JP2009068691A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2009068691A
JP2009068691A JP2008160592A JP2008160592A JP2009068691A JP 2009068691 A JP2009068691 A JP 2009068691A JP 2008160592 A JP2008160592 A JP 2008160592A JP 2008160592 A JP2008160592 A JP 2008160592A JP 2009068691 A JP2009068691 A JP 2009068691A
Authority
JP
Japan
Prior art keywords
shaft member
bearing device
peripheral surface
seal
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008160592A
Other languages
Japanese (ja)
Other versions
JP5231095B2 (en
Inventor
Isao Komori
功 古森
Tetsuya Kurimura
栗村  哲弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008160592A priority Critical patent/JP5231095B2/en
Priority to KR1020097026355A priority patent/KR101439924B1/en
Priority to CN2008801007246A priority patent/CN101765718B/en
Priority to US12/665,384 priority patent/US8454239B2/en
Priority to PCT/JP2008/063055 priority patent/WO2009016983A1/en
Publication of JP2009068691A publication Critical patent/JP2009068691A/en
Application granted granted Critical
Publication of JP5231095B2 publication Critical patent/JP5231095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Sealing Of Bearings (AREA)
  • Rotational Drive Of Disk (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid bearing device capable of accurately and inexpensively controlling an axially-movable distance of a shaft member. <P>SOLUTION: This fluid bearing device is provided with: a seal part 9 axially engaging with a shoulder surface 2c of a shaft member 2 to prevent coming-off of the shaft member 2; radial bearing parts R1 and R2 radially supporting the shaft member 2 with a fluid film generated in a radial bearing space between the outer peripheral surface of a large-diameter part 2a of the shaft member 2 and the inner peripheral surface 8a of a sleeve part 8; and a thrust bearing part T supporting the shaft member 2 in the thrust direction. In the fluid bearing device, a first axial space L1 is formed between the seal part 9 and the sleeve part 8. Thereby, the axially-movable distance of the shaft member 2 can be accurately set without relying on member accuracy of the sleeve part 8 and the like. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、軸受隙間に生じる流体膜で軸部材を回転可能に支持する流体軸受装置に関する。   The present invention relates to a hydrodynamic bearing device that rotatably supports a shaft member with a fluid film generated in a bearing gap.

流体軸受装置は、その高回転精度および静粛性から、情報機器、例えばHDD等の磁気ディスク駆動装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク駆動装置、MD、MO等の光磁気ディスク駆動装置等のスピンドルモータ用、レーザビームプリンタ(LBP)のポリゴンスキャナモータ用、プロジェクタのカラーホイールモータ用、あるいは電気機器の冷却等に使用されるファンモータなどの小型モータ用として好適に使用可能である。   Due to its high rotational accuracy and quietness, the hydrodynamic bearing device is an information device, for example, a magnetic disk drive device such as HDD, an optical disk drive device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, MD, MO, etc. For spindle motors such as magneto-optical disk drive devices, etc., for polygon scanner motors of laser beam printers (LBP), for color wheel motors of projectors, or for small motors such as fan motors used for cooling electrical equipment, etc. It can be suitably used.

例えば、特許文献1に示されている流体軸受装置は、軸部材の外周面とスリーブ部の内周面との間にラジアル軸受隙間を形成し、このラジアル軸受隙間に生じる流体膜で軸部材をラジアル方向に支持すると共に、軸部材の下端部に設けられた球面状凸部とハウジングの内底面に設けたスラストプレートとを接触摺動させることで、軸部材をスラスト方向に支持している。また、この流体軸受装置では、軸部材を小径部及び大径部を有する段付き状とすると共に、ハウジング開口部内周に環状のシール部を設け、このシール部を軸部材の肩面と軸方向で係合させることにより、軸部材の抜け止めを行っている。   For example, in the hydrodynamic bearing device disclosed in Patent Document 1, a radial bearing gap is formed between the outer peripheral surface of the shaft member and the inner peripheral surface of the sleeve portion, and the shaft member is formed by a fluid film generated in the radial bearing gap. While supporting in the radial direction, the shaft member is supported in the thrust direction by sliding the spherical convex portion provided at the lower end portion of the shaft member and the thrust plate provided on the inner bottom surface of the housing. In this hydrodynamic bearing device, the shaft member has a stepped shape having a small-diameter portion and a large-diameter portion, and an annular seal portion is provided on the inner periphery of the housing opening, and the seal portion is connected to the shoulder surface of the shaft member in the axial direction. The shaft member is prevented from coming off by being engaged with each other.

特開2005−113987号公報JP-A-2005-113987

この流体軸受装置では、シール部と軸部材の肩面との間に形成された軸方向隙間の分だけ軸部材の軸方向の移動が許容される。この軸方向隙間が大きすぎると、軸部材の軸方向移動可能量が過大となり、軸部材に装着されるHDDのディスク等に軸方向のガタツキが生じ、ディスクの読み取り精度を悪化させたり、ディスクとヘッドとの干渉を招く恐れがある。従って、シール部と軸部材の肩面との間に形成される軸方向隙間は高精度に設定する必要がある。   In this hydrodynamic bearing device, the shaft member is allowed to move in the axial direction by the amount of the axial clearance formed between the seal portion and the shoulder surface of the shaft member. If this axial clearance is too large, the axially movable amount of the shaft member will be excessive, causing an axial backlash in the HDD disk or the like attached to the shaft member, degrading the reading accuracy of the disk, There is a risk of causing interference with the head. Therefore, the axial gap formed between the seal portion and the shoulder surface of the shaft member needs to be set with high accuracy.

しかしながら、上記の流体軸受装置では、シール部をスリーブ部と当接させることによりシール部の位置決めを行っているため、シール部のハウジングへの固定精度はスリーブ部の軸方向寸法の加工精度に依存する。このため、軸部材の軸方向移動可能量を精度良く管理するためには、スリーブ部を高精度に加工する必要があり、加工コストの高騰を招くこととなる。 However, in the above hydrodynamic bearing device, since the seal portion is positioned by bringing the seal portion into contact with the sleeve portion, the accuracy of fixing the seal portion to the housing depends on the processing accuracy of the axial dimension of the sleeve portion. To do. For this reason, in order to manage the axially movable amount of the shaft member with high accuracy, it is necessary to process the sleeve portion with high accuracy, resulting in an increase in processing cost.

本発明の課題は、軸部材の軸方向移動可能量を高精度かつ低コストに制御することのできる流体軸受装置を提供することにある。   An object of the present invention is to provide a hydrodynamic bearing device capable of controlling the axially movable amount of a shaft member with high accuracy and low cost.

上記の課題を解決するために、本発明は、小径部、大径部、及びこれらの間に形成された肩面を有する軸部材と、内周に軸部材の大径部を挿入したスリーブ部と、軸部材の小径部の外周面との間に軸受内部の潤滑流体の外部への漏れ出しを防止するシール空間を形成すると共に、軸部材の肩面と軸方向で係合して軸部材の抜け止めを行うシール部と、軸部材の大径部の外周面とスリーブ部の内周面との間のラジアル軸受隙間に生じる流体膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸部材をスラスト方向で支持するスラスト軸受部とを備えた流体軸受装置において、シール部とスリーブ部との間に第1の軸方向隙間を形成したことを特徴とする。   In order to solve the above problems, the present invention provides a shaft member having a small diameter portion, a large diameter portion, and a shoulder surface formed therebetween, and a sleeve portion in which the large diameter portion of the shaft member is inserted into the inner periphery. And the outer peripheral surface of the small-diameter portion of the shaft member, a seal space that prevents leakage of the lubricating fluid inside the bearing to the outside is formed, and the shaft member is engaged with the shoulder surface of the shaft member in the axial direction. A seal portion that prevents the shaft member from being removed, and a radial bearing portion that supports the shaft member in the radial direction with a fluid film generated in a radial bearing gap between the outer peripheral surface of the large-diameter portion of the shaft member and the inner peripheral surface of the sleeve portion, In the hydrodynamic bearing device including a thrust bearing portion that supports the shaft member in the thrust direction, a first axial gap is formed between the seal portion and the sleeve portion.

このように、本発明の流体軸受装置は、シール部とスリーブ部との間に第1の軸方向隙間を形成し、シール部とスリーブ部とを非接触とすることにより、シール部の位置決め精度を決定付ける要因からスリーブ部の形状精度を排除することができる。従って、軸部材の軸方向移動可能量を、スリーブ部の加工精度によらず、シール部の位置精度によってのみ管理することができる。これにより、スリーブ部の加工精度を緩和することができるため、加工コストの低減が図られる。   As described above, the hydrodynamic bearing device of the present invention forms the first axial gap between the seal portion and the sleeve portion, and makes the seal portion and the sleeve portion non-contact, thereby positioning accuracy of the seal portion. The shape accuracy of the sleeve portion can be excluded from the factors that determine the above. Therefore, the axially movable amount of the shaft member can be managed only by the position accuracy of the seal portion, regardless of the processing accuracy of the sleeve portion. Thereby, since the processing accuracy of the sleeve portion can be relaxed, the processing cost can be reduced.

この流体軸受装置において、シール部と軸部材の肩面との間には第2の軸方向隙間が形成される。この第2の軸方向隙間は、シール空間の径方向隙間と同じかそれよりも小さくなるように設定することが好ましい。これにより、第2の軸方向隙間において、シール空間の毛細管力と同等、あるいはそれよりも大きな毛細管力による潤滑流体の引き込み作用が得られるため、軸受内部に満たされた潤滑流体の外部への漏れ出しを確実に防止することができる。   In this hydrodynamic bearing device, a second axial gap is formed between the seal portion and the shoulder surface of the shaft member. This second axial gap is preferably set to be equal to or smaller than the radial gap of the seal space. As a result, in the second axial clearance, the lubricating fluid is drawn in by the capillary force equivalent to or larger than the capillary force of the seal space, so that the lubricating fluid filled inside the bearing leaks to the outside. It is possible to reliably prevent the ejection.

例えばこの流体軸受装置をHDDのスピンドルモータ用として使用する場合、軸部材に取付けられるディスクがヘッドと干渉することを防止するため、軸部材の軸方向移動はできるだけ抑える必要がある。このとき、第2の軸方向隙間を30μm以下に設定しておけば、上記のような用途で使用する場合でも、ディスクとヘッドとの干渉を防止することができる。   For example, when this hydrodynamic bearing device is used for a spindle motor of an HDD, it is necessary to suppress the axial movement of the shaft member as much as possible in order to prevent a disk attached to the shaft member from interfering with the head. At this time, if the second axial gap is set to 30 μm or less, interference between the disk and the head can be prevented even when used in the above applications.

このような流体軸受装置の作動時において、軸受内部の潤滑流体、特に軸部材の下端部が面する空間に満たされた潤滑流体に局部的な負圧が発生することにより、ラジアル軸受隙間の流体膜に気泡が生成し、流体膜による軸部材の支持力が低下する恐れがある。そこで、スリーブ部と、スリーブ部を内周に収容したハウジングとの間に、一端を第1の軸方向隙間に開口し、他端を軸部材の下端部が面する空間に開口した連通経路を設けることにより、スラスト軸受部の空間を、連通経路、及び第1の軸方向隙間を介してシール空間と連通し、局部的な負圧の発生を防止することができ、軸受内部に満たされた潤滑流体の圧力バランスを良好に保ち、軸受性能の低下を回避することができる。   During the operation of such a hydrodynamic bearing device, a local negative pressure is generated in the lubricating fluid inside the bearing, particularly the lubricating fluid filled in the space facing the lower end of the shaft member, so that the fluid in the radial bearing gap Bubbles are generated in the membrane, and the supporting force of the shaft member by the fluid membrane may be reduced. Therefore, a communication path having one end opened in the first axial gap and the other end opened in the space facing the lower end of the shaft member between the sleeve portion and the housing housing the sleeve portion on the inner periphery. By providing, the space of the thrust bearing portion is communicated with the seal space via the communication path and the first axial gap, and generation of local negative pressure can be prevented, and the bearing is filled. It is possible to maintain a good pressure balance of the lubricating fluid and avoid a decrease in bearing performance.

このとき、スリーブ部の端面及び外周面に溝を形成し、この溝で上記の連通経路を構成すると、ハウジングの内底面や内周面は平面状あるいは円筒面状の単純な形状とすることができるため、ハウジングの形成を容易化して低コスト化を図ることができる。   At this time, if a groove is formed in the end surface and the outer peripheral surface of the sleeve portion, and the communication path is configured by the groove, the inner bottom surface and the inner peripheral surface of the housing may have a simple shape such as a planar shape or a cylindrical surface shape. Therefore, the housing can be easily formed and the cost can be reduced.

上記のような段付き状の軸部材は、一体に形成してもよいが、これに限らず、例えば軸部と、軸部の外周面に固定した中空材とで形成し、中空材の端面で軸部材の肩面を構成してもよい。この場合、段付き状の軸部材を単純な形状の軸部及び中空材で構成することができるため、軸部材の加工コストの低減を図ることができる。   The stepped shaft member as described above may be formed integrally, but is not limited thereto, and is formed of, for example, a shaft portion and a hollow material fixed to the outer peripheral surface of the shaft portion, and the end surface of the hollow material You may comprise the shoulder surface of a shaft member. In this case, since the stepped shaft member can be configured by a simple shaft portion and a hollow material, the processing cost of the shaft member can be reduced.

例えば、軸部材の端部に球面状凸部を形成し、この球面状凸部を相手材(例えばハウジングの内底面)と接触摺動させる、いわゆるピボット軸受でスラスト軸受部を構成する場合、軸部材の端部の球面状凸部とハウジングの内底面との間には空間が形成され(図2にPで示す)、この空間を含めた軸受内部の空間に潤滑剤が満たされる。このとき、軸部材を軸部と中空材とで構成し、中空材の端部を軸部の球面状凸部の外周まで延ばすと、軸部の球面状凸部が面する空間の一部を中空材で埋めることができる(図7参照)。これにより、軸受内部に満たされる潤滑剤の量を減じることができるため、潤滑剤の熱膨張を吸収するバッファ機能を果たすシール空間を縮小することが可能となり、軸受装置の薄型化、あるいはラジアル軸受部の軸受スパンの拡大による軸受剛性の向上を図ることができる。   For example, when a thrust bearing portion is formed by a so-called pivot bearing in which a spherical convex portion is formed at the end of a shaft member, and the spherical convex portion is brought into contact sliding with a mating member (for example, the inner bottom surface of the housing) A space is formed between the spherical convex portion at the end of the member and the inner bottom surface of the housing (indicated by P in FIG. 2), and the space inside the bearing including this space is filled with the lubricant. At this time, when the shaft member is composed of the shaft portion and the hollow material, and the end of the hollow material is extended to the outer periphery of the spherical convex portion of the shaft portion, a part of the space that the spherical convex portion of the shaft portion faces is obtained. It can be filled with a hollow material (see FIG. 7). As a result, the amount of lubricant filled in the bearing can be reduced, so that it is possible to reduce the seal space that functions as a buffer that absorbs the thermal expansion of the lubricant, thereby reducing the thickness of the bearing device or the radial bearing. The bearing rigidity can be improved by expanding the bearing span of the part.

上記のような流体軸受装置は、軸部材の軸方向移動を高精度に制御することができるため、例えばHDD用スピンドルモータのような軸部材の軸方向移動可能量をできる限り高精度に管理したい用途に好適に使用することができる。   Since the fluid dynamic bearing device as described above can control the axial movement of the shaft member with high accuracy, for example, it is desired to manage the axially movable amount of the shaft member such as a spindle motor for HDD as accurately as possible. It can be used suitably for a use.

以上のように、本発明によると、軸部材の軸方向移動可能量を高精度かつ低コストに制御することのできる流体軸受装置を得ることができる。   As described above, according to the present invention, it is possible to obtain a fluid dynamic bearing device capable of controlling the axially movable amount of the shaft member with high accuracy and low cost.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る流体軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、ディスクハブ3を取付けた軸部材2を回転自在に支持する流体軸受装置1と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、モータブラケット6とを備えている。ステータコイル4はモータブラケット6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられている。流体軸受装置1のハウジング7は、モータブラケット6の内周に固定される。ディスクハブ3には、磁気ディスク等のディスク状情報記録媒体(以下、単にディスクという。)Dが1又は複数枚(図1では2枚)保持される。このように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する電磁力でロータマグネット5が回転し、これに伴って、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a hydrodynamic bearing device 1 according to an embodiment of the present invention. This spindle motor is used in a disk drive device such as an HDD, and is a stator that is opposed to a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 to which a disk hub 3 is attached, for example, via a radial gap. A coil 4 and a rotor magnet 5 and a motor bracket 6 are provided. The stator coil 4 is attached to the outer periphery of the motor bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The housing 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the motor bracket 6. The disk hub 3 holds one or more (two in FIG. 1) disk-shaped information recording media (hereinafter simply referred to as disks) D such as magnetic disks. In the spindle motor configured as described above, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force generated between the stator coil 4 and the rotor magnet 5. The disk D held by the hub 3 rotates integrally with the shaft member 2.

流体軸受装置1は、図2に示すように、軸部材2と、内周に軸部材2を挿入したスリーブ部8と、スリーブ部8を外周から保持した有底筒状のハウジング7と、ハウジング7の開口部に設けられたシール部9とを主に備える。尚、以下の説明において、軸方向でハウジング7の開口側を上側、閉口側を下側とする。   As shown in FIG. 2, the hydrodynamic bearing device 1 includes a shaft member 2, a sleeve portion 8 in which the shaft member 2 is inserted on the inner periphery, a bottomed cylindrical housing 7 that holds the sleeve portion 8 from the outer periphery, 7 is mainly provided with a seal portion 9 provided in the opening portion. In the following description, the opening side of the housing 7 is the upper side and the closing side is the lower side in the axial direction.

軸部材2は、例えばSUS鋼などの金属材料の旋削加工により形成され、スリーブ部8の内周に配された大径部2aと、大径部2aの上側に設けられた小径部2bとを一体に有する。大径部2aと小径部2bとの間には肩面2cが設けられると共に、軸部材2の下端部には球面状凸部2a2が設けられる。   The shaft member 2 is formed by turning a metal material such as SUS steel, for example, and includes a large diameter portion 2a disposed on the inner periphery of the sleeve portion 8 and a small diameter portion 2b provided on the upper side of the large diameter portion 2a. Have one. A shoulder surface 2 c is provided between the large-diameter portion 2 a and the small-diameter portion 2 b, and a spherical convex portion 2 a 2 is provided at the lower end portion of the shaft member 2.

スリーブ部8は、例えば銅を主成分とする焼結金属の多孔質体で円筒状に形成される。この他、スリーブ部8を他の金属や樹脂、あるいはセラミック等で形成することも可能である。   The sleeve portion 8 is formed in a cylindrical shape, for example, from a sintered metal porous body mainly composed of copper. In addition, the sleeve portion 8 can be formed of another metal, resin, ceramic, or the like.

スリーブ部8の内周面8aの全面又は一部円筒領域には、ラジアル動圧発生部として、例えば図3に示すように、複数の動圧溝8a1、8a2をヘリングボーン形状に配列した領域が軸方向に離隔して2箇所形成される。この動圧溝8a1、8a2の形成領域は、ラジアル軸受面として軸部材2の大径部2aの外周面2a1と対向し、軸部材2の回転時には、外周面2a1との間にラジアル軸受隙間を形成し、後述するラジアル軸受部R1、R2を形成する(図2を参照)。また、上側の動圧溝8a1の形成領域では、動圧溝8a1が、上下の傾斜溝間に形成された環状の平滑部に対して軸方向非対称に形成されており、環状平滑部より上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている(X1>X2)。   As shown in FIG. 3, for example, as shown in FIG. 3, a region where a plurality of dynamic pressure grooves 8 a 1 and 8 a 2 are arranged in a herringbone shape is formed on the entire inner surface or a part of the cylindrical region of the inner surface 8 a of the sleeve portion 8. Two places are formed apart in the axial direction. The formation region of the dynamic pressure grooves 8a1 and 8a2 is opposed to the outer peripheral surface 2a1 of the large-diameter portion 2a of the shaft member 2 as a radial bearing surface, and a radial bearing gap is formed between the outer peripheral surface 2a1 and the shaft member 2 when rotating. The radial bearing portions R1 and R2 described later are formed (see FIG. 2). Further, in the formation region of the upper dynamic pressure groove 8a1, the dynamic pressure groove 8a1 is formed axially asymmetric with respect to the annular smooth portion formed between the upper and lower inclined grooves, and the upper region from the annular smooth portion. Is larger than the axial dimension X2 of the lower region (X1> X2).

スリーブ部8の外周面8dには、軸方向に延びる溝8d1が軸方向全長に亘って1又は複数本形成される。また、スリーブ部8の下側端面8cには、径方向に延びる溝8c1が1又は複数本形成される。これら軸方向溝8d1及び径方向溝8c1は、スリーブ部8をハウジング7の内周に固定した状態では、対向するハウジング7の内周面7a1及び内底面7b1との間に潤滑油の連通経路を構成する(図2を参照)。これら軸方向溝8d1及び径方向溝8c1は、例えばスリーブ部8本体をなす圧粉体の成形型に予め軸方向溝8d1及び径方向溝8c1に対応する箇所を設けておくことで、スリーブ部8本体の圧粉体成形と同時に成形することができる。   On the outer peripheral surface 8d of the sleeve portion 8, one or a plurality of grooves 8d1 extending in the axial direction are formed over the entire length in the axial direction. One or more grooves 8c1 extending in the radial direction are formed on the lower end surface 8c of the sleeve portion 8. The axial groove 8d1 and the radial groove 8c1 provide a communication path for the lubricating oil between the inner peripheral surface 7a1 and the inner bottom surface 7b1 of the opposing housing 7 in a state where the sleeve portion 8 is fixed to the inner periphery of the housing 7. Configure (see FIG. 2). The axial groove 8d1 and the radial groove 8c1 are formed by providing portions corresponding to the axial groove 8d1 and the radial groove 8c1 in advance in a green compact forming die that forms the body of the sleeve portion 8, for example. It can be molded simultaneously with the green compact molding of the main body.

ハウジング7は、液晶ポリマー(LCP)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)等の結晶性樹脂、あるいはポリフェニルサルフォン(PPSU)、ポリエーテルサルフォン(PES)、ポリエーテルイミド(PEI)等の非晶性樹脂をベース樹脂とする樹脂組成物で射出成形され、有底筒状に形成される。本実施形態では、図2に示すように、側部7aと、側部7aの下端部を閉塞する底部7bとが一体に成形される。ハウジング7を形成する上記樹脂組成物としては、例えば、ガラス繊維等の繊維状充填材、チタン酸カリウム等のウィスカ状充填材、マイカ等の鱗片状充填材、カーボン繊維、カーボンブラック、黒鉛、カーボンナノマテリアル、各種金属粉等の繊維状または粉末状の導電性充填材など、目的に応じて上記ベース樹脂に適量配合したものが使用可能である。   The housing 7 is made of a crystalline resin such as liquid crystal polymer (LCP), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), or polyphenylsulfone (PPSU), polyethersulfone (PES), polyetherimide ( It is injection molded with a resin composition having an amorphous resin such as PEI) as a base resin, and is formed into a bottomed cylindrical shape. In this embodiment, as shown in FIG. 2, the side part 7a and the bottom part 7b which obstruct | occludes the lower end part of the side part 7a are shape | molded integrally. Examples of the resin composition forming the housing 7 include fibrous fillers such as glass fibers, whisker-like fillers such as potassium titanate, scaly fillers such as mica, carbon fibers, carbon black, graphite, carbon Nanomaterials, fibrous or powdery conductive fillers such as various metal powders, and the like, which are blended in an appropriate amount with the base resin according to the purpose, can be used.

ハウジング7の射出材料は上記に限らず、例えば、マグネシウム合金やアルミニウム合金等の低融点金属材料が使用可能である。また、金属紛とバインダーの混合物で射出成形した後、脱脂・焼結するいわゆるMIM成形や、金属材料、例えば真ちゅう等の軟質金属のプレス成形でハウジング7を形成することもできる。また、ハウジング底部7bは、必ずしも側部7bと一体にする必要はなく、側部7aと別体に形成することもできる。   The injection material of the housing 7 is not limited to the above, and for example, a low melting point metal material such as a magnesium alloy or an aluminum alloy can be used. Alternatively, the housing 7 can be formed by so-called MIM molding in which degreasing and sintering are performed after injection molding with a mixture of a metal powder and a binder, or press molding of a soft metal such as a metal material such as brass. The housing bottom 7b is not necessarily integrated with the side 7b, and can be formed separately from the side 7a.

ハウジング7の内周面7a1には、スリーブ部8の外周面8dが、例えば接着(ルーズ接着や圧入接着を含む)、圧入、溶着等の適宜の手段で固定される。   The outer peripheral surface 8d of the sleeve portion 8 is fixed to the inner peripheral surface 7a1 of the housing 7 by an appropriate means such as bonding (including loose bonding or press-fitting bonding), press-fitting, or welding.

ハウジング7の内底面7b1は、軸部材2の下端部の球面状凸部2a2を接触支持するスラスト軸受部Tとして機能する。本実施形態では、このようにハウジング7に直接スラスト軸受部Tを形成しているが、これに限らず、例えば耐摩耗性、摺動特性が良好な樹脂材料や焼結材料等で別途形成したスラストワッシャをハウジング7の内底面に配し、このスラストワッシャにスラスト軸受部Tを形成しても良い。この場合、ハウジング7は軸部材2と接触摺動することがなくなるため、ハウジング7に耐摩耗性が不要となり、ハウジング7の材料選択の幅が広がる。   The inner bottom surface 7 b 1 of the housing 7 functions as a thrust bearing portion T that contacts and supports the spherical convex portion 2 a 2 at the lower end portion of the shaft member 2. In the present embodiment, the thrust bearing portion T is formed directly on the housing 7 as described above. However, the present invention is not limited to this, and is separately formed of, for example, a resin material or a sintered material having good wear resistance and sliding characteristics. A thrust washer may be disposed on the inner bottom surface of the housing 7 and the thrust bearing portion T may be formed on the thrust washer. In this case, since the housing 7 does not slide in contact with the shaft member 2, the housing 7 does not need wear resistance, and the range of material selection for the housing 7 is widened.

シール部9は、金属材料や樹脂材料で環状に形成され、ハウジング7の側部7aの上端部内周に例えば圧入、圧入接着等により固定される。シール部9の内周面9aは、上方へ向けて漸次拡径したテーパ面状に形成される。シール部9をハウジング7の内周に固定した状態で、シール部9の内周面9aは軸部材2の小径部2bの外周面2b1と対向し、これらの間に下方へ向けて半径方向寸法が漸次縮小する環状のシール空間Sが形成される。シール部9で密封されたハウジング7の内部空間には、潤滑流体として例えば潤滑油が注油され、ハウジング7内が潤滑油で満たされる(図2中の散点領域)。この状態で、潤滑油の油面はシール空間Sの範囲内に維持される。このとき、図2の拡大図で示すように、シール部9の下側端面9bの内周チャンファ9b1と軸部材2の小径部2bの外周面2b1との間の空間や、スリーブ部8の上側端面8bの内周チャンファ8c1と軸部材2の大径部2aの外周面2a1との間の空間も潤滑油で満たされる。   The seal portion 9 is formed in a ring shape with a metal material or a resin material, and is fixed to the inner periphery of the upper end portion of the side portion 7a of the housing 7 by, for example, press-fitting, press-fitting adhesion or the like. The inner peripheral surface 9a of the seal portion 9 is formed in a tapered surface shape whose diameter is gradually increased upward. In a state where the seal portion 9 is fixed to the inner periphery of the housing 7, the inner peripheral surface 9a of the seal portion 9 faces the outer peripheral surface 2b1 of the small diameter portion 2b of the shaft member 2, and the radial dimension is directed downward therebetween. An annular seal space S in which the diameter gradually decreases is formed. Lubricating oil, for example, is injected into the internal space of the housing 7 sealed by the seal portion 9 as a lubricating fluid, and the inside of the housing 7 is filled with the lubricating oil (a dotted area in FIG. 2). In this state, the oil level of the lubricating oil is maintained within the range of the seal space S. At this time, as shown in the enlarged view of FIG. 2, the space between the inner peripheral chamfer 9 b 1 of the lower end surface 9 b of the seal portion 9 and the outer peripheral surface 2 b 1 of the small diameter portion 2 b of the shaft member 2, or the upper side of the sleeve portion 8. The space between the inner peripheral chamfer 8c1 of the end surface 8b and the outer peripheral surface 2a1 of the large diameter portion 2a of the shaft member 2 is also filled with lubricating oil.

シール部9の下側端面9bとスリーブ部8の上側端面8bとの間には第1の軸方向隙間L1が形成される。また、シール部9の下側端面9bと軸部材2の肩面2cとの間には第2の軸方向隙間L2が形成され、この第2の軸方向隙間L2が軸部材2の軸方向移動可能量となる。このように、シール部9とスリーブ部8との間に第1の軸方向隙間L1を設け、両者を非接触とすることにより、軸部材2の軸方向移動可能量、すなわち第2の軸方向隙間L2を、スリーブ部の加工精度によらず、シール部9の位置精度によってのみ管理することができる。   A first axial gap L <b> 1 is formed between the lower end surface 9 b of the seal portion 9 and the upper end surface 8 b of the sleeve portion 8. Further, a second axial gap L2 is formed between the lower end surface 9b of the seal portion 9 and the shoulder surface 2c of the shaft member 2, and the second axial gap L2 moves in the axial direction of the shaft member 2. It becomes possible amount. Thus, by providing the first axial gap L1 between the seal portion 9 and the sleeve portion 8 and making them non-contact, the axially movable amount of the shaft member 2, that is, the second axial direction. The gap L2 can be managed only by the positional accuracy of the seal portion 9 regardless of the processing accuracy of the sleeve portion.

また、本実施形態のように、流体軸受装置1をHDDのスピンドルモータ用として使用する場合は、ディスクとヘッドとの干渉を防止するために、第2の軸方向隙間L2を30μm以下、好ましくは20μm以下に設定することが望ましい。さらに、第2の軸方向隙間L2は、シール空間Sのうち、最も小さい径方向寸法L3と同じかそれよりも小さく設定することが望ましい(L2≦L3)。これにより、第2の軸方向隙間L2において、シール空間Sと同等かそれよりも大きな毛細管力が得られるため、潤滑油の外部への漏れ出しをより確実に防止することができる。   Further, when the hydrodynamic bearing device 1 is used for a HDD spindle motor as in this embodiment, the second axial gap L2 is set to 30 μm or less, preferably in order to prevent interference between the disk and the head. It is desirable to set it to 20 μm or less. Furthermore, it is desirable to set the second axial gap L2 to be equal to or smaller than the smallest radial dimension L3 in the seal space S (L2 ≦ L3). Thereby, in the 2nd axial direction gap L2, since the capillary force equivalent to or larger than the seal space S is obtained, the leakage of the lubricating oil to the outside can be prevented more reliably.

第2の軸方向隙間L2の設定は、例えば以下のようにして行うことができる。まず、図4(a)に示すように、スリーブ部8及び軸部材2をハウジング7の内周に収容する。具体的には、ハウジング7の内周にスリーブ部8を挿入し、スリーブ部8の下側端面8cをハウジング7の内底面7b1に当接させ、スリーブ部8をハウジング7の内周面7a1に固定する。このスリーブ部8の内周に軸部材2を挿入し、ハウジング7の内底面7b1に軸部材2の下端の球面状凸部2a2を当接させる。この状態で、軸部材2の肩面2cがスリーブ部8の上側端面8bよりも上方(ハウジング開口側)に位置するように、軸部材2の大径部2a及びスリーブ部8の軸方向寸法を予め設計しておく。   The setting of the second axial gap L2 can be performed as follows, for example. First, as shown in FIG. 4A, the sleeve portion 8 and the shaft member 2 are accommodated in the inner periphery of the housing 7. Specifically, the sleeve portion 8 is inserted into the inner periphery of the housing 7, the lower end surface 8 c of the sleeve portion 8 is brought into contact with the inner bottom surface 7 b 1 of the housing 7, and the sleeve portion 8 is brought into contact with the inner peripheral surface 7 a 1 of the housing 7. Fix it. The shaft member 2 is inserted into the inner periphery of the sleeve portion 8, and the spherical convex portion 2 a 2 at the lower end of the shaft member 2 is brought into contact with the inner bottom surface 7 b 1 of the housing 7. In this state, the axial dimensions of the large-diameter portion 2a and the sleeve portion 8 of the shaft member 2 are set so that the shoulder surface 2c of the shaft member 2 is positioned above the upper end surface 8b of the sleeve portion 8 (housing opening side). Design in advance.

次いで、図4(b)に示すように、シール部9をハウジング7の内周面7a1に上方から挿入し、下側端面9bを軸部材2の肩面2cに当接させる。その後、図4(b)に矢印で示すように軸部材2をハウジング7に対して引き上げることにより、軸部材2の肩面2cと係合したシール部9を、図2に示す第2の軸方向隙間L2の分だけハウジング7に対して上方へ移動させる。この状態で、シール部9をハウジング7の内周面7a1に固定することにより、第2の軸方向隙間L2が設定される。シール部9とハウジング7は、例えば圧入により固定され、この場合、軸部材2を所定量だけ引き上げた時点でシール部9の位置決め及び固定が完了する。このとき、両者の嵌合面に接着剤を介在させておくと、固定強度が高められると共に、ユニット内部からの油の漏れを確実に防止できる。また、シール部9をハウジング7に挿入する前に接着剤を塗布すれば、接着剤が潤滑剤として機能し、シール部9の挿入および移動を容易化することができる。   Next, as shown in FIG. 4B, the seal portion 9 is inserted into the inner peripheral surface 7 a 1 of the housing 7 from above, and the lower end surface 9 b is brought into contact with the shoulder surface 2 c of the shaft member 2. Thereafter, as shown by an arrow in FIG. 4B, the shaft member 2 is pulled up with respect to the housing 7 so that the seal portion 9 engaged with the shoulder surface 2c of the shaft member 2 becomes the second shaft shown in FIG. It is moved upward relative to the housing 7 by the direction gap L2. In this state, the second axial gap L2 is set by fixing the seal portion 9 to the inner peripheral surface 7a1 of the housing 7. The seal portion 9 and the housing 7 are fixed by, for example, press-fitting. In this case, the positioning and fixing of the seal portion 9 are completed when the shaft member 2 is pulled up by a predetermined amount. At this time, if an adhesive is interposed between the fitting surfaces of both, the fixing strength can be increased and oil leakage from the inside of the unit can be reliably prevented. Further, if an adhesive is applied before the seal portion 9 is inserted into the housing 7, the adhesive functions as a lubricant, and the insertion and movement of the seal portion 9 can be facilitated.

この方法によると、軸部材2の軸方向移動可能量となる第2の軸方向隙間L2を、軸部材2の引き上げ量により高精度に設定することができる。すなわち、軸部材2の軸方向移動可能量を、スリーブ部8の加工精度ではなく、軸部材2の引き上げ量により直接的に管理することができる。従って、軸部材2の軸方向移動可能量を精度良く管理できると共に、スリーブ部8の加工精度が緩和され、製造コストを低減できる。   According to this method, the second axial gap L <b> 2, which is the axially movable amount of the shaft member 2, can be set with high accuracy by the lifting amount of the shaft member 2. That is, the axially movable amount of the shaft member 2 can be directly managed not by the processing accuracy of the sleeve portion 8 but by the amount by which the shaft member 2 is pulled up. Accordingly, the axially movable amount of the shaft member 2 can be managed with high accuracy, the processing accuracy of the sleeve portion 8 can be relaxed, and the manufacturing cost can be reduced.

上記構成の動圧軸受装置1において、軸部材2の回転時、スリーブ部8のラジアル軸受面(内周面8aの動圧溝8a1、8a2形成領域)は、軸部材2の大径部2aの外周面2a1とラジアル軸受隙間を介して対向する。軸部材2の回転に伴い、上記ラジアル軸受隙間の潤滑油が動圧溝8a1、8a2の軸方向中心の環状平滑部側に押し込まれ、その圧力が上昇する。このような動圧溝8a1、8a2の動圧作用によって、軸部材2をラジアル方向に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが構成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 rotates, the radial bearing surface of the sleeve portion 8 (the dynamic pressure grooves 8a1 and 8a2 forming region of the inner peripheral surface 8a) is formed on the large-diameter portion 2a of the shaft member 2. It faces the outer peripheral surface 2a1 via a radial bearing gap. As the shaft member 2 rotates, the lubricating oil in the radial bearing gap is pushed into the annular smooth portion at the axial center of the dynamic pressure grooves 8a1 and 8a2, and the pressure rises. By such dynamic pressure action of the dynamic pressure grooves 8a1 and 8a2, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner in the radial direction are configured.

同時に、軸部材2の下端に設けられた球面状凸部2a2とスラスト軸受部Tとしてのハウジング7の内底面7b1とが接触摺動することにより、軸部材2がスラスト方向に接触支持される。   At the same time, when the spherical convex portion 2a2 provided at the lower end of the shaft member 2 and the inner bottom surface 7b1 of the housing 7 as the thrust bearing portion T are in contact sliding, the shaft member 2 is contacted and supported in the thrust direction.

また、スリーブ部8の外周面8dに形成された軸方向溝8d1、及び下側端面8cに形成された径方向溝8c1により、スリーブ部8とハウジング7との間に連通経路が形成される。この連通経路の一端は第1の軸方向隙間L1に開口し、他端は軸部材2の下端部が面する空間、詳しくは、ハウジング7の内底面7b1と軸部材2の球面状凸部2a2との間の空間Pに開口する。これにより、ハウジング閉塞側に形成された前記空間Pが、前記連通経路、第1の軸方向隙間L1、さらに第2の軸方向隙間L2を介して、シール空間Sと連通するため、前記空間Pに満たされた潤滑油に局部的な負圧が発生する事態が回避され、気泡の生成による軸受性能の低下を防止することができる。   A communication path is formed between the sleeve portion 8 and the housing 7 by the axial groove 8d1 formed on the outer peripheral surface 8d of the sleeve portion 8 and the radial groove 8c1 formed on the lower end surface 8c. One end of this communication path opens into the first axial gap L1, and the other end is a space facing the lower end portion of the shaft member 2, more specifically, the inner bottom surface 7b1 of the housing 7 and the spherical convex portion 2a2 of the shaft member 2. It opens to the space P between. As a result, the space P formed on the housing closing side communicates with the seal space S via the communication path, the first axial gap L1, and further the second axial gap L2. A situation in which a local negative pressure is generated in the lubricating oil filled in is avoided, and deterioration in bearing performance due to the generation of bubbles can be prevented.

また、この実施形態では、第1ラジアル軸受部R1の動圧溝8a1は、軸方向中間部の環状平滑部に対して軸方向非対称(X1>X2)に形成されているため(図3参照)、軸部材2の回転時、動圧溝8a1による潤滑油の引き込み力(ポンピング力)は上側領域が下側領域に比べて相対的に大きくなる。そして、この引き込み力の差圧によって、スリーブ部8の内周面8aと軸部材2の大径部2aの外周面2a1との間の隙間に満たされた潤滑油が下方に流動し、ハウジング7の閉塞側の空間P→径方向溝8c1→軸方向溝8d1→第1の軸方向隙間L1という経路を循環して、第1ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。このように、軸受内部の潤滑油を強制的に流動循環させることで、潤滑油に局部的な負圧が発生する事態をより効果的に防止することができる。尚、潤滑油を上記経路と逆向きに循環させたい場合は、例えば動圧溝8a1のアンバランスを図3に示す例とは反対向き、すなわちX1<X2となるように形成すればよい。また、上記のように軸受内部の潤滑油を強制的に循環させる必要がない場合は、動圧溝8a1、8a2の双方をそれぞれ軸方向対称に形成してもよい。   In this embodiment, the dynamic pressure groove 8a1 of the first radial bearing portion R1 is formed to be axially asymmetric (X1> X2) with respect to the annular smooth portion at the axially intermediate portion (see FIG. 3). When the shaft member 2 rotates, the lubricating oil pulling force (pumping force) by the dynamic pressure groove 8a1 is relatively larger in the upper region than in the lower region. Then, due to the differential pressure of the pulling force, the lubricating oil filled in the gap between the inner peripheral surface 8a of the sleeve portion 8 and the outer peripheral surface 2a1 of the large diameter portion 2a of the shaft member 2 flows downward, and the housing 7 Is circulated through a path of the closed side P → the radial groove 8c1 → the axial groove 8d1 → the first axial gap L1, and is drawn into the radial bearing gap of the first radial bearing portion R1 again. In this way, by forcibly flowing and circulating the lubricating oil inside the bearing, a situation in which a local negative pressure is generated in the lubricating oil can be more effectively prevented. In order to circulate the lubricating oil in the direction opposite to the above path, for example, the imbalance of the dynamic pressure groove 8a1 may be formed in the direction opposite to the example shown in FIG. 3, that is, X1 <X2. Further, when it is not necessary to forcibly circulate the lubricating oil inside the bearing as described above, both of the dynamic pressure grooves 8a1 and 8a2 may be formed symmetrically in the axial direction.

本発明の実施形態は上記に限られない。尚、以下の説明において、上記の実施形態と同様の構成、機能を有する部位には同一の符号を付し、説明を省略する。   The embodiment of the present invention is not limited to the above. In the following description, parts having the same configuration and function as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.

図5に他の実施形態に係る動圧軸受装置1を示す。この動圧軸受装置1は、軸部材2の肩面2cと軸受スリーブ8の上側端面8bの軸方向位置が同じである点、また、軸受スリーブ8の下側端面8cとハウジング7の内底面7b1との間に軸方向隙間L4が形成されている点で、上記の実施形態と構成を異にする。軸方向隙間L4を適宜設定すれば、この軸方向隙間L4でハウジング閉塞側の空間Pとシール空間Sとを連通する連通経路の一部を構成することができる。この場合、図2の実施形態で軸受スリーブ8の下側端面8cに形成していた径方向溝8c1が不要となるため、軸受スリーブ8の形状を簡略化することができる。   FIG. 5 shows a fluid dynamic bearing device 1 according to another embodiment. The hydrodynamic bearing device 1 has the same axial position of the shoulder surface 2c of the shaft member 2 and the upper end surface 8b of the bearing sleeve 8, and the lower end surface 8c of the bearing sleeve 8 and the inner bottom surface 7b1 of the housing 7. The configuration is different from that of the above-described embodiment in that an axial gap L4 is formed therebetween. If the axial gap L4 is appropriately set, this axial gap L4 can constitute a part of the communication path that connects the housing closing side space P and the seal space S. In this case, since the radial groove 8c1 formed in the lower end surface 8c of the bearing sleeve 8 in the embodiment of FIG. 2 is not necessary, the shape of the bearing sleeve 8 can be simplified.

上記の動圧軸受装置1の組立方法を、図6に基づいて説明する。まず、軸部材2の小径部2bの外周面2b1とシール部材9の内周面9aとを嵌合し、シール部材9の端面9bと軸部材2の肩面2cとを当接させる。この軸部材2及びシール部材9を図5に示す状態と上下反対となるように倒立させ、円筒状の台10の端面10aの上に載置する(図6(a)参照)。次に、軸部材2の大径部2aの外周面2a1と軸受スリーブ8の内周面8aとを嵌合し、軸受スリーブ8の端面8bとシール部材9の端面9bを当接させる(図6(b)参照)。このとき、軸受スリーブ8の一方の端面8bと軸部材2の肩面2cとが同じ軸方向位置にあり、且つ、軸部材2の球面状凸部2a2が軸受スリーブ8の他方の端面8cから僅かに突出した状態となる。   A method for assembling the above hydrodynamic bearing device 1 will be described with reference to FIG. First, the outer peripheral surface 2b1 of the small diameter portion 2b of the shaft member 2 and the inner peripheral surface 9a of the seal member 9 are fitted, and the end surface 9b of the seal member 9 and the shoulder surface 2c of the shaft member 2 are brought into contact with each other. The shaft member 2 and the seal member 9 are inverted so as to be upside down from the state shown in FIG. 5 and placed on the end surface 10a of the cylindrical base 10 (see FIG. 6A). Next, the outer peripheral surface 2a1 of the large-diameter portion 2a of the shaft member 2 and the inner peripheral surface 8a of the bearing sleeve 8 are fitted, and the end surface 8b of the bearing sleeve 8 and the end surface 9b of the seal member 9 are brought into contact with each other (FIG. 6). (See (b)). At this time, one end surface 8b of the bearing sleeve 8 and the shoulder surface 2c of the shaft member 2 are at the same axial position, and the spherical convex portion 2a2 of the shaft member 2 is slightly from the other end surface 8c of the bearing sleeve 8. It will be in the state of protruding.

さらに、軸受スリーブ8の外周面8dとハウジング7の内周面7a1とを嵌合し、軸部材2の球面状凸部2a2とハウジング7の内底面7b1とを当接させる(図6(c)参照)。このとき、軸受スリーブ8の端面8cとハウジング7の内底面7b1との間には軸方向隙間L4が形成される。この状態でハウジング7と軸受スリーブ8とを固定し、このユニットを台10から外して図6(d)の状態とする。その後、軸部材2をハウジング開口側へ引っ張ってシール部材9を移動させることにより、シール部材9と軸受スリーブ8との間に第1の軸方向隙間L1を形成すると共に、シール部9と軸部材2の肩面2cとの間に第2の軸方向隙間L2を形成する。このとき、軸部材2の肩面2cと軸受スリーブ8の上側端面8bが同じ軸方向位置にあるため、第1の軸方向隙間L1と第2の軸方向隙間L2は等しくなる(L1=L2)。この位置でシール部材9をハウジング7に固定することにより、第1及び第2の軸方向隙間L1、L2が決定される。 Further, the outer peripheral surface 8d of the bearing sleeve 8 and the inner peripheral surface 7a1 of the housing 7 are fitted, and the spherical convex portion 2a2 of the shaft member 2 and the inner bottom surface 7b1 of the housing 7 are brought into contact with each other (FIG. 6C). reference). At this time, an axial gap L4 is formed between the end face 8c of the bearing sleeve 8 and the inner bottom face 7b1 of the housing 7. In this state, the housing 7 and the bearing sleeve 8 are fixed, and the unit is removed from the base 10 to obtain the state shown in FIG. Thereafter, the shaft member 2 is pulled toward the housing opening side to move the seal member 9, thereby forming a first axial gap L1 between the seal member 9 and the bearing sleeve 8, and the seal portion 9 and the shaft member. A second axial gap L2 is formed between the second shoulder surface 2c. At this time, since the shoulder surface 2c of the shaft member 2 and the upper end surface 8b of the bearing sleeve 8 are in the same axial position, the first axial clearance L1 and the second axial clearance L2 are equal (L1 = L2). . By fixing the seal member 9 to the housing 7 at this position, the first and second axial gaps L1 and L2 are determined.

また、本発明の実施形態に係る流体軸受装置1の構成は上記に限られない。上記の実施形態では段付き状の軸部材2を一体に形成しているが、これに限らず、例えば図7に示すように、軸部材2をストレートの軸状の軸部21と中空材22とで構成してもよい。図示例では、軸部21の下端部に球面状凸部21bが形成され、軸部21の外周面21aに円筒状の中空材22の内周面22bが固定される。中空材22の外周面22aはラジアル軸受隙間に面し、中空材22の上側端面22cが軸部材2の肩面を構成する。中空材22の下端部は、軸部21の外周面21aの下端部を越えて下方へ延び、軸部21の球面状凸部21bの外周まで達している。これにより、軸部材2の下端部とハウジング7の内底面7b1との間の空間Pの一部が中空材22で埋められ、例えば図2に示す構成と比べて軸受内部に満たされる潤滑油の量を減じることができる。従って、軸受内部に満たされた潤滑油の体積変化を吸収するシール空間Sが縮小され、シール部材9の軸方向寸法の縮小が可能となり、これにより軸受性能を維持したまま軸受装置1の軸方向寸法を縮小することができる。あるいは、軸受装置1の軸方向寸法を拡大することなく、ラジアル軸受部R1とR2との間隔(軸受スパン)を拡大して軸受剛性の向上を図ることができる。   The configuration of the hydrodynamic bearing device 1 according to the embodiment of the present invention is not limited to the above. In the above-described embodiment, the stepped shaft member 2 is integrally formed. However, the present invention is not limited to this, and for example, as shown in FIG. 7, the shaft member 2 includes a straight shaft-shaped shaft portion 21 and a hollow material 22. You may comprise. In the illustrated example, a spherical convex portion 21 b is formed at the lower end portion of the shaft portion 21, and the inner peripheral surface 22 b of the cylindrical hollow material 22 is fixed to the outer peripheral surface 21 a of the shaft portion 21. The outer peripheral surface 22 a of the hollow member 22 faces the radial bearing gap, and the upper end surface 22 c of the hollow member 22 constitutes the shoulder surface of the shaft member 2. The lower end portion of the hollow member 22 extends downward beyond the lower end portion of the outer peripheral surface 21 a of the shaft portion 21 and reaches the outer periphery of the spherical convex portion 21 b of the shaft portion 21. Thereby, a part of the space P between the lower end portion of the shaft member 2 and the inner bottom surface 7b1 of the housing 7 is filled with the hollow material 22, for example, the lubricating oil filled in the bearing as compared with the configuration shown in FIG. The amount can be reduced. Accordingly, the seal space S that absorbs the volume change of the lubricating oil filled in the bearing is reduced, and the axial dimension of the seal member 9 can be reduced, whereby the axial direction of the bearing device 1 is maintained while maintaining the bearing performance. The dimensions can be reduced. Alternatively, without increasing the axial dimension of the bearing device 1, the space between the radial bearing portions R1 and R2 (bearing span) can be expanded to improve the bearing rigidity.

この軸部21及び中空材22からなる軸部材2は、圧入や接着、溶接など任意の方法で固定される。例えば溶接で固定する場合、軸部21の下端の球面状凸部21bの外径端と中空材22の内周面22bとの境界部を溶接すれば、溶融した材料を球面状凸部21bと中空材22の内周面22bとで形成される凹部Qで捕捉することができる。また、溶融した材料で凹部Qを埋めることにより、軸受内部の潤滑油量をさらに減じることができるため、シール空間Sがさらに縮小され、上記の軸受装置の縮小、あるいは軸受剛性の向上効果をより一層高めることができる。 The shaft member 2 composed of the shaft portion 21 and the hollow material 22 is fixed by an arbitrary method such as press-fitting, adhesion, or welding. For example, when fixing by welding, if the boundary portion between the outer diameter end of the spherical convex portion 21b at the lower end of the shaft portion 21 and the inner peripheral surface 22b of the hollow member 22 is welded, the molten material is converted into the spherical convex portion 21b. It can be captured by the recess Q formed by the inner peripheral surface 22 b of the hollow material 22. Moreover, since the amount of lubricating oil inside the bearing can be further reduced by filling the concave portion Q with the melted material, the seal space S is further reduced, and the bearing device can be further reduced or the bearing rigidity can be improved. It can be further enhanced.

また、図2や図5に示す軸部材2は、軸部材2を一体に加工した後、大径部2aの外周面2a1、小径部2bの外周面2b1、及び肩面2cに研削加工を施して仕上げられる。このとき、小径部2bの外周面2b1と肩面2cとの境界部にヌスミ2dを形成しておけば、小径部2bの外周面2b1及び肩面2cを端部まで確実に研削することが可能となる。一方、図7に示すように軸部材2を軸部21及び中空材22の2部材で構成すれば、予め高精度に加工した上で両者を固定することができるため、ヌスミを形成する必要はない。尚、この場合、軸部21と中空材22とを固定した後に、ラジアル軸受隙間に面する中空材22の外周面22aを研削すれば、軸部21と中空材22の組み付け誤差を考慮した上で外周面22aを高精度に仕上げることができる。   2 and 5, the shaft member 2 is integrally processed, and then the outer peripheral surface 2a1 of the large diameter portion 2a, the outer peripheral surface 2b1 of the small diameter portion 2b, and the shoulder surface 2c are ground. And finished. At this time, if the Nusumi 2d is formed at the boundary between the outer peripheral surface 2b1 and the shoulder surface 2c of the small diameter portion 2b, the outer peripheral surface 2b1 and the shoulder surface 2c of the small diameter portion 2b can be reliably ground to the end. It becomes. On the other hand, if the shaft member 2 is composed of two members of the shaft portion 21 and the hollow member 22 as shown in FIG. 7, both can be fixed in advance after being processed with high accuracy. Absent. In this case, if the shaft 21 and the hollow member 22 are fixed and then the outer peripheral surface 22a of the hollow member 22 facing the radial bearing gap is ground, the assembly error between the shaft 21 and the hollow member 22 is taken into consideration. Thus, the outer peripheral surface 22a can be finished with high accuracy.

ハウジング7とスリーブ部8とが別体に形成されているが、これらを一体に形成してもよい。例えば、ハウジング7及びスリーブ部8を射出成形により一体に形成すれば、製造工程を省くことができるため、低コスト化を図ることができる。 Although the housing 7 and the sleeve portion 8 are formed separately, they may be integrally formed. For example, if the housing 7 and the sleeve portion 8 are integrally formed by injection molding, the manufacturing process can be omitted, so that the cost can be reduced.

また、上記の実施形態では、ラジアル軸受隙間の潤滑流体に動圧作用を発生させる動圧発生部として、スリーブ部8の内周面8aにヘリングボーン形状の動圧溝8a1、8a2が形成されているが、これに限らず、例えばスパイラル形状の動圧溝やステップ軸受、あるいは多円弧軸受を採用してもよい。あるいは、スリーブ部8の内周面8a及び軸部材2の大径部2aの外周面2a1を共に円筒面状に形成し、いわゆる真円軸受を構成してもよい。   Further, in the above embodiment, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 are formed on the inner peripheral surface 8a of the sleeve portion 8 as a dynamic pressure generating portion that generates a dynamic pressure action on the lubricating fluid in the radial bearing gap. However, the present invention is not limited to this, and for example, a spiral dynamic pressure groove, a step bearing, or a multi-arc bearing may be employed. Alternatively, both the inner peripheral surface 8a of the sleeve portion 8 and the outer peripheral surface 2a1 of the large diameter portion 2a of the shaft member 2 may be formed into a cylindrical surface to constitute a so-called circular bearing.

また、上記の実施形態では、スラスト軸受部Tで軸部材2を接触支持する構成を示しているが、これに限られない。例えば、軸部材2の下端面とハウジング7の内底面7b1との間にスラスト軸受隙間を形成し、このスラスト軸受隙間の潤滑油の動圧作用で軸部材2を非接触支持するスラスト軸受部Tを構成してもよい。 In the above-described embodiment, the configuration in which the shaft member 2 is contact-supported by the thrust bearing portion T is shown, but the present invention is not limited to this. For example, a thrust bearing gap T is formed between the lower end surface of the shaft member 2 and the inner bottom surface 7b1 of the housing 7, and the shaft member 2 is supported in a non-contact manner by the dynamic pressure action of lubricating oil in the thrust bearing gap. May be configured.

また、上記の実施形態では、スリーブ部8の内周面8aに動圧溝8a1、8a2を形成しているが、この面と軸受隙間を介して対向する軸部材2の大径部2aの外周面2a1に動圧溝を形成してもよい。   In the above embodiment, the dynamic pressure grooves 8a1 and 8a2 are formed on the inner peripheral surface 8a of the sleeve portion 8, but the outer periphery of the large-diameter portion 2a of the shaft member 2 facing this surface through a bearing gap. A dynamic pressure groove may be formed on the surface 2a1.

また、上記の実施形態では、ラジアル軸受部R1、R2が軸方向で離隔して設けられているが、これらを軸方向で連続的に設けてもよい。あるいは、これらの何れか一方のみを設けてもよい。   Moreover, in said embodiment, although radial bearing part R1, R2 is spaced apart and provided in the axial direction, you may provide these continuously in an axial direction. Alternatively, only one of these may be provided.

また、上記の実施形態では、動圧軸受装置1の内部に充満し、ラジアル軸受隙間に動圧作用を生じる流体として潤滑油を例示したが、それ以外にも各軸受隙間に動圧作用を発生可能な流体、例えば空気等の気体や、磁性流体、あるいは潤滑グリース等を使用することもできる。   Further, in the above embodiment, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1 and generates the hydrodynamic action in the radial bearing gap. However, the hydrodynamic action is also generated in each bearing gap. Possible fluids, for example, a gas such as air, a magnetic fluid, or lubricating grease can also be used.

また、本発明の動圧軸受装置は、上記のようにHDD等のディスク駆動装置に用いられるスピンドルモータに限らず、光ディスクの光磁気ディスク駆動用のスピンドルモータ等、高速回転下で使用される情報機器用の小型モータ、レーザビームプリンタのポリゴンスキャナモータ等における回転軸支持用、あるいは電気機器の冷却ファン用のファンモータとしても好適に使用することができる。   Further, the hydrodynamic bearing device of the present invention is not limited to the spindle motor used in the disk drive device such as the HDD as described above, but is used for information used under high-speed rotation, such as a spindle motor for driving a magneto-optical disk of an optical disk. It can also be suitably used as a fan motor for rotating shaft support in a small motor for equipment, a polygon scanner motor of a laser beam printer, or a cooling fan for electrical equipment.

流体軸受装置を組み込んだHDD用スピンドルモータを示す断面図である。It is sectional drawing which shows the spindle motor for HDD incorporating the hydrodynamic bearing apparatus. 流体軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. スリーブ部の断面図である。It is sectional drawing of a sleeve part. (a)、(b)は、第2の軸方向隙間の設定方法を示す断面図である。(A), (b) is sectional drawing which shows the setting method of the 2nd axial direction clearance gap. 他の例の流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus of another example. (a)〜(d)は、流体軸受装置の組立方法の他の例を示す断面図である。(A)-(d) is sectional drawing which shows the other example of the assembly method of a hydrodynamic bearing apparatus. 他の例の流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus of another example. 軸部材の肩面付近を拡大して示す断面図である。It is sectional drawing which expands and shows the shoulder surface vicinity of a shaft member.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
2a 大径部
2b 小径部
2c 肩面
7 ハウジング
8 スリーブ部
8c1 径方向溝
8d1 軸方向溝
9 シール部
L1 第1の軸方向隙間
L2 第2の軸方向隙間
L3 シール空間の径方向寸法
R1,R2 ラジアル軸受部
T スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Hydrodynamic bearing device 2 Shaft member 2a Large diameter part 2b Small diameter part 2c Shoulder surface 7 Housing 8 Sleeve part 8c1 Radial direction groove 8d1 Axial direction groove 9 Seal part L1 1st axial direction clearance L2 2nd axial direction clearance L3 Seal space Radial dimension R1, R2 Radial bearing part T Thrust bearing part S Seal space

Claims (8)

小径部、大径部、及びこれらの間に形成された肩面を有する軸部材と、内周に軸部材の大径部を挿入したスリーブ部と、軸部材の小径部の外周面との間に軸受内部の潤滑流体の外部への漏れ出しを防止するシール空間を形成すると共に、軸部材の肩面と軸方向で係合して軸部材の抜け止めを行うシール部と、軸部材の大径部の外周面とスリーブ部の内周面との間のラジアル軸受隙間に生じる流体膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸部材をスラスト方向で支持するスラスト軸受部とを備えた流体軸受装置において、
シール部とスリーブ部との間に第1の軸方向隙間を形成したことを特徴とする流体軸受装置。
Between the small-diameter portion, the large-diameter portion, and the shaft member having a shoulder surface formed between them, the sleeve portion in which the large-diameter portion of the shaft member is inserted on the inner periphery, and the outer peripheral surface of the small-diameter portion of the shaft member A seal space that prevents leakage of the lubricating fluid inside the bearing to the outside, and a seal portion that engages the shoulder surface of the shaft member in the axial direction to prevent the shaft member from coming off, and a large shaft member A radial bearing portion that supports the shaft member in the radial direction with a fluid film generated in a radial bearing gap between the outer peripheral surface of the diameter portion and the inner peripheral surface of the sleeve portion, and a thrust bearing portion that supports the shaft member in the thrust direction. In the hydrodynamic bearing device provided,
A hydrodynamic bearing device, wherein a first axial gap is formed between a seal portion and a sleeve portion.
シール部と軸部材の肩面との間に形成された第2の軸方向隙間が、シール空間の径方向寸法と同じかそれよりも小さい請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a second axial gap formed between the seal portion and the shoulder surface of the shaft member is equal to or smaller than a radial dimension of the seal space. 第2の軸方向隙間が30μm以下である請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the second axial clearance is 30 μm or less. スリーブ部と、スリーブ部を内周に収容したハウジングとの間に、一端を第1の軸方向隙間に開口し、他端を軸部材の下端部が面する空間に開口した連通経路を設けた請求項1記載の流体軸受装置。   A communication path is provided between the sleeve portion and the housing housing the sleeve portion on the inner periphery, with one end opened in the first axial gap and the other end opened in a space facing the lower end of the shaft member. The hydrodynamic bearing device according to claim 1. スリーブ部の端面及び外周面に形成した溝により前記連通経路を構成した請求項4記載の流体軸受装置。   The hydrodynamic bearing device according to claim 4, wherein the communication path is configured by grooves formed in an end surface and an outer peripheral surface of the sleeve portion. 軸部材を、軸部と、軸部の外周面に固定した中空材とで形成し、中空材の端面で軸部材の肩面を構成した請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the shaft member is formed of a shaft portion and a hollow material fixed to the outer peripheral surface of the shaft portion, and a shoulder surface of the shaft member is configured by an end surface of the hollow material. 軸部の端部に球面状凸部を形成し、この球面状凸部を接触支持することでスラスト軸受部を構成し、中空材の端部を軸部の球面状凸部の外周まで延ばした請求項6記載の流体軸受装置。   A spherical convex portion is formed at the end of the shaft portion, and this spherical convex portion is contact-supported to constitute a thrust bearing portion, and the end of the hollow material is extended to the outer periphery of the spherical convex portion of the shaft portion. The hydrodynamic bearing device according to claim 6. HDD用スピンドルモータに用いる請求項1〜7の何れかに記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, which is used for a HDD spindle motor.
JP2008160592A 2007-07-31 2008-06-19 Hydrodynamic bearing device Active JP5231095B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008160592A JP5231095B2 (en) 2007-08-21 2008-06-19 Hydrodynamic bearing device
KR1020097026355A KR101439924B1 (en) 2007-07-31 2008-07-18 Fluid dynamic bearing device and its assembling method
CN2008801007246A CN101765718B (en) 2007-07-31 2008-07-18 Fluid dynamic bearing device and its assembling method
US12/665,384 US8454239B2 (en) 2007-07-31 2008-07-18 Fluid dynamic bearing device and assembling method thereof
PCT/JP2008/063055 WO2009016983A1 (en) 2007-07-31 2008-07-18 Fluid dynamic bearing device and its assembling method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007214775 2007-08-21
JP2007214775 2007-08-21
JP2008160592A JP5231095B2 (en) 2007-08-21 2008-06-19 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2009068691A true JP2009068691A (en) 2009-04-02
JP5231095B2 JP5231095B2 (en) 2013-07-10

Family

ID=40605160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008160592A Active JP5231095B2 (en) 2007-07-31 2008-06-19 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP5231095B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109893A (en) * 2009-11-16 2011-06-02 Samsung Electro-Mechanics Co Ltd Brushless dc motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226780A (en) * 2004-02-13 2005-08-25 Sony Corp Bearing unit, motor with bearing unit, and electronic device
JP2006161928A (en) * 2004-12-06 2006-06-22 Ntn Corp Dynamic pressure bearing device
JP2007154959A (en) * 2005-12-02 2007-06-21 Matsushita Electric Ind Co Ltd Dynamic fluid bearing device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226780A (en) * 2004-02-13 2005-08-25 Sony Corp Bearing unit, motor with bearing unit, and electronic device
JP2006161928A (en) * 2004-12-06 2006-06-22 Ntn Corp Dynamic pressure bearing device
JP2007154959A (en) * 2005-12-02 2007-06-21 Matsushita Electric Ind Co Ltd Dynamic fluid bearing device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109893A (en) * 2009-11-16 2011-06-02 Samsung Electro-Mechanics Co Ltd Brushless dc motor

Also Published As

Publication number Publication date
JP5231095B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
KR101439924B1 (en) Fluid dynamic bearing device and its assembling method
KR101213552B1 (en) Dynamic pressure bearing device
JP2005321089A (en) Dynamic pressure bearing device
JP2009138878A (en) Fluid bearing device
JP2007024146A (en) Dynamic pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP5095111B2 (en) Hydrodynamic bearing device
JP2008130208A (en) Hydrodynamic bearing device and its manufacturing method
JP5231095B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2009228873A (en) Fluid bearing device
JP2007327588A (en) Fluid bearing device
JP5122205B2 (en) Method for assembling hydrodynamic bearing device
JP2008190711A (en) Manufacturing process for hydrodynamic bearing unit
JP2008144847A (en) Dynamic pressure bearing device
JP2006258123A (en) Dynamic pressure bearing device
JP5133156B2 (en) Fluid dynamic bearing device
JP4588561B2 (en) Hydrodynamic bearing device
JP2008075687A (en) Fluid bearing device
JP5335311B2 (en) Fluid dynamic bearing device
JP2007100834A (en) Hydrodynamic bearing device
JP5188942B2 (en) Fluid dynamic bearing device
JP4937524B2 (en) Hydrodynamic bearing device
JP5247987B2 (en) Hydrodynamic bearing device
JP2008128446A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5231095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250