JP2009074840A - Water quality monitoring device - Google Patents

Water quality monitoring device Download PDF

Info

Publication number
JP2009074840A
JP2009074840A JP2007242262A JP2007242262A JP2009074840A JP 2009074840 A JP2009074840 A JP 2009074840A JP 2007242262 A JP2007242262 A JP 2007242262A JP 2007242262 A JP2007242262 A JP 2007242262A JP 2009074840 A JP2009074840 A JP 2009074840A
Authority
JP
Japan
Prior art keywords
water
water tank
luminance
image
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007242262A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Toyoshima
啓良 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2007242262A priority Critical patent/JP2009074840A/en
Publication of JP2009074840A publication Critical patent/JP2009074840A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water quality monitoring device using fishes capable of recognizing correctly 'active state' and 'inactive state' of fishes in a water tank. <P>SOLUTION: This device is constituted of: the water tank 11 wherein a water current 19 is formed; a monitoring camera 12 for acquiring an image of the fishes F kept in the water tank 11 and having positive rheotaxis; an image processing means 21 for acquiring an image signal by processing the image, and detecting a brightness change caused by a behavior of the fishes F based on the image signal; a display monitor 14 for displaying the processed image signal; and an alarm means 25 for reporting an abnormality of the water quality in the water tank 11 to the outside. A monitoring domain 20 in the water tank 11 where the monitoring camera 12 acquires the image is classified into a plurality of divided domains along the water current 19, and a reference value of the brightness change of a pixel 31 when determining acceptance of the water quality detected by the image processing means 21 is lowered in a monitoring domain 30d on the downstream side of the water current 19, in comparison with the case in a monitoring domain 30a on the upstream side. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、水槽内で飼育した魚類の行動によって、その水槽内の水質を監視する水質監視装置に関するものである。   The present invention relates to a water quality monitoring device that monitors the water quality in a water tank by the behavior of fish bred in the water tank.

一般に、河川などから取水した原水を飲料用水、農業用水などとして浄化する浄水施設等においては、万が一、原水へ毒物等が混入した場合に備え、その混入を迅速且つ確実に検出し、水質の安全を確保することが求められる。   In general, in water purification facilities that purify raw water taken from rivers, etc. as drinking water, agricultural water, etc., in the unlikely event that toxic substances are mixed into the raw water, the contamination is detected quickly and reliably, and water quality is safe. Is required.

このため、従来から、取水した原水を連続的に水槽に通過させ、その水槽内で飼育させた魚類の行動を監視することによって原水への毒物等の混入を迅速に検出し、水質の悪化を監視する水質監視装置が知られている。   For this reason, conventionally, the raw water taken is continuously passed through the aquarium, and by monitoring the behavior of fish bred in the aquarium, the contamination of the raw water can be detected quickly, and the quality of the water is deteriorated. A water quality monitoring device for monitoring is known.

この水質監視装置において、前記水槽内に流入口から排出口へ向かう水流を形成し、その水槽内でいわゆる「正の走流性」を有する魚類、例えば、メダカを飼育する。   In this water quality monitoring apparatus, a water flow from the inlet to the outlet is formed in the water tank, and fish having a so-called “positive running ability”, for example, medaka, is bred in the water tank.

そのメダカの泳ぐ水槽内の画像を、水質監視装置が備える監視カメラを通じて取得し、その取得した画像に基づいて、メダカの行動を水質監視装置内に備えた画像処理手段が検出するようになっている。   An image of the medaka in the water tank is acquired through a monitoring camera provided in the water quality monitoring device, and based on the acquired image, an image processing means provided in the water quality monitoring device detects the behavior of the medaka. Yes.

具体的には、監視カメラで撮像した水槽内の画像を処理して画像信号を取得する。画像信号は、マトリクス状の多数のドット(画素)で構成されており、それらの多数の画素を含む水槽内の監視領域を複数のブロックに区画する。   Specifically, an image signal is acquired by processing an image in the water tank imaged by the monitoring camera. The image signal is composed of a large number of dots (pixels) in a matrix shape, and divides a monitoring area in the water tank including the large number of pixels into a plurality of blocks.

一つの画素は、メダカの体の大きさよりも小さいものであり、この画素上をメダカが泳いで遮光すると画素の輝度が変化する。前記画像処理手段は、その画素の輝度が一定以上変化するのを検出し、メダカの行動を「活性」と認識する。   One pixel is smaller than the size of the body of the medaka, and the luminance of the pixel changes when the medaka swims over the pixel and blocks light. The image processing means detects that the luminance of the pixel changes more than a certain level, and recognizes the action of the medaka as “active”.

すなわち、活発に泳ぐメダカほど通過する画素が多いので、全ての画素のうち、メダカが遮っていなかった画素がメダカの動きにより遮られるようになった画素、および、その逆で、メダカが遮っていた画素がメダカの動きにより遮られなくなった画素の数が多くなる。つまり、その遮光によって、輝度が大きく変化する画素の数が増える。   In other words, because there are many pixels that pass through more actively swimming medakas, out of all the pixels, the pixels that were not blocked by the medaka were blocked by the movement of the medaka, and vice versa, the medaka was blocked. The number of pixels that are not obstructed by the movement of the medaka increases. That is, the number of pixels whose luminance changes greatly is increased by the light shielding.

前記画像処理手段は、各ブロック内において、輝度が予め定められた基準値以上変化した画素を検出する。そして、判定手段は、その画像処理手段により検出した画素を含むブロック数をカウントする。   The image processing means detects pixels whose luminance has changed by a predetermined reference value or more in each block. Then, the determination unit counts the number of blocks including the pixels detected by the image processing unit.

水槽内に飼育された魚類の動きが活発で、カウントされたブロック数が予め定められた設定数以上であれば、前記判定手段はメダカを「活性」と認識して、水槽内の水の水質を「良」と判定する。   If the movement of fish bred in the aquarium is active and the number of counted blocks is equal to or greater than a preset number, the determination means recognizes the medaka as “active” and the water quality in the aquarium Is judged as “good”.

仮に、原水に毒物等が混入すると、水槽内に飼育された魚類の動きが鈍くなり、移動量が小さくなることから、メダカの移動によって遮光されていなかった画素が遮光された状態となる画素、およびメダカが遮光されていた画素がメダカの動きにより遮光されなくなった画素の数が減少する。このため、各画素の輝度はあまり変化せず、前記予め定められた基準値以上に輝度が変化した画素を含むブロックの数が少なくなる。   If a poison or the like is mixed into the raw water, the movement of the fish bred in the aquarium slows down, and the amount of movement decreases, so that the pixels that are not shielded by the movement of the medaka are shielded from light, In addition, the number of pixels in which the medaka is shielded from light is reduced due to the movement of the medaka. For this reason, the luminance of each pixel does not change so much, and the number of blocks including pixels whose luminance has changed more than the predetermined reference value is reduced.

カウントされたブロック数が前記予め設定された設定数以下であるとき、前記判定手段は、メダカを「不活性」と認識し、水槽内の水の水質を「否」と判定し、水質異常である旨を知らせるアラーム信号を出力する(特許文献1参照)。
特開2001−99334号公報
When the counted number of blocks is less than or equal to the preset number, the determination means recognizes the medaka as “inactive”, determines the water quality of the water in the aquarium as “no”, and the water quality is abnormal. An alarm signal for notifying that is output (see Patent Document 1).
JP 2001-99334 A

しかし、メダカ等の魚類は、水質以外の要素、例えば、時刻や季節、天候、水温等の影響で生態(活発に泳ぐかどうか)が刻々と変化する。このため、そのメダカが「活発行動」と呼ばれる比較的活発に行動し得る時期、環境等にあれば、そのメダカは水流の流れが速い上流側の領域に集まる傾向がある。また、メダカが、いわゆる「疑似停止行動」と呼ばれる比較的活発に行動し得ない時期、環境等になれば、そのメダカは水流の流れが遅い下流側の領域に集まる傾向にある。   However, the fish (such as medaka) has its ecology (whether it swims actively) or the like constantly changing due to factors other than water quality, such as time, season, weather, and water temperature. For this reason, if the medaka is in a relatively active time, called “active behavior”, in an environment, etc., the medaka tends to gather in an upstream region where the flow of water is fast. In addition, when the medaka comes to an environment or the like when the medaka can not act relatively actively, so-called “pseudo stop behavior”, the medaka tends to gather in a downstream region where the flow of water is slow.

メダカが下流側の領域に集まると、水槽内の水質に異常がなくともメダカの動きが相対的に鈍くなる。下流側の領域は水流が遅いので、メダカの持つ「正の走流性」により、メダカは活発に泳がないからである。   If the medaka gathers in the area | region of a downstream, even if there is no abnormality in the water quality in a water tank, the movement of a medaka will become relatively slow. This is because the medaka does not swim actively due to the “positive running characteristics” of the medaka, because the water flow in the downstream area is slow.

メダカの動きが鈍くなると、メダカの移動の速さが遅くなり、水槽内の水質に異常がなくとも、監視カメラによって水槽内の画像を取得するときに、メダカが画素上を通過して、その画素を遮光するまでに時間がかかる。このため、水質の良否の判定が明瞭にできる程度の輝度の変化量を得るまでに時間を要するという問題がある。   When the movement of the medaka slows down, the movement of the medaka slows down, and even if there is no abnormality in the water quality in the aquarium, the medaka passes over the pixels when the image in the aquarium is acquired by the surveillance camera. It takes time to shield the pixels. For this reason, there is a problem that it takes time to obtain a luminance change amount that can clearly determine whether the water quality is good or bad.

このため、各画素の輝度変化を明瞭に検出することが困難となり、水質は「良」であるにもかかわらず、本来「活性」と認識すべきメダカを正しく「活性」と認識できるメダカの率(メダカ(魚類)の認識率)が低下する。   For this reason, it is difficult to clearly detect the luminance change of each pixel, and the ratio of medaka that can recognize medaka that should be recognized as "active" correctly as "active" even though the water quality is "good". (Recognition rate of medaka (fish)) decreases.

この問題を解決するために、例えば、監視カメラが画像を取得する水槽内の監視領域の全域において、画素の検出感度を高める(相対的に少ない輝度の変化量に対しても「良」と判定させるように基準値を設定する)ことにより、メダカの認識率を上げる方法が考えられる。   In order to solve this problem, for example, the detection sensitivity of the pixels is increased over the entire monitoring area in the water tank from which the monitoring camera acquires images (determined to be “good” even for a relatively small amount of change in luminance The reference value is set so that the recognition rate of the medaka is increased.

しかし、水流が速い上流側の領域では、下流側の領域に比べて相対的に水面の波立ちが大きいので、検出感度を高めると、例えば、その水面の波立ちによる輝度の変化を活発なメダカの存在と誤検出したり、あるいは、その波立つ水面の反射光による輝度の変化をノイズとして誤検出したりするおそれがある。このため、画素の検出感度を高めると、特に、上流側の監視領域において、メダカの認識率を低下させてしまう場合がある。   However, in the upstream region where the water flow is fast, the water surface has a relatively large undulation compared to the downstream region, so if the detection sensitivity is increased, for example, the presence of active medaka will change the brightness due to the undulation of the water surface. Or a change in luminance due to the reflected light on the water surface may be erroneously detected as noise. For this reason, when the pixel detection sensitivity is increased, the medaka recognition rate may be reduced, particularly in the upstream monitoring region.

このため、水槽内の各場所での水流の速さの違いにかかわらず、メダカの「活性」「不活性」を正しく認識できるようにすることが求められる。   For this reason, it is required to be able to correctly recognize the “activity” and “inactivity” of medaka regardless of the difference in the speed of water flow at each location in the aquarium.

そこで、この発明は、魚類を用いた水質監視装置における、水槽内の魚類の「活性」「不活性」を正しく認識できるようにすることを課題とする。   Accordingly, an object of the present invention is to make it possible to correctly recognize “activity” and “inactivity” of fish in an aquarium in a water quality monitoring apparatus using fish.

前記の課題を解決するために、この発明は、監視カメラによる水槽内の監視領域を水流に沿って複数の分割領域に区分し、監視カメラにおける画素の検出感度を、水流の下流側の分割領域が上流側の分割領域よりも高くなるようにしたのである。   In order to solve the above problems, the present invention divides a monitoring area in a water tank by a monitoring camera into a plurality of divided areas along the water flow, and the detection sensitivity of pixels in the monitoring camera is divided into divided areas on the downstream side of the water flow. Is made higher than the divided area on the upstream side.

下流側の分割領域の監視カメラにおける画素の検知感度が高くなると、下流側の分割領域に存在する動きの鈍い魚類によって遮光された画素が感度良く検出され、その遮光された画素の輝度の変化を明瞭に検出することができる。このため、メダカの認識率を向上させることができる。   When the detection sensitivity of the pixels in the monitoring camera in the downstream divided area is increased, the pixels that are shielded by the slow-moving fish present in the downstream divided areas are detected with high sensitivity, and the change in luminance of the shielded pixels is detected. It can be detected clearly. For this reason, the recognition rate of medaka can be improved.

具体的な構成としては、水の流入口とその水の排出口を備えた水槽と、その水槽内に飼育した走流性を有する魚類の画像を取得する監視カメラと、前記監視カメラで取得された画像を処理して画像信号を取得しその画像信号に基づいて前記魚類の行動による輝度の変化を検出する画像処理手段とを備え、前記画像処理手段が検出した前記輝度の変化量の大小に基づいて前記水槽内の水質の良否を判定する判定手段を備えた水質監視装置において、
前記監視カメラが画像を取得する水槽内の監視領域を、前記流入口から前記排出口に至る水流に沿って複数の分割領域に区分し、前記水質の良否を判定する際の輝度の変化量の基準値を、前記水流の下流側の前記分割領域が上流側の前記分割領域よりも低くなるようにしたのである。
As a specific configuration, a water tank having a water inlet and a water outlet, a monitoring camera for acquiring images of fish having a running ability bred in the water tank, and acquired by the monitoring camera. Image processing means for processing the obtained image to obtain an image signal, and detecting a change in luminance due to the behavior of the fish based on the image signal, and the amount of change in the luminance detected by the image processing means In the water quality monitoring device provided with a determination means for determining the quality of the water in the aquarium based on
The monitoring area in the water tank from which the monitoring camera obtains an image is divided into a plurality of divided areas along the water flow from the inlet to the outlet, and the amount of change in luminance when determining the quality of the water is determined. The reference value is set so that the divided area on the downstream side of the water flow is lower than the divided area on the upstream side.

この構成において、前記輝度の変化量の基準値を前記分割領域ごとに設定できるようにすれば、各分割領域における水流の速さ、水面付近の波立ちなど固有の条件に応じて、分割領域ごとに適正な基準値を設定できる。分割領域ごとに適正な基準値を設定できれば、メダカ認識率を高めることができる。   In this configuration, if the reference value of the amount of change in luminance can be set for each divided region, the divided value can be set for each divided region according to specific conditions such as the speed of water flow in each divided region and the ripple near the water surface. An appropriate reference value can be set. If an appropriate reference value can be set for each divided area, the medaka recognition rate can be increased.

また、前記流入口が前記水槽の側壁に設けられ、前記排出口は前記水槽の中央底部に設けられ、前記水槽内に流入した水が、前記水槽の側壁に近い部分から側壁から離れた中央部に向かって旋回するように流れが形成された水槽において、前記水質監視装置の構成を採用すれば、水槽内の水流に沿って区分した分割領域のそれぞれが水槽の各側壁に沿うように形成されるので、1台の監視カメラによって全監視領域の画像を一度に取得するために必要な撮像範囲をコンパクトにできる。   In addition, the inflow port is provided in a side wall of the water tank, the discharge port is provided in a central bottom part of the water tank, and the water flowing into the water tank is separated from a part near the side wall of the water tank. In the water tank in which the flow is formed so as to swivel toward the water tank, if the configuration of the water quality monitoring device is adopted, each of the divided regions divided along the water flow in the water tank is formed along each side wall of the water tank. Therefore, it is possible to make the imaging range necessary for acquiring images of all the monitoring areas at one time with one monitoring camera compact.

前記判定手段による水質の良否の判定としては、例えば、前記分割領域は複数のブロックによって区画されており、前記各ブロック内に複数の画素が配置されており、前記画像処理手段による輝度の変化の検出は、前記基準値を超える輝度の変化があった画素を検出するものであり、前記判定手段は、前記基準値を超える輝度の変化があった画素を少なくとも一つ含むブロックの数をカウントしそのカウントしたブロックの数が設定数よりも少ないか否かに基づいて水質の良否を判定するようにしてもよい。   As the determination of the quality of the water quality by the determination means, for example, the divided area is partitioned by a plurality of blocks, a plurality of pixels are arranged in each block, and a change in luminance by the image processing means is detected. The detection is to detect a pixel having a luminance change exceeding the reference value, and the determination means counts the number of blocks including at least one pixel having a luminance change exceeding the reference value. You may make it determine the quality of water quality based on whether the number of the counted blocks is less than a setting number.

この構成では、魚類の「活性」「不活性」を、前記分割領域、ブロックよりも小さい画素ごとに認識することができる。画素は、魚類の身体よりも小さいものとすることもできるので、この構成によれば、魚類の僅かな動きに対しても、輝度の変化量を敏感に検知することができる特性を有する。   In this configuration, “active” and “inactive” of fish can be recognized for each pixel smaller than the divided region and block. Since the pixels can be smaller than the fish body, this configuration has a characteristic that the amount of change in luminance can be detected sensitively even with a slight movement of the fish.

このため、上記のように分割領域ごとに輝度の変化の基準値を別々に設定する場合においては、分割領域ごとの基準値の設定が適正であるか否かが、検出した画素の数とともにブロックの数となって現れる。このため、その基準値の設定が適正であるかどうかが、画素の数とブロックの数の2つの指数により判断できることとなり、適正な基準値の設定がより行いやすい効果が期待できる。適正な基準値の設定ができれば、メダカの認識率向上に寄与し得る。   For this reason, in the case where the reference value for luminance change is set separately for each divided region as described above, whether or not the reference value for each divided region is set appropriately is determined together with the number of detected pixels. It appears as the number of. For this reason, whether or not the setting of the reference value is appropriate can be determined by the two indexes of the number of pixels and the number of blocks, and an effect of facilitating the setting of the appropriate reference value can be expected. If an appropriate reference value can be set, it can contribute to improving the recognition rate of medaka.

なお、水質の良否の判定手法としては、種々の手法が考えられ、例えば、前記ブロックの数の設定数を1、2または3、あるいは4以上としてもよい。
また、精度は多少落ちるが、各ブロックに含まれる画素群の輝度の代表値(平均値、中央値、標準偏差)あるいは、画素群の輝度の変化量の代表値(平均値、中央値、標準偏差)などに基づいて、そのブロックごとの輝度の変化量の代表値を定め、その定めたブロックごとの変化量の代表値に基づき水質の良否を判定する手法なども考えられる。
分割領域内に複数の画素を配置して、その基準値を超える輝度の変化があった画素を含む分割領域をカウントし、カウントした分割領域の数が設定数よりも少ないか否かに基づいて水質の良否を判定するようにしてもよい。
Various methods can be considered as a method for determining the quality of water quality. For example, the number of blocks set may be 1, 2 or 3, or 4 or more.
In addition, although the accuracy is somewhat reduced, the representative value of the luminance of the pixel group included in each block (average value, median value, standard deviation) or the representative value of the change in luminance of the pixel group (average value, median value, standard) A method of determining a representative value of the amount of change in luminance for each block based on the deviation) and determining the quality of the water based on the representative value of the amount of change for each block is also conceivable.
A plurality of pixels are arranged in the divided area, the divided area including the pixel whose luminance has exceeded the reference value is counted, and based on whether the number of counted divided areas is less than the set number. You may make it determine the quality of water quality.

さらに、前記水槽内の監視領域内に照明装置を備え、その照明装置は前記判定手段による水質の良否の判定結果を表示する機能を有するものとすれば、監視カメラによって取得される画像内に水質の良否の判定結果が視覚的に現れる。このため、判定結果を、水槽を配置した現場と、水質監視装置の画像処理や判定等を行っている操作室等の双方で視覚的に同時に確認することができる。   Furthermore, if the lighting device is provided in the monitoring region in the water tank, and the lighting device has a function of displaying the determination result of the quality of the water by the determination means, the water quality is displayed in the image acquired by the monitoring camera. The result of the pass / fail judgment visually appears. For this reason, the determination result can be visually confirmed simultaneously at both the site where the water tank is disposed and the operation room where image processing and determination of the water quality monitoring device are performed.

以上のように、この発明は、下流側と上流側との間で輝度の変化量の基準値を異ならせたので、水槽内の魚類の「活性」「不活性」を正しく認識できる。   As described above, according to the present invention, since the reference value of the amount of change in luminance is different between the downstream side and the upstream side, it is possible to correctly recognize the “activity” and “inactivity” of the fish in the aquarium.

以下、この発明の実施形態を添付図面に基づいて説明する。
この実施形態の水質監視装置10は、図1に示すように、河川などから原水を入れる水槽11と、その水槽11内に飼育する魚類Fの画像を取得する監視カメラ12と、この監視カメラ12が接続され魚類Fの画像の処理を行う画像解析装置13とから構成される。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
As shown in FIG. 1, the water quality monitoring apparatus 10 according to this embodiment includes a water tank 11 into which raw water is introduced from a river, a monitoring camera 12 that acquires an image of fish F raised in the water tank 11, and the monitoring camera 12. Is connected to the image analysis apparatus 13 for processing the image of the fish F.

前記水槽11は、図2に示すように、上方が開口する平面視矩形をなし、その一側壁に設けた流入口17と底面部の中央部に設けた排出口18を備えている。河川、ダム貯水池、地下水等の水源から取水した原水Wは、流入口17から水槽11内に途切れることなく連続的に流入し、流入後は水槽11の側壁に沿って水流19を形成する。   As shown in FIG. 2, the water tank 11 has a rectangular shape in plan view with an upper opening, and includes an inlet 17 provided on one side wall and an outlet 18 provided at the center of the bottom surface. The raw water W taken from a water source such as a river, a dam reservoir, or groundwater continuously flows into the water tank 11 from the inlet 17 without interruption, and forms a water flow 19 along the side wall of the water tank 11 after the inflow.

水流19は、その側壁に近い部分から側壁から離れた中央部に向かって旋回するように渦状の水流19となって、最後は排出口18から排出されて、次なる処理工程へ向かうようになっている。なお、この実施形態では、原水Wは、一定の流量にて継続的に水槽11内に流入するので、水流19はほぼ一定の経路に保たれている。この流量は、実験等により適宜設定され、例えば、2〜5リットル/分に設定される。   The water stream 19 turns into a spiral water stream 19 so as to swivel from a portion close to the side wall toward the central part away from the side wall, and finally, the water stream 19 is discharged from the discharge port 18 and proceeds to the next processing step. ing. In this embodiment, since the raw water W continuously flows into the water tank 11 at a constant flow rate, the water flow 19 is maintained in a substantially constant path. This flow rate is appropriately set by experiments or the like, and is set to 2 to 5 liters / minute, for example.

原水Wが連続的に流入する水槽11内には、「正の走流性(上流に向かって泳ぐ習性)」を有する魚類Fを複数飼育させている。この魚類Fとしては、取水する原水のBODが低い場合にはメダカが使用され、BODが高い場合、メダカよりも大型のタナゴやヒブナなどを選択する。   In the aquarium 11 into which the raw water W continuously flows, a plurality of fish F having “positive running ability (swimming behavior toward upstream)” are bred. As the fish F, medaka is used when the BOD of the raw water to be taken is low, and larger lionfish or hibe are selected than the medaka when the BOD is high.

水槽11内の魚類Fの画像を取得する監視カメラ12は、水槽11の上方に設置され、水槽11の上方からその開口部の全領域を撮像する。なお、監視カメラ12は魚類Fを撮像できるものであれば、特別な制限はなくどのようなカメラを用いてもよいが、通常、カラーのテレビカメラが使用され、長期間安定して撮像できるカメラであればよい。   The monitoring camera 12 that acquires an image of the fish F in the aquarium 11 is installed above the aquarium 11 and images the entire area of the opening from above the aquarium 11. The surveillance camera 12 is not particularly limited as long as it can capture the fish F, and any camera may be used, but a color television camera is usually used and can stably capture images for a long period of time. If it is.

監視カメラ12による画像の取得は、一定時間の間隔ごとに連続的に行うのがよく、画像処理の時間間隔は短いほど魚類の活動を細かく追えるので好ましく、好ましい範囲としては、0.033〜0.5秒間隔程度であるが、この実施形態では、例えば、0.1秒間隔としている。   The acquisition of images by the monitoring camera 12 is preferably performed continuously at regular time intervals, and the shorter the image processing time interval, the better the fish activity can be traced, and the preferred range is 0.033-0. In this embodiment, for example, the interval is 0.1 second.

監視カメラ12は、水槽11を0.1秒間隔で連続撮像した画像を画像解析装置13へ送る。この画像解析装置13は、図4に示すように、画像処理手段21と、記憶手段22と、判定手段23を有するマイクロコンピュータ24を備えている。さらに、画像解析装置13は、監視カメラ12による水槽11の様子を表示するモニタ14と、水質の異常を外部に知らせる警報手段25に接続されている。   The monitoring camera 12 sends images obtained by continuously capturing the water tank 11 at 0.1 second intervals to the image analysis device 13. As shown in FIG. 4, the image analysis apparatus 13 includes a microcomputer 24 having an image processing unit 21, a storage unit 22, and a determination unit 23. Further, the image analysis device 13 is connected to a monitor 14 for displaying the state of the water tank 11 by the monitoring camera 12 and an alarm means 25 for notifying the outside of water quality abnormality.

画像解析装置13は、前記監視カメラ12により水槽内11の魚類Fの画像を受け取り、受け取った画像を画像処理手段21へ出力するとともに、画像処理手段21により位置データと輝度データを有する画像信号に画像処理する。画像処理された画像信号は、表示モニタ14に出力し、その画像信号の輝度データに基づいて表示モニタ14の画素を画面上に表示する。   The image analysis device 13 receives an image of the fish F in the aquarium 11 by the monitoring camera 12 and outputs the received image to the image processing means 21. The image processing means 21 converts the image signal having position data and luminance data into an image signal. Image processing. The image signal subjected to the image processing is output to the display monitor 14 and the pixels of the display monitor 14 are displayed on the screen based on the luminance data of the image signal.

画像処理された画像信号は、図5に示すように、前記位置データに基づいて、1ラインあたり64(8×8)個のドット(画素)31を有する56ラインとなるマトリクス状に配列された64×56=3584個の画素31に分割され、1フィールド分のサンプリングデータとして記憶手段22に保管される。このとき、この画素31の大きさは、魚類Fの大きさよりも小さく設定される。なお、1ラインあたりの画素31の数、あるいは、ライン数は前記の数に限られず、実験、監視環境、水槽の大きさなどにより適宜設定する。   As shown in FIG. 5, the image signals subjected to the image processing are arranged in a matrix of 56 lines having 64 (8 × 8) dots (pixels) 31 per line based on the position data. It is divided into 64 × 56 = 3584 pixels 31 and stored in the storage means 22 as sampling data for one field. At this time, the size of the pixel 31 is set smaller than the size of the fish F. Note that the number of pixels 31 per line or the number of lines is not limited to the above number, and is appropriately set depending on the experiment, the monitoring environment, the size of the water tank, and the like.

さらに、画像処理手段21は、前記記憶手段22に保管された1フィールド分の画像信号からカラー信号を除去した輝度信号に対して、監視カメラ12が捉える魚類Fにより画素31が遮光される面積の比率(遮光率)によって得られる各画素31の明るさの違いを8ビットの輝度データ(輝度)として画素31ごとに求める処理を行い、記憶手段22に一時的に保管する。   Further, the image processing means 21 has an area in which the pixels 31 are shielded by the fish F captured by the monitoring camera 12 with respect to the luminance signal obtained by removing the color signal from the image signal for one field stored in the storage means 22. A process for obtaining the brightness difference of each pixel 31 obtained by the ratio (light shielding ratio) for each pixel 31 as 8-bit luminance data (luminance) is performed and temporarily stored in the storage unit 22.

画像処理手段21は、前記監視カメラ12が画像を取得する水槽11内の監視領域20の画像を画像処理し処理された画像信号を、図3に示すように、水槽11内に形成された水流19に沿って、図3に示す位置に分割領域30a、30b、30c、30d、30eの5つに区分する。なお、前述のように、水流19はほぼ一定の経路に保たれているので、この分割領域30も変動しないように設定されている。   The image processing means 21 converts an image signal obtained by performing image processing on the image of the monitoring area 20 in the water tank 11 from which the monitoring camera 12 acquires an image, and a water flow formed in the water tank 11 as shown in FIG. 19 is divided into five divided areas 30a, 30b, 30c, 30d, and 30e at the positions shown in FIG. As described above, since the water flow 19 is maintained in a substantially constant path, the divided region 30 is also set so as not to fluctuate.

この各分割領域30は、複数のブロック32によって区画され、その各ブロック32内に、8×8=64個の画素31が配置される(図5参照)。これらの分割領域30のうち、排出口18の周囲を占める分割領域30eでは、監視中において、魚類Fの存在率が非常に少なくなるため、区画される複数のブロック32を割り当てずに、後述する魚類Fの行動の検出を行わないようにしてもよい(図6中の白抜き部分参照)。   Each divided region 30 is partitioned by a plurality of blocks 32, and 8 × 8 = 64 pixels 31 are arranged in each block 32 (see FIG. 5). Of these divided areas 30, the divided area 30 e occupying the periphery of the discharge port 18 has a very low presence rate of the fish F during monitoring, and will be described later without assigning a plurality of divided blocks 32. You may make it not detect the action of the fish F (refer to the white part in FIG. 6).

また、水槽11内の、前記分割領域30eに対応する位置(排出口18を囲う位置)に照明装置35を設置しても良い。この照明装置35は、水が通り、魚類Fが通過できないような板材で形成された角形の筒体であり、その内部に光源36を備えている。この筒体の上面部には、水槽11内の水質の良否の判定結果を表示する表示装置37が設けられている。なお、照明装置35内に魚類Fが通過できるようにし、その照明装置35内(水槽11内の分割領域30eに対応する位置)の魚類Fの行動の検出を、マイクロコンピュータ24内のソフトウェア上で行わないようにしてもよい。   Moreover, you may install the illuminating device 35 in the position (position which surrounds the discharge port 18) in the water tank 11 corresponding to the said division area | region 30e. The lighting device 35 is a rectangular cylinder formed of a plate material through which water passes and the fish F cannot pass, and includes a light source 36 therein. A display device 37 that displays a determination result of quality of the water in the water tank 11 is provided on the upper surface of the cylindrical body. It is to be noted that the fish F can pass through the lighting device 35 and the detection of the behavior of the fish F in the lighting device 35 (position corresponding to the divided area 30e in the aquarium 11) is detected on software in the microcomputer 24. It may not be performed.

表示装置37は、防水加工が施されており、水質の良否の判定結果の表示は、後述する正常、注意、警告、警戒、危険とそれぞれの水質の判定結果を、水槽11の外から見てわかるような表示であればよい。例えば、前記光源36とは別に光源を設けて、正常、注意、警告、警戒、危険とそれぞれの水質の状況に応じて青、緑、黄、橙、赤色の光を照射するようにしてもよい。なお、水質の良否の判定結果の表示は、監視カメラ12で取得される画像上にも映るようになっている。   The display device 37 is waterproofed, and the determination result of the quality of the water quality is displayed from the outside of the aquarium 11 with the determination results of normal, caution, warning, vigilance, danger and each water quality described later. Any display that can be understood is acceptable. For example, a light source may be provided separately from the light source 36 to emit blue, green, yellow, orange, and red light according to the normal, caution, warning, vigilance, danger, and water quality conditions. . In addition, the display of the determination result of the quality of water quality is also reflected on the image acquired by the monitoring camera 12.

なお、照明装置35は、水槽11内の、前記分割領域30eに対応する位置に設ける必要はなく、例えば、水槽11外に設置するようにしても良く、この場合、表示装置37は、単独で水槽11の、分割領域30eに対応する位置に設けることができる。しかし、照明装置35を水槽11の分割領域30eに対応する位置に設けると、分割領域30a〜30dを均等に照明することができるので好ましい。   The lighting device 35 does not have to be provided in the water tank 11 at a position corresponding to the divided region 30e. For example, the lighting device 35 may be installed outside the water tank 11, and in this case, the display device 37 is independent. The water tank 11 can be provided at a position corresponding to the divided region 30e. However, it is preferable to provide the illumination device 35 at a position corresponding to the divided area 30e of the water tank 11 because the divided areas 30a to 30d can be illuminated uniformly.

前記照明装置35の光源36は、防水加工が施されており、水槽11内の水温の上昇を抑制するために、発熱量の少ないものが好ましい。例えば、LEDを使用することができる。また、この照明装置35は、表示装置37が、図6において紙面上方を向くように水槽11内に設けられる。   The light source 36 of the illuminating device 35 is waterproofed and preferably has a low calorific value in order to suppress an increase in the water temperature in the water tank 11. For example, an LED can be used. Moreover, this illuminating device 35 is provided in the water tank 11 so that the display device 37 faces upward in FIG.

このように、前記分割領域30eを除く分割領域30a〜30dは、図6に示す水槽11の四方の側壁に沿う位置に対応した位置に割り当てられ、水槽11内に形成された水流19に沿った分割領域30a、30b、30c、30d内での魚類Fの行動の検出を行うことができる。   As described above, the divided areas 30a to 30d excluding the divided area 30e are assigned to positions corresponding to positions along the four side walls of the water tank 11 shown in FIG. 6, and follow the water flow 19 formed in the water tank 11. It is possible to detect the behavior of the fish F in the divided areas 30a, 30b, 30c, and 30d.

また、画像処理手段21は、1フィールド分のサンプリングデータを予め定めたタイミングで(2から14フィールドごとに)前記記憶手段22から2枚のサンプリングデータを取り出し、その2枚のサンプリングデータを比較しながら、各画素31の輝度の変化量を検出する処理を行う。   Further, the image processing means 21 takes out two pieces of sampling data from the storage means 22 at a predetermined timing (every 2 to 14 fields), and compares the two pieces of sampling data. However, a process of detecting the amount of change in luminance of each pixel 31 is performed.

前記画像処理手段21が検出する各画素31の輝度の変化量は、予め基準値が設定されており、画素31の輝度の変化量が前記基準値を超える変化量であれば、その画素31を輝度の変化があった画素31として検出する。   A reference value is set in advance for the amount of change in luminance of each pixel 31 detected by the image processing means 21. If the amount of change in luminance of the pixel 31 exceeds the reference value, the pixel 31 is It is detected as a pixel 31 having a change in luminance.

前記輝度の変化量の基準値は、この実施形態では、水流19の下流側の分割領域30dが上流側の分割領域30cよりも低くなるように、また、その分割領域30cがさらに上流側の分割領域30bよりも低くなるように、その分割領域30bがさらに上流側の分割領域30aよりも低くなるように、それぞれ設定されている。この設定により、例えば、下流側の分割領域30d内の画素31では、その輝度の変化量が、上流側の分割領域30a内の画素31よりも、より小さい輝度の変化量で検出されることとなる。このため、相対的に活発に行動しない下流側の分割領域30d内においては、上流側の分割領域30aと比較してわずかな輝度の変化に対しても画素31を検出することができる。   In this embodiment, the reference value of the luminance change amount is set such that the downstream divided region 30d of the water stream 19 is lower than the upstream divided region 30c, and the divided region 30c is further divided into the upstream divided region. Each of the divided regions 30b is set to be lower than the upstream divided region 30a so as to be lower than the region 30b. With this setting, for example, in the pixel 31 in the downstream divided region 30d, the luminance change amount is detected with a smaller luminance change amount than in the pixel 31 in the upstream divided region 30a. Become. For this reason, in the downstream divided region 30d that does not act relatively actively, the pixel 31 can be detected even with a slight change in luminance compared to the upstream divided region 30a.

この輝度の変化量の基準値は、例えば、分割領域30a、30bを1つの分割領域とし、分割領域30c、30dを1つの分割領域として、それぞれ同じ基準値として、下流側の1つにまとめた分割領域30c、30dの基準値を、上流側の分割領域30a、30bの基準値よりも小さく設定するなど、複数の分割領域30を同じ輝度の変化量の基準値として設定してもよい。また、分割領域30の数をさらに増やして、その分割領域30の数の増加に併せて輝度の変化の基準値の設定をさらに多段階に分けて設定することも可能である。   The reference values for the amount of change in luminance are, for example, the divided areas 30a and 30b as one divided area, the divided areas 30c and 30d as one divided area, and the same reference value, respectively, which are combined into one downstream side. A plurality of divided areas 30 may be set as reference values for the same luminance change amount, such as setting the reference values of the divided areas 30c and 30d to be smaller than the reference values of the upstream divided areas 30a and 30b. Further, it is possible to further increase the number of divided areas 30 and to set the reference value for the change in luminance in more stages as the number of divided areas 30 increases.

前記判定手段23は、前記画像処理手段21により検出された画素31を少なくとも1つ含むブロック32の数をカウントし、そのカウントしたブロック32の数が予め定めた設定数よりも少ないか否かに基づいて、水槽11内の水質の良否を判定する。   The determination unit 23 counts the number of blocks 32 including at least one pixel 31 detected by the image processing unit 21, and determines whether or not the counted number of blocks 32 is smaller than a predetermined set number. Based on this, the quality of the water in the water tank 11 is determined.

この設定数は、この実施形態においては、4つに定められ、輝度の変化した画素31を含むブロック32の数が4つ未満となれば、判定手段23が水質に異常が発生したと判定して、その数に応じて前記警報手段25にアラーム信号を出力する。   In this embodiment, the set number is set to four. If the number of blocks 32 including the pixels 31 whose luminance has changed is less than four, the determination unit 23 determines that an abnormality has occurred in the water quality. Then, an alarm signal is output to the alarm means 25 according to the number.

アラーム信号を受け取った警報手段25は、前記ブロック数に応じて、例えば、3つなら注意、2つなら警告、1つなら警戒、ブロック数が0である場合、すなわち、どのブロック32内の画素31も輝度に変化がない場合には、危険として、各状況に合ったアラーム音、光などによる警報を発して、外部に異常を知らせる。例えば、ブロック32の数が減少するに従ってアラーム音の音量を大きくしたり、光の点滅の間隔を短くしたりしてもよい。   When the alarm means 25 receives the alarm signal, the warning means 25, for example, if there are 3 warnings, if 2 warnings, if 1 warnings, if the number of blocks is 0, that is, in which block 32 pixels If there is no change in luminance, the alarm 31 is alarmed by an alarm sound or light suitable for each situation to notify the outside of the abnormality. For example, as the number of blocks 32 decreases, the volume of the alarm sound may be increased, or the light blinking interval may be shortened.

また、警報手段25に別途接続したスピ−カ等(図示省略)から警報を発するようにしたり、LAN等の通信回線を介して携帯電話(図示省略)などへ通知したりできるようにしてもよい。なお、前記アラーム信号が出力されるブロック32の数は、実験、監視環境等により適宜設定される。   Further, an alarm may be issued from a speaker or the like (not shown) separately connected to the alarm means 25, or a mobile phone (not shown) or the like may be notified via a communication line such as a LAN. . Note that the number of blocks 32 to which the alarm signal is output is set as appropriate depending on the experiment, monitoring environment, and the like.

この実施形態の作用を説明すると、以上のように構成された水質監視装置10は、前述の輝度の変化量の基準値、およびブロック32の設定数が設定されている。魚類F(メダカ)は底面積1000平方センチメートル、容積7リットルの水槽11内に10〜20匹飼育される。   The operation of this embodiment will be described. In the water quality monitoring device 10 configured as described above, the reference value of the amount of change in luminance described above and the set number of blocks 32 are set. 10 to 20 fish F (medaka) are bred in an aquarium 11 having a bottom area of 1000 square centimeters and a volume of 7 liters.

このとき、原水Wの水質が正常であれば、魚類Fは、比較的上流側の分割領域30a、30b内で泳ぎ、その動きが活発となるため、複数のブロック32にまたがって移動する。この魚類Fの移動により、その移動の前後において、今まで遮光されていなかった状態から新たに遮光される状態となった画素31、あるいは、その遮光率が増加する画素31の数が増加する。すなわち、画像処理手段21により検出される輝度が変化した画素31(輝度の変化の基準値を越える輝度の変化があった画素31)の数が増加する。検出される画素31が分割領域30a、30bの全域に亘って増えると、判定手段23によりカウントするブロック32の数が増加する。このとき、このカウントするブロック32の数が4つ以上であれば、判定手段23は、水質が正常と判断する。   At this time, if the water quality of the raw water W is normal, the fish F swims in the relatively upstream divided areas 30a and 30b, and its movement becomes active, so that the fish F moves across the plurality of blocks 32. By the movement of the fish F, before and after the movement, the number of pixels 31 that are newly shielded from a state that has not been shielded until now, or the number of pixels 31 whose light shielding rate increases is increased. That is, the number of pixels 31 whose luminance detected by the image processing unit 21 has changed (pixels 31 whose luminance has exceeded the reference value of luminance change) increases. When the number of detected pixels 31 increases over the entire divided areas 30a and 30b, the number of blocks 32 counted by the determination unit 23 increases. At this time, if the number of blocks 32 to be counted is four or more, the determination means 23 determines that the water quality is normal.

なお、魚類Fの移動の前後において、今まで遮っていた状態から魚類Fの動きにより遮られなくなった画素31、あるいはその遮光率が減少することにより、輝度の変化量の基準値を越える輝度の変化が生じた画素31を、検出するようにしてもよい。   In addition, before and after the movement of the fish F, the pixel 31 that has been blocked by the movement of the fish F from the state where it was blocked or the shading rate thereof decreases, so that the luminance exceeding the reference value of the luminance change amount. The pixel 31 in which the change has occurred may be detected.

一方、分割領域30c、30dでは、魚類Fの動きによって遮光される画素31の輝度の変化量の基準値が低く設定されている。このため、行動が緩慢な魚類Fの移動量が小さくなったり、ほとんど移動せずに動かしたりしているヒレで画素31を遮光するような遮光率が小さい状態でも、輝度の変化した画素31を画像処理手段21により検出することができる。   On the other hand, in the divided areas 30c and 30d, the reference value of the amount of change in luminance of the pixel 31 that is shielded by the movement of the fish F is set low. For this reason, even if the amount of movement of the fish F whose behavior is slow is small, or even when the shading rate is small such that the pixel 31 is shielded by the fins that are moving with little movement, the pixel 31 whose luminance has changed is selected. It can be detected by the image processing means 21.

これにより、水槽11内の水質に異常がなくとも魚類Fの動きが、時刻、環境などの要素で鈍くなった場合であっても、動きの鈍くなった魚類Fの行動を感度良く検出することができる。   Thereby, even if there is no abnormality in the water quality in the aquarium 11, even if the movement of the fish F becomes dull due to factors such as time and environment, the behavior of the fish F that has dull movement is detected with high sensitivity. Can do.

さらに、原水Wに異物や薬物などが混入した場合において、水質に異常が発生すれば、魚類Fは行動が緩慢となり、あるいは魚類Fが衰弱し、さらに水流19に押し流され下流側の分割領域30c、あるいは分割領域30dに移動すると、分割領域30eでは魚類Fの行動を検出しないので、魚類Fの行動を検出するブロック数が減少する。この減少したブロック数が4つ未満であれば、その数に応じて、判定手段23により、水質の異常と判定して、警報手段25が音、光などによる警報を発して、水質の異常を外部に知らせる。   Further, when foreign matter or drugs are mixed in the raw water W, if an abnormality occurs in the water quality, the fish F becomes sluggish, or the fish F becomes weak, and is further washed away by the water stream 19 and is divided into the downstream divided region 30c. Alternatively, when moving to the divided region 30d, since the behavior of the fish F is not detected in the divided region 30e, the number of blocks for detecting the behavior of the fish F decreases. If the reduced number of blocks is less than 4, the determination means 23 determines that the water quality is abnormal according to the number of blocks, and the alarm means 25 issues an alarm by sound, light, etc. Tell outside.

この発明の実施形態の水質監視装置の概略図Schematic of the water quality monitoring device of the embodiment of the present invention 同上の監視領域上の水流を示した説明図Explanatory drawing showing the water flow on the monitoring area 同上の監視領域上の複数に区分した分割領域を示した説明図Explanatory drawing which showed the divided area divided into multiple on the monitoring area same as the above 同上の検知回路の検知構成を示すブロック図Block diagram showing the detection configuration of the detection circuit 同上の監視領域をブロック化した状態を示す説明図Explanatory drawing which shows the state which blocked the monitoring area same as the above 同上の監視領域内のブロックを示した説明図Explanatory diagram showing blocks in the monitoring area 同上の照明装置を示す斜視図The perspective view which shows an illuminating device same as the above.

符号の説明Explanation of symbols

10 水質監視装置
11 水槽
12 監視カメラ
13 画像解析装置
14 表示モニタ
17 流入口
18 排出口
19 水流
20 監視領域
21 画像処理手段
22 記憶手段
23 判定手段
24 マイクロコンピュータ
25 警報手段
30 分割領域
31 画素
32 ブロック
35 照明装置
36 光源
37 表示装置
F 魚類
DESCRIPTION OF SYMBOLS 10 Water quality monitoring apparatus 11 Water tank 12 Monitoring camera 13 Image analysis apparatus 14 Display monitor 17 Inlet 18 Outlet 19 Water flow 20 Monitoring area 21 Image processing means 22 Storage means 23 Determination means 24 Microcomputer 25 Alarm means 30 Division area 31 Pixel 32 Block 35 Illumination device 36 Light source 37 Display device F Fish

Claims (5)

水の流入口(17)とその水の排出口(18)を備えた水槽(11)と、その水槽(11)内に飼育した走流性を有する魚類(F)の画像を取得する監視カメラ(12)と、前記監視カメラ(12)で取得された画像を処理して画像信号を取得しその画像信号に基づいて前記魚類(F)の行動による輝度の変化を検出する画像処理手段(21)とを備え、前記画像処理手段(21)が検出した前記輝度の変化量の大小に基づいて前記水槽(11)内の水質の良否を判定する判定手段(23)を備えた水質監視装置において、
前記監視カメラ(12)が画像を取得する水槽(11)内の監視領域(20)を、前記流入口(17)から前記排出口(18)に至る水流(19)に沿って複数の分割領域(30;30a、30b、30c、30d・・・)に区分し、前記水質の良否を判定する際の輝度の変化量の基準値を、前記水流(19)の下流側の前記分割領域が上流側の前記分割領域よりも低くなるようにしたことを特徴とする水質監視装置。
Surveillance camera for acquiring images of a water tank (11) having a water inflow port (17) and a water discharge port (18), and a fish (F) having a running ability bred in the water tank (11) (12) and image processing means (21) for processing the image acquired by the monitoring camera (12) to acquire an image signal and detecting a change in luminance due to the behavior of the fish (F) based on the image signal ), And a water quality monitoring device provided with a judgment means (23) for judging the quality of the water in the aquarium (11) based on the magnitude of the change in luminance detected by the image processing means (21) ,
A monitoring area (20) in the water tank (11) from which the monitoring camera (12) acquires an image is divided into a plurality of divided areas along the water flow (19) from the inlet (17) to the outlet (18). (30; 30a, 30b, 30c, 30d...), And the reference value of the amount of change in brightness when determining the quality of the water quality is determined based on whether the divided region on the downstream side of the water flow (19) is upstream. A water quality monitoring apparatus characterized by being lower than the divided area on the side.
前記輝度の変化量の基準値は、前記分割領域(30)ごとに設定できるようにしたことを特徴とする請求項1に記載の水質監視装置。   The water quality monitoring apparatus according to claim 1, wherein the reference value of the amount of change in luminance can be set for each of the divided regions (30). 前記流入口(17)は前記水槽(11)の側壁に設けられ、前記排出口(18)は前記水槽(11)の中央底部に設けられ、前記水槽(11)内に流入した水は、前記水槽(11)の側壁に近い部分から側壁から離れた中央部に向かって旋回するように流れを形成することを特徴とする請求項1または2に記載の水質監視装置。   The inlet (17) is provided on the side wall of the water tank (11), the outlet (18) is provided at the center bottom of the water tank (11), and the water flowing into the water tank (11) The water quality monitoring device according to claim 1 or 2, wherein the flow is formed so as to swirl from a portion close to the side wall of the water tank (11) toward a central portion away from the side wall. 前記各分割領域(30)は複数のブロック(32)によって区画されており、前記各ブロック(32)内に複数の画素(31)が配置されており、前記画像処理手段(21)による輝度の変化の検出は、前記基準値を超える輝度の変化があった画素(31)を検出するものであり、前記判定手段(23)は、前記基準値を超える輝度の変化量のあった画素(31)を少なくとも一つ含むブロック(32)の数をカウントしそのカウントしたブロック(32)の数が設定数よりも少ないか否かに基づいて水質の良否を判定することを特徴とする請求項1〜3のいずれかに記載の水質監視装置。   Each of the divided regions (30) is partitioned by a plurality of blocks (32), and a plurality of pixels (31) are arranged in each of the blocks (32). The luminance of the image processing means (21) is increased. The change is detected by detecting a pixel (31) having a luminance change exceeding the reference value, and the determining means (23) is a pixel (31) having a luminance change amount exceeding the reference value. The number of blocks (32) including at least one) is counted, and the quality of the water is determined based on whether the counted number of blocks (32) is less than a set number. The water quality monitoring apparatus in any one of -3. 前記水槽(11)内の監視領域(20)内に照明装置(35)を備え、その照明装置(35)は前記判定手段(23)による水質の良否の判定結果を表示する機能を有することを特徴とする請求項1〜4のいずれかに記載の水質監視装置。   An illuminating device (35) is provided in the monitoring area (20) in the water tank (11), and the illuminating device (35) has a function of displaying a determination result of quality of water by the determining means (23). The water quality monitoring device according to any one of claims 1 to 4, wherein
JP2007242262A 2007-09-19 2007-09-19 Water quality monitoring device Pending JP2009074840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007242262A JP2009074840A (en) 2007-09-19 2007-09-19 Water quality monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007242262A JP2009074840A (en) 2007-09-19 2007-09-19 Water quality monitoring device

Publications (1)

Publication Number Publication Date
JP2009074840A true JP2009074840A (en) 2009-04-09

Family

ID=40609975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007242262A Pending JP2009074840A (en) 2007-09-19 2007-09-19 Water quality monitoring device

Country Status (1)

Country Link
JP (1) JP2009074840A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841187A (en) * 2012-09-11 2012-12-26 深圳市开天源自动化工程有限公司 System and method for early warning of water pollution based on fish multi-sample statistics
JP2013217680A (en) * 2012-04-05 2013-10-24 Kankyo Denshi Kk Automatic water quality monitoring device
CN105675508A (en) * 2013-04-12 2016-06-15 蔡留凤 Water environment monitoring system adopting image vision processing technology
CN105675509A (en) * 2013-04-12 2016-06-15 蔡留凤 Water environment monitoring system based on image visual processing technique
CN105865583A (en) * 2013-04-12 2016-08-17 蔡留凤 Image vision processing technology based water environment monitoring system with function of water level measurement
JP6051368B1 (en) * 2015-07-23 2016-12-27 株式会社アニマックス Method and apparatus for monitoring acute toxin using small fish
US9539469B2 (en) 2014-01-28 2017-01-10 Samsung Electronics Co., Ltd. Swimming race system, swimming race method, method of managing water quality, and display apparatus
CN106338590A (en) * 2016-09-22 2017-01-18 首都师范大学 Water quality monitoring method based on computer vision monitoring of vital signs of fins
CN107372160A (en) * 2017-08-14 2017-11-24 苏州凸现信息科技有限公司 A kind of intelligent cultural method and its system based on unmanned plane
JP2017207323A (en) * 2016-05-17 2017-11-24 三菱電機株式会社 Image processing type water quality monitoring device
CN109574237A (en) * 2019-01-17 2019-04-05 清华苏州环境创新研究院 A kind of devices, systems, and methods for long term monitoring stain disease comprehensive ecological toxicity up to standard
CN109798876A (en) * 2019-01-14 2019-05-24 浙江卡乐科技有限公司 A kind of visual detection device of combination AR technology
CN112834719A (en) * 2021-02-05 2021-05-25 中国煤炭地质总局水文地质局 A water quality testing device for ecological environment protection
KR102364073B1 (en) * 2020-12-17 2022-02-17 부경대학교산학협력단 Lighting device of water tank of fish farming
CN114324788A (en) * 2020-09-27 2022-04-12 江苏小鱼环境科技有限公司 Reclaimed water hazard risk on-line monitoring and evaluating equipment
CN115676935A (en) * 2023-01-03 2023-02-03 南京博知源环境科技有限公司 River channel purification treatment method based on nano water treatment technology

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217680A (en) * 2012-04-05 2013-10-24 Kankyo Denshi Kk Automatic water quality monitoring device
CN102841187A (en) * 2012-09-11 2012-12-26 深圳市开天源自动化工程有限公司 System and method for early warning of water pollution based on fish multi-sample statistics
CN105675508A (en) * 2013-04-12 2016-06-15 蔡留凤 Water environment monitoring system adopting image vision processing technology
CN105675509A (en) * 2013-04-12 2016-06-15 蔡留凤 Water environment monitoring system based on image visual processing technique
CN105865583A (en) * 2013-04-12 2016-08-17 蔡留凤 Image vision processing technology based water environment monitoring system with function of water level measurement
CN105891125A (en) * 2013-04-12 2016-08-24 蔡留凤 Water environment monitoring system based on image visual processing technology
CN105910998A (en) * 2013-04-12 2016-08-31 蔡留凤 Water environment monitoring system by adoption of image vision processing technology
CN105865583B (en) * 2013-04-12 2019-02-01 邯郸锦绣天成环保科技有限公司 Based on image vision processing technique and can level measuring monitoring water environment system
CN105675509B (en) * 2013-04-12 2018-07-20 山东国立环境检测科技股份有限公司 Monitoring water environment system based on image vision treatment technology
US9539469B2 (en) 2014-01-28 2017-01-10 Samsung Electronics Co., Ltd. Swimming race system, swimming race method, method of managing water quality, and display apparatus
WO2017013795A1 (en) * 2015-07-23 2017-01-26 株式会社アニマックス Method and device for monitoring acute toxin using small fish
JP6051368B1 (en) * 2015-07-23 2016-12-27 株式会社アニマックス Method and apparatus for monitoring acute toxin using small fish
JP2017207323A (en) * 2016-05-17 2017-11-24 三菱電機株式会社 Image processing type water quality monitoring device
CN106338590A (en) * 2016-09-22 2017-01-18 首都师范大学 Water quality monitoring method based on computer vision monitoring of vital signs of fins
CN107372160A (en) * 2017-08-14 2017-11-24 苏州凸现信息科技有限公司 A kind of intelligent cultural method and its system based on unmanned plane
CN109798876A (en) * 2019-01-14 2019-05-24 浙江卡乐科技有限公司 A kind of visual detection device of combination AR technology
CN109574237A (en) * 2019-01-17 2019-04-05 清华苏州环境创新研究院 A kind of devices, systems, and methods for long term monitoring stain disease comprehensive ecological toxicity up to standard
CN109574237B (en) * 2019-01-17 2024-03-22 清华苏州环境创新研究院 Device, system and method for long-term monitoring of comprehensive ecological toxicity of standard-reaching sewage and wastewater
CN114324788A (en) * 2020-09-27 2022-04-12 江苏小鱼环境科技有限公司 Reclaimed water hazard risk on-line monitoring and evaluating equipment
KR102364073B1 (en) * 2020-12-17 2022-02-17 부경대학교산학협력단 Lighting device of water tank of fish farming
CN112834719A (en) * 2021-02-05 2021-05-25 中国煤炭地质总局水文地质局 A water quality testing device for ecological environment protection
CN115676935A (en) * 2023-01-03 2023-02-03 南京博知源环境科技有限公司 River channel purification treatment method based on nano water treatment technology
CN115676935B (en) * 2023-01-03 2023-04-07 南京博知源环境科技有限公司 River channel purification treatment method based on nano water treatment technology

Similar Documents

Publication Publication Date Title
JP2009074840A (en) Water quality monitoring device
JP4712908B1 (en) Water quality automatic monitoring device and low concentration toxicity detection method
EP2178056B1 (en) Smoke detecting apparatus
US10181249B2 (en) Systems, methods and computer program products for detecting a presence of an object in a body of water
CN102841187B (en) System and method for early warning of water pollution based on fish multi-sample statistics
KR970062690A (en) Water quality monitoring device using aquatic organisms
KR102066290B1 (en) Image recognition apparatus and method thereof
CN111366700A (en) Blocking type multi-module water quality biological detection equipment and method
WO2008093344A1 (en) System for detecting particles in a dairy fluid such as milk
JP2002257815A (en) Apparatus for detecting water quality using fishes
JP2003139764A (en) Water quality detector using fish
CN106097386A (en) A kind of appliance computer image processing method
JP6051368B1 (en) Method and apparatus for monitoring acute toxin using small fish
CN115006901A (en) Automatic control method and system for intelligent backwashing filter
KR101519975B1 (en) Water quality measuting apparatus and method using sensing the number of live fish in water
WO2004031763A1 (en) Water quality monitoring device using fishes
CN110565593B (en) Ecological water purification dam
CN107642159A (en) A kind of filter screen with fault detection system, sewage treatment well and detecting method
JP2007111638A (en) Membrane water purification system and membrane water purification method
JP2008298737A (en) Foreign-matter detection apparatus
JP3160730U (en) Fish tank
JPH09101300A (en) Water quality monitor
JP7306204B2 (en) Channel monitoring device and channel monitoring method
CN106803322B (en) A kind of anti-limited region dividing method
KR101395630B1 (en) Microorganism number detecting device at ballast water treatment system and microorganism detecting method using the same