on the preset temperature or the outside air temperature, the temperature and / or excess of the supercooled solution flowing into the absorber. Control is performed to change the flow rate of the cooling solution to reduce the refrigerant absorption capacity of the absorber, and at the same time, the refrigerant pump is stopped or the circulating refrigerant flow rate is reduced to prevent the refrigerant from flowing into the evaporator. By suspending or reducing the refrigerant inflow amount to reduce the refrigeration capacity of the absorption refrigeration system, the refrigeration capacity of the absorption refrigeration system is simply controlled by the set temperature based on the set temperature or the outside air temperature. Nevertheless, the refrigeration capacity of the absorption refrigeration apparatus can be made to correspond to the degree of cold demand on the cold-use side equipment side.

さらに、この場合、上記蒸発器下部の上記冷媒溜りの余剰冷媒は、上記吸収器の下部の上記希溶液溜りに流入して該希溶液溜り内の希溶液と混合され、これによって溶液の濃度変化が抑制される。   Further, in this case, surplus refrigerant in the refrigerant reservoir below the evaporator flows into the dilute solution reservoir below the absorber and is mixed with the dilute solution in the dilute solution reservoir, thereby changing the concentration of the solution. Is suppressed.

一方、上記温度が上記設定温度以上となった場合には、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて上記吸収器の冷媒吸収能力を増加させると同時に、上記冷媒ポンプを運転し又は循環している冷媒流量を増加させて吸収式冷凍装置の冷凍能力を増加させる制御を行なうことで、上記冷熱利用側機器への冷熱供給量が増加し、該冷熱利用側機器の性能が、上記の制御を行なわない通常状態よりも向上することになる。   On the other hand, when the temperature is equal to or higher than the set temperature, the refrigerant absorption capacity of the absorber is increased by changing the temperature of the supercooling solution flowing into the absorber and / or the flow rate of the supercooling solution. At the same time, by performing control to increase the refrigeration capacity of the absorption refrigeration system by increasing the refrigerant flow rate that operates or circulates the refrigerant pump, the amount of cold supply to the cold-use side device increases, The performance of the cold energy utilization side device is improved as compared with the normal state in which the above control is not performed.

また、上記吸収式冷凍装置の冷凍能力を、上記冷熱利用側機器側の条件に依らずに、上記吸収式冷凍装置側の条件によって制御することで、制御系の簡略化によってコストダウンが図られ、例えば、吸収式冷凍装置と冷熱利用側機器を組み合わせた冷凍システムが同一の管理領域内に複数存在するような場合には、上記効果がより顕著となる。   In addition, by controlling the refrigeration capacity of the absorption refrigeration apparatus according to the conditions on the absorption refrigeration apparatus side without depending on the conditions on the cold energy utilization side equipment side, the cost can be reduced by simplifying the control system. For example, when a plurality of refrigeration systems in which an absorption refrigeration apparatus and a cold energy utilization side device are combined exist in the same management area, the above effect becomes more remarkable.

以上の相乗効果として、吸収式冷凍装置で発生した冷熱を利用する冷熱利用側機器の効率の向上を図ることができるとともに、冷凍システム全体のイニシャルコスト及びランニングコストの低減が促進される。   As the above synergistic effect, it is possible to improve the efficiency of the cold-use side equipment that uses the cold generated in the absorption refrigeration apparatus, and promote the reduction of the initial cost and running cost of the entire refrigeration system.

本願の第12の発明に係る吸収式冷凍装置では、上記第11の発明に係る吸収式冷凍装置において、上記媒ポンプを停止させ又は循環している冷媒流量を減少させる場合の温度と、上記媒ポンプを運転させ又は循環している冷媒流量を増加させる場合の温度を、同一温度又は異なる温度とするとともに、上記温度を予め設定した設定値もしくは外気温度に基づいて設定される値としたことを特徴としている。   In the absorption refrigeration apparatus according to the twelfth invention of the present application, in the absorption refrigeration apparatus according to the eleventh invention, the temperature when the medium pump is stopped or the circulating refrigerant flow rate is decreased, and the medium The temperature when operating the pump or increasing the circulating refrigerant flow rate is set to the same or different temperature, and the temperature is set to a preset value or a value set based on the outside air temperature. It is a feature.

係る構成によれば、例えば、上記冷媒ポンプを停止させ又は循環している冷媒流量を減少させる場合の温度と上記冷媒ポンプを運転させ又は循環している冷媒流量を増加させる場合の温度を同一温度とした場合には、これを異なる温度とする場合に比して制御の簡略化、延いては装置の低コスト化が図れるが作動が繁雑となる。また、上記冷媒ポンプを停止させ又は循環している冷媒流量を減少させる場合の温度と上記冷媒ポンプを運転させ又は循環している冷媒流量を増加させる場合の温度を異なる温度とした場合、例えば、上記冷媒ポンプを停止させ又は循環している冷媒流量を減少させる場合の温度を、上記冷媒ポンプを運転させ又は循環している冷媒流量を増加させる場合の温度よりも低く設定した場合には、冷凍能力の増加制御がより早期に開始され、迅速な冷凍能力の増加が実現される。   According to such a configuration, for example, the temperature when the refrigerant pump is stopped or the circulating refrigerant flow rate is decreased and the temperature when the refrigerant pump is operated or the circulating refrigerant flow rate is increased are the same temperature. In this case, the control can be simplified and the cost of the apparatus can be reduced as compared with the case where the temperature is different, but the operation becomes complicated. Further, when the temperature when stopping the refrigerant pump or decreasing the circulating refrigerant flow rate and the temperature when operating the refrigerant pump or increasing the circulating refrigerant flow rate are different temperatures, for example, If the temperature when the refrigerant pump is stopped or the circulating refrigerant flow rate is decreased is set lower than the temperature when the refrigerant pump is operated or the circulating refrigerant flow rate is increased, The increase control of the capacity is started earlier, and the quick increase of the refrigerating capacity is realized.

また、上記温度を予め設定した設定値もしくは外気温に基づいて設定される値としたことで、例えば、吸収式冷凍装置側の条件とか冷熱利用側機器側の条件を加味して上記温度を制御する場合に比して、上記吸収式冷凍装置の冷凍能力の制御系の構成が極めて簡単となり、イニシャルコストの大幅な低減が可能となるとともに、冷凍能力の制御における迅速性が確保される。尚、予め設定した設定値の精度が不足する可能性のある場合には外気温度に基づいて設定される設定値とすれば良い。   In addition, by setting the temperature to a preset value or a value set based on the outside air temperature, for example, the temperature is controlled in consideration of the conditions on the absorption refrigeration equipment side or the conditions on the side of the cold energy utilization side. Compared to the case, the configuration of the control system for the refrigeration capacity of the absorption refrigeration apparatus is extremely simple, the initial cost can be greatly reduced, and the quickness in the control of the refrigeration capacity is ensured. In addition, when there is a possibility that the accuracy of the preset set value is insufficient, the set value may be set based on the outside air temperature.

本願の第13の発明に係る吸収式冷凍装置では、上記第11又は第12の発明に係る吸収式冷凍装置において、上記冷媒ポンプの停止又は循環している冷媒流量の減少制御、及び上記冷媒ポンプの運転又は循環している冷媒流量の増加制御を、上記蒸発器の蒸発温度の検出値と予め設定した設定値もしくは外気温度に基づく設定値を対比して、又は上記蒸発器の出口と入口における被冷却流体の温度差の検出値と予め設定した設定値もしくは外気温度に基づく設定値を対比して、行なうことを特徴としている。   In the absorption refrigeration apparatus according to the thirteenth invention of the present application, in the absorption refrigeration apparatus according to the eleventh or twelfth invention, the refrigerant pump is controlled to stop or circulate, and the refrigerant pump is reduced. The control of increasing the flow rate of the circulating refrigerant is performed by comparing the detected value of the evaporation temperature of the evaporator with a preset set value or a set value based on the outside air temperature, or at the outlet and inlet of the evaporator. This is performed by comparing the detected value of the temperature difference of the fluid to be cooled with a preset value or a preset value based on the outside air temperature.

係る構成によれば、上記冷媒ポンプの停止又は循環している冷媒流量の減少制御、及び上記冷媒ポンプの運転又は循環している冷媒流量の増加制御が、上記蒸発器の蒸発温度、又は上記蒸発器の出口と入口における被冷却流体の温度差によって行なわれ、上記冷熱利用側機器における条件は何等関与しないので、上記制御をより迅速に行なうことができ、その結果、上記蒸発器における蒸発能力を減少させることによる上記吸収式冷凍装置の冷凍能力の減少制御と、上記蒸発器における蒸発能力を増加させることによる上記吸収式冷凍装置の冷凍能力の増加制御の応答性が向上し、冷凍能力の緻密且つ迅速な制御が可能となる。   According to this configuration, the decrease control of the refrigerant flow rate at which the refrigerant pump is stopped or circulated, and the increase control of the refrigerant flow rate at which the refrigerant pump is operated or circulated are the evaporation temperature of the evaporator or the evaporation rate. This is performed by the temperature difference between the fluid to be cooled at the outlet and the inlet of the evaporator, and the conditions in the cold-use side equipment are not involved at all, so that the control can be performed more quickly, and as a result, the evaporation capacity of the evaporator can be increased. The responsiveness of the decrease control of the absorption capacity of the absorption refrigeration system by reducing the increase of the refrigeration capacity of the absorption refrigeration system by increasing the evaporation capacity of the evaporator improves the responsiveness of the refrigeration capacity. And quick control becomes possible.

本願の第14の発明に係る吸収式冷凍装置では、上記第11、第12又は第13の発明に係る吸収式冷凍装置において、上記吸収式冷凍装置の運転・停止を上記発生器の溶液温度で制御するものとし、上記エンジンが停止状態であっても上記溶液温度が所定温度以上で且つ上記蒸発器の上記冷媒溜りの冷媒貯留能力に余裕がある場合には上記冷媒電磁弁を閉として、上記冷媒溜りが満杯となるまで吸収式冷凍装置を運転し、又は溶液ポンプのみを運転し、上記発生器の溶液温度が上記所定温度以下になれば、上記冷媒溜りの冷媒貯留能力に余裕があっても上記吸収式冷凍装置の運転、又は溶液ポンプの運転を停止することを特徴としている。   In the absorption refrigeration apparatus according to the fourteenth invention of the present application, in the absorption refrigeration apparatus according to the eleventh, twelfth or thirteenth invention, the absorption refrigeration apparatus is operated or stopped at the solution temperature of the generator. Even if the engine is stopped, the refrigerant solenoid valve is closed when the solution temperature is equal to or higher than a predetermined temperature and the refrigerant storage capacity of the refrigerant reservoir of the evaporator is sufficient. If the absorption refrigeration unit is operated until the refrigerant pool is full, or only the solution pump is operated, and the solution temperature of the generator falls below the predetermined temperature, there is a margin in the refrigerant storage capacity of the refrigerant pool. Is also characterized in that the operation of the absorption refrigeration apparatus or the operation of the solution pump is stopped.

係る構成によれば、上記エンジンが停止状態であっても、冷媒の発生が可能な状態で且つ上記冷媒溜まりへの冷媒の貯留が可能な場合には、該冷媒溜まりに冷媒が溜められることから、無効冷媒量を少なくして冷媒、すなわちエンジンの排熱の有効利用を図ることができると同時に始動時の効率向上に大きく寄与するものである。   According to such a configuration, even if the engine is stopped, the refrigerant is stored in the refrigerant reservoir when the refrigerant can be generated and the refrigerant can be stored in the refrigerant reservoir. Thus, the amount of the ineffective refrigerant can be reduced to effectively use the refrigerant, that is, the exhaust heat of the engine, and at the same time, it greatly contributes to the efficiency improvement at the start.

本願の第15の発明に係る吸収式冷凍装置では、上記第11、第12、第13又は第14の発明に係る吸収式冷凍装置において、上記凝縮器から上記蒸発器に至る配管途中に冷媒タンクと冷媒電磁弁を順次設け、上記吸収式冷凍装置が運転中で且つ上記冷媒ポンプが停止しているときに上記冷媒電磁弁を閉として該冷媒タンクに冷媒を溜める一方、上記蒸発器下部の上記冷媒溜まりの冷媒量が減少したときには上記冷媒電磁弁を開として上記冷媒タンクの冷媒を上記冷媒溜まりに補充することを特徴としている。   In the absorption refrigeration apparatus according to the fifteenth aspect of the present invention, in the absorption refrigeration apparatus according to the eleventh, twelfth, thirteenth, or fourteenth aspect, a refrigerant tank is provided in the middle of the piping from the condenser to the evaporator. And a refrigerant solenoid valve are sequentially provided, and when the absorption refrigeration apparatus is in operation and the refrigerant pump is stopped, the refrigerant solenoid valve is closed to collect refrigerant in the refrigerant tank, while the evaporator below the evaporator is When the amount of refrigerant in the refrigerant pool decreases, the refrigerant electromagnetic valve is opened, and the refrigerant in the refrigerant tank is replenished to the refrigerant pool.

係る構成によれば、上記吸収式冷凍装置が運転中で且つ上記冷媒ポンプが停止しているとき、即ち、上記凝縮器において液冷媒が生成されているが、吸収式冷凍装置に要求される冷凍能力が低く、上記冷媒ポンプが停止して上記蒸発器への冷媒供給が行なわれていないような場合においては、上記凝縮器からの液冷媒が余剰状態にあるため、この余剰冷媒を上記冷媒タンクに溜めることで、無効冷媒量を可及的に少なくすることができる。   According to this configuration, when the absorption refrigeration apparatus is in operation and the refrigerant pump is stopped, that is, liquid refrigerant is generated in the condenser, the refrigeration required for the absorption refrigeration apparatus. In the case where the capacity is low and the refrigerant pump is stopped and the refrigerant is not supplied to the evaporator, the liquid refrigerant from the condenser is in an excess state. It is possible to reduce the amount of the invalid refrigerant as much as possible.

一方、上記蒸発器下部の上記冷媒溜まりの冷媒量が減少したとき、即ち、上記吸収式冷凍装置の冷凍能力の増加が要求され、吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて吸収器の冷媒吸収能力を増加させ、これに伴って上記冷媒ポンプが運転され、上記冷媒溜まりの冷媒量が減少し、冷媒の補充が要求されるような場合には、上記冷媒タンクの冷媒が上記冷媒溜まりに補充されることで、このような冷媒の補充が行なわれない場合に比して、上記蒸発器への循環冷媒量が更に増加し、上記吸収式冷凍装置の冷凍能力の増加要求に対する応答性が向上し、その結果、吸収式冷凍装置の冷凍能力を冷熱利用側機器の運転条件の変化に対応させる制御が容易となる。   On the other hand, when the amount of refrigerant in the refrigerant pool at the lower part of the evaporator decreases, that is, when the refrigerating capacity of the absorption refrigeration apparatus is required to increase, the temperature of the supercooled solution flowing into the absorber and / or the supercooled solution In the case where the refrigerant absorption capacity of the absorber is increased to increase the refrigerant absorption capacity, the refrigerant pump is operated accordingly, the refrigerant amount in the refrigerant reservoir is reduced, and replenishment of the refrigerant is required. As the refrigerant in the refrigerant tank is replenished in the refrigerant reservoir, the amount of refrigerant circulated to the evaporator further increases as compared with the case where such refrigerant replenishment is not performed, and the absorption refrigeration apparatus As a result, it becomes easy to control the refrigeration capacity of the absorption refrigeration apparatus to correspond to changes in the operating conditions of the cold-use equipment.

本願の第16の発明に係る吸収式冷凍装置では、上記第11、第12、第13、第14又は第15の発明に係る吸収式冷凍装置において、上記空冷過冷却器に備えられたファンの発停又は風量の増減によって上記吸収器に流入する上記過冷却溶液の温度を変化させることで冷凍能力を制御することを特徴としている。   In the absorption refrigeration apparatus according to the sixteenth invention of the present application, in the absorption refrigeration apparatus according to the eleventh, twelfth, thirteenth, fourteenth or fifteenth invention, a fan provided in the air-cooled supercooler is provided. The refrigeration capacity is controlled by changing the temperature of the supercooled solution flowing into the absorber according to start / stop or increase / decrease of air volume.

係る構成によれば、過冷却溶液の温度を変化させての冷凍能力の制御が、間接空冷方式の特性を生かして、上記ファンの発停又は風量の増減によって極めて容易且つ迅速に行なえることから、吸収式冷凍装置の能力制御範囲を最少能力まで低下させることができ、延いては、冷熱利用側機器の能力を限界まで利用することが可能となる。   According to such a configuration, the control of the refrigerating capacity by changing the temperature of the supercooled solution can be performed very easily and quickly by making use of the characteristics of the indirect air cooling system and by the start / stop of the fan or the increase / decrease of the air volume. The capacity control range of the absorption refrigeration apparatus can be reduced to the minimum capacity, and as a result, the capacity of the cold energy utilization side equipment can be utilized to the limit.

本願の第17の発明に係る吸収式冷凍装置では、上記第11、第12、第13、第14又は第15の発明に係る吸収式冷凍装置において、上記空冷過冷却器の入口側又は出口側に設けた流量調整弁によって上記吸収器に流入する過冷却溶液の流量を変化させることで冷凍能力を制御することを特徴としている。   In the absorption refrigeration apparatus according to the seventeenth invention of the present application, in the absorption refrigeration apparatus according to the eleventh, twelfth, thirteenth, fourteenth or fifteenth invention, an inlet side or an outlet side of the air-cooled supercooler. The refrigeration capacity is controlled by changing the flow rate of the supercooled solution flowing into the absorber by a flow rate adjusting valve provided in the above.

係る構成によれば、冷凍能力の制御が、流量調整弁による過冷却溶液の流量調整によって極めて容易且つ迅速に行なえることから、吸収式冷凍装置の能力制御範囲を最少能力まで低下させることができ、延いては、冷熱利用側機器の能力を限界まで利用することが可能となる。   According to such a configuration, the refrigeration capacity can be controlled very easily and quickly by adjusting the flow rate of the supercooled solution using the flow rate adjusting valve, so that the capacity control range of the absorption refrigeration system can be reduced to the minimum capacity. As a result, it becomes possible to use the capacity of the cold energy utilization side device to the limit.

本願の第18の発明に係る吸収式冷凍装置では、上記第11、第12、第13、第14又は第15の発明に係る吸収式冷凍装置において、冷媒蒸気を吸収した上記吸収器からの希溶液と、上記発生器で冷媒蒸気を発生し且つ溶液熱交換器での熱交換によって温度が低下した濃溶液との混合溶液を吸引及び吐出する溶液ポンプの流量を増減することで冷凍能力を制御することを特徴としている。   In the absorption refrigeration apparatus according to the eighteenth invention of the present application, in the absorption refrigeration apparatus according to the eleventh, twelfth, thirteenth, fourteenth, or fifteenth invention, the rare gas from the absorber that has absorbed refrigerant vapor. Control the refrigeration capacity by increasing or decreasing the flow rate of the solution pump that draws and discharges the mixed solution of the solution and the concentrated solution that generates refrigerant vapor in the generator and whose temperature is reduced by heat exchange in the solution heat exchanger. It is characterized by doing.

係る構成によれば、上記溶液ポンプの流量を増減させることで、容易且つ迅速に冷凍能力を制御できることから、吸収式冷凍装置の能力制御範囲を最少能力まで低下させることができ、延いては、冷熱利用側機器の能力を限界まで利用することが可能となる。   According to such a configuration, by increasing or decreasing the flow rate of the solution pump, the refrigeration capacity can be controlled easily and quickly, so that the capacity control range of the absorption refrigeration apparatus can be reduced to the minimum capacity, It becomes possible to use the capacity of the cold energy utilization side equipment to the limit.

以上の結果、本願発明の吸収式冷凍装置によれば、吸収式冷凍装置の冷凍能力を、該吸収式冷凍装置で発生した冷熱を利用する冷熱利用側機器側の運転条件に基づくことなく、該吸収式冷凍装置側の条件に基づいて制御することで、該冷熱利用側機器の効率の向上と、冷凍システム全体のイニシャルコスト及びランニングコストの低減を両立させることができる。   As a result of the above, according to the absorption refrigeration apparatus of the present invention, the refrigeration capacity of the absorption refrigeration apparatus is not based on the operating conditions on the cold heat utilization side equipment side using the cold generated by the absorption refrigeration apparatus, By controlling based on the conditions on the absorption refrigeration apparatus side, it is possible to achieve both the improvement of the efficiency of the cold energy utilization side device and the reduction of the initial cost and running cost of the entire refrigeration system.

以下、本願発明を好適な実施形態に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on preferred embodiments.

I:第1の実施形態
図1には、本願発明の第1の実施形態に係る冷凍システムが示されている。この冷凍システムは、排熱駆動の吸収式冷凍装置Zと冷熱利用側機器としての圧縮式冷凍装置Xを組み合わせて構成される。
I: First Embodiment FIG. 1 shows a refrigeration system according to a first embodiment of the present invention. This refrigeration system is configured by combining an absorption refrigeration apparatus Z driven by exhaust heat and a compression refrigeration apparatus X as a cold heat utilization side device.

上記吸収式冷凍装置Zは、冷媒として水(HO)を、吸収液として臭化リチウム(LiBr)を採用するとともに、排温水を加熱源として用いた排熱駆動式の空冷吸収式冷凍装置であって、吸収希溶液を熱交換器1aにおいて排温水で加熱して冷媒蒸気と吸収濃溶液を生成させる発生器1と、該発生器1から管路51を通して流入される冷媒蒸気を凝縮させて冷媒液とする凝縮器2と、該凝縮器2から管路52を通して流入される冷媒液を被冷却流体(即ち、次述の圧縮式冷凍装置Xの凝縮器23から出る冷媒)が内部に流れているプレート式熱交換器3aのプレート面に散布して一過性でこれを蒸発させる蒸発器3と、上記蒸発器3で生成された冷媒蒸気を吸収させて吸収希溶液を生成させる流下液膜式の吸収器4と、上記発生器1へ管路53を通して流入される吸収希溶液と該発生器1から管路54を通して流出する吸収濃溶液をプレート式熱交換器5aにおいて熱交換させる溶液熱交換器5と、上記溶液熱交換器5からの吸収濃溶液と上記吸収器4の下部に設けた希溶液溜り16の吸収希溶液との混合溶液を管路55を通して流入させてこれを過冷却して上記吸収器4に流入させるファン7を備えた空冷式の溶液冷却器6と、上記吸収器4からの吸収希溶液を上記溶液熱交換器5を介して上記発生器1に流入させる溶液ポンプ9を備えて構成される。 The absorption refrigeration apparatus Z employs water (H 2 O) as a refrigerant, lithium bromide (LiBr) as an absorption liquid, and an exhaust heat-driven air-cooled absorption refrigeration apparatus that uses exhaust hot water as a heating source. In the heat exchanger 1a, the absorption dilute solution is heated with exhaust warm water to generate the refrigerant vapor and the absorption concentrated solution, and the refrigerant vapor flowing from the generator 1 through the pipe 51 is condensed. The refrigerant to be cooled and the fluid to be cooled (that is, the refrigerant that is discharged from the condenser 23 of the compression refrigeration apparatus X described below) inside the refrigerant liquid flowing in from the condenser 2 through the pipe line 52 are contained inside. The evaporator 3 that is sprayed on the plate surface of the flowing plate heat exchanger 3a to evaporate it transiently, and the downflow that absorbs the refrigerant vapor generated in the evaporator 3 to generate an absorption diluted solution To the liquid film type absorber 4 and the generator 1 A solution heat exchanger 5 for exchanging heat in the plate heat exchanger 5a between the absorbing diluted solution flowing in through the passage 53 and the absorbing concentrated solution flowing out from the generator 1 through the conduit 54; There is provided a fan 7 for introducing a mixed solution of an absorption concentrated solution and an absorption dilute solution in a dilute solution reservoir 16 provided in the lower part of the absorber 4 through a pipe 55 and supercooling it to flow into the absorber 4. And an air-cooled solution cooler 6 and a solution pump 9 for allowing the absorbed dilute solution from the absorber 4 to flow into the generator 1 through the solution heat exchanger 5.

ここで、上記蒸発器3と吸収器4は一体の躯体15内に収められており、上記蒸発器3の下部に流下する未蒸発冷媒はそのまま上記躯体15の底壁を流れて上記吸収器4の下部に設けられた希溶液溜り16に流入し、該希溶液溜り16内の吸収希溶液に混合される。これによって、上記発生器1で発生する冷媒量の増減で溶液濃度が大きく変化するのが防止される。   Here, the evaporator 3 and the absorber 4 are housed in an integral housing 15, and the unevaporated refrigerant flowing down to the lower part of the evaporator 3 flows through the bottom wall of the housing 15 as it is. It flows into the dilute solution reservoir 16 provided at the lower part of the slag and is mixed with the absorbed dilute solution in the dilute solution reservoir 16. As a result, the solution concentration is prevented from greatly changing due to an increase or decrease in the amount of refrigerant generated in the generator 1.

また、上記凝縮器2と上記蒸発器3を接続する管路52の途中と上記蒸発器3は、バイパス管路64によって接続されている。そして、このバイパス管路64には、その上流側から冷媒タンク14と冷媒電磁弁10が順次設けられている。従って、上記冷媒電磁弁10の閉作動においては、上記冷媒タンク14に冷媒が溜められる一方、該冷媒電磁弁10の開作動時には上記冷媒タンク14に溜められた冷媒が上記蒸発器3側に供給される。   Further, the middle of the pipe line 52 connecting the condenser 2 and the evaporator 3 and the evaporator 3 are connected by a bypass pipe line 64. The bypass pipe 64 is provided with the refrigerant tank 14 and the refrigerant solenoid valve 10 sequentially from the upstream side. Therefore, when the refrigerant electromagnetic valve 10 is closed, the refrigerant is stored in the refrigerant tank 14, while when the refrigerant electromagnetic valve 10 is opened, the refrigerant stored in the refrigerant tank 14 is supplied to the evaporator 3 side. Is done.

上記圧縮式冷凍装置Xは、エンジン26によって駆動される圧縮機21と蒸発器22と凝縮器23と膨張弁24及び四路弁25を管路で接続して構成される。そして、上記凝縮器23で凝縮して流出する液冷媒は、管路61を介して上記吸収式冷凍装置Z側の上記蒸発器3のプレート式熱交換器3aにその下端側から流入し、その上端側から管路62を介して上記蒸発器22側へ流出するが、その際、上記吸収式冷凍装置の蒸発器3のプレート式熱交換器3aにおいて過冷却される。   The compression refrigeration apparatus X is configured by connecting a compressor 21, an evaporator 22, a condenser 23, an expansion valve 24, and a four-way valve 25 that are driven by an engine 26 through a pipeline. Then, the liquid refrigerant condensed and flowing out in the condenser 23 flows into the plate heat exchanger 3a of the evaporator 3 on the absorption refrigeration apparatus Z side from the lower end side through the pipe 61, The refrigerant flows out from the upper end side to the evaporator 22 side through the pipe line 62. At that time, it is supercooled in the plate heat exchanger 3a of the evaporator 3 of the absorption refrigeration apparatus.

そして、上記吸収式冷凍装置Zを上記圧縮式冷凍装置Xのエンジン26の排温水を熱源として駆動させるために、上記エンジン26の冷却水循環系と上記発生器1の熱交換器1aとが管路57,58によって接続されている。   In order to drive the absorption refrigeration apparatus Z using the exhaust water of the engine 26 of the compression refrigeration apparatus X as a heat source, the cooling water circulation system of the engine 26 and the heat exchanger 1a of the generator 1 are connected to each other by a pipe. 57 and 58 are connected.

以上のように構成された冷凍システムは以下のように作動する。   The refrigeration system configured as described above operates as follows.

先ず、上記圧縮式冷凍装置Xにおいては、上記エンジン26によって上記圧縮式冷凍装置Xの圧縮機21を駆動し、該圧縮機21から吐出されたガス冷媒を上記凝縮器23において凝縮させて液冷媒とするとともに、該液冷媒をさらに上記吸収式冷凍装置Z側の上記蒸発器3において過冷却し、この過冷却冷媒を上記蒸発器22において蒸発させて室内の冷房を行なう。この場合、上記凝縮器23からの液冷媒を過冷却することで、その冷凍能力の向上が図られるものである。   First, in the compression refrigeration apparatus X, the compressor 26 of the compression refrigeration apparatus X is driven by the engine 26, and the gas refrigerant discharged from the compressor 21 is condensed in the condenser 23 to be liquid refrigerant. In addition, the liquid refrigerant is further supercooled in the evaporator 3 on the absorption refrigeration apparatus Z side, and the supercooled refrigerant is evaporated in the evaporator 22 to cool the room. In this case, the refrigeration capacity can be improved by supercooling the liquid refrigerant from the condenser 23.

一方、上記吸収式冷凍装置Zにおいては、上記エンジン26からの排温水を受けて、上記発生器1で上記吸収器4からの吸収希溶液が加熱され、冷媒蒸気と吸収濃溶液が生成される。上記発生器1で発生した冷媒蒸気は、ファン8を備えた空冷式の上記凝縮器2において凝縮され、液冷媒とされる。   On the other hand, in the absorption refrigeration apparatus Z, the generator 1 receives the hot water from the engine 26, and the generator 1 heats the absorption dilute solution from the absorber 4 to generate refrigerant vapor and the absorption concentrated solution. . The refrigerant vapor generated in the generator 1 is condensed in the air-cooled condenser 2 provided with a fan 8 to be a liquid refrigerant.

ここで、上記凝縮器2からの液冷媒は、上記冷媒電磁弁10が開作動中である場合は、上記管路52と上記バイパス管路64のそれぞれを介して上記蒸発器3の上部に流入される。また、上記冷媒電磁弁10が閉作動中である場合には、上記凝縮器2からの液冷媒の一部は上記管路52を通して上記蒸発器3の上部に流入され、他の一部は上記冷媒タンク14に溜められる。従って、上記蒸発器3への液冷媒の流入量は、上記冷媒電磁弁10の開作動時には多くなり、閉作動時には少なくなる。   Here, the liquid refrigerant from the condenser 2 flows into the upper part of the evaporator 3 through each of the pipe line 52 and the bypass pipe line 64 when the refrigerant solenoid valve 10 is open. Is done. Further, when the refrigerant solenoid valve 10 is in a closing operation, a part of the liquid refrigerant from the condenser 2 flows into the upper part of the evaporator 3 through the conduit 52, and the other part of the liquid refrigerant. The refrigerant is stored in the refrigerant tank 14. Accordingly, the amount of liquid refrigerant flowing into the evaporator 3 increases when the refrigerant solenoid valve 10 is opened and decreases when the refrigerant solenoid 10 is closed.

そして、上記蒸発器3の上部に流入された液冷媒は、散布器(図示省略)から上記プレート式熱交換器3aの上部に均等に散布され、該熱交換器3aの表面に沿って流下する間に蒸発して冷媒蒸気を発生する。また、このとき、その蒸発熱によって上記プレート式熱交換器3a内を流れる上記圧縮式冷凍装置X側の冷媒を過冷却する。   The liquid refrigerant that has flowed into the upper portion of the evaporator 3 is evenly spread from the spreader (not shown) to the upper portion of the plate heat exchanger 3a and flows down along the surface of the heat exchanger 3a. Evaporate in the middle to generate refrigerant vapor. At this time, the refrigerant on the compression refrigeration apparatus X side flowing in the plate heat exchanger 3a is supercooled by the heat of evaporation.

一方、上記吸収器4においては、上記空冷過冷却器6において過冷却された吸収希溶液が散布器(図示省略)からプレート4aに均等に散布され、該プレート4aに沿って流下する間に上記蒸発器3からの冷媒蒸気を吸収して吸収希溶液とされ、上記希溶液溜り16に貯留される。   On the other hand, in the absorber 4, the absorption dilute solution supercooled in the air-cooled supercooler 6 is evenly spread from the spreader (not shown) to the plate 4a and flows down along the plate 4a. The refrigerant vapor from the evaporator 3 is absorbed to form an absorbing diluted solution, which is stored in the diluted solution reservoir 16.

上記希溶液溜り16には、上記吸収器4において冷媒蒸気を吸収した吸収希溶液と、上記蒸発器3にて蒸発せずに下部に流下した未蒸発冷媒があれば、この未蒸発冷媒からなる混合溶液が貯留されるとともに、この混合溶液は上記溶液ポンプ9によって上記発生器1側へ供給される。この際、上記溶液熱交換器5において、上記吸収器4側からの吸収希溶液と上記発生器1で生成された吸収濃溶液との間での熱交換によって熱回収が行なわれる。   In the dilute solution reservoir 16, if there is an absorbed dilute solution that has absorbed the refrigerant vapor in the absorber 4 and an unevaporated refrigerant that has not evaporated in the evaporator 3 and has flowed down, The mixed solution is stored, and the mixed solution is supplied to the generator 1 side by the solution pump 9. At this time, in the solution heat exchanger 5, heat recovery is performed by heat exchange between the absorption diluted solution from the absorber 4 side and the absorption concentrated solution generated in the generator 1.

そして、この吸収式冷凍装置Zにおいては、その冷凍能力が、上記吸収器4における吸収能力の調整によって増減制御される。即ち、上記吸収器4の吸収能力を高めて吸収希溶液への冷媒蒸気の吸収作用を高めることで、上記蒸発器3における蒸発能力(即ち、圧縮式冷凍装置X側の冷媒に対する過冷却能力)が高められ、結果的に吸収式冷凍装置Z全体としての冷凍能力が高められるものである。   In the absorption refrigeration apparatus Z, the refrigeration capacity is increased or decreased by adjusting the absorption capacity in the absorber 4. That is, by increasing the absorption capacity of the absorber 4 and increasing the absorption of refrigerant vapor into the absorption diluted solution, the evaporation capacity in the evaporator 3 (that is, the supercooling capacity for the refrigerant on the compression refrigeration apparatus X side). As a result, the refrigerating capacity of the absorption refrigeration apparatus Z as a whole is enhanced.

ところで、既述のように、上記圧縮式冷凍装置Xの冷凍能力は、上記凝縮器23から出た冷媒の過冷却度によって変化し、過冷却度が高いほど冷凍能力が高くなる関係にある。従って、圧縮式冷凍装置Xの能力向上という点では、上記吸収式冷凍装置Zの冷熱によって上記圧縮式冷凍装置X側の冷媒をできるだけ過冷却すればよいことになり、そのためには、上記圧縮式冷凍装置Xの冷凍能力に対応した過冷却温度を達成できるような能力の吸収式冷凍装置Zを組み合わせれば良いことになる。   By the way, as described above, the refrigeration capacity of the compression refrigeration apparatus X varies depending on the degree of supercooling of the refrigerant discharged from the condenser 23, and the refrigeration capacity increases as the degree of supercooling increases. Therefore, in terms of improving the capacity of the compression refrigeration apparatus X, the refrigerant on the compression refrigeration apparatus X side needs to be supercooled as much as possible by the cold heat of the absorption refrigeration apparatus Z. What is necessary is just to combine the absorption refrigeration apparatus Z of the capability which can achieve the supercooling temperature corresponding to the refrigerating capacity of the refrigeration apparatus X.

ところが、外気温度が低下した場合とか、圧縮式冷凍装置が部分負荷となった場合には、該圧縮式冷凍装置の凝縮器出口の冷媒温度(即ち、凝縮温度)が低下することから、特に外気温度の低下と圧縮式冷凍装置の部分負荷とが重なった場合には、この圧縮式冷凍装置の凝縮器出口の冷媒温度の低下が大きくなるため、吸収式冷凍装置の蒸発温度、もしくは蒸発器の出口における被冷却流体温度(圧縮式冷凍装置の冷媒温度)も低下し、該蒸発温度もしくは被冷却流体温度が予め設定される値もしくは外気温度に基づく設定値(即ち、外気温と圧縮式冷凍装置の負荷に基づいて設定される温度値)よりも低下したような場合には、吸収式冷凍装置の冷凍能力が余剰状態となり、該吸収式冷凍装置側の冷媒に無駄が生じることになる。   However, when the outside air temperature decreases or when the compression refrigeration apparatus becomes a partial load, the refrigerant temperature (that is, the condensation temperature) at the condenser outlet of the compression refrigeration apparatus decreases. When the drop in temperature and the partial load of the compression refrigeration unit overlap, the drop in refrigerant temperature at the condenser outlet of this compression refrigeration unit increases, so the evaporation temperature of the absorption refrigeration unit or the evaporator The temperature of the fluid to be cooled at the outlet (the refrigerant temperature of the compression refrigeration system) also decreases, and the evaporation temperature or the temperature of the fluid to be cooled is a preset value or a set value based on the outside air temperature (that is, the outside air temperature and the compression refrigeration system). If the temperature is lower than the temperature value set based on the load of the absorption refrigeration system, the refrigeration capacity of the absorption refrigeration apparatus becomes excessive, and the refrigerant on the absorption refrigeration apparatus side is wasted.

一方、外気温が上昇した場合や、圧縮式冷凍装置の負荷が増加した場合には、圧縮式冷凍装置の凝縮器出口の冷媒温度が上昇するため、吸収式冷凍装置の蒸発温度、もしくは蒸発器の出口における被冷却流体温度も上昇し、該蒸発温度もしくは被冷却流体温度が予め設定される値もしくは外気温度に基づく設定値よりも上昇したような場合には、吸収式冷凍装置の冷凍能力が不足する状態となることから、吸収器に流入する溶液の過冷却温度もしくは過冷却流量を増加させると同時に蒸発器への冷媒流量を増加させて冷凍能力を迅速に高める必要がある。   On the other hand, when the outside air temperature rises or when the load of the compression refrigeration apparatus increases, the refrigerant temperature at the condenser outlet of the compression refrigeration apparatus rises, so the evaporation temperature of the absorption refrigeration apparatus or the evaporator When the temperature of the fluid to be cooled at the outlet of the refrigerant rises and the evaporating temperature or the temperature of the fluid to be cooled rises above a preset value or a set value based on the outside air temperature, the refrigeration capacity of the absorption refrigeration apparatus is reduced. Since the state becomes insufficient, it is necessary to increase the refrigerant cooling rate to the evaporator at the same time as increasing the supercooling temperature or the supercooling flow rate of the solution flowing into the absorber and increasing the refrigeration capacity quickly.

従って、大能力の排熱駆動の吸収式冷凍装置を設置することなく圧縮式冷凍装置の効率を向上させてランニングコストの低減を図るためには、圧縮式冷凍装置側の運転条件の変化に対応させて吸収式冷凍装置の冷凍能力を制御することが必要である。   Therefore, in order to improve the efficiency of the compression refrigeration system and reduce the running cost without installing a large capacity exhaust heat driven absorption refrigeration system, respond to changes in the operating conditions on the compression refrigeration system side. Therefore, it is necessary to control the refrigeration capacity of the absorption refrigeration apparatus.

この場合、吸収式冷凍装置の冷凍能力の制御を、圧縮式冷凍装置側の運転条件、例えば、外気温と上記圧縮式冷凍装置の凝縮器の出口側における冷媒温度(凝縮温度)を検出し、これを用いて吸収式冷凍装置の冷凍能力(吸収式冷凍装置に要求される冷凍能力)を算出し、これに基づいて制御することが考えられるが、係る制御手法によれば、上記吸収式冷凍装置側の条件に加えて、上記圧縮式冷凍装置側の条件を常に検出する必要があり、制御系が複雑になり、コストアップを招来する一つの原因にもなる。特に、例えば、吸収式冷凍装置と圧縮式冷凍装置を組み合わせた冷凍システムが同一の管理領域内に複数存在し、これら各冷凍システムにおける吸収式冷凍装置の冷凍能力をそれぞれ個別に圧縮式冷凍装置側の運転条件に対応させて制御する場合には、制御系がさらに複雑となり、多くの管理コストを必要とし、更なるコストアップを招来することになる。   In this case, the control of the refrigeration capacity of the absorption refrigeration apparatus is performed by detecting the operating conditions on the compression refrigeration apparatus side, for example, the outside air temperature and the refrigerant temperature (condensation temperature) on the outlet side of the condenser of the compression refrigeration apparatus, It is conceivable to use this to calculate the refrigeration capacity of the absorption refrigeration system (the refrigeration capacity required for the absorption refrigeration system) and control based on this, but according to such a control method, the absorption refrigeration system In addition to the conditions on the apparatus side, it is necessary to always detect the conditions on the compression refrigeration apparatus side, which complicates the control system and causes a cost increase. In particular, for example, a plurality of refrigeration systems combining an absorption refrigeration system and a compression refrigeration system exist in the same management area, and the refrigeration capacity of the absorption refrigeration system in each of these refrigeration systems is individually set on the compression refrigeration system side. When the control is performed in accordance with the operating conditions, the control system becomes more complicated, requires a lot of management costs, and further increases the cost.

そこで本願発明は、エンジンの排熱で駆動される吸収式冷凍装置において、該吸収式冷凍装置の冷凍能力を、該吸収式冷凍装置で発生した冷熱を利用する冷熱利用側機器側の運転条件に基づくことなく、制御することで、該冷熱利用側機器の効率の向上と、冷凍システム全体のイニシャルコスト及びランニングコストの低減を図るようにしている。   Accordingly, the present invention relates to an absorption refrigeration apparatus driven by exhaust heat of the engine, wherein the refrigeration capacity of the absorption refrigeration apparatus is set to the operating conditions on the cold heat utilization side equipment side that uses the cold generated by the absorption refrigeration apparatus. By controlling without relying on it, the efficiency of the cold energy utilization side device is improved, and the initial cost and running cost of the entire refrigeration system are reduced.

このような制御を実現するために、この実施形態では、上記吸収器4に流入する過冷却溶液の温度を変化させることで該吸収器4の冷媒吸収能力を増減して吸収式冷凍装置Zの冷凍能力を制御するものとし、係る構成の下で、上記蒸発器3の出口における被冷却流体の温度が予め設定した設定温度もしくは外気温度に基づいて設定される設定温度以下となった場合に、上記吸収器4に流入する過冷却溶液の温度を変化させて該吸収器4の冷媒吸収能力を減少させる制御を行なうと同時に、上記冷媒電磁弁10を閉として上記蒸発器3に流入する冷媒量を減少させて吸収式冷凍装置Zの冷凍能力を減少させるとともに、上記冷媒タンク14に上記凝縮器2からの冷媒を溜める。   In order to realize such control, in this embodiment, the refrigerant absorption capacity of the absorber 4 is increased or decreased by changing the temperature of the supercooled solution flowing into the absorber 4, so that the absorption refrigeration apparatus Z When the temperature of the fluid to be cooled at the outlet of the evaporator 3 is equal to or lower than a preset temperature set based on a preset preset temperature or an outside air temperature under such a configuration, At the same time as controlling the temperature of the supercooled solution flowing into the absorber 4 to reduce the refrigerant absorption capacity of the absorber 4, the refrigerant solenoid valve 10 is closed and the amount of refrigerant flowing into the evaporator 3 is closed. Is reduced to reduce the refrigerating capacity of the absorption refrigeration apparatus Z, and the refrigerant from the condenser 2 is stored in the refrigerant tank 14.

また、上記温度が上記設定温度以上となった場合には、上記吸収器4に流入する過冷却溶液の温度を変化させて該吸収器4の冷媒吸収能力を減少させると同時に、上記冷媒電磁弁10を開として上記冷媒タンク14に溜められた冷媒を上記蒸発器3に流入させて冷媒流量を増加させることで吸収式冷凍装置Zの冷凍能力を増加させるようにしている。   Further, when the temperature becomes equal to or higher than the set temperature, the temperature of the supercooled solution flowing into the absorber 4 is changed to reduce the refrigerant absorption capacity of the absorber 4, and at the same time, the refrigerant solenoid valve 10 is opened, and the refrigerant stored in the refrigerant tank 14 is caused to flow into the evaporator 3 to increase the refrigerant flow rate, thereby increasing the refrigeration capacity of the absorption refrigeration apparatus Z.

具体的には、上記蒸発器3の出口側に温度センサ18を設けて該蒸発器3の出口における冷媒温度(即ち、上記圧縮式冷凍装置X側の冷媒の過冷却温度)を検出するようにしているが、外気温度に基づく場合には外気温センサ20を設けて外気温を同時に検出するようにしている。   Specifically, a temperature sensor 18 is provided on the outlet side of the evaporator 3 to detect the refrigerant temperature at the outlet of the evaporator 3 (that is, the refrigerant subcooling temperature on the compression refrigeration apparatus X side). However, when it is based on the outside air temperature, an outside air temperature sensor 20 is provided to detect the outside air temperature at the same time.

ここで、設定温度は上記圧縮式冷凍装置Xの凝縮器23における凝縮温度と吸収式冷凍装置Zの冷凍能力で過冷却できる温度から上記蒸発器3における出口の温度として設定したものでこれにより吸収式冷凍装置Zの冷凍能力を制御するものであるが、上記外気温センサ20で検出される外気温に基づいて設定する場合は該外気温に対応する上記圧縮式冷凍装置Xの凝縮器23における凝縮温度を予想し、この予想された凝縮温度と吸収式冷凍装置Zの当該外気温時の冷凍能力から所定の過冷却温度を算出し上記蒸発器3における出口温度を求め、これを吸収式冷凍装置Zの冷凍能力を制御する設定温度として設定する。但し、蒸発器3の出口温度の設定下限値として冷媒の凍結を考慮した値にする必要がある。   Here, the set temperature is set as the outlet temperature in the evaporator 3 from the condensation temperature in the condenser 23 of the compression refrigeration apparatus X and the temperature that can be supercooled by the refrigeration capacity of the absorption refrigeration apparatus Z. In the case of setting based on the outside air temperature detected by the outside air temperature sensor 20, in the condenser 23 of the compression refrigeration apparatus X corresponding to the outside air temperature A condensing temperature is predicted, a predetermined supercooling temperature is calculated from the predicted condensing temperature and the refrigerating capacity of the absorption refrigeration apparatus Z at the outside air temperature, and an outlet temperature in the evaporator 3 is obtained. It is set as a set temperature for controlling the refrigeration capacity of the device Z. However, the setting lower limit value of the outlet temperature of the evaporator 3 needs to be a value considering the freezing of the refrigerant.

そして、上記温度センサ18によって検出された蒸発器3の出口温度と上記設定温度を比較し、蒸発器3の出口温度が設定温度より低い場合には吸収式冷凍装置Zの冷凍能力が過大であるとしてこれを低減させる制御を行い、逆に、蒸発器3の出口温度が設定温度より高い場合には吸収式冷凍装置Zの冷凍能力が不足し所要の過冷却温度が確保できないとして、該冷凍能力を増加させる制御を行うようにしている。   Then, the outlet temperature of the evaporator 3 detected by the temperature sensor 18 is compared with the set temperature. When the outlet temperature of the evaporator 3 is lower than the set temperature, the refrigerating capacity of the absorption refrigeration apparatus Z is excessive. On the contrary, if the outlet temperature of the evaporator 3 is higher than the set temperature, the refrigerating capacity of the absorption refrigeration apparatus Z is insufficient and the required supercooling temperature cannot be secured. The control to increase is performed.

この吸収式冷凍装置Zの冷凍能力の具体的な制御は以下の通りである。   Specific control of the refrigeration capacity of the absorption refrigeration apparatus Z is as follows.

即ち、上記蒸発器3の出口における冷媒の温度(圧縮式冷凍装置Xの冷媒温度)が設定温度もしくは外気温度に基づいて算出される上記設定温度以下となった場合は、上記空冷過冷却器6に設けられた上記ファン7の発停によって、あるいは該ファン7の風量を増減させることによって上記空冷過冷却器6を循環する過冷却溶液の温度を変化させて該吸収器4の冷媒吸収能力を減少させる制御を行なうと同時に、上記冷媒電磁弁10を閉として上記蒸発器3に流入する冷媒量を減少させ、これによって上記吸収式冷凍装置Zの冷凍能力を減少させる。この結果、上記吸収式冷凍装置Zの冷凍能力を、上記圧縮式冷凍装置X側の条件を考慮しない制御形態でありながら、該圧縮式冷凍装置Xの過冷却要求度に可及的に対応させることができる。また、この場合、上記冷媒タンク14に上記凝縮器2からの冷媒(余剰冷媒)を溜めることで、該吸収式冷凍装置Z側における無効冷媒量を減少させることができる。   That is, when the temperature of the refrigerant at the outlet of the evaporator 3 (the refrigerant temperature of the compression refrigeration apparatus X) becomes equal to or lower than the set temperature calculated based on the set temperature or the outside air temperature, the air-cooled supercooler 6 The refrigerant absorption capacity of the absorber 4 can be increased by changing the temperature of the supercooled solution circulating in the air-cooled supercooler 6 by the start and stop of the fan 7 provided in the air or by increasing or decreasing the air volume of the fan 7. Simultaneously with the control to decrease, the refrigerant solenoid valve 10 is closed to reduce the amount of refrigerant flowing into the evaporator 3, thereby reducing the refrigeration capacity of the absorption refrigeration apparatus Z. As a result, the refrigeration capacity of the absorption refrigeration apparatus Z is made to correspond as much as possible to the degree of supercooling of the compression refrigeration apparatus X while being in a control mode that does not take into account the conditions on the compression refrigeration apparatus X side. be able to. In this case, the amount of inactive refrigerant on the absorption refrigeration apparatus Z side can be reduced by storing the refrigerant (excess refrigerant) from the condenser 2 in the refrigerant tank 14.

一方、上記温度が上記設定温度以上となった場合には、上記吸収器4に流入する過冷却溶液の温度を変化させて上記吸収器4の冷媒吸収能力を減少させると同時に、上記冷媒電磁弁10を開として上記冷媒タンク14に溜められた冷媒を上記蒸発器3に流入させ、冷媒流量を増加させて吸収式冷凍装置Zの冷凍能力を増加させる制御を行なうことで、上記圧縮式冷凍装置Xの冷媒の過冷却温度が増加し、該圧縮式冷凍装置Xの性能が、上記制御を行なわない通常状態よりも向上することになる。   On the other hand, when the temperature is equal to or higher than the set temperature, the temperature of the supercooled solution flowing into the absorber 4 is changed to reduce the refrigerant absorption capacity of the absorber 4, and at the same time, the refrigerant electromagnetic valve 10 is opened, the refrigerant stored in the refrigerant tank 14 is caused to flow into the evaporator 3, and the refrigerant flow rate is increased to increase the refrigeration capacity of the absorption refrigeration apparatus Z, thereby controlling the compression refrigeration apparatus. The supercooling temperature of the refrigerant of X increases, and the performance of the compression refrigeration apparatus X is improved compared to the normal state where the above control is not performed.

さらに、上記冷媒タンク14への冷媒の貯留は、上記エンジン26が運転中で且つ上記冷媒電磁弁10が閉作動中である場合のみならず、上記エンジン26の運転停止中においても行われる。即ち、上記エンジン26が停止状態であっても発生器1の溶液温度が所定温度以上で且つ上記冷媒タンク14の冷媒貯留能力に余裕がある場合には、上記冷媒電磁弁10を閉作動させ、上記冷媒タンク14が満杯となるまで吸収式冷凍装置Zを運転し、又は上記溶液ポンプ9のみを運転することで、上記冷媒タンク14に冷媒を貯留する。そして、上記発生器1の溶液温度が上記所定温度以下になれば、例え上記冷媒タンク14の冷媒貯留能力に余裕があっても、上記吸収式冷凍装置Zの運転を停止し、又は上記溶液ポンプ6の運転を停止し、上記冷媒タンク14への冷媒の貯留を停止させる。   Furthermore, the refrigerant is stored in the refrigerant tank 14 not only when the engine 26 is in operation and the refrigerant electromagnetic valve 10 is in a closed operation, but also when the operation of the engine 26 is stopped. That is, even when the engine 26 is in a stopped state, if the solution temperature of the generator 1 is equal to or higher than a predetermined temperature and the refrigerant storage capacity of the refrigerant tank 14 has a margin, the refrigerant electromagnetic valve 10 is closed. The refrigerant is stored in the refrigerant tank 14 by operating the absorption refrigeration apparatus Z until the refrigerant tank 14 is full or operating only the solution pump 9. If the solution temperature of the generator 1 is equal to or lower than the predetermined temperature, even if the refrigerant storage capacity of the refrigerant tank 14 is sufficient, the operation of the absorption refrigeration apparatus Z is stopped, or the solution pump 6 is stopped, and the storage of the refrigerant in the refrigerant tank 14 is stopped.

係る構成によれば、上記エンジン26が停止状態であっても、冷媒の発生が可能な状態で且つ上記冷媒タンク14への冷媒の貯留が可能な場合には、上記冷媒タンク14に冷媒が溜められることから、無効冷媒量を少なくして冷媒、すなわちエンジンの排熱の有効利用を図ることができる。   According to such a configuration, even when the engine 26 is stopped, the refrigerant is stored in the refrigerant tank 14 when the refrigerant can be generated and the refrigerant can be stored in the refrigerant tank 14. Therefore, the amount of the ineffective refrigerant can be reduced to effectively use the refrigerant, that is, the exhaust heat of the engine.

以上の相乗効果として、上記吸収式冷凍装置の冷凍能力を、上記圧縮式冷凍装置X側の運転条件に基づくことなく制御するにもかかわらず、該圧縮式冷凍装置Xの効率の向上と、冷凍システム全体のイニシャルコスト及びランニングコストの低減が両立されることになる。   As a synergistic effect, the efficiency of the compression refrigeration apparatus X can be improved and the refrigeration can be achieved despite the fact that the refrigeration capacity of the absorption refrigeration apparatus is controlled without being based on the operating conditions on the compression refrigeration apparatus X side. The initial cost and running cost of the entire system can be reduced at the same time.

尚、この実施形態では、上記冷媒電磁弁10を開から閉とする場合の設定温度と、閉から開とする場合の設定温度を、同一温度としているが、本願発明はこれに限定されるものではなく、異なる温度とすることもできる。例えば、上記冷媒電磁弁10を開から閉とする場合(即ち、冷媒タンク14への冷媒の貯留開始)の設定温度を、該冷媒電磁弁10を閉から開とする場合(即ち、冷媒タンク14に貯留した冷媒の流出開始)の設定温度よりも低く設定した場合には、冷凍能力の増加制御がより早期に開始され、迅速な冷凍能力の増加が実現される。   In this embodiment, the set temperature when the refrigerant electromagnetic valve 10 is changed from open to closed and the set temperature when the refrigerant electromagnetic valve 10 is changed from closed to open are set to the same temperature, but the present invention is limited to this. Instead, it can be at a different temperature. For example, when the refrigerant electromagnetic valve 10 is opened to closed (that is, the refrigerant starts to be stored in the refrigerant tank 14), the set temperature is set when the refrigerant electromagnetic valve 10 is opened from the closed (that is, the refrigerant tank 14). When the temperature is set to be lower than the set temperature of the refrigerant stored in the refrigerant, the increase control of the refrigerating capacity is started earlier, and a quick increase of the refrigerating capacity is realized.

更に凝縮器2から蒸発器3に至る配管52を省略し簡略化することもでき、この場合は上記蒸発器3に供給される冷媒は上記電磁弁10が開となっている時のみであり、より有効に冷媒を使用することができるが、上記電磁弁10をより煩雑に制御する必要がある。   Further, the piping 52 from the condenser 2 to the evaporator 3 can be omitted and simplified, and in this case, the refrigerant supplied to the evaporator 3 is only when the solenoid valve 10 is open, Although the refrigerant can be used more effectively, it is necessary to control the electromagnetic valve 10 more complicatedly.

II:第2の実施形態
図2には、本願発明の第2の実施形態に係る冷凍システムが示されている。この冷凍システムは、上記第1の実施形態に係る冷凍システムと基本構成を同じにするものであって、排熱駆動の吸収式冷凍装置Zと圧縮式冷凍装置Xを組み合わせて構成される。
II: Second Embodiment FIG. 2 shows a refrigeration system according to a second embodiment of the present invention. This refrigeration system has the same basic configuration as that of the refrigeration system according to the first embodiment, and is configured by combining an exhaust heat-driven absorption refrigeration apparatus Z and a compression refrigeration apparatus X.

そして、この実施形態に係る冷凍システムが上記第1の実施形態に係る冷凍システムと異なる点は、
上記冷媒タンク14に堰14aを設け、上記凝縮器2からの液冷媒のうち、上記堰14aを越流した液冷媒を管路64を介して上記蒸発器3側へ流入させるようにした点と、
上記吸収器4の能力を、上記空冷過冷却器6の上流側に設けた流量調整弁11又は下流側に設けた流量調整弁12の開度調整と、上記溶液ポンプ9の流量調整によって、上記空冷過冷却器6を循環する過冷却溶液の温度制御によって調整するようにした点である。
And the point that the refrigerating system concerning this embodiment differs from the refrigerating system concerning the 1st embodiment of the above,
The refrigerant tank 14 is provided with a weir 14a, and among the liquid refrigerant from the condenser 2, the liquid refrigerant that has overflowed the weir 14a is caused to flow into the evaporator 3 side through a pipe 64. ,
The capacity of the absorber 4 is adjusted by adjusting the opening degree of the flow rate adjusting valve 11 provided on the upstream side of the air-cooled supercooler 6 or the flow rate adjusting valve 12 provided on the downstream side and adjusting the flow rate of the solution pump 9. The point is that the temperature is adjusted by controlling the temperature of the supercooled solution circulating in the air-cooled supercooler 6.

ここで、上記相違点に特有の作用効果は以下の通りである。   Here, the operational effects peculiar to the above differences are as follows.

上記冷媒タンク14に堰14aを設け、上記凝縮器2からの液冷媒のうち、上記堰14aを越流した液冷媒を、管路52を介して上記蒸発器3側へ流入させるようにしたことで、上記冷媒電磁弁10が開とされた時点、即ち、上記冷媒タンク14に貯留された冷媒を上記蒸発器3側へ流す時点では、常に上記冷媒タンク14には冷媒が満杯に貯留されているので、始動時等における冷媒タンクへ冷媒を貯留するタイミングを必要とせず、該冷媒電磁弁10の開と同時に上記蒸発器3側へ十分な量の冷媒が流され、冷凍能力の増加制御がより一層迅速且つ確実に行なわれる。   The refrigeration tank 14 is provided with a weir 14a, and among the liquid refrigerant from the condenser 2, the liquid refrigerant that has overflowed the weir 14a is caused to flow into the evaporator 3 side via the pipe line 52. Thus, when the refrigerant solenoid valve 10 is opened, that is, when the refrigerant stored in the refrigerant tank 14 flows to the evaporator 3 side, the refrigerant tank 14 is always full of refrigerant. Therefore, it is not necessary to store the refrigerant in the refrigerant tank at the time of starting or the like, and a sufficient amount of refrigerant is caused to flow toward the evaporator 3 at the same time when the refrigerant electromagnetic valve 10 is opened. This is done more quickly and reliably.

上記吸収器4の能力を、上記流量調整弁11又は流量調整弁12の開度調整と、上記溶液ポンプ9の流量調整によって調整することで、吸収式冷凍装置Zの冷凍能力の制御を極めて容易且つ迅速に行なえることから、該吸収式冷凍装置Zの能力制御範囲を最少能力まで低下させることができ、延いては、圧縮式冷凍装置Xの能力を限界まで利用することが可能となる。   By adjusting the capacity of the absorber 4 by adjusting the opening degree of the flow rate adjusting valve 11 or the flow rate adjusting valve 12 and adjusting the flow rate of the solution pump 9, it is very easy to control the refrigerating capacity of the absorption refrigeration apparatus Z. And since it can be performed quickly, the capacity control range of the absorption refrigeration apparatus Z can be reduced to the minimum capacity, and as a result, the capacity of the compression refrigeration apparatus X can be utilized to the limit.

尚、上記冷媒電磁弁10は、上記バイパス管路64を開口又は閉止する構成とされているが、他の実施形態では、これを流量調整が可能な冷媒流量制御弁に置き換えることもできる。係る構成とした場合には、上記冷媒電磁弁10とする場合に比して、上記蒸発器への冷媒の流入量をより細かく増減制御することができることから、吸収式冷凍装置Zの冷凍能力の制御を、上記圧縮式冷凍装置X側の負荷の変化に対応させてより一層緻密に制御することができる。   In addition, although the said refrigerant | coolant electromagnetic valve 10 is set as the structure which opens or closes the said bypass pipe line 64, in other embodiment, this can also be replaced with the refrigerant | coolant flow control valve which can adjust flow volume. In the case of such a configuration, the amount of refrigerant flowing into the evaporator can be controlled more or less finely as compared with the case of the refrigerant solenoid valve 10, so that the refrigerating capacity of the absorption refrigeration apparatus Z can be increased. The control can be more precisely controlled in accordance with the load change on the compression refrigeration apparatus X side.

上記以外の構成及び作用効果は上記第1の実施形態の場合と同様であるので、ここでは図2の各構成部材に図1の各構成部材に対応させて同一の符号を付した上で、該第1の実施形態における該当説明を援用し、ここでの説明を省略する。   Since the structure and the effect other than the above are the same as those in the case of the first embodiment, here, after attaching the same reference numerals to the respective structural members in FIG. The corresponding explanation in the first embodiment is used, and the explanation here is omitted.

III:第3の実施形態
図3には、本願発明の第3の実施形態に係る冷凍システムが示されている。この冷凍システムは、排熱駆動の吸収式冷凍装置Zと圧縮式冷凍装置Xを組み合わせて構成される。
III: Third Embodiment FIG. 3 shows a refrigeration system according to a third embodiment of the present invention. This refrigeration system is configured by combining an exhaust heat driven absorption refrigeration apparatus Z and a compression refrigeration apparatus X.

上記吸収式冷凍装置Zは、冷媒として水(HO)を、吸収液として臭化リチウム(LiBr)を採用するとともに、排温水を加熱源として用いた排熱駆動式の空冷吸収式冷凍装置であって、吸収希溶液を熱交換器1aにおいて排温水で加熱して冷媒蒸気と吸収濃溶液を生成させる発生器1と、該発生器1から管路51を通して流入される冷媒蒸気を凝縮させて冷媒液とする凝縮器2と、該凝縮器2から管路52を通して下部の冷媒溜り17に流入される冷媒液を管路63に設けられた冷媒ポンプ13により被冷却流体(即ち、次述の圧縮式冷凍装置Xの凝縮器23から出る冷媒)が内部に流れているプレート式熱交換器3aの上部側に循環させ、そのプレート面に散布してこれを蒸発させる蒸発器3と、上記蒸発器3で生成された冷媒蒸気を吸収させて吸収希溶液を生成させる流下液膜式の吸収器4と、上記発生器1へ管路53を通して流入される吸収希溶液と該発生器1から管路54を通して流出する吸収濃溶液をプレート式熱交換器5aにおいて熱交換させる溶液熱交換器5と、上記溶液熱交換器5からの吸収濃溶液と上記吸収器4の下部に設けた希溶液溜り16の吸収希溶液との混合溶液を管路55を通して流入させてこれを過冷却して上記吸収器4に流入させるファン7を備えた空冷式の溶液冷却器6と、上記吸収器4からの吸収希溶液を上記溶液熱交換器5を介して上記発生器1に流入させる溶液ポンプ9を備えて構成される。 The absorption refrigeration apparatus Z employs water (H 2 O) as a refrigerant, lithium bromide (LiBr) as an absorption liquid, and an exhaust heat-driven air-cooled absorption refrigeration apparatus that uses exhaust hot water as a heating source. In the heat exchanger 1a, the absorption dilute solution is heated with exhaust warm water to generate the refrigerant vapor and the absorption concentrated solution, and the refrigerant vapor flowing from the generator 1 through the pipe 51 is condensed. The refrigerant 2 to be cooled and the refrigerant liquid flowing from the condenser 2 through the pipe 52 to the lower refrigerant reservoir 17 by the refrigerant pump 13 provided in the pipe 63 (that is, the following description) Of the compressor refrigeration apparatus X) is circulated to the upper side of the plate heat exchanger 3a flowing inside, the evaporator 3 for spraying on the plate surface and evaporating it, and the above Refrigerant steam generated in the evaporator 3 , A falling film type absorber 4 that absorbs water to generate a diluted absorption solution, an absorbed diluted solution that flows into the generator 1 through a line 53, and an absorbed concentrated solution that flows out of the generator 1 through a line 54 Of the solution heat exchanger 5 that exchanges heat in the plate heat exchanger 5 a, the absorption concentrated solution from the solution heat exchanger 5, and the absorption diluted solution in the diluted solution reservoir 16 provided below the absorber 4 An air-cooled solution cooler 6 provided with a fan 7 that causes the solution to flow through the pipe line 55 and supercools it to flow into the absorber 4, and the solution heat exchange between the absorption diluted solution from the absorber 4 It comprises a solution pump 9 that flows into the generator 1 via a vessel 5.

ここで、上記蒸発器3と吸収器4は一体の躯体15内に収められており、上記蒸発器3の下部に設けられた上記冷媒溜り17から溢れた冷媒は、上記躯体15の底壁を流れて上記吸収器4の下部に設けられた上記希溶液溜り16に流入し、該希溶液溜り16内の吸収希溶液に混合される。これによって、上記発生器1で発生する冷媒量の増減で溶液濃度が大きく変化するのが防止され、過度の濃縮による蒸発器での冷媒凍結や発生器での溶液の結晶が回避できる。   Here, the evaporator 3 and the absorber 4 are housed in an integral casing 15, and the refrigerant overflowing from the refrigerant reservoir 17 provided at the lower part of the evaporator 3 is allowed to flow through the bottom wall of the casing 15. It flows into the dilute solution reservoir 16 provided at the lower part of the absorber 4 and is mixed with the dilute absorbent solution in the dilute solution reservoir 16. As a result, it is possible to prevent the solution concentration from greatly changing due to the increase or decrease in the amount of refrigerant generated in the generator 1, and to avoid refrigerant freezing in the evaporator and crystallization of the solution in the generator due to excessive concentration.

上記圧縮式冷凍装置Xは、エンジン26によって駆動される圧縮機21と蒸発器22と凝縮器23と膨張弁24及び四路弁25を管路で接続して構成される。そして、上記凝縮器23で凝縮して流出する液冷媒は、管路61を介して上記吸収式冷凍装置Z側の上記蒸発器3のプレート式熱交換器3aにその下端側から流入し、その上端側から管路62を介して上記蒸発器22側へ流出するが、その際、上記吸収式冷凍装置の蒸発器3のプレート式熱交換器3aにおいて過冷却される。   The compression refrigeration apparatus X is configured by connecting a compressor 21, an evaporator 22, a condenser 23, an expansion valve 24, and a four-way valve 25 that are driven by an engine 26 through a pipeline. Then, the liquid refrigerant condensed and flowing out in the condenser 23 flows into the plate heat exchanger 3a of the evaporator 3 on the absorption refrigeration apparatus Z side from the lower end side through the pipe 61, The refrigerant flows out from the upper end side to the evaporator 22 side through the pipe line 62. At that time, it is supercooled in the plate heat exchanger 3a of the evaporator 3 of the absorption refrigeration apparatus.

そして、上記吸収式冷凍装置Zを上記圧縮式冷凍装置Xのエンジン26の排温水を熱源として駆動させるために、上記エンジン26の冷却水循環系と上記発生器1の熱交換器1aとが管路57,58によって接続されている。   In order to drive the absorption refrigeration apparatus Z using the exhaust water of the engine 26 of the compression refrigeration apparatus X as a heat source, the cooling water circulation system of the engine 26 and the heat exchanger 1a of the generator 1 are connected to each other by a pipe. 57 and 58 are connected.

以上のように構成された冷凍システムは以下のように作動する。   The refrigeration system configured as described above operates as follows.

先ず、上記圧縮式冷凍装置Xにおいては、上記エンジン26によって上記圧縮式冷凍装置Xの圧縮機21を駆動し、該圧縮機21から吐出されたガス冷媒を上記凝縮器23において凝縮させて液冷媒とするとともに、該液冷媒をさらに上記吸収式冷凍装置Z側の上記蒸発器3において過冷却し、この過冷却冷媒を上記蒸発器22において蒸発させて室内の冷房を行なう。この場合、上記凝縮器23からの液冷媒を過冷却することで、その冷凍能力の向上が図られるものである。   First, in the compression refrigeration apparatus X, the compressor 26 of the compression refrigeration apparatus X is driven by the engine 26, and the gas refrigerant discharged from the compressor 21 is condensed in the condenser 23 to be liquid refrigerant. In addition, the liquid refrigerant is further supercooled in the evaporator 3 on the absorption refrigeration apparatus Z side, and the supercooled refrigerant is evaporated in the evaporator 22 to cool the room. In this case, the refrigeration capacity can be improved by supercooling the liquid refrigerant from the condenser 23.

一方、上記吸収式冷凍装置Zにおいては、上記エンジン26からの排温水を受けて、上記発生器1で上記吸収器4からの吸収希溶液が加熱され、冷媒蒸気と吸収濃溶液が生成される。上記発生器1で発生した冷媒蒸気は、ファン8を備えた空冷式の上記凝縮器2において凝縮され、液冷媒とされる。   On the other hand, in the absorption refrigeration apparatus Z, the generator 1 receives the hot water from the engine 26, and the generator 1 heats the absorption dilute solution from the absorber 4 to generate refrigerant vapor and the absorption concentrated solution. . The refrigerant vapor generated in the generator 1 is condensed in the air-cooled condenser 2 provided with a fan 8 to be a liquid refrigerant.

ここで、上記凝縮器2からの液冷媒は、上記管路52を通して上記蒸発器3の下部に設けた上記冷媒溜り17に流入される。そして、上記冷媒溜り17に流入された冷媒は、上記冷媒ポンプ13によって上記蒸発器3の上記プレート式熱交換器3aの上部側に循環され、該プレート式熱交換器3aの上部に散布器(図示省略)によって均等に散布され、該熱交換器3aの表面に沿って流下する間に蒸発して冷媒蒸気を発生する。また、このとき、その蒸発熱によって上記プレート式熱交換器3a内を流れる上記圧縮式冷凍装置X側の冷媒を過冷却する。   Here, the liquid refrigerant from the condenser 2 flows into the refrigerant reservoir 17 provided at the lower part of the evaporator 3 through the pipe line 52. The refrigerant flowing into the refrigerant reservoir 17 is circulated to the upper side of the plate heat exchanger 3a of the evaporator 3 by the refrigerant pump 13, and a spreader ( (Not shown) is sprayed evenly and evaporates while flowing down along the surface of the heat exchanger 3a to generate refrigerant vapor. At this time, the refrigerant on the compression refrigeration apparatus X side flowing in the plate heat exchanger 3a is supercooled by the heat of evaporation.

一方、上記吸収器4においては、上記空冷過冷却器6において過冷却された吸収希溶液が散布器(図示省略)からプレート4aに均等に散布され、該プレート4aにそって流下する間に上記蒸発器3からの冷媒蒸気を吸収して吸収希溶液とされ、上記希溶液溜り16に貯留される。   On the other hand, in the absorber 4, the absorption dilute solution supercooled in the air-cooled supercooler 6 is evenly sprayed from the sprayer (not shown) to the plate 4a and flows down along the plate 4a. The refrigerant vapor from the evaporator 3 is absorbed to form an absorbing diluted solution, which is stored in the diluted solution reservoir 16.

上記希溶液溜り16には、上記吸収器4において冷媒蒸気を吸収した吸収希溶液と、上記蒸発器3から冷媒溜まり17の貯留量以上となった場合に流入する未蒸発冷媒からなる混合溶液が貯留されるとともに、この混合溶液は上記溶液ポンプ9によって上記発生器1側へ供給される。この際、上記溶液熱交換器5において、上記吸収器4側からの吸収希溶液と上記発生器1で生成された吸収濃溶液との間での熱交換によって熱回収が行なわれ、希溶液の温度を上げて濃溶液の温度を下げる。   In the dilute solution reservoir 16, there is a mixed solution composed of an absorbed dilute solution that has absorbed refrigerant vapor in the absorber 4 and an unevaporated refrigerant that flows in when the amount of refrigerant accumulated in the refrigerant reservoir 17 exceeds the amount stored in the evaporator 3. While being stored, this mixed solution is supplied to the generator 1 side by the solution pump 9. At this time, in the solution heat exchanger 5, heat recovery is performed by heat exchange between the absorption diluted solution from the absorber 4 side and the absorption concentrated solution generated in the generator 1, and the diluted solution Increase the temperature to decrease the temperature of the concentrated solution.

そして、この吸収式冷凍装置Zにおいては、その冷凍能力が、上記吸収器4における吸収能力の調整によって増減制御される。即ち、上記吸収器4の吸収能力を高めて吸収希溶液への冷媒蒸気の吸収作用を高めることで、上記蒸発器3における蒸発能力(即ち、圧縮式冷凍装置X側の冷媒に対する過冷却能力)が高められ、結果的に吸収式冷凍装置Z全体としての冷凍能力が高められるものである。   In the absorption refrigeration apparatus Z, the refrigeration capacity is increased or decreased by adjusting the absorption capacity in the absorber 4. That is, by increasing the absorption capacity of the absorber 4 and increasing the absorption of refrigerant vapor into the absorption diluted solution, the evaporation capacity in the evaporator 3 (that is, the supercooling capacity for the refrigerant on the compression refrigeration apparatus X side). As a result, the refrigerating capacity of the absorption refrigeration apparatus Z as a whole is enhanced.

ところで、既述のように、上記圧縮式冷凍装置Xの冷凍能力は、上記凝縮器23から出た冷媒の過冷却度によって変化し、過冷却度が高いほど冷凍能力が高くなる関係にある。従って、圧縮式冷凍装置Xの能力向上という点では、上記吸収式冷凍装置Zの冷熱によって上記圧縮式冷凍装置X側の冷媒をできるだけ過冷却すればよいことになり、そのためには、上記圧縮式冷凍装置Xの冷凍能力に対応した過冷却温度を達成できるような能力の吸収式冷凍装置Zを組み合わせれば良いことになる。   By the way, as described above, the refrigeration capacity of the compression refrigeration apparatus X varies depending on the degree of supercooling of the refrigerant discharged from the condenser 23, and the refrigeration capacity increases as the degree of supercooling increases. Therefore, in terms of improving the capacity of the compression refrigeration apparatus X, the refrigerant on the compression refrigeration apparatus X side needs to be supercooled as much as possible by the cold heat of the absorption refrigeration apparatus Z. What is necessary is just to combine the absorption refrigeration apparatus Z of the capability which can achieve the supercooling temperature corresponding to the refrigerating capacity of the refrigeration apparatus X.

ところが、外気温度が低下した場合とか、圧縮式冷凍装置が部分負荷となった場合には、該圧縮式冷凍装置の凝縮器出口の冷媒温度(即ち、凝縮温度)が低下することから、特に外気温度の低下と圧縮式冷凍装置の部分負荷とが重なった場合には、この圧縮式冷凍装置の凝縮器出口の冷媒温度の低下が大きくなるため、吸収式冷凍装置の蒸発温度、もしくは蒸発器の出口における被冷却流体温度(圧縮式冷凍装置の冷媒温度)も低下し、該蒸発温度もしくは被冷却流体温度が予め設定される値もしくは外気温度に基づいて設定される値(即ち、外気温と圧縮式冷凍装置の負荷に基づいて設定される温度値)よりも低下したような場合には、吸収式冷凍装置の冷凍能力が余剰状態となり、該吸収式冷凍装置側の冷媒に無駄が生じることになる。   However, when the outside air temperature decreases or when the compression refrigeration apparatus becomes a partial load, the refrigerant temperature (that is, the condensation temperature) at the condenser outlet of the compression refrigeration apparatus decreases. When the drop in temperature and the partial load of the compression refrigeration unit overlap, the drop in refrigerant temperature at the condenser outlet of this compression refrigeration unit increases, so the evaporation temperature of the absorption refrigeration unit or the evaporator The temperature of the fluid to be cooled at the outlet (the refrigerant temperature of the compression refrigeration system) also decreases, and the evaporation temperature or the temperature of the fluid to be cooled is set in advance or a value set based on the outside air temperature (that is, the outside air temperature and the compression temperature). When the temperature is lower than the temperature value set based on the load of the refrigerating apparatus, the refrigerating capacity of the absorption refrigerating apparatus becomes an excessive state, and the refrigerant on the absorption refrigerating apparatus side is wasted. Become.

一方、外気温が上昇した場合や、圧縮式冷凍装置の負荷が増加した場合には、圧縮式冷凍装置の凝縮器出口の冷媒温度が上昇するため、吸収式冷凍装置の蒸発温度、もしくは蒸発器の出口における被冷却流体温度も上昇し、該蒸発温度もしくは被冷却流体温度が予め設定される値もしくは外気温度に基づいて設定される値よりも上昇したような場合には、吸収式冷凍装置の冷凍能力が不足する状態となることから、吸収器に流入する溶液の過冷却温度もしくは過冷却流量を増加させると同時に蒸発器への冷媒流量を増加させて冷凍能力を迅速に高める必要がある。   On the other hand, when the outside air temperature rises or when the load of the compression refrigeration apparatus increases, the refrigerant temperature at the condenser outlet of the compression refrigeration apparatus rises, so the evaporation temperature of the absorption refrigeration apparatus or the evaporator When the temperature of the fluid to be cooled at the outlet of the refrigerant also rises and the evaporating temperature or the temperature of the fluid to be cooled rises above a preset value or a value set based on the outside air temperature, Since the refrigeration capacity becomes insufficient, it is necessary to increase the refrigeration capacity rapidly by increasing the supercooling temperature or the supercooling flow rate of the solution flowing into the absorber and at the same time increasing the refrigerant flow rate to the evaporator.

従って、大能力の排熱駆動の吸収式冷凍装置を設置することなく圧縮式冷凍装置の効率を向上させてランニングコストの低減を図るためには、圧縮式冷凍装置側の運転条件の変化に対応させて吸収式冷凍装置の冷凍能力を制御することが必要である。   Therefore, in order to improve the efficiency of the compression refrigeration system and reduce the running cost without installing a large capacity exhaust heat driven absorption refrigeration system, respond to changes in the operating conditions on the compression refrigeration system side. Therefore, it is necessary to control the refrigeration capacity of the absorption refrigeration apparatus.

この場合、吸収式冷凍装置の冷凍能力の制御を、圧縮式冷凍装置側の運転条件、例えば、外気温と上記圧縮式冷凍装置の凝縮器の出口側における冷媒温度(凝縮温度)を検出し、これを用いて吸収式冷凍装置の冷凍能力(吸収式冷凍装置に要求される冷凍能力)を算出し、これに基づいて制御することが考えられるが、係る制御手法によれば、上記吸収式冷凍装置側の条件に加えて、上記圧縮式冷凍装置側の条件を常に検出する必要があり、制御系が複雑になり、コストアップを招来する一つの原因にもなる。特に、例えば、吸収式冷凍装置と圧縮式冷凍装置を組み合わせた冷凍システムが同一の管理領域内に複数存在し、これら各冷凍システムにおける吸収式冷凍装置の冷凍能力をそれぞれ個別に圧縮式冷凍装置側の運転条件に対応させて制御する場合には、制御系がさらに複雑となり、多くの管理コストを必要とし、更なるコストアップを招来することになる。   In this case, the control of the refrigeration capacity of the absorption refrigeration apparatus is performed by detecting the operating conditions on the compression refrigeration apparatus side, for example, the outside air temperature and the refrigerant temperature (condensation temperature) on the outlet side of the condenser of the compression refrigeration apparatus, It is conceivable to use this to calculate the refrigeration capacity of the absorption refrigeration system (the refrigeration capacity required for the absorption refrigeration system) and control based on this, but according to such a control method, the absorption refrigeration system In addition to the conditions on the apparatus side, it is necessary to always detect the conditions on the compression refrigeration apparatus side, which complicates the control system and causes a cost increase. In particular, for example, a plurality of refrigeration systems combining an absorption refrigeration system and a compression refrigeration system exist in the same management area, and the refrigeration capacity of the absorption refrigeration system in each of these refrigeration systems is individually set on the compression refrigeration system side. When the control is performed in accordance with the operating conditions, the control system becomes more complicated, requires a lot of management costs, and further increases the cost.

そこで本願発明は、エンジンの排熱で駆動される吸収式冷凍装置において、該吸収式冷凍装置の冷凍能力を、該吸収式冷凍装置で発生した冷熱を利用する冷熱利用側機器側の運転条件に基づくことなく、制御することで、該冷熱利用側機器の効率の向上と、冷凍システム全体のイニシャルコスト及びランニングコストの低減を図るようにしている。   Accordingly, the present invention relates to an absorption refrigeration apparatus driven by exhaust heat of the engine, wherein the refrigeration capacity of the absorption refrigeration apparatus is set to the operating conditions on the cold heat utilization side equipment side that uses the cold generated by the absorption refrigeration apparatus. By controlling without relying on it, the efficiency of the cold energy utilization side device is improved, and the initial cost and running cost of the entire refrigeration system are reduced.

このような制御を実現するために、この実施形態では、間接空冷吸収式の特性を利用して、上記吸収器に流入する過冷却溶液の温度を変化させることで上記吸収器の冷媒吸収能力を増減して吸収式冷凍装置の冷凍能力を制御するものとし、係る構成の下で、上記蒸発器3の出口における被冷却流体の温度が設定温度もしくは外気温度に基づいて設定される設定温度以下となった場合に、上記吸収器4に流入する過冷却溶液の温度を変化させて該吸収器4の冷媒吸収能力を減少させる制御を行なうと同時に、上記冷媒ポンプ13を停止させ又は循環している冷媒流量を減少させて、上記蒸発器3への冷媒の流入を停止させ又は冷媒の流入量を減少させることで上記吸収式冷凍装置Zの冷凍能力を減少させる。   In order to realize such control, in this embodiment, the refrigerant absorption capacity of the absorber is improved by changing the temperature of the supercooled solution flowing into the absorber using the characteristics of the indirect air-cooled absorption type. The refrigeration capacity of the absorption refrigeration apparatus is controlled by increasing and decreasing, and under such a configuration, the temperature of the fluid to be cooled at the outlet of the evaporator 3 is equal to or lower than a set temperature set based on a set temperature or an outside air temperature. In this case, the temperature of the supercooled solution flowing into the absorber 4 is changed to control to reduce the refrigerant absorption capacity of the absorber 4, and at the same time, the refrigerant pump 13 is stopped or circulated. The refrigerant flow rate is decreased to stop the refrigerant flow into the evaporator 3 or to reduce the refrigerant flow amount, thereby reducing the refrigeration capacity of the absorption refrigeration apparatus Z.

また、上記温度が上記設定温度以上となった場合には、上記吸収器4に流入する過冷却溶液の温度を変化させて該吸収器4の冷媒吸収能力を増加させると同時に、上記冷媒ポンプ13を運転し又は循環している冷媒流量を増加させて、上記蒸発器3へ冷媒を流入させ又は冷媒の流入量を増加させることで上記吸収式冷凍装置Zの冷凍能力を増加させるように制御する。   When the temperature becomes equal to or higher than the set temperature, the temperature of the supercooled solution flowing into the absorber 4 is changed to increase the refrigerant absorption capacity of the absorber 4, and at the same time, the refrigerant pump 13 Is controlled to increase the refrigeration capacity of the absorption refrigeration apparatus Z by increasing the flow rate of refrigerant circulating or increasing the flow rate of refrigerant into the evaporator 3 or increasing the amount of refrigerant flowing into the evaporator 3. .

具体的には、上記蒸発器3の出口側に温度センサ18を設けて該蒸発器3の出口における冷媒温度(即ち、上記圧縮式冷凍装置X側の冷媒の過冷却温度)を検出するようにしているが、外気温度に基づく場合には外気温センサ20を設けて外気温を同時に検出するようにしている。   Specifically, a temperature sensor 18 is provided on the outlet side of the evaporator 3 to detect the refrigerant temperature at the outlet of the evaporator 3 (that is, the refrigerant subcooling temperature on the compression refrigeration apparatus X side). However, when it is based on the outside air temperature, an outside air temperature sensor 20 is provided to detect the outside air temperature at the same time.

ここで、設定温度は上記圧縮式冷凍装置Xの凝縮器23における凝縮温度と吸収式冷凍装置Zの冷凍能力で過冷却できる温度から上記蒸発器3における出口の温度として設定したものでこれにより吸収式冷凍装置Zの冷凍能力を制御するものであるが、上記外気温センサ20で検出される外気温に基づいて設定温度を設定する場合は該外気温に対応する上記圧縮式冷凍装置Xの凝縮器23における凝縮温度を予想し、この予想された凝縮温度と吸収式冷凍装置Zの当該外気温時の冷凍能力から所定の過冷却温度を算出し上記蒸発器3における蒸発器出口温度を求め、これを吸収式冷凍装置Zの冷凍能力を制御する設定温度として設定する。但し蒸発器3の出口温度の設定下限値としては冷媒の凍結を考慮した値としている。   Here, the set temperature is set as the outlet temperature in the evaporator 3 from the condensation temperature in the condenser 23 of the compression refrigeration apparatus X and the temperature that can be supercooled by the refrigeration capacity of the absorption refrigeration apparatus Z. When the set temperature is set based on the outside air temperature detected by the outside air temperature sensor 20, the condensation of the compression refrigeration apparatus X corresponding to the outside air temperature is controlled. A condensation temperature in the evaporator 23 is predicted, a predetermined supercooling temperature is calculated from the predicted condensation temperature and the refrigerating capacity at the outside air temperature of the absorption refrigeration apparatus Z, and an evaporator outlet temperature in the evaporator 3 is obtained. This is set as a set temperature for controlling the refrigeration capacity of the absorption refrigeration apparatus Z. However, the setting lower limit value of the outlet temperature of the evaporator 3 is a value in consideration of freezing of the refrigerant.

そして、上記温度センサ18によって検出された蒸発器3の出口温度と上記設定温度を比較し、蒸発器3の出口温度が設定温度より低い場合には吸収式冷凍装置Zの冷凍能力が過大であるとしてこれを低減させる制御を行い、逆に、蒸発器3の出口温度が設定温度より高い場合には吸収式冷凍装置Zの冷凍能力が不足し所要の過冷却温度が確保できないとして、該冷凍能力を増加させる制御を行うようにしている。   Then, the outlet temperature of the evaporator 3 detected by the temperature sensor 18 is compared with the set temperature. When the outlet temperature of the evaporator 3 is lower than the set temperature, the refrigerating capacity of the absorption refrigeration apparatus Z is excessive. On the contrary, if the outlet temperature of the evaporator 3 is higher than the set temperature, the refrigerating capacity of the absorption refrigeration apparatus Z is insufficient and the required supercooling temperature cannot be secured. The control to increase is performed.

この吸収式冷凍装置Zの冷凍能力の具体的な制御は以下の通りである。   Specific control of the refrigeration capacity of the absorption refrigeration apparatus Z is as follows.

即ち、上記蒸発器3の出口における冷媒の温度(圧縮式冷凍装置Xの冷媒温度)が設定温度もしくは外気温度に基づいて設定される設定温度以下となった場合は、上記空冷過冷却器6に設けられた上記ファン7の発停によって、あるいは該ファン7の風量を増減させることによって上記空冷過冷却器6を循環する過冷却溶液の温度を変化させて該吸収器4の冷媒吸収能力を減少させる制御を行なうと同時に、上記蒸発器3への冷媒の流入を停止させ又は冷媒の流入量を減少させて吸収式冷凍装置Zの冷凍能力を減少させる。この結果、上記吸収式冷凍装置Zの冷凍能力を、上記圧縮式冷凍装置X側の条件を考慮しない制御形態でありながら、該圧縮式冷凍装置Xの過冷却要求度に可及的に対応させることができる。この場合、上記蒸発器3の下部の上記冷媒溜り17の余剰冷媒は、上記吸収器4の下部の上記希溶液溜り16に流入して該希溶液溜り16内の希溶液と混合され、これによって溶液の濃度変化が抑制される。   That is, when the temperature of the refrigerant at the outlet of the evaporator 3 (the refrigerant temperature of the compression refrigeration apparatus X) becomes equal to or lower than the set temperature set based on the set temperature or the outside air temperature, the air-cooled supercooler 6 is turned on. Decreasing the refrigerant absorption capacity of the absorber 4 by changing the temperature of the supercooled solution circulating in the air-cooled supercooler 6 by starting and stopping the fan 7 provided or by increasing or decreasing the air volume of the fan 7 At the same time, the refrigerant flow into the evaporator 3 is stopped or the refrigerant flow amount is decreased to reduce the refrigerating capacity of the absorption refrigeration apparatus Z. As a result, the refrigeration capacity of the absorption refrigeration apparatus Z is made to correspond as much as possible to the degree of supercooling of the compression refrigeration apparatus X while being in a control mode that does not take into account the conditions on the compression refrigeration apparatus X side. be able to. In this case, surplus refrigerant in the refrigerant reservoir 17 below the evaporator 3 flows into the diluted solution reservoir 16 below the absorber 4 and is mixed with the diluted solution in the diluted solution reservoir 16, thereby Changes in the concentration of the solution are suppressed.

一方、上記温度が上記設定温度以上となった場合には、上記吸収器4に流入する過冷却溶液の温度を変化させて上記吸収器4の冷媒吸収能力を減少させると同時に、上記冷媒ポンプ13を運転し又は循環している冷媒流量を増加させて吸収式冷凍装置Zの冷凍能力を増加させる制御を行なうことで、上記圧縮式冷凍装置Xの冷媒の過冷却温度が増加し、該圧縮式冷凍装置Xの性能が、上記制御を行なわない通常状態よりも向上することになる。   On the other hand, when the temperature is equal to or higher than the set temperature, the temperature of the supercooled solution flowing into the absorber 4 is changed to reduce the refrigerant absorption capacity of the absorber 4, and at the same time, the refrigerant pump 13 By increasing the flow rate of refrigerant circulating or increasing the refrigeration capacity of the absorption refrigeration apparatus Z, the supercooling temperature of the refrigerant of the compression refrigeration apparatus X increases, and the compression type The performance of the refrigeration apparatus X is improved as compared with the normal state where the above control is not performed.

以上の相乗効果として、上記吸収式冷凍装置の冷凍能力を、上記圧縮式冷凍装置X側の運転条件に基づくことなく制御するにもかかわらず、上記圧縮式冷凍装置の効率の向上と、冷凍システム全体のイニシャルコスト及びランニングコストの低減を両立させることができる。   As a synergistic effect as described above, the efficiency of the compression refrigeration apparatus can be improved and the refrigeration system in spite of controlling the refrigeration capacity of the absorption refrigeration apparatus without being based on the operating conditions on the compression refrigeration apparatus X side. The overall initial cost and running cost can be reduced at the same time.

尚、この実施形態では、上記冷媒ポンプ13を停止させ又は循環している冷媒流量を減少させる場合の温度と、上記冷媒ポンプ13を運転させ又は循環している冷媒流量を増加させる場合の温度を同一温度としているが、本願発明はこれに限定されるものではなく、異なる温度とすることもできる。例えば、上記冷媒ポンプ13を停止させ又は循環している冷媒流量を減少させる場合の温度と上記冷媒ポンプ13を運転させ又は循環している冷媒流量を増加させる場合の温度を異なる温度とした場合、例えば、上記冷媒ポンプ13を停止させ又は循環している冷媒流量を減少させる場合の温度を、上記冷媒ポンプ13を運転させ又は循環している冷媒流量を増加させる場合の温度よりも低く設定した場合には、冷凍能力の増加制御がより早期に開始され、迅速な冷凍能力の増加が実現される。   In this embodiment, the temperature when the refrigerant pump 13 is stopped or circulated and the refrigerant flow rate is decreased, and the temperature when the refrigerant pump 13 is operated or circulated is increased. Although it is set as the same temperature, this invention is not limited to this, It can also be set as a different temperature. For example, when the temperature when the refrigerant pump 13 is stopped or the flow rate of the circulating refrigerant is decreased and the temperature when the refrigerant pump 13 is operated or the circulating flow rate of the refrigerant is increased are different from each other, For example, when the temperature when the refrigerant pump 13 is stopped or when the circulating refrigerant flow rate is decreased is set lower than the temperature when the refrigerant pump 13 is operated or the circulating refrigerant flow rate is increased First, the increase control of the refrigerating capacity is started earlier, and a quick increase of the refrigerating capacity is realized.

IV:第4の実施形態
図4には、本願発明の第4の実施形態に係る冷凍システムが示されている。この冷凍システムは、上記第3の実施形態に係る冷凍システムと基本構成を同じにするものであって、排熱駆動の吸収式冷凍装置Zと圧縮式冷凍装置Xを組み合わせて構成される。
IV: Fourth Embodiment FIG. 4 shows a refrigeration system according to a fourth embodiment of the present invention. This refrigeration system has the same basic configuration as the refrigeration system according to the third embodiment, and is configured by combining an exhaust heat driven absorption refrigeration apparatus Z and a compression refrigeration apparatus X.

そして、この実施形態に係る冷凍システムが上記第3の実施形態に係る冷凍システムと異なる点は、上記第3の実施形態では、上記吸収式冷凍装置Zにおいて、上記凝縮器2からの液冷媒の全量を、上記管路52を介して上記蒸発器3の下部に設けた上記冷媒溜り17に流入させるようにしていたのに対して、この第4の実施形態では、上記管路52の途中に、冷媒タンク14と冷媒電磁弁10を設け、上記冷媒電磁弁10を閉とすることで上記冷媒タンク14に冷媒を溜めることができ、また該冷媒電磁弁10を開とすることで上記冷媒タンク14に貯留した冷媒を上記冷媒溜り17側へ流入させるようにした点である。   The difference between the refrigeration system according to this embodiment and the refrigeration system according to the third embodiment is that, in the third embodiment, in the absorption refrigeration apparatus Z, the liquid refrigerant from the condenser 2 is changed. The entire amount is allowed to flow into the refrigerant reservoir 17 provided in the lower part of the evaporator 3 through the pipe 52, whereas in the fourth embodiment, in the middle of the pipe 52 in the fourth embodiment. The refrigerant tank 14 and the refrigerant electromagnetic valve 10 are provided, and the refrigerant electromagnetic valve 10 is closed so that the refrigerant can be stored in the refrigerant tank 14, and the refrigerant electromagnetic valve 10 is opened to open the refrigerant tank. The refrigerant stored in 14 flows into the refrigerant reservoir 17 side.

このように構成することで、例えば、上記吸収式冷凍装置Zが運転中で且つ上記冷媒ポンプ13が停止しているとき、即ち、上記凝縮器2において液冷媒が生成されているが、吸収式冷凍装置Zに要求される冷凍能力が低く、上記冷媒ポンプ13が停止して上記蒸発器3への冷媒供給が行なわれていないような場合においては、上記凝縮器2からの液冷媒が余剰状態にあるため、この余剰冷媒を上記冷媒タンク14に溜めることで、無効冷媒量を可及的に少なくすることができエンジンの排熱を有効利用できる。   With this configuration, for example, when the absorption refrigeration apparatus Z is in operation and the refrigerant pump 13 is stopped, that is, liquid refrigerant is generated in the condenser 2, When the refrigerating capacity required for the refrigerating apparatus Z is low and the refrigerant pump 13 is stopped and the refrigerant is not supplied to the evaporator 3, the liquid refrigerant from the condenser 2 is in an excess state. Therefore, by storing this surplus refrigerant in the refrigerant tank 14, the amount of ineffective refrigerant can be reduced as much as possible, and the exhaust heat of the engine can be used effectively.

一方、上記蒸発器3の下部の上記冷媒溜まり17の冷媒量が減少したとき、即ち、上記吸収式冷凍装置Zの冷凍能力の増加が要求され、これに伴って上記冷媒ポンプ13が運転され、上記冷媒溜まり17の冷媒量が減少し、冷媒の補充が要求されるような場合には、上記冷媒タンク14の冷媒が上記冷媒溜まりに補充されることで、このような冷媒の補充が行なわれない場合に比して、上記蒸発器3への循環冷媒量が更に増加し、上記吸収式冷凍装置Zの冷凍能力の増加要求に対する応答性が向上し、その結果、吸収式冷凍装置Zの冷凍能力を圧縮式冷凍装置Xの運転条件の変化に対応させる制御が容易となるものである。   On the other hand, when the amount of refrigerant in the refrigerant reservoir 17 below the evaporator 3 decreases, that is, an increase in the refrigerating capacity of the absorption refrigeration apparatus Z is required, the refrigerant pump 13 is operated accordingly, When the amount of refrigerant in the refrigerant reservoir 17 decreases and refrigerant replenishment is required, the refrigerant in the refrigerant tank 14 is supplemented in the refrigerant reservoir, so that such refrigerant replenishment is performed. Compared to the case where there is no refrigerant, the amount of refrigerant circulating to the evaporator 3 is further increased, and the response to the increase in the refrigerating capacity of the absorption refrigeration apparatus Z is improved. This makes it easy to control the capacity to correspond to changes in the operating conditions of the compression refrigeration apparatus X.

尚、上記以外の構成及び作用効果は上記第3の実施形態の場合と同様であるので、ここでは図4の各構成部材に図3の各構成部材に対応させて同一の符号を付した上で、該第3の実施形態における該当説明を援用し、ここでの説明を省略する。   In addition, since the structure and the effect other than the above are the same as in the case of the third embodiment, the same reference numerals are given to the respective constituent members in FIG. 4 corresponding to the respective constituent members in FIG. Thus, the corresponding explanation in the third embodiment is used, and the explanation here is omitted.

V:第5の実施形態
図5には、本願発明の第5の実施形態に係る冷凍システムが示されている。この冷凍システムも、上記第3の実施形態に係る冷凍システムと基本構成を同じにするものであって、排熱駆動の吸収式冷凍装置Zと圧縮式冷凍装置Xを組み合わせて構成される。
V: Fifth Embodiment FIG. 5 shows a refrigeration system according to a fifth embodiment of the present invention. This refrigeration system also has the same basic configuration as the refrigeration system according to the third embodiment, and is configured by combining an exhaust heat driven absorption refrigeration apparatus Z and a compression refrigeration apparatus X.

そして、この実施形態に係る冷凍システムが上記第3の実施形態に係る冷凍システムと異なる点は、上記第3の実施形態では、上記吸収式冷凍装置Zにおいて、上記吸収器4の冷媒吸収能力の制御を、上記空冷過冷却器6を循環する過冷却溶液の温度を調整することで行なっていたのに対して、この第5の実施形態では、上記吸収器4の冷媒吸収能力の制御を、上記空冷過冷却器6を循環する過冷却溶液の流量を調整することで行なうようにした点である。   The difference between the refrigeration system according to this embodiment and the refrigeration system according to the third embodiment is that, in the third embodiment, the absorption refrigeration apparatus Z has a refrigerant absorption capacity of the absorber 4. In contrast to the control performed by adjusting the temperature of the supercooled solution circulating in the air-cooled supercooler 6, in the fifth embodiment, the control of the refrigerant absorption capacity of the absorber 4 is performed as follows: This is a point that is performed by adjusting the flow rate of the supercooled solution circulating through the air-cooled supercooler 6.

即ち、この第5の実施形態においては、上記空冷過冷却器6の入口側に流量調整弁11を、又は出口側に流量調整弁12を設け、該流量調整弁11又は流量調整弁12によって、上記吸収器4に流入する過冷却溶液の流量を変化させるようにしている。さらに、上記溶液ポンプ9の流量を増減させることで、上記吸収器4に流入する過冷却溶液の流量を変化させるようにしている。   That is, in the fifth embodiment, a flow rate adjusting valve 11 is provided on the inlet side of the air-cooled supercooler 6 or a flow rate adjusting valve 12 is provided on the outlet side, and the flow rate adjusting valve 11 or the flow rate adjusting valve 12 The flow rate of the supercooled solution flowing into the absorber 4 is changed. Further, the flow rate of the supercooled solution flowing into the absorber 4 is changed by increasing or decreasing the flow rate of the solution pump 9.

このように、上記吸収器4に流入する過冷却溶液の流量を、上記各流量調整弁11又は流量調整弁12の開度調整と上記溶液ポンプ9の流量調整によって増減制御することで、上記吸収器4の冷媒吸収能力、延いては、上記吸収式冷凍装置Zの冷凍能力を極めて容易且つ迅速に行なうことができ、この結果、上記吸収式冷凍装置Zの能力制御範囲を最少能力まで低下させることができ、延いては、圧縮式冷凍装置Xの能力を限界まで利用することが可能となる。   In this way, the absorption of the supercooled solution flowing into the absorber 4 is controlled by increasing / decreasing the flow rate by adjusting the opening of each flow rate adjusting valve 11 or flow rate adjusting valve 12 and adjusting the flow rate of the solution pump 9. The refrigerant absorption capacity of the container 4, and thus the refrigeration capacity of the absorption refrigeration apparatus Z can be performed very easily and quickly, and as a result, the capacity control range of the absorption refrigeration apparatus Z is reduced to the minimum capacity. As a result, the capacity of the compression refrigeration apparatus X can be utilized to the limit.

上記以外の構成及び作用効果は上記第3の実施形態の場合と同様であるので、ここでは図5の各構成部材に図3の各構成部材に対応させて同一の符号を付した上で、該第3の実施形態における該当説明を援用し、ここでの説明を省略する。   Since the structure and the effect other than the above are the same as in the case of the third embodiment, the same reference numerals are given to the respective structural members in FIG. 5 corresponding to the respective structural members in FIG. The corresponding explanation in the third embodiment is used, and the explanation here is omitted.

尚、上記各実施形態では、上記吸収式冷凍装置Z側において発生した冷熱を利用する冷熱利用側機器の一例として上記圧縮式冷凍装置Xを採用した場合を示したものであり、該圧縮式冷凍装置Xに限定されるものではない。   In each of the above embodiments, the case where the compression refrigeration apparatus X is employed as an example of the cold heat utilization side equipment utilizing the cold generated on the absorption refrigeration apparatus Z side is shown. It is not limited to the device X.

本願発明の第1の実施の形態に係る吸収式冷凍装置のシステム図である。1 is a system diagram of an absorption refrigeration apparatus according to a first embodiment of the present invention. 本願発明の第2の実施の形態に係る吸収式冷凍装置のシステム図である。It is a system diagram of an absorption refrigeration apparatus according to a second embodiment of the present invention. 本願発明の第3の実施の形態に係る吸収式冷凍装置のシステム図である。It is a system diagram of the absorption refrigeration apparatus which concerns on 3rd Embodiment of this invention. 本願発明の第4の実施の形態に係る吸収式冷凍装置のシステム図である。It is a system diagram of an absorption refrigeration apparatus according to a fourth embodiment of the present invention. 本願発明の第5の実施の形態に係る吸収式冷凍装置のシステム図である。FIG. 10 is a system diagram of an absorption refrigeration apparatus according to a fifth embodiment of the present invention.

符号の説明Explanation of symbols

1 ・・発生器
2 ・・凝縮器
3 ・・蒸発器
4 ・・吸収器
5 ・・溶液熱交換器
6 ・・空冷過冷却器
7 ・・ファン
8 ・・ファン
9 ・・溶液ポンプ
10 ・・冷媒電磁弁
11 ・・流量調整弁
12 ・・流量調整弁
14 ・・冷媒タンク
14a ・・堰
15 ・・躯体
16 ・・希溶液溜り
17 ・・冷媒溜り
18 ・・温度センサ
20 ・・外気温センサ
21 ・・圧縮機
22 ・・蒸発器
23 ・・凝縮器
24 ・・膨張弁
25 ・・四路弁
26 ・・エンジン
30 ・・制御器
X ・・圧縮式冷凍装置(冷熱利用側機器)
Z ・・吸収式冷凍装置
1 ·· Generator 2 ·· Condenser 3 ·· Evaporator 4 ··· Absorber 5 ·· Solution heat exchanger 6 ·· Air-cooled supercooler 7 ·· Fan 8 ·· Fan 9 ·· Solution pump 10 ··· Refrigerant solenoid valve 11 .. Flow rate adjustment valve 12 .. Flow rate adjustment valve 14 .. Refrigerant tank 14a .. Weir 15 .. Housing 16 .. Diluted solution reservoir 17 .. Refrigerant reservoir 18 .. Temperature sensor 20. 21 ・ ・ Compressor 22 ・ ・ Evaporator 23 ・ ・ Condenser 24 ・ ・ Expansion valve 25 ・ ・ Four-way valve 26 ・ ・ Engine 30 ・ ・ Controller X ・ ・ Compression refrigeration equipment (cold heat utilization side equipment)
Z .. Absorption refrigeration equipment

Claims (18)

エンジンの排熱を受けて作動する発生器と、凝縮器と、冷媒を一過性で蒸発させる蒸発器と、流下液膜式の吸収器と、該吸収器に入る吸収溶液を過冷却する空冷過冷却器を備えた排熱駆動の吸収式冷凍装置であって、
上記凝縮器から上記蒸発器に至る配管途中に冷媒タンクと冷媒電磁弁を順次設ける一方、
上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させることで上記吸収器の能力を増減して吸収式冷凍装置の冷凍能力を制御するものとし、
上記蒸発器の出口における被冷却流体の温度が、設定温度もしくは外気温度に基づいて設定される設定温度以下となった場合に、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて該吸収器の冷媒吸収能力を減少させる制御を行なうと同時に、上記冷媒電磁弁を閉として上記蒸発器に流入する冷媒量を減少させて吸収式冷凍装置の冷凍能力を減少させるとともに、上記冷媒タンクに上記凝縮器からの冷媒を溜める一方、
上記温度が上記設定温度以上となった場合には、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて上記吸収器の冷媒吸収能力を増加させると同時に、上記冷媒電磁弁を開として上記冷媒タンクに溜められた冷媒を上記蒸発器に流入させて冷媒流量を増加させることで吸収式冷凍装置の冷凍能力を増加させる制御を行なうことを特徴とする吸収式冷凍装置。
A generator that operates in response to engine exhaust heat, a condenser, an evaporator that temporarily evaporates refrigerant, a falling liquid film type absorber, and air cooling that supercools the absorbing solution entering the absorber An exhaust heat-driven absorption refrigeration apparatus equipped with a supercooler,
While sequentially providing a refrigerant tank and a refrigerant solenoid valve in the middle of the pipe from the condenser to the evaporator,
By changing the temperature of the supercooling solution flowing into the absorber and / or the flow rate of the supercooling solution, the capacity of the absorber is increased or decreased to control the refrigeration capacity of the absorption refrigeration apparatus,
The temperature of the supercooled solution flowing into the absorber and / or the supercooled solution when the temperature of the fluid to be cooled at the outlet of the evaporator is equal to or lower than the set temperature set based on the set temperature or the outside air temperature. In order to reduce the refrigerant absorption capacity of the absorption refrigeration system by closing the refrigerant electromagnetic valve and reducing the amount of refrigerant flowing into the evaporator. While storing the refrigerant from the condenser in the refrigerant tank,
When the temperature is equal to or higher than the set temperature, the temperature of the supercooled solution flowing into the absorber and / or the flow rate of the supercooled solution is changed to increase the refrigerant absorption capacity of the absorber, An absorption type wherein control is performed to increase the refrigeration capacity of the absorption refrigeration system by opening the refrigerant solenoid valve and causing the refrigerant stored in the refrigerant tank to flow into the evaporator to increase the flow rate of the refrigerant. Refrigeration equipment.
上記冷媒電磁弁を開から閉とする場合の温度と、閉から開とする場合の温度を、同一温度又は異なる温度とするとともに、上記温度を予め設定した設定値もしくは外気温に基づいて設定される値としたことを特徴とする請求項1記載の吸収式冷凍装置。   The temperature when the refrigerant solenoid valve is changed from open to closed and the temperature when the refrigerant solenoid valve is changed from closed to open are set to the same temperature or different temperatures, and the temperature is set based on a preset set value or an outside air temperature. The absorption refrigeration apparatus according to claim 1, wherein 上記冷媒電磁弁の開閉を、上記蒸発器の蒸発温度の検出値と予め設定した設定値もしくは外気温度に基づいて設定される設定値を対比して、又は上記蒸発器の出口と入口における被冷却流体の温度差の検出値と予め設定した設定値もしくは外気温度に基づいて設定される設定値を対比して、行なうことを特徴とする請求項1又は2記載の吸収式冷凍装置。   The refrigerant solenoid valve is opened or closed by comparing the detected value of the evaporation temperature of the evaporator with a preset value or a set value set based on the outside air temperature, or to be cooled at the outlet and inlet of the evaporator. 3. The absorption refrigeration apparatus according to claim 1, wherein the detection is performed by comparing a detected value of the temperature difference of the fluid with a preset set value or a set value set based on an outside air temperature. 上記冷媒タンクに堰を設け、該堰を越流させて上記蒸発器に冷媒を流入させるとともに、上記冷媒電磁弁の開閉によって上記蒸発器への冷媒流量を増減させるようにしたことを特徴とする請求項1、2又は3記載の吸収式冷凍装置。   A dam is provided in the refrigerant tank, the refrigerant is allowed to flow into the evaporator through the weir, and the refrigerant flow rate to the evaporator is increased or decreased by opening or closing the refrigerant electromagnetic valve. The absorption refrigeration apparatus according to claim 1, 2 or 3. 上記冷媒タンクが満杯となった後の余剰冷媒を、上記蒸発器の下部に、又は直接に上記吸収器の希溶液溜まりに流入させることを特徴とする請求項1、2、3又は4記載の吸収式冷凍装置。   The surplus refrigerant after the refrigerant tank is full is allowed to flow into the lower part of the evaporator or directly into the dilute solution reservoir of the absorber. Absorption refrigeration equipment. 上記吸収式冷凍装置の運転・停止を上記発生器の溶液温度で制御するものとし、
上記エンジンが停止状態であっても上記溶液温度が所定温度以上で且つ上記冷媒タンクの冷媒貯留能力に余裕がある場合には上記冷媒電磁弁を閉として、上記冷媒タンクが満杯となるまで吸収式冷凍装置を運転し、又は溶液ポンプのみを運転し、
上記発生器の溶液温度が上記所定温度以下になれば、上記冷媒タンクの冷媒貯留能力に余裕があっても上記吸収式冷凍装置の運転を、又は溶液ポンプの運転を停止することを特徴とする請求項1、2、3、4又は5記載の吸収式冷凍装置。
The operation / stop of the absorption refrigeration system shall be controlled by the solution temperature of the generator,
Even if the engine is in a stopped state, if the solution temperature is equal to or higher than a predetermined temperature and the refrigerant storage capacity of the refrigerant tank is sufficient, the refrigerant electromagnetic valve is closed and the absorption tank is used until the refrigerant tank is full. Operate the refrigeration unit or operate only the solution pump,
If the solution temperature of the generator is equal to or lower than the predetermined temperature, the operation of the absorption refrigeration apparatus or the operation of the solution pump is stopped even if the refrigerant storage capacity of the refrigerant tank has a margin. 6. The absorption refrigeration apparatus according to claim 1, 2, 3, 4 or 5.
上記冷媒タンクから上記蒸発器へ流入する冷媒流量の増減制御を、該冷媒タンクから蒸発器に至る配管の途中に設けた冷媒流量制御弁の開閉によって、又は上記冷媒タンクに設けた堰を越流させて上記蒸発器に冷媒を流入させるものにおいては該堰の上流側部分から上記蒸発器に至る配管の途中に設けた冷媒流量制御弁の開閉によって、それぞれ行なうことを特徴とする請求項1、2、3、4、5又は6記載の吸収式冷凍装置。   Control of increase / decrease in the flow rate of the refrigerant flowing from the refrigerant tank to the evaporator is performed by opening / closing a refrigerant flow control valve provided in the middle of a pipe from the refrigerant tank to the evaporator, or overflowing a weir provided in the refrigerant tank. The refrigerant flowing into the evaporator is performed by opening and closing a refrigerant flow rate control valve provided in the middle of a pipe from the upstream portion of the weir to the evaporator. The absorption refrigeration apparatus according to 2, 3, 4, 5 or 6. 上記空冷過冷却器に備えられたファンの発停又は風量の増減によって上記吸収器に流入する上記過冷却溶液の温度を変化させることで冷凍能力を制御することを特徴とする請求項1、2、3、4、5、6又は7記載の吸収式冷凍装置。   The refrigeration capacity is controlled by changing the temperature of the supercooled solution flowing into the absorber according to the start / stop of a fan provided in the air-cooled supercooler or the increase / decrease of the air volume. The absorption refrigeration apparatus according to 3, 4, 5, 6 or 7. 上記空冷過冷却器の入口側又は出口側に設けた流量調整弁によって上記吸収器に流入する過冷却溶液の流量を変化させることで冷凍能力を制御することを特徴とする請求項1、2、3、4、5、6又は7記載の空冷吸収式冷凍装置。   The refrigeration capacity is controlled by changing the flow rate of the supercooled solution flowing into the absorber by a flow rate adjusting valve provided on the inlet side or the outlet side of the air-cooled supercooler. The air-cooled absorption refrigeration apparatus according to 3, 4, 5, 6 or 7. 冷媒蒸気を吸収した上記吸収器からの希溶液と、上記発生器で冷媒蒸気を発生し且つ溶液熱交換器での熱交換によって温度が低下した濃溶液との混合溶液を吸引及び吐出する溶液ポンプの流量を増減することで冷凍能力を制御することを特徴とする請求項1、2、3、4、5、6又は7記載の吸収式冷凍装置。   A solution pump that sucks and discharges a mixed solution of a dilute solution from the absorber that has absorbed refrigerant vapor and a concentrated solution that generates refrigerant vapor in the generator and whose temperature is reduced by heat exchange in the solution heat exchanger. The absorption refrigeration apparatus according to claim 1, wherein the refrigeration capacity is controlled by increasing or decreasing the flow rate of the refrigeration. エンジンの排熱を受けて作動する発生器と、凝縮器と、下部の冷媒溜りに溜まった冷媒を冷媒ポンプで上部へ循環させて散布し蒸発させる蒸発器と、流下液膜式の吸収器と、該吸収器に入る吸収溶液を過冷却する空冷過冷却器を備えた排熱駆動の吸収式冷凍装置であって、
上記蒸発器の上記冷媒溜りの容量を一定量に設定し余剰冷媒は上記吸収器の下部の希溶液溜りに流入させる一方、
上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させることで上記吸収器の能力を増減して吸収式冷凍装置の冷凍能力を制御するものとし、
上記蒸発器の出口における被冷却流体の温度が、設定温度もしくは外気温度に基づいて設定される設定温度以下となった場合に、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて該吸収器の冷媒吸収能力を減少させる制御を行なうと同時に、上記冷媒ポンプを停止させ又は循環している冷媒流量を減少させて、上記蒸発器への冷媒の流入を停止させ又は冷媒の流入量を減少させることで吸収式冷凍装置の冷凍能力を減少させる一方、
上記温度が上記設定温度以上となった場合には、上記吸収器に流入する過冷却溶液の温度及び/又は過冷却溶液の流量を変化させて該吸収器の冷媒吸収能力を増加させる制御を行なうと同時に、上記冷媒ポンプを運転し又は循環している冷媒流量を増加させて、上記蒸発器へ冷媒を流入させ又は冷媒の流入量を増加させることで吸収式冷凍装置の冷凍能力を増加させる制御を行なうことを特徴とする吸収式冷凍装置。
A generator that operates in response to the exhaust heat of the engine, a condenser, an evaporator that circulates and evaporates the refrigerant accumulated in the refrigerant reservoir in the lower part by means of a refrigerant pump, and a falling liquid film type absorber , An exhaust heat driven absorption refrigeration apparatus comprising an air-cooled supercooler for supercooling the absorbent solution entering the absorber,
While the capacity of the refrigerant reservoir of the evaporator is set to a constant amount, excess refrigerant flows into the dilute solution reservoir below the absorber,
By changing the temperature of the supercooling solution flowing into the absorber and / or the flow rate of the supercooling solution, the capacity of the absorber is increased or decreased to control the refrigeration capacity of the absorption refrigeration apparatus,
The temperature of the supercooled solution flowing into the absorber and / or the supercooled solution when the temperature of the fluid to be cooled at the outlet of the evaporator is equal to or lower than the set temperature set based on the set temperature or the outside air temperature. The flow rate of the refrigerant is changed to reduce the refrigerant absorption capacity of the absorber, and at the same time, the refrigerant pump is stopped or the circulating refrigerant flow rate is reduced to stop the flow of the refrigerant into the evaporator. While reducing the refrigeration capacity of the absorption refrigeration system by reducing the inflow of refrigerant or
When the temperature is equal to or higher than the set temperature, control is performed to increase the refrigerant absorption capacity of the absorber by changing the temperature of the supercooled solution flowing into the absorber and / or the flow rate of the supercooled solution. At the same time, the control for increasing the refrigeration capacity of the absorption refrigeration apparatus by increasing the flow rate of the refrigerant operating or circulating the refrigerant pump and causing the refrigerant to flow into the evaporator or increasing the amount of refrigerant flowing in. An absorption refrigeration apparatus characterized in that
上記冷媒ポンプを停止させ又は循環している冷媒流量を減少させる場合の温度と、上記冷媒ポンプを運転させ又は循環している冷媒流量を増加させる場合の温度を、同一温度又は異なる温度とするとともに、上記温度を予め設定した設定値もしくは外気温に基づいて設定される値としたことを特徴とする請求項11記載の吸収式冷凍装置。   The temperature for stopping the refrigerant pump or decreasing the circulating refrigerant flow rate and the temperature for operating the refrigerant pump or increasing the circulating refrigerant flow rate are the same or different temperatures. The absorption refrigeration apparatus according to claim 11, wherein the temperature is set to a preset value or a value set based on an outside air temperature. 上記冷媒ポンプの停止又は循環している冷媒流量の減少制御、及び上記冷媒ポンプの運転又は循環している冷媒流量の増加制御を、上記蒸発器の蒸発温度の検出値と予め設定した設定値もしくは外気温度に基づいて設定される設定値を対比して、又は上記蒸発器の出口と入口における被冷却流体の温度差の検出値と予め設定した設定値もしくは外気温度に基づいて設定される設定値を対比して、行なうことを特徴とする請求項11又は12記載の吸収式冷凍装置。   The refrigerant pump stop control or circulating refrigerant flow decrease control, and the refrigerant pump operation or circulating refrigerant flow increase control are performed with a detection value of the evaporator evaporation temperature and a preset set value or Contrast with the set value set based on the outside air temperature, or the detected value of the temperature difference of the fluid to be cooled at the outlet and the inlet of the evaporator and the set value set based on the preset set value or the outside air temperature The absorption refrigeration apparatus according to claim 11, wherein the absorption refrigeration apparatus is performed in comparison with the above. 上記吸収式冷凍装置の運転・停止を上記発生器の溶液温度で制御するものとし、
上記エンジンが停止状態であっても上記溶液温度が所定温度以上で且つ上記蒸発器の上記冷媒溜りの冷媒貯留能力に余裕がある場合には上記冷媒電磁弁を閉として、上記冷媒溜りが満杯となるまで吸収式冷凍装置を運転し、又は溶液ポンプのみを運転し、
上記発生器の溶液温度が上記所定温度以下になれば、上記冷媒溜りの冷媒貯留能力に余裕があっても上記吸収式冷凍装置の運転、又は溶液ポンプの運転を停止することを特徴とする請求項11、22又は13記載の吸収式冷凍装置。
The operation / stop of the absorption refrigeration system shall be controlled by the solution temperature of the generator,
Even when the engine is stopped, if the solution temperature is equal to or higher than a predetermined temperature and the refrigerant storage capacity of the refrigerant pool of the evaporator is sufficient, the refrigerant solenoid valve is closed and the refrigerant pool is full. Operate the absorption refrigeration system until it becomes, or operate only the solution pump,
The operation of the absorption refrigeration apparatus or the operation of the solution pump is stopped even if there is a margin in the refrigerant storage capacity of the refrigerant reservoir when the solution temperature of the generator is equal to or lower than the predetermined temperature. Item 14. The absorption refrigeration apparatus according to item 11, 22 or 13.
上記凝縮器から上記蒸発器に至る配管途中に冷媒タンクと冷媒電磁弁を順次設け、上記吸収式冷凍装置が運転中で且つ上記冷媒ポンプが停止しているときに上記冷媒電磁弁を閉として該冷媒タンクに冷媒を溜める一方、上記蒸発器下部の上記冷媒溜まりの冷媒量が減少したときには上記冷媒電磁弁を開として上記冷媒タンクの冷媒を上記冷媒溜まりに補充することを特徴とする請求項11、12、13又は14記載の吸収式冷凍装置。   A refrigerant tank and a refrigerant electromagnetic valve are sequentially provided in the pipeline from the condenser to the evaporator, and the refrigerant electromagnetic valve is closed when the absorption refrigeration apparatus is in operation and the refrigerant pump is stopped. 12. The refrigerant is stored in the refrigerant tank, while the refrigerant electromagnetic valve is opened to replenish the refrigerant in the refrigerant tank when the amount of refrigerant in the refrigerant reservoir below the evaporator decreases. , 12, 13 or 14. Absorption refrigeration apparatus. 上記空冷過冷却器に備えられたファンの発停又は風量の増減によって上記吸収器に流入する上記過冷却溶液の温度を変化させることで冷凍能力を制御することを特徴とする請求項11、12、13、14又は15記載の吸収式冷凍装置。   13. The refrigeration capacity is controlled by changing the temperature of the supercooled solution flowing into the absorber according to the start / stop of a fan provided in the air-cooled supercooler or the increase / decrease of the air volume. The absorption refrigeration apparatus of Claim 13, 14, or 15. 上記空冷過冷却器の入口側又は出口側に設けた流量調整弁によって上記吸収器に流入する過冷却溶液の流量を変化させることで冷凍能力を制御することを特徴とする請求項11、12、13、14又は15記載の空冷吸収式冷凍装置。   The refrigeration capacity is controlled by changing the flow rate of the supercooled solution flowing into the absorber by a flow rate adjusting valve provided on the inlet side or the outlet side of the air-cooled supercooler. The air-cooled absorption refrigeration apparatus according to 13, 14 or 15. 冷媒蒸気を吸収した上記吸収器からの希溶液と、上記発生器で冷媒蒸気を発生し且つ溶液熱交換器での熱交換によって温度が低下した濃溶液との混合溶液を吸引及び吐出する溶液ポンプの流量を増減することで冷凍能力を制御することを特徴とする請求項11、12、13、14又は15記載の吸収式冷凍装置。   A solution pump that sucks and discharges a mixed solution of a dilute solution from the absorber that has absorbed refrigerant vapor and a concentrated solution that generates refrigerant vapor in the generator and whose temperature is reduced by heat exchange in the solution heat exchanger. The absorption refrigeration apparatus according to claim 11, wherein the refrigeration capacity is controlled by increasing or decreasing the flow rate of the refrigeration.
JP2007267729A 2007-10-15 2007-10-15 Absorption refrigeration system Expired - Fee Related JP5098561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007267729A JP5098561B2 (en) 2007-10-15 2007-10-15 Absorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007267729A JP5098561B2 (en) 2007-10-15 2007-10-15 Absorption refrigeration system

Publications (2)

Publication Number Publication Date
JP2009097749A true JP2009097749A (en) 2009-05-07
JP5098561B2 JP5098561B2 (en) 2012-12-12

Family

ID=40700925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007267729A Expired - Fee Related JP5098561B2 (en) 2007-10-15 2007-10-15 Absorption refrigeration system

Country Status (1)

Country Link
JP (1) JP5098561B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124359A (en) * 1978-03-20 1979-09-27 Kawasaki Heavy Ind Ltd Air-cooled absorption refrigerator to remove absorbed heat using absorption liquid for thermal medium
JPS62178858A (en) * 1986-02-03 1987-08-05 株式会社荏原製作所 Absorption refrigerator
JPH0798163A (en) * 1993-09-30 1995-04-11 Hitachi Ltd Absorptive cold water or hot water machine
JPH0953864A (en) * 1995-01-31 1997-02-25 Denso Corp Engine type cooling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54124359A (en) * 1978-03-20 1979-09-27 Kawasaki Heavy Ind Ltd Air-cooled absorption refrigerator to remove absorbed heat using absorption liquid for thermal medium
JPS62178858A (en) * 1986-02-03 1987-08-05 株式会社荏原製作所 Absorption refrigerator
JPH0798163A (en) * 1993-09-30 1995-04-11 Hitachi Ltd Absorptive cold water or hot water machine
JPH0953864A (en) * 1995-01-31 1997-02-25 Denso Corp Engine type cooling device

Also Published As

Publication number Publication date
JP5098561B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP2011089722A (en) Method and device for refrigeration/air conditioning
JP2006057991A (en) Absorptive freezer control method and absorptive freezer facility for controlling cooling water temperature in interlock with cooling load control operation
JP2008116173A (en) Absorption type refrigerating machine
JP5098547B2 (en) Absorption refrigeration system
CN101545697A (en) Absorption type heat pump
JP5092668B2 (en) Absorption refrigeration system
JP6632951B2 (en) Absorption refrigerator
JP5092677B2 (en) Absorption refrigeration system
JP6603066B2 (en) Waste heat input type absorption chiller / heater
JP2009058207A (en) Absorption water cooler/heater
JP5098561B2 (en) Absorption refrigeration system
JP2985513B2 (en) Absorption cooling and heating system and its control method
JP2009052811A (en) Exhaust heat drive-type absorption refrigerating device
JPS62186178A (en) Absorption refrigerator
JP2009236440A (en) Gas heat pump type air conditioning device or refrigerating device
JP4090262B2 (en) Absorption refrigerator
JP5018376B2 (en) Refrigeration system
JP2007333342A (en) Multi-effect absorption refrigerating machine
JP3603006B2 (en) Absorption refrigerator and control method of absorption refrigerator
JP2011047522A (en) Absorption refrigerating machine
JP3225155B2 (en) Absorption air conditioner
JP3813348B2 (en) Absorption refrigerator
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JP2008116172A (en) Absorption type refrigerating machine
JP2005300069A (en) Absorption refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees