WO2017013795A1 - Method and device for monitoring acute toxin using small fish - Google Patents

Method and device for monitoring acute toxin using small fish Download PDF

Info

Publication number
WO2017013795A1
WO2017013795A1 PCT/JP2015/071000 JP2015071000W WO2017013795A1 WO 2017013795 A1 WO2017013795 A1 WO 2017013795A1 JP 2015071000 W JP2015071000 W JP 2015071000W WO 2017013795 A1 WO2017013795 A1 WO 2017013795A1
Authority
WO
WIPO (PCT)
Prior art keywords
small fish
monitoring
detection blocks
acute
warning
Prior art date
Application number
PCT/JP2015/071000
Other languages
French (fr)
Japanese (ja)
Inventor
陸郎 横田
慎一 戸田
Original Assignee
株式会社アニマックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アニマックス filed Critical 株式会社アニマックス
Priority to SG11201709839UA priority Critical patent/SG11201709839UA/en
Priority to CN201590001536.3U priority patent/CN208366974U/en
Priority to PCT/JP2015/071000 priority patent/WO2017013795A1/en
Priority to JP2016541695A priority patent/JP6051368B1/en
Publication of WO2017013795A1 publication Critical patent/WO2017013795A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present invention relates to an acute poison monitoring method and a monitoring device for constantly supplying water from a water source to a water tank in which small fish are released and monitoring the small fish to warn of acute poison.
  • an inspection method using a chemical reagent or the like is generally used as a method for monitoring the water quality of a water source such as a river, a reservoir, or a dam.
  • a water source such as a river, a reservoir, or a dam.
  • harmful substances that can be detected with a reagent are limited and specialized knowledge is required for handling the reagent, there is a problem that it is difficult to monitor water quality on a daily basis by this method.
  • the method for monitoring acute toxin is to constantly supply water from a water source to a water tank from which a plurality of small fishes are released, preliminarily divide the entire horizontal surface of the water tank into a plurality of detection blocks smaller than a horizontal image of the small fish,
  • the entire horizontal surface of the aquarium is photographed every predetermined time by the camera device, the presence of small fish is determined for each of the detection blocks from the captured image of the aquarium, and the number of presence detection blocks whose presence is determined is accumulated as a monitoring history Then, referring to the monitoring history, an acute poison is warned when the number of presence detection blocks falls below a warning standard in a predetermined period.
  • the monitoring device for acute toxin includes a water tank in which water is constantly supplied from a monitored water source and a plurality of small fishes are released, and a plurality of detection blocks smaller than a horizontal image of the small fishes on the entire horizontal surface of the water tank.
  • the presence of a small fish is determined for each of the detection blocks from an operation unit that accepts an operation for classifying and setting, a camera device that photographs the water tank every predetermined time, and a captured image of the water tank.
  • the predetermined period is 96 hours, and when the number of presence detection blocks decreases to half or less during the predetermined period, an acute poison may be warned.
  • the acute poison alarm is a clear signal indicating that there is an acute poison of about half the lethal concentration in 96 hours in the aquarium water.
  • the detection block is smaller than the horizontal image of small fish, the same small fish is judged to exist at the same time by multiple detection blocks, there is no oversight of small fish, and there is a detection error for the number of individuals. It can be suppressed.
  • FIG. 1 It is a block diagram which shows the basic composition of the monitoring apparatus of acute poison made into an example of embodiment. It is a whole perspective view which shows the specific example of the said monitoring apparatus.
  • (A) is a perspective view which shows the specific example of the water tank which comprises the said monitoring apparatus, (b), (c) is a top view explaining all the basic operations of a water supply means.
  • (A) is a top view explaining the process of dividing and setting the horizontal surface of an aquarium into a some detection block
  • (b) (c) is a top view which shows the specific determination example of presence of the small fish in a detection block. It is.
  • (A) is an example of the photographed image of an aquarium
  • (b) is a top view which shows an example of the determination result which determined presence of small fish from the captured image.
  • (A) is a graph of the number of individuals normalized by the warning standard of acute poison
  • (b) is a graph of the number of individuals normalized by the warning standard of acute poison
  • (c) is standardized by the warning standard of sudden decrease in activity amount
  • (D) is a graph of activity amounts normalized by the warning criteria for sudden increase in activity amounts.
  • FIG. 1 shows an acute toxin monitoring apparatus as an example of the embodiment.
  • This monitoring device monitors the quality of water, particularly acute poisons, such as rivers, reservoirs, dams, etc., using a bioassay that uses small fish. ) Is assumed. The medaka grows to about 2.5 centimeters long in the first year of life, but this monitoring device uses about 10 to 12 such medaka, and the replacement of the dead medaka is 96 hours after the death. After that has passed.
  • the monitoring device 10 divides a water tank 11 that is constantly supplied with water from a water source and releases a plurality of small fish, and a plurality of detection blocks smaller than the horizontal image of the small fish over the entire horizontal surface of the water tank 11.
  • the presence of a small fish is determined for each of the detection blocks from the operation unit 12 that receives the setting operation, the camera device 13 that photographs the water tank 11 every predetermined time, and the captured image of the camera device 13.
  • a monitoring recording unit 14 for accumulating the number of presence detection blocks as a monitoring history, an alarm unit 15 for alarming acute poison when the number of presence detection blocks falls below an alarm standard for a predetermined period with reference to the monitoring history, and monitoring And a display unit 16 for displaying the history.
  • the monitoring device 10 further includes a water supply means 17 for supplying water taken from a water source to the water tank 11 at a constant rate per hour, an automatic feeding device (not shown) for periodically feeding the water tank 11, and an LED for illuminating the water tank 11.
  • a lamp (not shown) is provided.
  • the aquarium 11 is thin with a size of 20 x 30 cm square to 25 to 35 cm square and 4 cm to 5 cm deep, it can maintain 7 to 15 small fish, and the entire horizontal plane can be maintained. It is also easy to photograph with the camera device 13 from above.
  • the operation unit 12 can be configured with, for example, a touch panel, a keyboard, or the like.
  • the detection block classification information and other initial setting information may be read from a USB memory, a memory card, a network, or the like.
  • the camera device 13 may be a general device using a CMOS sensor or a CCD sensor.
  • the photographed image may be color or monochrome. What is necessary is just to comprise the monitoring recording part 14 using computer apparatuses, such as a personal computer, for example.
  • the alarm unit 15 is for notifying the staff of the detection of acute poison.
  • the alarm unit 15 may be configured to sound an alarm sound by a buzzer, a siren or the like, or may be configured to display an alarm by a patrol lamp or the like. Good. Or you may comprise so that it may transfer to an external apparatus.
  • the display unit 16 can be configured by a liquid crystal panel or a CRT.
  • the water supply means 17 can be constituted by an electric pump or an electromagnetic valve. Moreover, what is necessary is just to use what is generally marketed for an automatic feeding apparatus and an LED lamp.
  • FIG. 2 is a perspective view showing a specific example of the monitoring device.
  • the monitoring device 10 has a basic configuration in which a water tank 11 and a monitoring recording unit 14 are accommodated in a dark box 20 that can be opened and closed by front doors 20a, 20a, etc., and an alarm unit 15 made of a patrol lamp is provided on the upper surface of the dark box 20. More specifically, the monitoring recording unit 14 is accommodated in the upper stage of the dark box 20, the water tank 11 is accommodated in the middle stage, and the sample water tank 21, raw water supply pump, heat exchanger (not shown), etc. are accommodated in the lower stage. ing.
  • the camera device 13, the LED lamp, and the automatic feeding device (not shown) are arranged above the water tank 11. Furthermore, you may provide the fan apparatus etc.
  • the water tank 11 is formed integrally with a settling tank 11a constituting the water supply means 17, and a camera device 13 and an LED lamp are fixed downward on the outer wall surface of the settling tank 11a.
  • the monitoring recording unit 14 includes a numeric keypad constituting the operation unit 12 and a touch panel constituting the display unit 16 on the front surface of the casing.
  • the camera device 13, LED lamp, automatic feeding device, raw water supply pump, heat exchanger and the like are controlled by the monitoring recording unit 14.
  • the entire monitoring device 10 is housed in the dark box 20 and internally illuminated by the LED lamp in this way, only the aquarium 11 is illuminated and the other parts are kept dark, so that algae and phytoplankton are generated and propagated.
  • the effect of suppressing is obtained. This effect will be even better if the entire water tank 11 is formed of a low light reflective resin or the like. Since the LED lamp basically irradiates light in one direction, it is possible to illuminate only the aquarium 11, and the water temperature rise in the aquarium 11 due to the irradiation light is slight.
  • FIG. 3A is a perspective view showing a specific example of the water tank
  • FIGS. 3B and 3C are both plan views for explaining the basic operation of the water supply means.
  • the water tank 11 is integrated with the sedimentation tank 11a and the filth tank 11b.
  • the sedimentation tank 11a is a tank that removes precipitates and suspended matters from the water supply to the water tank 11 in advance
  • the filth tank 11b is a tank that moves and accumulates excrement of small fish to keep the water tank 11 clean.
  • the water tank 11 communicates with the sedimentation tank 11a through water supply ports 11c and 11c provided on one of two opposing side surfaces, and communicates with the filth tank 11b through a water outlet 11d provided on the other side.
  • the bottom surface of the water tank 11 is gently inclined downward from the water supply ports 11c and 11c toward the water discharge port 11d, and the excrement is sent to the filth tank 11b by the water flow from the water supply ports 11c and 11c toward the water discharge port 11d.
  • the water outlet 11d may be provided with a net or the like in order to prevent small fish from escaping.
  • the settling tank 11a is a four tank type, and a water injection port 11e is provided at the upper part of the first tank, and a high water surface overflow port 11f and a low water surface overflow port 11g are provided at the upper part of the fourth tank.
  • the first to fourth tanks are configured to communicate with adjacent tanks at the lower end or upper end of the partition wall.
  • the overflow ports 11f and 11g are connected to the water supply ports 11c and 11c of the water tank 11 by pipes, respectively.
  • a solenoid valve 11h is provided in a pipe connecting the low water surface overflow port 11g and the water supply port 11c.
  • the electromagnetic valve 11h When the electromagnetic valve 11h is closed, the sedimentation tank 11a discharges the water overflowing from the high water surface overflow port 11f from the water supply port 11c, thereby generating a unidirectional vortex in the water tank 11 as shown in FIG. be able to.
  • the electromagnetic valve 11h when the electromagnetic valve 11h is open, the water overflowed from the low water surface overflow port 11g can be discharged from the water supply port 11c, and a reverse vortex can be generated in the water tank 11 as shown in FIG. .
  • Soil can flow out only from the bottom half of the water tank 11 by only one-way vortex flow, but the sewage flows out from the entire bottom surface of the water tank 11 by appropriately switching the direction of the vortex flow in the water tank 11 by controlling the electromagnetic valve 11h.
  • the four corners of the water tank 11 are curved surfaces, and a vortex stabilizing column 11 i is erected at the center of the water tank 11. Therefore, a stable vortex is obtained and water does not stagnate in the water tank 11.
  • a dead fish collecting net 11j is stretched between the eddy current stabilizing column 11i and the peripheral wall of the water tank 11. The dead fish collection net 11j has enough eyes to allow small fish to swim through.
  • the dead fish is carried by the eddy current and caught by being caught sideways by the dead fish collection net 11j.
  • the filth tank 11b is divided into a section close to the water tank 11 and a section far from the water tank 11 by a partition wall 11m, and drainage ports 11k and 11k are provided in the respective sections.
  • the heights of the drain ports 11k and 11k define the water surface of the water tank 11.
  • the height of the partition wall 11m is set slightly lower than the drain ports 11k and 11k.
  • a sample water sampling port 11 n communicating with the sample water tank 21 is provided on the bottom surface of the section far from the water tank 11.
  • a solenoid valve or the like is provided on the pipe connected to the sample water tank 21.
  • the monitoring method for acute poisoning by the monitoring device 10 is such that a water tank 11 in which a plurality of small fishes are released is constantly supplied from a water source, and the entire horizontal surface of the water tank 11 is divided into a plurality of detection blocks smaller than the horizontal image of the small fishes in advance. Then, the entire horizontal plane of the aquarium 11 is photographed by the camera device 13 every predetermined time, and the presence detection block in which the existence is determined by determining the presence of small fish for each of the detection blocks from the captured image of the aquarium 11. The number is accumulated as a monitoring history, and the monitoring history is referred to, and when the number of presence detection blocks falls below an alarm standard for a predetermined period, an acute poison is alarmed.
  • the half-lethal concentration is the concentration at which half of the fish die as an effect on the fish when exposed to a chemical substance for 96 hours. Therefore, as a preferred specific example, if the predetermined period is 96 hours, and the acute poison alarm is configured to alarm when the number of presence detection blocks decreases to half or less during the predetermined period, the acute poison alarm It is a clear signal indicating that there is an acute toxin of about half-lethal concentration in 96 hours. If small fish are 2 to 3 centimeters in length, and each detection block has the same size as two or three or two to four adjacent detection blocks, the size of each small fish can be determined simultaneously.
  • Whether or not small fish have decreased to half or less in 96 hours is determined by, for example, using 50% of the 96-hour moving average of the number of individuals as an alarm standard for acute poisoning and comparing the current number of individuals with the alarm standard Run with. As a modification, 50% of the number of individuals 96 hours before the present time may be used as an alarm standard for acute poisoning, and the current number of individuals may be compared with the alarm standard.
  • the step of dividing and setting the horizontal plane of the water tank 11 into a plurality of detection blocks is executed by the monitoring recording unit 14 when a predetermined operation is received by the operation unit 12.
  • a predetermined operation is received by the operation unit 12.
  • the shooting direction and magnification of the camera device 13 are manually adjusted so that the shooting range of the camera device 13 coincides with the entire horizontal surface of the water tank 11, and a predetermined operation is performed with the operation unit 12 while viewing the captured image of the water tank 11.
  • an exclusion block NB to be excluded in the detection process is arbitrarily selected and set.
  • FIG. 4 (a) is a plan view for explaining a process of setting the horizontal plane of the aquarium into a plurality of detection blocks.
  • the detection block B the shooting range of the camera device 13 is divided into 24 ⁇ 32 blocks. If the shooting direction and magnification of the camera device 13 are adjusted so that the shooting range of the camera device 13 coincides with the entire horizontal surface of the water tank 11, the entire horizontal surface of the water tank 11 is divided into a plurality of detection blocks B as shown in the figure.
  • the exclusion block NB By selecting the four corners of the water tank 11, the part of the eddy current stabilizing column 11i, and the part of the dead fish collection net 11j as the exclusion block NB, it becomes possible to make only the living small fishes the target of existence determination.
  • the detection block B is approximately 1 cm square when the shooting range of the camera device 13 is adjusted to coincide with the entire horizontal surface of the water tank 11.
  • small fish since small fish is assumed to be 2.5 cm or more in length, one small fish will be detected simultaneously by 2 to 4 detection blocks B, and detection of small fish will be suppressed. It is done.
  • the step of photographing the horizontal plane of the water tank 11 with the camera device 13 every predetermined time may be executed, for example, every 0.2 to 2 seconds.
  • each of the detection blocks B is composed of 5 ⁇ 5 detection points S, and when any object is photographed at 13 or more detection points S among them, the object is a small fish. It is good to judge its existence by considering it.
  • FIGS. 4B and 4C show specific determination examples. In the case of FIG.
  • FIG. 4B a part of the small fish F is photographed at 14 detection points S out of 5 ⁇ 5 detection points S constituting the detection block B. Since this satisfies the condition of the small fish, the presence of the small fish is determined for this detection block B.
  • the floating substance U is photographed at 8 detection points S out of 5 ⁇ 5 detection points S constituting the detection block B. Since this does not satisfy the conditions for the small fish, the presence of the small fish is not determined for this detection block B.
  • the number of detection points S constituting the detection block B described here and the conditions for estimating small fishes are merely examples, and are not limited thereto.
  • 5A and 5B show an example of a captured image of an aquarium and an example of a determination result obtained by determining the presence of small fish from the captured image.
  • the exclusion block NB is indicated by a white frame
  • the small fish presence detection block EB is indicated by a hatched frame.
  • the dead fish DF caught on the dead fish collection net 11j is automatically excluded from the detection target by the exclusion block NB. Since there are 11 small fish F living and the number of presence detection blocks is 37, the number of presence detection blocks per animal is about 3.4. Even if the number of small fish F is the same, the number of presence detection blocks should vary within a certain range for each captured image, and therefore a short-time moving average value is calculated and used as the number of presence detection blocks.
  • a horizontal plane of the aquarium 11 is photographed every 0.5 seconds, the presence of small fish is determined for each detection block B from the photographed image, and a one-minute moving average value of the presence detection block EB is calculated. Then, the value is adopted as the current number of presence detection blocks.
  • the number of presence detection blocks is not limited to the 1-minute moving average value of the presence detection block EB, and may be a 30-second moving average value or a 3-minute moving average value, for example. What is necessary is just to accumulate
  • the monitoring recording unit 14 and the alarm unit 15 execute a process of alarming acute poisoning when the number of presence detection blocks falls below the alarm standard in a predetermined period.
  • the present number of presence detection blocks is calculated as a one-minute moving average, and at the same time, a 96-hour moving average value of the number of presence detection blocks is calculated, and 50% of the 96-hour moving average value is acute.
  • an acute poison alarm may be issued when the number of presence detection blocks falls below the alarm standard.
  • the 96-hour moving average value changes slowly even in a situation where small fish F dies one after another.
  • the acute poison Even if 50% of the 96-hour moving average value is used as an alarm standard for acute poisoning, the acute poison There will be no inconveniences such as delayed alarms.
  • a predetermined time for example, 3 minutes
  • An acute poison alarm may be issued as a condition.
  • the number of presence detection blocks recovers the alarm standard before the predetermined time has elapsed, the acute poison alarm is stopped. In this way, false alarms can be suppressed.
  • FIG. 6 is a graph showing the results of monitoring the number of small fish individuals for 7 days (168 hours) by the above method.
  • the vertical axis of the graph G1 represents the number of presence detection blocks (number of individuals).
  • the initial number of small fish is 12.
  • the period of 7 days is an example, and water quality monitoring is generally performed continuously for a long period of time.
  • the solid line indicates the number of presence detection blocks.
  • the number of presence detection blocks gradually decreases with the death of small fish.
  • the broken line indicates the 96-hour moving average value of the number of presence detection blocks, which is gently decreased after the number of presence detection blocks.
  • the alternate long and short dash line indicates 50% of the 96-hour moving average, which is used as a criterion for determining the half death due to acute poisoning at each time point, that is, as an acute poison warning criterion.
  • an acute poison alarm is issued.
  • a portion of the water in the aquarium may be transferred to the sample water tank for storage.
  • the two-dot chain line indicates 75% of the 96-hour moving average value, which is used as a criterion for determining the death due to acute poisoning at each time point, that is, the acute poison warning standard.
  • an acute poisoning warning is issued.
  • preparations such as countermeasures for acute poisoning can be performed with a margin.
  • one animal died at 26 hours and an acute poison warning was issued when a total of 4 animals died at 111 hours.
  • an acute poison warning was issued when a total of 8 animals died at 140 hours.
  • FIG. 7 is a flowchart for explaining an example of the basic procedure of the method.
  • Steps 100 and 101 are steps in which the entire horizontal surface of the water tank is photographed every predetermined time (for example, 0.5 seconds) by the camera device.
  • Steps 102 and 103 are steps of determining the presence of small fish for each detection block from the captured image of the aquarium and accumulating the number of presence detection blocks as a monitoring history.
  • Steps 104 to 108 are steps for alarming acute poisoning with reference to the monitoring history when the number of presence detection blocks falls below the alarm criterion during a predetermined period.
  • step 104 a one-minute moving average value of the number of presence detection blocks is calculated. By treating this average value as the current number of presence detection blocks, the influence of detection variations is suppressed.
  • step 105 a 96-hour moving average value of the number of presence detection blocks is calculated. 50% of this average value is used as a warning standard for acute poisons, and 75% is used as a warning standard for acute poisons.
  • steps 106 and 107 the current number of presence detection blocks is compared with the alarm standard for acute poisons, and if the number of presence detection blocks is below this alarm standard, an acute poison alarm is issued. This basic procedure ends when the acute poison alarm is issued, but may return to step 100 without ending.
  • steps 108 and 109 the current number of presence detection blocks is compared with an acute poison warning standard, and if the number of presence detection blocks is below this warning standard, an acute poison warning is issued. After this, the process returns to step 100.
  • small fishes exhibit the property that their behavior changes in response to acute poisons, etc., so the activity amount of small fishes should be monitored to help predict acute poisons.
  • the activity of small fish tends to increase rapidly at the stage when acute poison begins to mix in water (frenzy behavior).
  • the concentration of acute toxin increases, the activity of small fish tends to decrease rapidly (slow behavior). Warning of such behavioral changes can be very helpful in predicting acute toxins.
  • the activity amount monitoring method is similar to the individual number monitoring method. That is, the monitoring method of the activity amount by the monitoring device 10 is that the entire horizontal surface of the aquarium 11 is photographed by the camera device 13 every predetermined time, and the small fish enters the block for each detection block B from the photographed image of the aquarium 11. It consists of the basic procedure of accumulating the number of intrusion detection blocks that have been determined to be entered as a monitoring history, and warning the activity abnormality when the number of intrusion detection blocks reaches the warning criteria by referring to the monitoring history. .
  • the detection block B can be used as it is for monitoring the number of individuals.
  • the process of determining the entry of small fishes into the block for each of the detection blocks B from the captured image of the aquarium 12 and accumulating the number of entry detection blocks determined to enter as a monitoring history is executed by the monitoring recording unit 14.
  • FIGS. 8A and 8B show an example of a captured image of an aquarium and an example of a determination result for determining the entry of a small fish from the captured image.
  • the small fish F in the current captured image is indicated by a solid line
  • the small fish F in the previous captured image is indicated by a dotted line. That is, the small fish that was at the position of the dotted line in the previous captured image has moved to the position of the solid line in the current captured image.
  • the entry detection block MB is a block in which the presence of small fish has not been determined in the previous time and the presence of small fish has been determined in this time, the position and dotted line of the small fish indicated by the solid line in FIG.
  • the entry detection block MB is shown by a hatched frame in FIG. 8B.
  • the number of intrusion detection blocks is proportional to the amount of activity of the entire small fish F if the time difference between the previous shooting and the current shooting is small, that is, if the moving distance of the small fish F is shorter (less than the total length of the small fish). It will be a thing. For example, if 0.5 second is adopted as the time difference, a good detection result can be obtained. For example, the one-minute moving average value of the number of entering blocks obtained in this way may be treated as the value of the number of entering blocks at the current time.
  • the process of warning the activity abnormality is executed by the monitoring recording unit 14 and the warning unit 15.
  • the moving average value of the activity amount for the predetermined period is obtained from the monitoring history, and the warning reference value for the sudden increase in activity amount and the warning reference value for the sudden decrease in activity amount are based on that value. It may be determined. Specifically, as described above, the moving average value for 1 minute is calculated as the current number of intrusion detection blocks, and at the same time, the 96 hour moving average value of the number of intrusion detection blocks is also calculated.
  • Warning criteria for sudden increase in volume 50% of the value as warning criteria for sudden decrease in activity amount, when the current number of detected blocks exceeds the warning criterion for sudden increase in activity amount, or falls below the warning criterion for sudden decrease in activity amount
  • a warning is given for abnormal activity.
  • time monitoring by the monitoring timer is started, and then the entry detection is made until a predetermined time (for example, 3 minutes) has passed.
  • An activity abnormality warning may be issued on the condition that the number of blocks has exceeded the warning criterion for sudden increase in activity amount or has remained below the warning criterion for sudden decrease in activity.
  • the monitoring device 10 refers to the monitoring history, estimates the strength of the acute poison based on the transition of the number of presence detection blocks and the number of detection blocks, and displays on the display unit 16. It is good to make it the structure to display.
  • Such a behavior change is not only abnormal in water quality but also occurs normally when a small fish is surprised by something, for example, when it makes a loud sound or the water tank shakes. It also occurs when water supply stops or the water temperature fluctuates. Therefore, a microphone that detects noise, an accelerometer that detects vibration, etc. may be provided, and when these sensors detect an abnormality or when water supply stops, an activity abnormality warning may not be issued for a certain period of time. .
  • FIG. 9 is a graph showing the results of monitoring the activity amount of small fish for 7 days (168 hours) by the activity amount monitoring method.
  • the vertical axis of the graph G2 is the number of entry detection blocks.
  • a solid line indicates the number of entrance detection blocks (activity amount). The number of intrusion detection blocks suddenly increases from the 15th hour after the start of monitoring, once returns to the original level, rapidly decreases at the 84th hour, and then returns to the original level. Although the number of intrusion detection blocks actually varies greatly, it is assumed here that it has changed in stages for simplicity.
  • the broken line indicates the 96-hour moving average value of the number of the entrance detection blocks, and gently decreases behind the number of the entrance detection blocks.
  • the alternate long and short dash line indicates 50% of the 96-hour moving average, which is used as a warning standard for sudden decrease in activity at each time.
  • an activity amount sudden decrease warning is issued.
  • the two-dot chain line shows 150% of the 96-hour moving average value, which is used as a warning standard for sudden increase in activity at each time.
  • an activity amount sudden increase warning is issued.
  • an activity amount sudden increase warning is issued at the 15th hour. This warning suggests the occurrence of water quality abnormalities such as acute poisoning.
  • a warning about sudden decrease in activity is issued at 84 hours. This warning suggests the seriousness of water quality abnormalities.
  • FIG. 10 is a flowchart for explaining an example of a basic procedure of the activity amount monitoring method.
  • Steps 200 and 201 are steps in which the entire horizontal surface of the water tank 11 is photographed every predetermined time (for example, 0.5 seconds) by the camera device.
  • Steps 202 and 203 are steps in which the entry of small fish is determined for each detection block from the captured image of the aquarium, and the number of entry detection blocks for which entry has been determined is accumulated as a monitoring history.
  • Steps 204 and 205 are steps for alarming acute poisoning when the number of presence detection blocks falls below an alarm criterion during a predetermined period with reference to the monitoring history. Specifically, in step 204, a one-minute moving average value of the number of entering detection blocks is calculated. By treating this average value as the current number of intrusion detection blocks, it is possible to suppress the influence of detection variations. In step 205, a 96-hour moving average value of the number of entry detection blocks is calculated. 50% of the average value is used as a warning criterion for sudden decrease in activity amount, and 150% is used as a warning criterion for sudden increase in activity amount.
  • the current number of detected entry blocks is compared with a warning criterion for sudden increase in activity amount, and if the number of detected approach blocks exceeds this warning criterion, an alert for sudden increase in activity amount is issued. After this, the process returns to step 200.
  • the current number of approaching detection blocks is compared with a warning criterion for a sudden decrease in activity amount. If the number of approaching detection blocks is below this warning criterion, an alert for sudden decrease in activity amount is issued. After this, the process returns to step 200.
  • the monitoring device 10 warns of acute poisoning or warns of abnormal activity of small fish, but during monitoring, the monitoring history may be displayed on the display unit in real time. A specific example of the display of the monitoring history will be described below.
  • FIG. 11 is a specific example of a monitor history display screen.
  • This display screen W1 includes a monitoring data display field S1 for the number of small fish individuals, activity amount, etc., a graph display field S2 for monitoring data such as the number of small fish individuals, activity amount, etc., and a captured image display field S3 for the aquarium 11. And are provided.
  • the monitoring data display column S1 the number of individuals, the amount of activity, etc. for each time may be read from the monitoring history and numerically displayed.
  • the time unit is not particularly limited, and it is preferable that every 2 hours, 1 hour, 10 minutes, 1 minute, or the like can be freely selected.
  • the display range of the table T1 may be moved by a scroll operation or the like.
  • the graph display field S2 may be a graph obtained by reading the number of individuals, the amount of activity, etc. for each time from the monitoring history. It is preferable that the period for displaying the graph can be freely selected from 7 days, 3 days, 1 day, and the like.
  • the display range of the graph may be freely moved by a scroll operation or the like.
  • the number of individuals and the amount of activity are displayed as independent graphs G3 and G4, respectively.
  • the transition of the number of individuals and activity amount of small fish can be grasped only by looking at graphs G3 and G4. It is convenient to accept a date designation operation or the like so that the daily report data of the corresponding date, that is, the monitoring history for that day can be called up in the monitoring data display column S1 and the graph display column S2.
  • FIG. 12 shows another example of the monitor history display screen.
  • This display screen W2 is different from the display screen W shown in FIG. 11 in the form of the graph displayed in the graph display field S2.
  • Other common elements are denoted by the same reference numerals, and description thereof is omitted.
  • the graph G5 here shows the number of individuals against the warning standard for acute poison, the number of individuals against the warning standard for acute poison, the amount of activity against the warning standard for sudden decrease in activity amount, and the warning standard for sudden increase in activity amount.
  • the alarm standard for acute poison, the warning standard for acute poison, the warning standard for sudden decrease in activity amount, and the warning standard for sudden increase in activity amount are placed in the same position. It is displayed superimposed on one screen.
  • the display mode is as shown in the graph G5, the corresponding alarm and warning are issued when each line falls below the standard (when the sudden increase in activity amount exceeds the standard), so the graph G5 was seen. It will be possible to predict when alarms and warnings will be issued.
  • FIGS. 13 (a) to (d) show the number of individuals with respect to the warning standard for acute poison, the number of individuals with respect to the warning standard for acute poison, the amount of activity with respect to the warning standard for sudden decrease in activity, and the amount of activity. This shows the amount of activity against the rapidly increasing warning standard as an independent graph.
  • the number of individuals is normalized by the acute toxic alarm criterion, that is, when the number of individuals is divided by the acute toxic alarm criterion at each time, the divided number of individuals becomes the acute toxic alarm criterion. Relative value to.
  • a graph G6 shown in FIG. 12A is obtained.
  • the number of individuals with respect to the warning standard for acute poisoning, the amount of activity with respect to the warning standard for sudden decrease in activity amount, and the amount of activity with respect to the criterion for rapid increase in activity amount are shown in FIG. ), (C), and graphs G7, G8, and G9 as shown in (d) are obtained.
  • graphs G6 to G9 shown in FIGS. 13 (a) to 13 (d) the warning standard for acute poison, the warning standard for acute poison, the warning standard for sudden decrease in activity amount, and the warning standard for sudden increase in activity amount are in the same position.
  • a graph G5 shown in FIG. 11 is obtained.
  • a normal monitoring result cannot be obtained if the aquarium water is more than a certain level. Therefore, during monitoring of small fish, the turbidity of water may be monitored, and the alarm and warning may be prohibited while the turbidity exceeds a predetermined standard.
  • Turbidity can be easily quantified from the average brightness of the entire captured image of the aquarium. For example, when the average brightness of the entire captured image of the aquarium is measured every predetermined time and accumulated in the monitoring history, and the current average brightness falls below the brightness standard calculated from the predetermined period with reference to the monitoring history In addition, it is possible to determine the high turbidity and prohibit the alarm and warning. This greatly reduces false alarms.
  • the turbidity data may be displayed numerically or graphically in the same manner as the monitoring data such as the number of small fish individuals and the amount of activity on the monitoring history display screen.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

Provided are a monitoring method and monitoring device whereby a warning of an acute toxin can be issued at an appropriate timing. A configuration is adopted whereby an entire horizontal surface of a water tank 11 is divided in advance into a plurality of sensing blocks B smaller than a horizontal image of a small fish, an image of the entire horizontal surface of the water tank 11 is captured for each predetermined time by a camera device 13, the presence of a small fish is determined for each of the sensing blocks B from the captured image of the water tank 11, the number of presence sensing blocks in which a small fish is determined to be present is accumulated as a monitoring history, and the monitoring history is referenced and a warning of an acute toxin is issued when the number of presence sensing blocks is below a warning standard for a predetermined time period.

Description

小型魚類を用いた急性毒の監視方法及び監視装置Method and apparatus for monitoring acute toxin using small fish
 本発明は、小型魚類が放たれた水槽に水源から常時給水しその小型魚類を監視して急性毒を警報する急性毒の監視方法及び監視装置に関する。 The present invention relates to an acute poison monitoring method and a monitoring device for constantly supplying water from a water source to a water tank in which small fish are released and monitoring the small fish to warn of acute poison.
 従来、河川、貯水池、ダム等の水源の水質を監視する方法としては化学試薬等を用いる検査法が一般的である。しかしながら試薬で検出できる有害物質は限られており、試薬の取扱い等に専門知識も必要とされるから、この方法で日常的に水質を監視するのは難しいという問題があった。 Conventionally, an inspection method using a chemical reagent or the like is generally used as a method for monitoring the water quality of a water source such as a river, a reservoir, or a dam. However, since harmful substances that can be detected with a reagent are limited and specialized knowledge is required for handling the reagent, there is a problem that it is difficult to monitor water quality on a daily basis by this method.
 これに対して近時、より簡単かつ多様な有害物質を検出可能な方法として、ヒメダカ等の小型魚類を用いるバイオアッセイが注目されている。バイオアッセイでは水源から採取した水を入れた水槽に放たれた魚類の状態を監視するものである。これに関連する先行技術の例として例えば次のような特許文献が挙げられる。
 特許文献1、2には、水槽に設定した監視範囲内の魚類の数を監視して監視数が変動したときアラーム信号を出力することが記載されている。
On the other hand, recently, bioassays using small fish such as medaka have attracted attention as a method that can detect various harmful substances more easily and more easily. Bioassays monitor the status of fish released into a tank containing water collected from a water source. The following patent documents are mentioned as an example of the prior art related to this, for example.
Patent Documents 1 and 2 describe that an alarm signal is output when the number of fish in a monitoring range set in an aquarium is monitored and the number of monitoring changes.
特開2002-257815号公報JP 2002-257815 A 特開2003-139764号公報JP 2003-139964 A
 しかしながら前記特許文献1、2に記載されている監視方法では、魚類の下流側への移動行動等によって水質に変動があったときにアラーム信号が出力されるが、水質がどの程度変動したときにアラーム信号が出力されるか必ずしも明確でないため、熟練した係員が水槽を現場確認する等して最終判断を下す必要があった。
 本発明はこのような問題に着目してなされたものであり、特に急性毒について適切なタイミングで警報が発報される監視方法及び監視装置を提供することを目的としている。
However, in the monitoring methods described in Patent Documents 1 and 2, an alarm signal is output when there is a change in water quality due to the movement behavior of fishes to the downstream side, etc., but how much the water quality changes. Since it is not always clear whether the alarm signal is output, it was necessary for a skilled staff to make a final judgment by checking the water tank on-site.
The present invention has been made paying attention to such a problem, and it is an object of the present invention to provide a monitoring method and a monitoring apparatus in which an alarm is issued at an appropriate timing particularly for acute poison.
 本発明による急性毒の監視方法は、複数の小型魚類が放たれた水槽に水源から常時給水し、前記水槽の水平面全体を小型魚類の水平像よりも小さな複数の検知ブロックに予め区分し、前記水槽の水平面全体をカメラ装置によって所定時間毎に撮影し、前記水槽の撮影画像から前記検知ブロックの各々について小型魚類の存在を判定して、存在が判定された存在検知ブロック数を監視履歴として蓄積し、前記監視履歴を参照して、存在検知ブロック数が所定期間に警報基準を下回ったときに、急性毒を警報することを特徴とする。 The method for monitoring acute toxin according to the present invention is to constantly supply water from a water source to a water tank from which a plurality of small fishes are released, preliminarily divide the entire horizontal surface of the water tank into a plurality of detection blocks smaller than a horizontal image of the small fish, The entire horizontal surface of the aquarium is photographed every predetermined time by the camera device, the presence of small fish is determined for each of the detection blocks from the captured image of the aquarium, and the number of presence detection blocks whose presence is determined is accumulated as a monitoring history Then, referring to the monitoring history, an acute poison is warned when the number of presence detection blocks falls below a warning standard in a predetermined period.
 また本発明による急性毒の監視装置は、監視対象の水源から常時給水され、かつ複数の小型魚類が放たれる水槽と、前記水槽の水平面全体に小型魚類の水平像よりも小さな複数の検知ブロックを区分設定する操作を受け付ける操作部と、所定時間毎に前記水槽を撮影するカメラ装置と、前記水槽の撮影画像から前記検知ブロックの各々について小型魚類の存在を判定して、存在が判定された存在検知ブロック数を監視履歴として蓄積する監視記録部と、前記監視履歴を参照して、存在検知ブロック数が所定期間に警報基準を下回ったときに、急性毒を警報する警報部とを備えたことを特徴とする。 The monitoring device for acute toxin according to the present invention includes a water tank in which water is constantly supplied from a monitored water source and a plurality of small fishes are released, and a plurality of detection blocks smaller than a horizontal image of the small fishes on the entire horizontal surface of the water tank. The presence of a small fish is determined for each of the detection blocks from an operation unit that accepts an operation for classifying and setting, a camera device that photographs the water tank every predetermined time, and a captured image of the water tank. A monitoring recording unit for accumulating the number of presence detection blocks as a monitoring history, and an alarm unit for alarming acute poison when the number of presence detection blocks falls below an alarm standard for a predetermined period with reference to the monitoring history It is characterized by that.
 本発明では、例えば前記所定期間は96時間とし、存在検知ブロック数が所定期間に半数以下に減少したときに、急性毒を警報するように構成できる。この場合、急性毒警報は、水槽の水に96時間における半数致死濃度程度の急性毒が存在することを示す明確なシグナルになる。また検知ブロックは小型魚類の水平像よりも小さな寸法にしているので、同一の小型魚類が複数の検知ブロックで同時に存在判定されることになり、小型魚類の見落としがなく、個体数について検知誤差が抑えられる。 In the present invention, for example, the predetermined period is 96 hours, and when the number of presence detection blocks decreases to half or less during the predetermined period, an acute poison may be warned. In this case, the acute poison alarm is a clear signal indicating that there is an acute poison of about half the lethal concentration in 96 hours in the aquarium water. In addition, since the detection block is smaller than the horizontal image of small fish, the same small fish is judged to exist at the same time by multiple detection blocks, there is no oversight of small fish, and there is a detection error for the number of individuals. It can be suppressed.
実施形態の一例とされる急性毒の監視装置の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the monitoring apparatus of acute poison made into an example of embodiment. 前記監視装置の具体例を示す全体斜視図である。It is a whole perspective view which shows the specific example of the said monitoring apparatus. (a)は前記監視装置を構成する水槽の具体例を示す斜視図、(b)、(c)はいずれも給水手段の基本作用を説明する平面図である。(A) is a perspective view which shows the specific example of the water tank which comprises the said monitoring apparatus, (b), (c) is a top view explaining all the basic operations of a water supply means. (a)は水槽の水平面を複数の検知ブロックに区分設定する工程を説明する平面図、(b)、(c)はいずれも検知ブロックにおける小型魚類の存在の具体的な判定例を示す平面図である。(A) is a top view explaining the process of dividing and setting the horizontal surface of an aquarium into a some detection block, (b), (c) is a top view which shows the specific determination example of presence of the small fish in a detection block. It is. (a)は水槽の撮影画像の一例、(b)はその撮影画像から小型魚類の存在を判定したその判定結果の一例を示す平面図である。(A) is an example of the photographed image of an aquarium, (b) is a top view which shows an example of the determination result which determined presence of small fish from the captured image. 小型魚類の個体数を監視した結果の一例を示すグラフである。It is a graph which shows an example of the result of having monitored the number of individuals of small fish. 小型魚類の個体数を監視する基本手順の一例を説明するフローチャートである。It is a flowchart explaining an example of the basic procedure which monitors the number of individuals of small fish. (a)は水槽の撮影画像の他例、(b)はその撮影画像から小型魚類の検知ブロックへの進入を判定したその判定結果の一例を示す平面図である。(A) is the other example of the picked-up image of an aquarium, (b) is a top view which shows an example of the determination result which determined the approach to the detection block of a small fish from the picked-up image. 小型魚類の活動量を監視した結果の一例を示すグラフである。It is a graph which shows an example of the result of having monitored the amount of activities of small fish. 小型魚類の活動量を監視する基本手順の一例を説明するフローチャートである。It is a flowchart explaining an example of the basic procedure which monitors the active mass of small fish. 監視履歴の表示画面の具体例である。It is a specific example of a display screen of a monitoring history. 監視履歴の表示画面の他例である。It is another example of the display screen of a monitoring history. (a)は急性毒の警報基準によって規格化された個体数のグラフ、(b)は急性毒の警告基準によって規格化された個体数のグラフ、(c)は活動量急減の警告基準によって規格化された活動量のグラフ、(d)は活動量急増の警告基準によって規格化された活動量のグラフである。(A) is a graph of the number of individuals normalized by the warning standard of acute poison, (b) is a graph of the number of individuals normalized by the warning standard of acute poison, and (c) is standardized by the warning standard of sudden decrease in activity amount. (D) is a graph of activity amounts normalized by the warning criteria for sudden increase in activity amounts.
 図1は実施形態の一例とされる急性毒の監視装置を示している。この監視装置は小型魚類を用いるバイオアッセイにより監視対象の水源、例えば、河川、貯水池、ダム等の水質、特に急性毒を監視するものであり、小型魚類としてはヒメダカ(体長2.5センチメートル以上)を想定している。ヒメダカは生後1年程で体長2.5センチメール程度まで成長するのであるが、この監視装置ではそのようなヒメダカを10~12匹程使用し、死亡したヒメダカの補充は、その死亡から96時間が経過した以降にする。 FIG. 1 shows an acute toxin monitoring apparatus as an example of the embodiment. This monitoring device monitors the quality of water, particularly acute poisons, such as rivers, reservoirs, dams, etc., using a bioassay that uses small fish. ) Is assumed. The medaka grows to about 2.5 centimeters long in the first year of life, but this monitoring device uses about 10 to 12 such medaka, and the replacement of the dead medaka is 96 hours after the death. After that has passed.
 まずこの監視装置の基本構成を説明する。
 監視装置10は水質監視に係る要素として、水源から常時給水され、かつ複数の小型魚類が放たれる水槽11と、水槽11の水平面全体に小型魚類の水平像よりも小さな複数の検知ブロックを区分設定する操作を受け付ける操作部12と、所定時間毎に水槽11を撮影するカメラ装置13と、カメラ装置13の撮影画像から検知ブロックの各々について小型魚類の存在を判定して、存在が判定された存在検知ブロック数を監視履歴として蓄積する監視記録部14と、監視履歴を参照して、存在検知ブロック数が所定期間に警報基準を下回ったときに、急性毒を警報する警報部15と、監視履歴を表示する表示部16とを備える。監視装置10は更に、水源から取水された水を水槽11に時間当たり一定量ずつ給水する給水手段17、水槽11に定期的に給餌する自動給餌装置(図示なし)や、水槽11を照明するLEDランプ(図示なし)等を備える。
First, the basic configuration of this monitoring apparatus will be described.
As an element related to water quality monitoring, the monitoring device 10 divides a water tank 11 that is constantly supplied with water from a water source and releases a plurality of small fish, and a plurality of detection blocks smaller than the horizontal image of the small fish over the entire horizontal surface of the water tank 11. The presence of a small fish is determined for each of the detection blocks from the operation unit 12 that receives the setting operation, the camera device 13 that photographs the water tank 11 every predetermined time, and the captured image of the camera device 13. A monitoring recording unit 14 for accumulating the number of presence detection blocks as a monitoring history, an alarm unit 15 for alarming acute poison when the number of presence detection blocks falls below an alarm standard for a predetermined period with reference to the monitoring history, and monitoring And a display unit 16 for displaying the history. The monitoring device 10 further includes a water supply means 17 for supplying water taken from a water source to the water tank 11 at a constant rate per hour, an automatic feeding device (not shown) for periodically feeding the water tank 11, and an LED for illuminating the water tank 11. A lamp (not shown) is provided.
 水槽11は、広さ20×30センチ四方~25~35センチ四方、深さ4センチ~5センチ程度の薄型のものとすれば、小型魚類を7匹~15匹程維持でき、その水平面全体を上方からカメラ装置13で撮影することも容易である。
 操作部12は例えばタッチパネル、キーボード等で構成できる。なおUSBメモリ、メモリカード、あるいはネットワーク等から検知ブロックの区分情報や他の初期設定情報を読み込むように構成してもよい。
 カメラ装置13は、CMOSセンサ又はCCDセンサを用いた一般的なものでよい。またその撮影画像はカラーであってもモノクロームであってもよい。
 監視記録部14は例えばパーソナルコンピュータ等のコンピュータ装置を用いて構成すればよい。そうすれば監視履歴を内蔵ハードディスク等に格納し、その格納したデータをUSBメモリ、メモリカード等に書き出すことも可能になる。また遠隔地の通信端末とネットワーク接続すれば、その通信端末等からリモート操作を受けたり、急性毒の検出を移報したりすることも可能になる。
 警報部15は急性毒の検出を係員に知らせるためのものであり、例えばブザー、サイレン等によって警報音を鳴動するように構成してもよいし、パトランプ等によって警報表示するように構成してもよい。あるいは外部機器に移報するように構成してもよい。
 表示部16は、液晶パネルあるいはCRTによって構成できる。タッチパネルを用いれば操作部12と兼用できて装置の小型化が図れる。
 給水手段17は電動ポンプあるいは電磁弁等によって構成できる。また自動給餌装置、LEDランプは一般に市販されているものを用いればよい。
If the aquarium 11 is thin with a size of 20 x 30 cm square to 25 to 35 cm square and 4 cm to 5 cm deep, it can maintain 7 to 15 small fish, and the entire horizontal plane can be maintained. It is also easy to photograph with the camera device 13 from above.
The operation unit 12 can be configured with, for example, a touch panel, a keyboard, or the like. Note that the detection block classification information and other initial setting information may be read from a USB memory, a memory card, a network, or the like.
The camera device 13 may be a general device using a CMOS sensor or a CCD sensor. The photographed image may be color or monochrome.
What is necessary is just to comprise the monitoring recording part 14 using computer apparatuses, such as a personal computer, for example. Then, it becomes possible to store the monitoring history in the built-in hard disk or the like and write the stored data to a USB memory, a memory card or the like. In addition, if a remote communication terminal is connected to the network, it is possible to receive a remote operation from the communication terminal or the like, or to transfer the detection of acute poison.
The alarm unit 15 is for notifying the staff of the detection of acute poison. For example, the alarm unit 15 may be configured to sound an alarm sound by a buzzer, a siren or the like, or may be configured to display an alarm by a patrol lamp or the like. Good. Or you may comprise so that it may transfer to an external apparatus.
The display unit 16 can be configured by a liquid crystal panel or a CRT. If a touch panel is used, it can be used as the operation unit 12 and the apparatus can be miniaturized.
The water supply means 17 can be constituted by an electric pump or an electromagnetic valve. Moreover, what is necessary is just to use what is generally marketed for an automatic feeding apparatus and an LED lamp.
 図2は前記監視装置の具体例を示す斜視図である。
 監視装置10は、前面扉20a、20a等によって開閉自在な暗箱20に水槽11、監視記録部14等を収容した基本構成とし、パトランプからなる警報部15を暗箱20の上面に設けている。詳細に説明すれば、暗箱20の上段に監視記録部14を収容し、中段に水槽11を収容し、下段にサンプル水タンク21や、原水供給ポンプ、熱交換器(図示なし)等を収容している。カメラ装置13、LEDランプ、自動給餌装置(図示なし)は水槽11の上方に配置している。更に、水温が高いときに水槽11の水面に吹き付けるファン装置等(図示なし)を設けてもよい。
 水槽11は給水手段17を構成する沈殿槽11aと一体に形成されており、この沈殿槽11aの外壁面にカメラ装置13、LEDランプが下向きに固定されている。監視記録部14は、筐体前面に操作部12を構成するテンキーと、表示部16を構成するタッチパネルを備えている。カメラ装置13、LEDランプ、自動給餌装置、原水供給ポンプ、熱交換器等は、監視記録部14によって制御される。
 このように監視装置10全体を暗箱20に収容してLEDランプによって内部照明する構成とすれば、水槽11のみを照明し他の部分を暗いまま保てるので、藻類や植物性プランクトンの発生、増殖を抑える効果が得られる。この効果は、水槽11全体を低光反射性の樹脂等で形成すれば一層優れたものになる。なおLEDランプは基本的に光を一方向に照射するので、水槽11のみを照明することが可能であり、しかも照射光による水槽11の水温上昇も僅かである。
FIG. 2 is a perspective view showing a specific example of the monitoring device.
The monitoring device 10 has a basic configuration in which a water tank 11 and a monitoring recording unit 14 are accommodated in a dark box 20 that can be opened and closed by front doors 20a, 20a, etc., and an alarm unit 15 made of a patrol lamp is provided on the upper surface of the dark box 20. More specifically, the monitoring recording unit 14 is accommodated in the upper stage of the dark box 20, the water tank 11 is accommodated in the middle stage, and the sample water tank 21, raw water supply pump, heat exchanger (not shown), etc. are accommodated in the lower stage. ing. The camera device 13, the LED lamp, and the automatic feeding device (not shown) are arranged above the water tank 11. Furthermore, you may provide the fan apparatus etc. (not shown) which spray on the water surface of the water tank 11 when water temperature is high.
The water tank 11 is formed integrally with a settling tank 11a constituting the water supply means 17, and a camera device 13 and an LED lamp are fixed downward on the outer wall surface of the settling tank 11a. The monitoring recording unit 14 includes a numeric keypad constituting the operation unit 12 and a touch panel constituting the display unit 16 on the front surface of the casing. The camera device 13, LED lamp, automatic feeding device, raw water supply pump, heat exchanger and the like are controlled by the monitoring recording unit 14.
If the entire monitoring device 10 is housed in the dark box 20 and internally illuminated by the LED lamp in this way, only the aquarium 11 is illuminated and the other parts are kept dark, so that algae and phytoplankton are generated and propagated. The effect of suppressing is obtained. This effect will be even better if the entire water tank 11 is formed of a low light reflective resin or the like. Since the LED lamp basically irradiates light in one direction, it is possible to illuminate only the aquarium 11, and the water temperature rise in the aquarium 11 due to the irradiation light is slight.
 図3(a)は水槽の具体例を示す斜視図、図3(b)、(c)はいずれも給水手段の基本作用を説明する平面図である。
 図3(a)に示すように、水槽11は沈殿槽11a及び汚物槽11bと一体化されている。沈殿槽11aは水槽11への給水から沈殿物及び浮遊物を予め除去する槽であり、汚物槽11bは水槽11を清潔に保つため小型魚類の排泄物を移動蓄積させる槽である。
 水槽11は対向する2側面の一方に設けられた給水口11c、11cを通じて沈殿槽11aに連通し、他方に設けられた出水口11dによって汚物槽11bに連通している。水槽11の底面は給水口11c、11cから出水口11dに向かって下方向に緩く傾斜しており、給水口11c、11cから出水口11dに向かう水流によって排泄物を汚物槽11bに送り出すように構成されている。なお出水口11dには小型魚類の脱出を防止するためにネット等を設けるとよい。
 沈殿槽11aは4槽式であり、第一の槽の上部に注水口11eが設けられ、第四の槽の上部には高水面オーバーフロー口11fと低水面オーバーフロー口11gとが設けられている。第一~第四の槽は隣の槽と隔壁の下端部または上端部で連通するように構成されている。オーバーフロー口11f、11gはそれぞれ配管によって水槽11の給水口11c、11cに接続されている。低水面オーバーフロー口11gと給水口11cとを接続する配管には電磁弁11hが設けられている。
 電磁弁11hが閉じているときには沈殿槽11aは高水面オーバーフロー口11fからオーバーフローした水を給水口11cから吐出させて、図3(b)に示すように水槽11内に一方方向の渦流を生じさせることができる。一方電磁弁11hが開いているときには低水面オーバーフロー口11gからオーバーフローした水を給水口11cから吐出させて、図3(c)に示すように水槽11内に逆方向の渦流を生じさせることができる。一方向の渦流だけでは水槽11の底面半分からしか汚物を流し出せないが、電磁弁11hの制御によって水槽11内の渦流の方向を適宜切り替えることで、水槽11の底面全体から汚物を流し出すことが可能になる。
 水槽11の四隅は曲面とし、水槽11の中央部には渦流安定柱11iを立設している。そのため安定した渦流が得られ、水槽11内で水が淀むこともない。更に渦流安定柱11iと水槽11の周壁との間に死魚捕集ネット11jが張られている。死魚捕集ネット11jは小型魚類が泳ぎ抜ける可能な程度の目を持たせる。死魚は渦流によって運ばれて死魚捕集ネット11jで横向きに引っかかり捕集される。
 汚物槽11bは隔壁11mによって水槽11に近い区画と遠い区画とに区分され、その区画のそれぞれに排水口11k、11kが設けられている。排水口11k、11kの高さは水槽11の水面を規定する。隔壁11mの高さは排水口11k、11kよりも若干低く設定する。水槽11から遠い区画の底面には、サンプル水タンク21に連通するサンプル水採取口11nが設けられている。サンプル水タンク21に繋がる配管には電磁弁等を設ける。サンプル水採取口11nから水槽11の水を採取する場合、隔壁11mがあるため水槽11の水面が下がりすぎるという問題が生じない。
FIG. 3A is a perspective view showing a specific example of the water tank, and FIGS. 3B and 3C are both plan views for explaining the basic operation of the water supply means.
As shown to Fig.3 (a), the water tank 11 is integrated with the sedimentation tank 11a and the filth tank 11b. The sedimentation tank 11a is a tank that removes precipitates and suspended matters from the water supply to the water tank 11 in advance, and the filth tank 11b is a tank that moves and accumulates excrement of small fish to keep the water tank 11 clean.
The water tank 11 communicates with the sedimentation tank 11a through water supply ports 11c and 11c provided on one of two opposing side surfaces, and communicates with the filth tank 11b through a water outlet 11d provided on the other side. The bottom surface of the water tank 11 is gently inclined downward from the water supply ports 11c and 11c toward the water discharge port 11d, and the excrement is sent to the filth tank 11b by the water flow from the water supply ports 11c and 11c toward the water discharge port 11d. Has been. The water outlet 11d may be provided with a net or the like in order to prevent small fish from escaping.
The settling tank 11a is a four tank type, and a water injection port 11e is provided at the upper part of the first tank, and a high water surface overflow port 11f and a low water surface overflow port 11g are provided at the upper part of the fourth tank. The first to fourth tanks are configured to communicate with adjacent tanks at the lower end or upper end of the partition wall. The overflow ports 11f and 11g are connected to the water supply ports 11c and 11c of the water tank 11 by pipes, respectively. A solenoid valve 11h is provided in a pipe connecting the low water surface overflow port 11g and the water supply port 11c.
When the electromagnetic valve 11h is closed, the sedimentation tank 11a discharges the water overflowing from the high water surface overflow port 11f from the water supply port 11c, thereby generating a unidirectional vortex in the water tank 11 as shown in FIG. be able to. On the other hand, when the electromagnetic valve 11h is open, the water overflowed from the low water surface overflow port 11g can be discharged from the water supply port 11c, and a reverse vortex can be generated in the water tank 11 as shown in FIG. . Soil can flow out only from the bottom half of the water tank 11 by only one-way vortex flow, but the sewage flows out from the entire bottom surface of the water tank 11 by appropriately switching the direction of the vortex flow in the water tank 11 by controlling the electromagnetic valve 11h. Is possible.
The four corners of the water tank 11 are curved surfaces, and a vortex stabilizing column 11 i is erected at the center of the water tank 11. Therefore, a stable vortex is obtained and water does not stagnate in the water tank 11. Furthermore, a dead fish collecting net 11j is stretched between the eddy current stabilizing column 11i and the peripheral wall of the water tank 11. The dead fish collection net 11j has enough eyes to allow small fish to swim through. The dead fish is carried by the eddy current and caught by being caught sideways by the dead fish collection net 11j.
The filth tank 11b is divided into a section close to the water tank 11 and a section far from the water tank 11 by a partition wall 11m, and drainage ports 11k and 11k are provided in the respective sections. The heights of the drain ports 11k and 11k define the water surface of the water tank 11. The height of the partition wall 11m is set slightly lower than the drain ports 11k and 11k. A sample water sampling port 11 n communicating with the sample water tank 21 is provided on the bottom surface of the section far from the water tank 11. A solenoid valve or the like is provided on the pipe connected to the sample water tank 21. When the water in the water tank 11 is collected from the sample water collection port 11n, there is no problem that the water surface of the water tank 11 is excessively lowered because of the partition wall 11m.
 次いで前記監視装置の基本作用を説明する。
 この監視装置10による急性毒の監視方法は、複数の小型魚類が放たれた水槽11に水源から常時給水し、水槽11の水平面全体を小型魚類の水平像よりも小さな複数の検知ブロックに予め区分し、水槽11の水平面全体をカメラ装置13によって水槽11を所定時間毎に撮影し、水槽11の撮影画像から検知ブロックの各々について小型魚類の存在を判定して、存在が判定された存在検知ブロック数を監視履歴として蓄積し、この監視履歴を参照して、存在検知ブロック数が所定期間に警報基準を下回ったときに、急性毒を警報するという手順からなる。
Next, the basic operation of the monitoring device will be described.
The monitoring method for acute poisoning by the monitoring device 10 is such that a water tank 11 in which a plurality of small fishes are released is constantly supplied from a water source, and the entire horizontal surface of the water tank 11 is divided into a plurality of detection blocks smaller than the horizontal image of the small fishes in advance. Then, the entire horizontal plane of the aquarium 11 is photographed by the camera device 13 every predetermined time, and the presence detection block in which the existence is determined by determining the presence of small fish for each of the detection blocks from the captured image of the aquarium 11. The number is accumulated as a monitoring history, and the monitoring history is referred to, and when the number of presence detection blocks falls below an alarm standard for a predetermined period, an acute poison is alarmed.
 例えばOECDテストガイドライン203に定められた魚類急性毒性試験の方法では、化学物質に96時間暴露した際の魚類に及ぼす影響として、魚類が半数死亡する濃度を半数致死濃度(LC50)としている。
 よって好適な具体例として、前記所定期間は96時間とし、存在検知ブロック数がその所定期間に半数以下に減少したときに、急性毒を警報するように構成すれば、この急性毒警報は、水槽の水に96時間における半数致死濃度程度の急性毒が存在することを示す明確なシグナルになる。また小型魚類はいずれも体長2~3センチのものとし、検知ブロックの各々は同一の小型魚類が2~3又は2~4の隣接した検知ブロックで同時に存在判定される広さとすれば、小型魚類の見落としがなく、個体数について検知誤差が抑えられる。
 小型魚類が96時間に半数以下に減少したか否かの判定は、例えば個体数の96時間移動平均値の50%を急性毒の警報基準として、現時点の個体数をその警報基準と比較する方法で実行する。なお変形例として、現時点から96時間前の個体数の50%を急性毒の警報基準として、現時点の個体数をその警報基準と比較してもよい。
For example, in the fish acute toxicity test method stipulated in the OECD test guideline 203, the half-lethal concentration (LC50) is the concentration at which half of the fish die as an effect on the fish when exposed to a chemical substance for 96 hours.
Therefore, as a preferred specific example, if the predetermined period is 96 hours, and the acute poison alarm is configured to alarm when the number of presence detection blocks decreases to half or less during the predetermined period, the acute poison alarm It is a clear signal indicating that there is an acute toxin of about half-lethal concentration in 96 hours. If small fish are 2 to 3 centimeters in length, and each detection block has the same size as two or three or two to four adjacent detection blocks, the size of each small fish can be determined simultaneously. There is no oversight, and detection error is suppressed for the number of individuals.
Whether or not small fish have decreased to half or less in 96 hours is determined by, for example, using 50% of the 96-hour moving average of the number of individuals as an alarm standard for acute poisoning and comparing the current number of individuals with the alarm standard Run with. As a modification, 50% of the number of individuals 96 hours before the present time may be used as an alarm standard for acute poisoning, and the current number of individuals may be compared with the alarm standard.
 水槽11の水平面を複数の検知ブロックに区分設定する工程は、操作部12で所定操作を受けたときに監視記録部14によって実行される。例えばカメラ装置13の撮影範囲が水槽11の水平面全体と一致するように、カメラ装置13の撮影方向、倍率等を手動調節し、水槽11の撮影画像を見ながら、操作部12で所定操作をすることによって、検知処理で除外扱いすべき除外ブロックNBを任意に選択設定する。 The step of dividing and setting the horizontal plane of the water tank 11 into a plurality of detection blocks is executed by the monitoring recording unit 14 when a predetermined operation is received by the operation unit 12. For example, the shooting direction and magnification of the camera device 13 are manually adjusted so that the shooting range of the camera device 13 coincides with the entire horizontal surface of the water tank 11, and a predetermined operation is performed with the operation unit 12 while viewing the captured image of the water tank 11. Thus, an exclusion block NB to be excluded in the detection process is arbitrarily selected and set.
 図4(a)は水槽の水平面を複数の検知ブロックに区分設定する工程を説明する平面図である。検知ブロックBとしてカメラ装置13の撮影範囲を24×32ブロックに区分している。カメラ装置13の撮影範囲が水槽11の水平面全体と一致するようにカメラ装置13の撮影方向、倍率等を調節すれば、図示のように、水槽11の水平面全体が複数の検知ブロックBに区分される。除外ブロックNBとして水槽11の四隅、渦流安定柱11iの部分、死魚捕集ネット11jの部分を選択することで、生存している小型魚類のみを存在判定の対象とすることが可能になる。すなわち渦流安定柱11i、死魚等を、小型魚類として誤判定するおそれがなくなる。なお水槽11が広さ24×32センチであれば、カメラ装置13の撮影範囲が水槽11の水平面全体と一致するように調節したとき、検知ブロックBは約1センチメール四方になる。これに対して小型魚類は体長2.5センチ以上を想定しているから、1匹の小型魚類が、2~4の検知ブロックBで同時に検知されることになり、小型魚類の検知漏れが抑えられる。 FIG. 4 (a) is a plan view for explaining a process of setting the horizontal plane of the aquarium into a plurality of detection blocks. As the detection block B, the shooting range of the camera device 13 is divided into 24 × 32 blocks. If the shooting direction and magnification of the camera device 13 are adjusted so that the shooting range of the camera device 13 coincides with the entire horizontal surface of the water tank 11, the entire horizontal surface of the water tank 11 is divided into a plurality of detection blocks B as shown in the figure. The By selecting the four corners of the water tank 11, the part of the eddy current stabilizing column 11i, and the part of the dead fish collection net 11j as the exclusion block NB, it becomes possible to make only the living small fishes the target of existence determination. That is, there is no possibility of erroneously determining the eddy current stabilizing column 11i, dead fish, etc. as small fish. If the water tank 11 is 24 × 32 cm wide, the detection block B is approximately 1 cm square when the shooting range of the camera device 13 is adjusted to coincide with the entire horizontal surface of the water tank 11. On the other hand, since small fish is assumed to be 2.5 cm or more in length, one small fish will be detected simultaneously by 2 to 4 detection blocks B, and detection of small fish will be suppressed. It is done.
 水槽11の水平面をカメラ装置13によって所定時間毎に撮影する工程は、例えば0.2~2秒毎に実行すればよい。 The step of photographing the horizontal plane of the water tank 11 with the camera device 13 every predetermined time may be executed, for example, every 0.2 to 2 seconds.
 水槽11の撮影画像から検知ブロックBの各々について小型魚類の存在を判定して、存在が判定された存在検知ブロック数を監視履歴として蓄積する工程は、監視記録部14によって実行される。ここでは一定以上の大きさのものを小型魚類とみなすことで、小さな浮遊物等を小型魚類であると誤判定することを防止することが望ましい。
 具体的には、例えば検知ブロックBの各々を5×5の検知点Sで構成し、その内の13以上の検知点Sで何らかの物体が同時に撮影されたとき、その物体を小型魚類であると見なしてその存在を判定するとよい。図4(b)、(c)にその具体的な判定例を示す。
 図4(b)の場合、検知ブロックBを構成する5×5の検知点Sの内、14の検知点Sで小型魚類Fの一部が撮影されている。これは前記小型魚類の条件を満たすから、この検知ブロックBについては小型魚類の存在が判定される。
 図4(c)の場合、検知ブロックBを構成する5×5の検知点Sの内、8の検知点Sで浮遊物Uが撮影されている。これは前記小型魚類の条件を満たさないから、この検知ブロックBについては小型魚類の存在は判定されない。なおここで説明した検知ブロックBを構成する検知点Sの数、小型魚類と推定する条件は一つの例示であって、これに限定されるわけではない。
 図5(a)、(b)に水槽の撮影画像の一例と、その撮影画像から小型魚類の存在を判定した判定結果の一例を示す。図5(b)において除外ブロックNBは白枠によって、小型魚類の存在検知ブロックEBはハッチングされた枠によって示している。
 死魚捕集ネット11jに引っかかった死魚DFは除外ブロックNBによって検知対象から自動的に除外される。生存している小型魚類Fは11匹であり、存在検知ブロック数は37個であるから、1匹当たりの存在検知ブロック数は約3.4ということになる。
 なお小型魚類Fの数が同一であっても、撮影画像毎に存在検知ブロック数は一定範囲でばらつくはずであるから、存在検知ブロック数としては短時間移動平均値を算出してそれを採用することが望ましい。具体的には、例えば水槽11の水平面を0.5秒毎に撮影し、その撮影画像から検知ブロックBの各々について小型魚類の存在を判定し、存在検知ブロックEBの1分間移動平均値を算出して、その値を現時点の存在検知ブロック数として採用する等である。なお存在検知ブロック数は、存在検知ブロックEBの1分間移動平均値に限定されず、例えば30秒間移動平均値としてもよく、3分間移動平均値としてもよい。
 このようにして求めた現時点での存在検知ブロック数を監視履歴として蓄積すればよい。
The process of determining the presence of small fish for each of the detection blocks B from the captured image of the aquarium 11 and accumulating the number of presence detection blocks determined to exist as a monitoring history is executed by the monitoring recording unit 14. Here, it is desirable to prevent a small suspended matter or the like from being erroneously determined as a small fish by regarding a fish of a certain size or more as a small fish.
Specifically, for example, each of the detection blocks B is composed of 5 × 5 detection points S, and when any object is photographed at 13 or more detection points S among them, the object is a small fish. It is good to judge its existence by considering it. FIGS. 4B and 4C show specific determination examples.
In the case of FIG. 4B, a part of the small fish F is photographed at 14 detection points S out of 5 × 5 detection points S constituting the detection block B. Since this satisfies the condition of the small fish, the presence of the small fish is determined for this detection block B.
In the case of FIG. 4C, the floating substance U is photographed at 8 detection points S out of 5 × 5 detection points S constituting the detection block B. Since this does not satisfy the conditions for the small fish, the presence of the small fish is not determined for this detection block B. It should be noted that the number of detection points S constituting the detection block B described here and the conditions for estimating small fishes are merely examples, and are not limited thereto.
FIGS. 5A and 5B show an example of a captured image of an aquarium and an example of a determination result obtained by determining the presence of small fish from the captured image. In FIG. 5B, the exclusion block NB is indicated by a white frame, and the small fish presence detection block EB is indicated by a hatched frame.
The dead fish DF caught on the dead fish collection net 11j is automatically excluded from the detection target by the exclusion block NB. Since there are 11 small fish F living and the number of presence detection blocks is 37, the number of presence detection blocks per animal is about 3.4.
Even if the number of small fish F is the same, the number of presence detection blocks should vary within a certain range for each captured image, and therefore a short-time moving average value is calculated and used as the number of presence detection blocks. It is desirable. Specifically, for example, a horizontal plane of the aquarium 11 is photographed every 0.5 seconds, the presence of small fish is determined for each detection block B from the photographed image, and a one-minute moving average value of the presence detection block EB is calculated. Then, the value is adopted as the current number of presence detection blocks. The number of presence detection blocks is not limited to the 1-minute moving average value of the presence detection block EB, and may be a 30-second moving average value or a 3-minute moving average value, for example.
What is necessary is just to accumulate | store the present number of presence detection blocks calculated | required in this way as a monitoring history.
 監視履歴を参照して、存在検知ブロック数が所定期間に警報基準を下回ったときに急性毒を警報する工程は、監視記録部14と警報部15とによって実行される。
 具体的な処理としては、現時点の存在検知ブロック数を1分間移動平均として算出するのと同時に、存在検知ブロック数の96時間移動平均値を算出し、この96時間移動平均値の50%を急性毒の警報基準として、存在検知ブロック数がその警報基準を下回ったときに、急性毒警報を発報させてもよい。96時間移動平均値は、小型魚類Fが次々と死亡していくような状況でもゆっくりと変化するので、その96時間移動平均値の50%をその時々の急性毒の警報基準としても、急性毒警報が遅延する等の不具合は生じない。また存在検知ブロック数が警報基準を下回った時点で監視タイマーによる計時を開始し、その後所定時間(例えば3分間)が経過するまで、存在検知ブロック数が警報基準を下回った状態が継続したことを条件として急性毒警報を発報させてもよい。もちろんその所定時間が経過する前に存在検知ブロック数が警報基準を回復したのならば急性毒警報の発報は中止する。こうすれば誤報を抑えることができる。
With reference to the monitoring history, the monitoring recording unit 14 and the alarm unit 15 execute a process of alarming acute poisoning when the number of presence detection blocks falls below the alarm standard in a predetermined period.
Specifically, the present number of presence detection blocks is calculated as a one-minute moving average, and at the same time, a 96-hour moving average value of the number of presence detection blocks is calculated, and 50% of the 96-hour moving average value is acute. As a poison alarm standard, an acute poison alarm may be issued when the number of presence detection blocks falls below the alarm standard. The 96-hour moving average value changes slowly even in a situation where small fish F dies one after another. Therefore, even if 50% of the 96-hour moving average value is used as an alarm standard for acute poisoning, the acute poison There will be no inconveniences such as delayed alarms. In addition, when the number of presence detection blocks falls below the alarm standard, timing by the monitoring timer is started, and then the state where the number of presence detection blocks falls below the alarm standard continues until a predetermined time (for example, 3 minutes) elapses. An acute poison alarm may be issued as a condition. Of course, if the number of presence detection blocks recovers the alarm standard before the predetermined time has elapsed, the acute poison alarm is stopped. In this way, false alarms can be suppressed.
 図6は前記方法によって小型魚類の個体数を7日間(168時間)監視した結果を示すグラフである。グラフG1の縦軸は存在検知ブロック数(個体数)としている。なお小型魚類の当初個体数は12匹としている。また7日間という期間は例示であり、水質監視は長期間継続して行うことが一般的である。
 グラフG1において実線は存在検知ブロック数を示している。存在検知ブロック数は、時々の小型魚類の死亡に合わせて段階的に減少している。
 破線は、存在検知ブロック数の96時間移動平均値を示しており、存在検知ブロック数に遅れて穏やかに減少している。
 一点鎖線は、96時間移動平均値の50%を示しており、これは各時刻における急性毒による半数死亡の判定基準、すなわち急性毒警報基準とされるものである。存在検知ブロック数がこの警報基準を下回った時点で、急性毒警報が発報される。この時点で水槽の水の一部をサンプル水タンクに移して保存するとよい。
 二点鎖線は、96時間移動平均値の75%を示しており、これは各時刻における急性毒による1/4死亡の判定基準、すなわち急性毒警告基準とされるものである。存在検知ブロック数がこの警告基準を下回った時点で、急性毒注警告が発報されることになる。このように急性毒警報よりも早い時点で急性毒注警告を発報する構成にすれば、急性毒に関する対策等の準備が余裕を持って行えるようになる。
 この例では、26時間目に一匹が死亡しており、111時間目に計4匹が死亡した時点で急性毒警告が発報されている。また140時間目に計8匹が死亡した時点で急性毒警報が発報されている。
FIG. 6 is a graph showing the results of monitoring the number of small fish individuals for 7 days (168 hours) by the above method. The vertical axis of the graph G1 represents the number of presence detection blocks (number of individuals). The initial number of small fish is 12. Moreover, the period of 7 days is an example, and water quality monitoring is generally performed continuously for a long period of time.
In the graph G1, the solid line indicates the number of presence detection blocks. The number of presence detection blocks gradually decreases with the death of small fish.
The broken line indicates the 96-hour moving average value of the number of presence detection blocks, which is gently decreased after the number of presence detection blocks.
The alternate long and short dash line indicates 50% of the 96-hour moving average, which is used as a criterion for determining the half death due to acute poisoning at each time point, that is, as an acute poison warning criterion. When the number of presence detection blocks falls below this alarm standard, an acute poison alarm is issued. At this point, a portion of the water in the aquarium may be transferred to the sample water tank for storage.
The two-dot chain line indicates 75% of the 96-hour moving average value, which is used as a criterion for determining the death due to acute poisoning at each time point, that is, the acute poison warning standard. When the number of presence detection blocks falls below this warning standard, an acute poisoning warning is issued. Thus, if it is configured to issue an acute poisoning warning at an earlier point than the acute poisoning warning, preparations such as countermeasures for acute poisoning can be performed with a margin.
In this example, one animal died at 26 hours, and an acute poison warning was issued when a total of 4 animals died at 111 hours. In addition, an acute poison warning was issued when a total of 8 animals died at 140 hours.
 図7は前記方法の基本手順の一例を説明するフローチャートである。ここでは、水槽の水平面全体を複数の検知ブロックに区分する工程は既に実行済みと想定して監視の実手順のみを説明する。
 ステップ100、101は、水槽の水平面全体をカメラ装置によって所定時間(例えば0.5秒)毎に撮影する工程である。
 ステップ102、103は、水槽の撮影画像から検知ブロックの各々について小型魚類の存在を判定して、存在検知ブロック数を監視履歴として蓄積する工程である。
 ステップ104~108は、監視履歴を参照して、存在検知ブロック数が所定期間に警報基準を下回ったときに、急性毒を警報する工程である。
 具体的には、ステップ104で存在検知ブロック数の1分間移動平均値を算出する。この平均値を現時点の存在検知ブロック数として扱うことで、検知のばらつきによる影響を抑えている。
 ステップ105では存在検知ブロック数の96時間移動平均値を算出する。この平均値の50%を急性毒の警報基準とし、75%を急性毒の警告基準とする。
 ステップ106、107では、現時点の存在検知ブロック数を急性毒の警報基準と比較し、存在検知ブロック数がこの警報基準を下回っていれば急性毒警報を発報させる。急性毒警報を発報させた時点でこの基本手順は終了するが、終了とせずステップ100に戻してもよい。
 ステップ108、109では、現時点の存在検知ブロック数を急性毒の警告基準と比較し、存在検知ブロック数がこの警告基準を下回っていれば急性毒警告を発報させる。このあとはステップ100に戻る。
FIG. 7 is a flowchart for explaining an example of the basic procedure of the method. Here, only the actual procedure of monitoring will be described assuming that the process of dividing the entire horizontal surface of the water tank into a plurality of detection blocks has already been performed.
Steps 100 and 101 are steps in which the entire horizontal surface of the water tank is photographed every predetermined time (for example, 0.5 seconds) by the camera device.
Steps 102 and 103 are steps of determining the presence of small fish for each detection block from the captured image of the aquarium and accumulating the number of presence detection blocks as a monitoring history.
Steps 104 to 108 are steps for alarming acute poisoning with reference to the monitoring history when the number of presence detection blocks falls below the alarm criterion during a predetermined period.
Specifically, in step 104, a one-minute moving average value of the number of presence detection blocks is calculated. By treating this average value as the current number of presence detection blocks, the influence of detection variations is suppressed.
In step 105, a 96-hour moving average value of the number of presence detection blocks is calculated. 50% of this average value is used as a warning standard for acute poisons, and 75% is used as a warning standard for acute poisons.
In steps 106 and 107, the current number of presence detection blocks is compared with the alarm standard for acute poisons, and if the number of presence detection blocks is below this alarm standard, an acute poison alarm is issued. This basic procedure ends when the acute poison alarm is issued, but may return to step 100 without ending.
In steps 108 and 109, the current number of presence detection blocks is compared with an acute poison warning standard, and if the number of presence detection blocks is below this warning standard, an acute poison warning is issued. After this, the process returns to step 100.
 次いで個体数の監視とともに実行すると有益な活動量の監視について説明する。これは要するに小型魚類は急性毒等に反応して挙動が変化する性質を示すことから、小型魚類の活動量を監視して急性毒の予測に役立てようというものである。例えば水中に急性毒が混入し始めた段階では小型魚類の活動量は急増する傾向がある(狂乱行動)。また急性毒の濃度が高くなると小型魚類の活動量は急減する傾向がある(緩慢行動)。そのような挙動変化を警告すれば、急性毒の予想に大いに役立つ。またこのような挙動変化があった日時を記録しておけば、その後小型魚類の半数以上が死亡する急性毒が検出されたときに、その急性毒が生じ始めた日時、急性毒の濃度が高くなった日時等を分析するための有益な手掛かりになる。 Next, the monitoring of the amount of activity that is useful when executed together with the monitoring of the number of individuals will be explained. In short, small fishes exhibit the property that their behavior changes in response to acute poisons, etc., so the activity amount of small fishes should be monitored to help predict acute poisons. For example, the activity of small fish tends to increase rapidly at the stage when acute poison begins to mix in water (frenzy behavior). In addition, as the concentration of acute toxin increases, the activity of small fish tends to decrease rapidly (slow behavior). Warning of such behavioral changes can be very helpful in predicting acute toxins. Also, if the date and time when such behavior change occurred is recorded, when an acute poison that causes more than half of small fish to die later is detected, the date and time when the acute poison began to occur, and the concentration of the acute poison is high. This is a useful clue to analyze the date and time.
 活動量の監視方法は、前記個体数の監視方法に類似している。
 すなわち監視装置10による活動量の監視方法は、水槽11の水平面全体をカメラ装置13によって所定時間毎に撮影し、水槽11の撮影画像から検知ブロックBの各々について小型魚類の当該ブロックへの進入を判定して、進入が判定された進入検知ブロック数を監視履歴として蓄積し、監視履歴を参照して、進入検知ブロック数が警告基準に達したときに、活動異常を警告するという基本手順からなる。検知ブロックBは、個体数監視用のものがそのまま利用できる。
The activity amount monitoring method is similar to the individual number monitoring method.
That is, the monitoring method of the activity amount by the monitoring device 10 is that the entire horizontal surface of the aquarium 11 is photographed by the camera device 13 every predetermined time, and the small fish enters the block for each detection block B from the photographed image of the aquarium 11. It consists of the basic procedure of accumulating the number of intrusion detection blocks that have been determined to be entered as a monitoring history, and warning the activity abnormality when the number of intrusion detection blocks reaches the warning criteria by referring to the monitoring history. . The detection block B can be used as it is for monitoring the number of individuals.
 水槽12の撮影画像から検知ブロックBの各々について小型魚類の当該ブロックへの進入を判定して、進入が判定された進入検知ブロック数を監視履歴として蓄積する工程は、監視記録部14によって実行される。
 具体的には、直近の連続した2つの撮影画像から、検知ブロックBの各々について、小型魚類の存在をそれぞれ判定し、それらの判定結果を対比することで、小型魚類の検知ブロックBへの進入を判断する。すなわち、前回は小型魚類の存在が判定されず、今回は小型魚類の存在が判定された検知ブロックBについて、小型魚類の進入を判定すればよい。
The process of determining the entry of small fishes into the block for each of the detection blocks B from the captured image of the aquarium 12 and accumulating the number of entry detection blocks determined to enter as a monitoring history is executed by the monitoring recording unit 14. The
Specifically, the presence of small fish is determined for each of the detection blocks B from the two most recent consecutive captured images, and the determination results are compared, and the small fish enters the detection block B. Judging. That is, the presence of small fish is not determined last time, and the entry of small fish may be determined for the detection block B in which the presence of small fish is determined this time.
 図8(a)、(b)に水槽の撮影画像の一例と、その撮影画像から小型魚類の進入を判定した判定結果の一例を示す。
 図8(a)では、連続する2つの撮影画像のうち今回の撮影画像における小型魚類Fを実線によって示し、前回の撮影画像における小型魚類Fを点線によって示している。つまり前回の撮影画像で点線の位置にいた小型魚類が今回の撮影画像では実線の位置まで移動していることになる。
 進入検知ブロックMBは、前回において小型魚類の存在が判定されず、今回において小型魚類の存在が判定されたブロックであるから、図8(a)における実線で示された小型魚類の位置と点線で示された小型魚類の位置とを対比すればわかるように、進入検知ブロックMBは図8(b)においてハッチングされた枠によって示されるものになる。
 この例では生存している小型魚類Fは計11匹であるが、進入検知ブロック数は計14個である。進入検知ブロック数は、前回撮影と今回撮影との時間差が小さい、つまりその時間差での小型魚類Fの移動距離が短くなれば(小型魚類の全長未満)、小型魚類F全体の活動量に比例したものになると考えられる。例えばその時間差として0.5秒を採用すれば良好な検出結果が得られる。このようにして求めた進入ブロック数の例えば1分間移動平均値を現時点での進入ブロック数の値として扱うとようにしてもよい。
FIGS. 8A and 8B show an example of a captured image of an aquarium and an example of a determination result for determining the entry of a small fish from the captured image.
In FIG. 8A, among two consecutive captured images, the small fish F in the current captured image is indicated by a solid line, and the small fish F in the previous captured image is indicated by a dotted line. That is, the small fish that was at the position of the dotted line in the previous captured image has moved to the position of the solid line in the current captured image.
Since the entry detection block MB is a block in which the presence of small fish has not been determined in the previous time and the presence of small fish has been determined in this time, the position and dotted line of the small fish indicated by the solid line in FIG. As can be seen by comparing the position of the small fish shown, the entry detection block MB is shown by a hatched frame in FIG. 8B.
In this example, there are a total of 11 small fish F that survive, but the total number of entry detection blocks is 14. The number of intrusion detection blocks is proportional to the amount of activity of the entire small fish F if the time difference between the previous shooting and the current shooting is small, that is, if the moving distance of the small fish F is shorter (less than the total length of the small fish). It will be a thing. For example, if 0.5 second is adopted as the time difference, a good detection result can be obtained. For example, the one-minute moving average value of the number of entering blocks obtained in this way may be treated as the value of the number of entering blocks at the current time.
 監視履歴を参照して、進入検知ブロック数が警告基準に達したときに、活動異常を警告する工程は、監視記録部14と警報部15とによって実行される。
 ここに云う警告基準に特段の制限はないが、監視履歴から所定期間の活動量の移動平均値を求め、その値を基にして活動量急増の警告基準値、活動量急減の警告基準値を定めてもよい。
 具体的には、前記のように現時点での進入検知ブロック数として1分間移動平均値を算出するのと同時に、進入検知ブロック数の96時間移動平均値も算出し、その値の150%を活動量急増の警告基準、その値の50%を活動量急減の警告基準として、現時点での進入検知ブロック数が活動量急増の警告基準を上回ったとき、又は活動量急減の警告基準を下回ったときに、活動異常を警告する等である。なお進入検知ブロック数が活動量急増の警告基準を上回った、又は活動急減の警告基準を下回った時点で監視タイマーによる計時を開始し、その後所定時間(例えば3分間)が経過するまで、進入検知ブロック数が活動量急増の警告基準を上回った、又は活動急減の警告基準を下回った状態が継続したことを条件として活動異常警告を発報してもよい。もちろんその所定時間が経過する前に進入検知ブロック数が警報基準を回復したのならば活動異常警告の発報は中止する。こうすれば誤報を抑えることができる。
 またこのような挙動変化が起きるのは、急性毒が生じ始めた日時、急性毒の濃度が高くなったときであることから、存在検知ブロック数及び進入検知ブロック数の推移に基づいて急性毒の強さを判定することも可能である。これは、急性毒の警報と活動異常(活動量急増)の警告との時間差は、小型魚類の半数が死亡するのに要した時間に概ね一致するので、その時間差に基づいて急性毒の強さを推定できるという考察によるものである。例えば急性毒を警報したとき、その前の48時間前に活動異常(活動量急増)の警告していた場合、96時間半数致死濃度よりも約2倍強い急性毒が混入したと推定できる。
 よって監視装置10は、少なくとも急性毒を警報した場合には、監視履歴を参照して、存在検知ブロック数及び進入検知ブロック数の推移に基づいて急性毒の強さを推定し、表示部16に表示する構成にするとよい。
 なおこのような挙動変化は、水質異常だけでなく、小型魚類が何かに驚いたとき、例えば大きな音がした、水槽が揺れた等のとき等でも普通に発生する。また給水が止まる、あるいは水温が振れたとき等にも生じる。よって騒音を検知するマイク、振動を検知する加速度計等を設け、これらのセンサが異常を検知したとき、あるいは給水が止まったときには、一定時間、活動異常警告の発報をしないようにしてもよい。
With reference to the monitoring history, when the number of approach detection blocks reaches the warning standard, the process of warning the activity abnormality is executed by the monitoring recording unit 14 and the warning unit 15.
Although there are no particular restrictions on the warning criteria here, the moving average value of the activity amount for the predetermined period is obtained from the monitoring history, and the warning reference value for the sudden increase in activity amount and the warning reference value for the sudden decrease in activity amount are based on that value. It may be determined.
Specifically, as described above, the moving average value for 1 minute is calculated as the current number of intrusion detection blocks, and at the same time, the 96 hour moving average value of the number of intrusion detection blocks is also calculated. Warning criteria for sudden increase in volume, 50% of the value as warning criteria for sudden decrease in activity amount, when the current number of detected blocks exceeds the warning criterion for sudden increase in activity amount, or falls below the warning criterion for sudden decrease in activity amount In addition, a warning is given for abnormal activity. When the number of intrusion detection blocks exceeds the warning criteria for sudden increase in activity amount or falls below the warning criteria for sudden decrease in activity, time monitoring by the monitoring timer is started, and then the entry detection is made until a predetermined time (for example, 3 minutes) has passed. An activity abnormality warning may be issued on the condition that the number of blocks has exceeded the warning criterion for sudden increase in activity amount or has remained below the warning criterion for sudden decrease in activity. Of course, if the number of intrusion detection blocks recovers from the alarm standard before the predetermined time has elapsed, the alert for the activity abnormality warning is stopped. In this way, false alarms can be suppressed.
Such behavioral changes occur when the acute poison begins to occur and when the concentration of the acute toxin becomes high. It is also possible to determine the strength. This is because the time difference between the warning of acute poison and the warning of abnormal activity (rapid increase in activity) is roughly the same as the time required for half of the small fish to die. It is based on the consideration that can be estimated. For example, when an acute poison is warned, if an alarm of abnormal activity (rapid increase in activity amount) has been warned 48 hours before that, it can be presumed that an acute poison that is about twice as strong as the lethal concentration for 96 hours is mixed.
Therefore, at least when the acute poison is alarmed, the monitoring device 10 refers to the monitoring history, estimates the strength of the acute poison based on the transition of the number of presence detection blocks and the number of detection blocks, and displays on the display unit 16. It is good to make it the structure to display.
Such a behavior change is not only abnormal in water quality but also occurs normally when a small fish is surprised by something, for example, when it makes a loud sound or the water tank shakes. It also occurs when water supply stops or the water temperature fluctuates. Therefore, a microphone that detects noise, an accelerometer that detects vibration, etc. may be provided, and when these sensors detect an abnormality or when water supply stops, an activity abnormality warning may not be issued for a certain period of time. .
 図9は、前記活動量の監視方法によって小型魚類の活動量を7日間(168時間)監視した結果を示すグラフである。グラフG2の縦軸は進入検知ブロック数としている。
 グラフG2において実線は進入検知ブロック数(活動量)を示している。進入検知ブロック数は監視開始後15時間目から急増し、いったん元に戻った後、84時間目に急減し、その後再び元に戻っている。進入検知ブロック数は現実には変動が大きいが、ここでは簡単のため段階的に変化したものとしている。
 破線は、進入検知ブロック数の96時間移動平均値を示しており、進入検知ブロック数に遅れて穏やかに減少している。
 一点鎖線は、96時間移動平均値の50%を示しており、これは各時刻における活動量急減の警告基準とされるものである。進入検知ブロック数がこの警告基準を下回った時点で、活動量急減警告が発報される。
 二点鎖線は、96時間移動平均値の150%を示しており、これは各時刻における活動量急増の警告基準とされるものである。進入検知ブロック数がこの警告準値を上回った時点で、活動量急増警報が発報される。
 この例では、15時間目に活動量急増警告が発報されている。この警告は急性毒の混入等の水質異常の発生を示唆する。また84時間目に活動量急減警告が発報されている。この警告は水質異常の深刻化を示唆する。
FIG. 9 is a graph showing the results of monitoring the activity amount of small fish for 7 days (168 hours) by the activity amount monitoring method. The vertical axis of the graph G2 is the number of entry detection blocks.
In the graph G2, a solid line indicates the number of entrance detection blocks (activity amount). The number of intrusion detection blocks suddenly increases from the 15th hour after the start of monitoring, once returns to the original level, rapidly decreases at the 84th hour, and then returns to the original level. Although the number of intrusion detection blocks actually varies greatly, it is assumed here that it has changed in stages for simplicity.
The broken line indicates the 96-hour moving average value of the number of the entrance detection blocks, and gently decreases behind the number of the entrance detection blocks.
The alternate long and short dash line indicates 50% of the 96-hour moving average, which is used as a warning standard for sudden decrease in activity at each time. When the number of intrusion detection blocks falls below this warning standard, an activity amount sudden decrease warning is issued.
The two-dot chain line shows 150% of the 96-hour moving average value, which is used as a warning standard for sudden increase in activity at each time. When the number of intrusion detection blocks exceeds this warning threshold value, an activity amount sudden increase warning is issued.
In this example, an activity amount sudden increase warning is issued at the 15th hour. This warning suggests the occurrence of water quality abnormalities such as acute poisoning. Also, a warning about sudden decrease in activity is issued at 84 hours. This warning suggests the seriousness of water quality abnormalities.
 図10は、前記活動量の監視方法の基本手順の一例を説明するフローチャートである。ここでは、水槽の水平面全体を複数の検知ブロックに区分する工程は実行済みと想定して監視の実手順のみを説明する。
 ステップ200、201は、水槽11の水平面全体をカメラ装置によって所定時間(例えば0.5秒)毎に撮影する工程である。
 ステップ202、203は、水槽の撮影画像から検知ブロックの各々について小型魚類の進入を判定して、進入が判定された進入検知ブロック数を監視履歴として蓄積する工程である。
 ステップ204、205は、監視履歴を参照して、存在検知ブロック数が所定期間に警報基準を下回ったときに急性毒を警報する工程である。
 具体的には、ステップ204で進入検知ブロック数の1分間移動平均値を算出する。この平均値を現時点の進入検知ブロック数として扱うことで、検知のばらつきによる影響を抑えることができる。
 ステップ205では進入検知ブロック数の96時間移動平均値を算出する。この平均値の50%を活動量急減の警告基準とし、150%を活動量急増の警告基準とする。
 ステップ206、207では、現時点の進入検知ブロック数を活動量急増の警告基準と比較し、進入検知ブロック数がこの警告基準を上回っていれば活動量急増警告を発報させる。このあとはステップ200に戻る。
 ステップ208、209では、現時点の進入検知ブロック数を活動量急減の警告基準と比較し、進入検知ブロック数がこの警告基準を下回っていれば活動量急減警告を発報させる。このあとはステップ200に戻る。
FIG. 10 is a flowchart for explaining an example of a basic procedure of the activity amount monitoring method. Here, only the actual procedure of monitoring will be described assuming that the process of dividing the entire horizontal surface of the aquarium into a plurality of detection blocks has been executed.
Steps 200 and 201 are steps in which the entire horizontal surface of the water tank 11 is photographed every predetermined time (for example, 0.5 seconds) by the camera device.
Steps 202 and 203 are steps in which the entry of small fish is determined for each detection block from the captured image of the aquarium, and the number of entry detection blocks for which entry has been determined is accumulated as a monitoring history.
Steps 204 and 205 are steps for alarming acute poisoning when the number of presence detection blocks falls below an alarm criterion during a predetermined period with reference to the monitoring history.
Specifically, in step 204, a one-minute moving average value of the number of entering detection blocks is calculated. By treating this average value as the current number of intrusion detection blocks, it is possible to suppress the influence of detection variations.
In step 205, a 96-hour moving average value of the number of entry detection blocks is calculated. 50% of the average value is used as a warning criterion for sudden decrease in activity amount, and 150% is used as a warning criterion for sudden increase in activity amount.
In steps 206 and 207, the current number of detected entry blocks is compared with a warning criterion for sudden increase in activity amount, and if the number of detected approach blocks exceeds this warning criterion, an alert for sudden increase in activity amount is issued. After this, the process returns to step 200.
In steps 208 and 209, the current number of approaching detection blocks is compared with a warning criterion for a sudden decrease in activity amount. If the number of approaching detection blocks is below this warning criterion, an alert for sudden decrease in activity amount is issued. After this, the process returns to step 200.
 監視装置10は前記のようにして急性毒を警報したり、小型魚類の活動異常を警報したりするのであるが、監視中はその監視履歴を表示部にリアルタイム表示するとよい。以下にその監視履歴の表示の具体例を説明する。 As described above, the monitoring device 10 warns of acute poisoning or warns of abnormal activity of small fish, but during monitoring, the monitoring history may be displayed on the display unit in real time. A specific example of the display of the monitoring history will be described below.
 図11は、監視履歴の表示画面の具体例である。
 この表示画面W1は、小型魚類の個体数、活動量等の監視データ表示欄S1と、小型魚類の個体数、活動量等の監視データのグラフ表示欄S2と、水槽11の撮影画像表示欄S3とが設けられている。
 監視データ表示欄S1は、監視履歴から時刻毎の個体数、活動量等を読み出して数値表示すればよい。時刻単位は特に制限されず、2時間毎、1時間毎、10分毎、1分毎等を自由に選択できるようにするとよい。ここでは1時間毎の個体数、活動量、及び当該時刻に発生した警報、発報された警告等をスロットにまとめて、12時間分を表形式で表示している。表T1の表示範囲はスクロール操作等によって移動できるようにするとよい。
 グラフ表示欄S2は、監視履歴から時刻毎の個体数、活動量等を読み出してグラフ表示すればよい。グラフ表示する期間は、7日分、3日分、1日分等を自由に選択できるようにするとよい。グラフの表示範囲はスクロール操作等によって自由に移動できるようにするとよい。ここでは個体数、活動量をそれぞれ独立したグラフG3、G4として表示している。
 グラフG3では、6/4~6/10の7日分について、個体数、96時間移動平均、急性毒の警報基準(96時間移動平均の50%)、急性毒の警告基準(96時間移動平均の75%)を表示している。
 またグラフG4では、6/4~6/10の7日分について、活動量、96時間移動平均、活動量急減の警告基準(96時間移動平均の50%)、活動量急増の警告基準(96時間移動平均の150%)を表示している。
 撮影画像表示欄は、監視データ表示欄で所定操作によって選択された日時の撮影画像又はグラフ表示欄で所定操作によって選択された日時の撮影画像P1を切換え表示するようにする。
 グラフG3、G4のような表示態様とすれば、グラフG3、G4を見ただけで、小型魚類の個体数、活動量の推移が把握できる。
 なお日付指定操作等を受け付けて、対応した日付の日報データ、すなわちその1日分の監視履歴を監視データ表示欄S1、グラフ表示欄S2に呼び出せるようにすると利便である。
FIG. 11 is a specific example of a monitor history display screen.
This display screen W1 includes a monitoring data display field S1 for the number of small fish individuals, activity amount, etc., a graph display field S2 for monitoring data such as the number of small fish individuals, activity amount, etc., and a captured image display field S3 for the aquarium 11. And are provided.
In the monitoring data display column S1, the number of individuals, the amount of activity, etc. for each time may be read from the monitoring history and numerically displayed. The time unit is not particularly limited, and it is preferable that every 2 hours, 1 hour, 10 minutes, 1 minute, or the like can be freely selected. Here, the number of individuals per hour, the amount of activity, the alarms generated at that time, the alarms issued, etc. are grouped in slots, and 12 hours are displayed in a table format. The display range of the table T1 may be moved by a scroll operation or the like.
The graph display field S2 may be a graph obtained by reading the number of individuals, the amount of activity, etc. for each time from the monitoring history. It is preferable that the period for displaying the graph can be freely selected from 7 days, 3 days, 1 day, and the like. The display range of the graph may be freely moved by a scroll operation or the like. Here, the number of individuals and the amount of activity are displayed as independent graphs G3 and G4, respectively.
In graph G3, for 7 days from 6/4 to 6/10, the number of individuals, 96-hour moving average, warning standard for acute poison (50% of 96-hour moving average), warning standard for acute poison (96-hour moving average) 75%).
In graph G4, for 7 days from 6/4 to 6/10, the activity amount, the 96-hour moving average, the warning criterion for sudden decrease in activity amount (50% of the 96-hour moving average), and the warning criterion for sudden increase in activity amount (96 150% of the time moving average).
In the captured image display column, the captured image of the date and time selected by the predetermined operation in the monitoring data display column or the captured image P1 of the date and time selected by the predetermined operation in the graph display column is switched and displayed.
If it is set as a display mode like graphs G3 and G4, the transition of the number of individuals and activity amount of small fish can be grasped only by looking at graphs G3 and G4.
It is convenient to accept a date designation operation or the like so that the daily report data of the corresponding date, that is, the monitoring history for that day can be called up in the monitoring data display column S1 and the graph display column S2.
 図12は、監視履歴の表示画面の他例である。この表示画面W2は、図11に示した表示画面Wに対して、グラフ表示欄S2に表示するグラフの態様が異なっている。これ以外の共通する要素には同一の参照符号を付けて説明を省略する。
 ここでのグラフG5は、急性毒の警報基準に対しての個体数、急性毒の警告基準に対しての個体数、活動量急減の警告基準に対しての活動量、活動量急増の警告基準に対しての活動量をそれぞれ独立した線として、急性毒の警報基準、急性毒の警告基準、活動量急減の警告基準、活動量急増の警告基準が同一位置にくるように、それらの線を一画面に重ね合わせて表示している。
 グラフG5のような表示態様とすれば、各線がそれぞれの基準を下回った時点(活動量急増は基準を上回った時点)で対応した警報、警告が発報されることから、グラフG5を見ただけで警報、警告が発報される時期等を予測できるようになる。
FIG. 12 shows another example of the monitor history display screen. This display screen W2 is different from the display screen W shown in FIG. 11 in the form of the graph displayed in the graph display field S2. Other common elements are denoted by the same reference numerals, and description thereof is omitted.
The graph G5 here shows the number of individuals against the warning standard for acute poison, the number of individuals against the warning standard for acute poison, the amount of activity against the warning standard for sudden decrease in activity amount, and the warning standard for sudden increase in activity amount. As a separate line for the amount of activity against each other, the alarm standard for acute poison, the warning standard for acute poison, the warning standard for sudden decrease in activity amount, and the warning standard for sudden increase in activity amount are placed in the same position. It is displayed superimposed on one screen.
If the display mode is as shown in the graph G5, the corresponding alarm and warning are issued when each line falls below the standard (when the sudden increase in activity amount exceeds the standard), so the graph G5 was seen. It will be possible to predict when alarms and warnings will be issued.
 前記グラフG1についてより詳細に説明する。
 図13(a)~(d)は、急性毒の警報基準に対しての個体数、急性毒の警告基準に対しての個体数、活動量急減の警告基準に対しての活動量、活動量急増の警告基準に対しての活動量を独立したグラフとして示したものである。
 例えば図11のグラフG3において、個体数を急性毒の警報基準によって規格化する、つまり各時刻において個体数を急性毒の警報基準によって除算すると、除算されたあとの個体数は急性毒の警報基準に対する相対値になる。よって急性毒の警報基準を水平線になるようにその相対値をグラフ化すれば、図12(a)に示すグラフG6が得られる。
 急性毒の警告基準に対しての個体数、活動量急減の警告基準に対しての活動量、活動量急増基準に対しての活動量についても図11のグラフG3から同様にして図12(b)、(c)、(d)に示すようなグラフG7、G8、G9が得られる。
 図13(a)~(d)に示したグラフG6~G9を、急性毒の警報基準、急性毒の警告基準、活動量急減の警告基準、活動量急増の警告基準が同一位置にくるように重ね合わせれば、図11に示すグラフG5のようになる。
The graph G1 will be described in more detail.
FIGS. 13 (a) to (d) show the number of individuals with respect to the warning standard for acute poison, the number of individuals with respect to the warning standard for acute poison, the amount of activity with respect to the warning standard for sudden decrease in activity, and the amount of activity. This shows the amount of activity against the rapidly increasing warning standard as an independent graph.
For example, in the graph G3 of FIG. 11, when the number of individuals is normalized by the acute toxic alarm criterion, that is, when the number of individuals is divided by the acute toxic alarm criterion at each time, the divided number of individuals becomes the acute toxic alarm criterion. Relative value to. Therefore, if the relative value of the alarm standard for acute poisoning is plotted on a horizontal line, a graph G6 shown in FIG. 12A is obtained.
Similarly to the graph G3 of FIG. 11, the number of individuals with respect to the warning standard for acute poisoning, the amount of activity with respect to the warning standard for sudden decrease in activity amount, and the amount of activity with respect to the criterion for rapid increase in activity amount are shown in FIG. ), (C), and graphs G7, G8, and G9 as shown in (d) are obtained.
In graphs G6 to G9 shown in FIGS. 13 (a) to 13 (d), the warning standard for acute poison, the warning standard for acute poison, the warning standard for sudden decrease in activity amount, and the warning standard for sudden increase in activity amount are in the same position. When superimposed, a graph G5 shown in FIG. 11 is obtained.
 なお前記のように水槽の撮影画像を解析して小型魚類の個体数、活動量を監視する方法では、水槽の水が一定以上濁っていると正常な監視結果が得られなくなる。よって小型魚類の監視中、水の濁度も監視するようにして、濁度が所定の基準を超えている間は、前記警報、警告の発報を禁止してもよい。
 濁度は、水槽の撮影画像全体の平均明るさ等から容易に数値化できる。例えば水槽の撮影画像全体の平均明るさを所定時間毎に測定して監視履歴に蓄積し、監視履歴を参照して現時点の平均明るさが、所定期間から算出される明るさ基準を下回ったときに、高濁度を判定して、前記警報、警告の発報を禁止してもよい。これによって誤報がかなり抑えられる。
 また濁度データは、前記監視履歴の表示画面において、小型魚類の個体数、活動量等の監視データと同様に数値表示、グラフ表示させてもよい。
In the method of monitoring the number of small fish and the amount of activity by analyzing the captured image of the aquarium as described above, a normal monitoring result cannot be obtained if the aquarium water is more than a certain level. Therefore, during monitoring of small fish, the turbidity of water may be monitored, and the alarm and warning may be prohibited while the turbidity exceeds a predetermined standard.
Turbidity can be easily quantified from the average brightness of the entire captured image of the aquarium. For example, when the average brightness of the entire captured image of the aquarium is measured every predetermined time and accumulated in the monitoring history, and the current average brightness falls below the brightness standard calculated from the predetermined period with reference to the monitoring history In addition, it is possible to determine the high turbidity and prohibit the alarm and warning. This greatly reduces false alarms.
The turbidity data may be displayed numerically or graphically in the same manner as the monitoring data such as the number of small fish individuals and the amount of activity on the monitoring history display screen.
  10   監視装置
  11   水槽
  13   カメラ装置
  12   操作部
  14   監視記録部
  15   警報部
  B    検知ブロック
  EB   存在検知ブロック
  F    小型魚類
  MB   進入検知ブロック
 
DESCRIPTION OF SYMBOLS 10 Monitoring apparatus 11 Water tank 13 Camera apparatus 12 Operation part 14 Monitoring recording part 15 Alarm part B Detection block EB Presence detection block F Small fish MB Intrusion detection block

Claims (7)

  1. 複数の小型魚類が放たれた水槽に水源から常時給水し、
    前記水槽の水平面全体を小型魚類の水平像よりも小さな複数の検知ブロックに予め区分し、
    前記水槽の水平面全体をカメラ装置によって所定時間毎に撮影し、
    前記水槽の撮影画像から前記検知ブロックの各々について小型魚類の存在を判定して、存在が判定された存在検知ブロック数を監視履歴として蓄積し、
    前記監視履歴を参照して、存在検知ブロック数が所定期間に警報基準を下回ったときに、急性毒を警報することを特徴とする小型魚類を用いた急性毒の監視方法。
    Always supply water from a water source to a tank where multiple small fishes were released,
    Dividing the entire horizontal surface of the aquarium into a plurality of detection blocks smaller than a horizontal image of small fish,
    The entire horizontal surface of the aquarium is photographed every predetermined time by a camera device,
    Determine the presence of small fish for each of the detection blocks from the captured image of the aquarium, accumulate the number of presence detection blocks determined to exist as a monitoring history,
    An acute poison monitoring method using small fish, characterized in that an acute poison is warned when the number of presence detection blocks falls below a warning standard within a predetermined period with reference to the monitoring history.
  2. 請求項1に記載の小型魚類を用いた急性毒の監視方法において、
    前記警報基準は、前記所定期間全体での存在検知ブロック数の平均値から算出することを特徴とする小型魚類を用いた急性毒の監視方法。
    In the monitoring method of acute poison using the small fish of Claim 1,
    The method for monitoring acute poisoning using small fish, wherein the alarm criterion is calculated from an average value of the number of presence detection blocks over the predetermined period.
  3. 請求項1又は2に記載の小型魚類を用いた急性毒の監視方法において、
    前記水槽の撮影画像から前記検知ブロックの各々について小型魚類の当該ブロックへの進入を判定して、進入が判定された進入検知ブロック数を監視履歴として更に蓄積し、
    前記監視履歴を参照して、進入検知ブロック数が警告基準に達したときに、活動異常を警告することを特徴とする小型魚類を用いた急性毒の監視方法。
    In the monitoring method of acute poison using the small fish of Claim 1 or 2,
    Determining the entry of small fish into the block for each of the detection blocks from the captured image of the aquarium, further accumulate the number of entry detection blocks determined to enter, as a monitoring history,
    An acute poison monitoring method using a small fish, wherein an abnormal activity is warned when the number of intrusion detection blocks reaches a warning standard with reference to the monitoring history.
  4. 請求項3に記載の小型魚類を用いた急性毒の監視方法において、
    少なくとも急性毒を警報した場合には、前記監視履歴を参照して、存在検知ブロック数及び進入検知ブロック数の推移に基づいて急性毒の強さを推定し表示することを特徴とする小型魚類を用いた急性毒の監視方法。
    In the monitoring method of acute poison using the small fish of Claim 3,
    At least when an acute poison is alarmed, a small fish characterized in that the strength of acute poison is estimated and displayed based on the transition of the number of presence detection blocks and the number of entry detection blocks with reference to the monitoring history. A method for monitoring acute poisons used.
  5. 請求項1乃至4のいずれか一項に記載の小型魚類を用いた急性毒の監視方法において、
    前記検知ブロックの各々は、所定数の検知点を配列させており、
    前記検知ブロックの各々についての小型魚類の存在の判定は、当該ブロック内の小型魚類を検知した検知点の数に基づいて行うことを特徴とする小型魚類を用いた急性毒の監視方法。
    In the monitoring method of acute poison using the small fish as described in any one of Claims 1 thru | or 4,
    Each of the detection blocks has a predetermined number of detection points arranged,
    The method for monitoring acute poisons using small fish, wherein the determination of the presence of small fish in each of the detection blocks is performed based on the number of detection points at which the small fish in the block is detected.
  6. 請求項1乃至5のいずれか一項に記載の小型魚類を用いた急性毒の監視方法において、
    前記所定期間は96時間であり、
    存在検知ブロック数が前記所定期間に半数以下に減少したときに、急性毒を警報することを特徴とする小型魚類を用いた急性毒の監視方法。
    In the monitoring method of acute poison using the small fish as described in any one of Claims 1 thru | or 5,
    The predetermined period is 96 hours;
    An acute poison monitoring method using small fish, characterized in that an acute poison is warned when the number of presence detection blocks decreases to half or less during the predetermined period.
  7. 監視対象の水源から常時給水され、かつ複数の小型魚類が放たれる水槽と、
    前記水槽の水平面全体に小型魚類の水平像よりも小さな複数の検知ブロックを区分設定する操作を受け付ける操作部と、
    所定時間毎に前記水槽を撮影するカメラ装置と、
    前記水槽の撮影画像から前記検知ブロックの各々について小型魚類の存在を判定して、存在が判定された存在検知ブロック数を監視履歴として蓄積する監視記録部と、
    前記監視履歴を参照して、存在検知ブロック数が所定期間に警報基準を下回ったときに、急性毒を警報する警報部とを備えたことを特徴とする小型魚類を用いた急性毒の監視装置。
     
    A tank where water is constantly supplied from a monitored water source and a plurality of small fishes are released;
    An operation unit that receives an operation of setting a plurality of detection blocks smaller than a horizontal image of small fish over the entire horizontal surface of the aquarium;
    A camera device for photographing the water tank every predetermined time;
    A monitoring recording unit that determines the presence of small fish for each of the detection blocks from the captured image of the aquarium, and accumulates the number of presence detection blocks determined to exist as a monitoring history;
    An acute poison monitoring apparatus using small fish, comprising an alarm unit for alarming acute poison when the number of presence detection blocks falls below an alarm standard for a predetermined period with reference to the monitoring history .
PCT/JP2015/071000 2015-07-23 2015-07-23 Method and device for monitoring acute toxin using small fish WO2017013795A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201709839UA SG11201709839UA (en) 2015-07-23 2015-07-23 Method and device for monitoring acute toxin using small fish
CN201590001536.3U CN208366974U (en) 2015-07-23 2015-07-23 Use the monitoring arrangement of small fishes monitoring acute toxicity
PCT/JP2015/071000 WO2017013795A1 (en) 2015-07-23 2015-07-23 Method and device for monitoring acute toxin using small fish
JP2016541695A JP6051368B1 (en) 2015-07-23 2015-07-23 Method and apparatus for monitoring acute toxin using small fish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071000 WO2017013795A1 (en) 2015-07-23 2015-07-23 Method and device for monitoring acute toxin using small fish

Publications (1)

Publication Number Publication Date
WO2017013795A1 true WO2017013795A1 (en) 2017-01-26

Family

ID=57582157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071000 WO2017013795A1 (en) 2015-07-23 2015-07-23 Method and device for monitoring acute toxin using small fish

Country Status (4)

Country Link
JP (1) JP6051368B1 (en)
CN (1) CN208366974U (en)
SG (1) SG11201709839UA (en)
WO (1) WO2017013795A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109085317B (en) * 2018-08-14 2020-11-20 环境保护部华南环境科学研究所 Fish toxicity effect-based method for evaluating river entry time of sudden heavy metal pollutants in water body
CN111999456B (en) * 2020-08-11 2021-05-07 江西省永新润泉供水有限公司 Emergency biological early-warning type water quality monitoring method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531941B2 (en) * 1985-10-04 1993-05-13 Hitachi Ltd
JPH09101300A (en) * 1995-10-03 1997-04-15 Yamatake Eng Kk Water quality monitor
JPH09229924A (en) * 1996-02-20 1997-09-05 Anima Denshi Kk Water quality monitoring device using aquatic organism
JP2001242155A (en) * 2000-02-25 2001-09-07 Toshiba Corp Monitoring device for water quality
JP2002257815A (en) * 2001-03-06 2002-09-11 Animakkusu:Kk Apparatus for detecting water quality using fishes
JP2003083954A (en) * 2001-09-11 2003-03-19 Yokohama Tlo Co Ltd Method for testing toxicity in underwater contaminant
JP2007064783A (en) * 2005-08-31 2007-03-15 Takahiro Yamamoto Water quality monitoring device using fishes
JP2007085828A (en) * 2005-09-21 2007-04-05 Japan Organo Co Ltd Water quality monitoring method and monitor
JP2009074840A (en) * 2007-09-19 2009-04-09 Kurimoto Ltd Water quality monitoring device
JP2012098150A (en) * 2010-11-02 2012-05-24 Kankyo Denshi Kk Automatic water quality monitoring device and method for detecting low-concentration toxicity

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987257B1 (en) * 2015-06-08 2016-09-07 株式会社アニマックス Bioassay water tank system, bioassay device and computer program

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531941B2 (en) * 1985-10-04 1993-05-13 Hitachi Ltd
JPH09101300A (en) * 1995-10-03 1997-04-15 Yamatake Eng Kk Water quality monitor
JPH09229924A (en) * 1996-02-20 1997-09-05 Anima Denshi Kk Water quality monitoring device using aquatic organism
JP2001242155A (en) * 2000-02-25 2001-09-07 Toshiba Corp Monitoring device for water quality
JP2002257815A (en) * 2001-03-06 2002-09-11 Animakkusu:Kk Apparatus for detecting water quality using fishes
JP2003083954A (en) * 2001-09-11 2003-03-19 Yokohama Tlo Co Ltd Method for testing toxicity in underwater contaminant
JP2007064783A (en) * 2005-08-31 2007-03-15 Takahiro Yamamoto Water quality monitoring device using fishes
JP2007085828A (en) * 2005-09-21 2007-04-05 Japan Organo Co Ltd Water quality monitoring method and monitor
JP2009074840A (en) * 2007-09-19 2009-04-09 Kurimoto Ltd Water quality monitoring device
JP2012098150A (en) * 2010-11-02 2012-05-24 Kankyo Denshi Kk Automatic water quality monitoring device and method for detecting low-concentration toxicity

Also Published As

Publication number Publication date
SG11201709839UA (en) 2017-12-28
CN208366974U (en) 2019-01-11
JPWO2017013795A1 (en) 2017-07-20
JP6051368B1 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
US10048243B2 (en) Automatic water quality surveillance apparatus
JP4712908B1 (en) Water quality automatic monitoring device and low concentration toxicity detection method
US11939236B2 (en) System and a method for comprehensive monitoring, analysis and maintenance of water and equipment in swimming pools
Tyne et al. Chronic exposure of Hawaii Island spinner dolphins (Stenella longirostris) to human activities
JP4445569B2 (en) Filtrated water monitoring device and filtered water monitoring system
US20120086802A1 (en) System and method for monitoring water quality
JP2009082124A (en) Fish observation cistern
JP6051368B1 (en) Method and apparatus for monitoring acute toxin using small fish
Khawandi et al. Implementation of a monitoring system for fall detection in elderly healthcare
JP2009074840A (en) Water quality monitoring device
US8471725B2 (en) Methods and supporting telemetry to determine, monitor and control the metagenomic and physical states of grease interceptors, FOGs, vaults and other waste collecting enclosures
JP2008134119A (en) Automatic water quality monitoring device
Wood et al. High‐resolution photo‐mosaic time‐series imagery for monitoring human use of an artificial reef
Dekar et al. Factors affecting fish assemblage structure during seasonal stream drying
JP2007085828A (en) Water quality monitoring method and monitor
Starrs et al. Assessing upstream invasion risk in alien freshwater fishes based on intrinsic variations in swimming speed performance
JP2007064783A (en) Water quality monitoring device using fishes
CN100523806C (en) Method for employing fish movement electric potential variation to monitor poisonous substances in water
Negrea et al. Automated detection and tracking of adult Pacific Lampreys in underwater video collected at Snake and Columbia River fishways
CN106049909A (en) Intelligent water quality adjustment system based on swimming pool
KR100722299B1 (en) Real time measurement and monitering system for activity of water flea using ccd camera
JP2003139764A (en) Water quality detector using fish
JP2002257815A (en) Apparatus for detecting water quality using fishes
WO2004031763A1 (en) Water quality monitoring device using fishes
JP2005326243A (en) Water-quality monitor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016541695

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898954

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201709839U

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898954

Country of ref document: EP

Kind code of ref document: A1