JP2009057898A - Fuel injection control device of internal combustion engine - Google Patents

Fuel injection control device of internal combustion engine Download PDF

Info

Publication number
JP2009057898A
JP2009057898A JP2007226169A JP2007226169A JP2009057898A JP 2009057898 A JP2009057898 A JP 2009057898A JP 2007226169 A JP2007226169 A JP 2007226169A JP 2007226169 A JP2007226169 A JP 2007226169A JP 2009057898 A JP2009057898 A JP 2009057898A
Authority
JP
Japan
Prior art keywords
injection
learning
addition average
value
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007226169A
Other languages
Japanese (ja)
Other versions
JP4840296B2 (en
Inventor
Masahiro Asano
正裕 浅野
Yuki Tarusawa
祐季 樽澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007226169A priority Critical patent/JP4840296B2/en
Priority to DE102008041710.6A priority patent/DE102008041710B4/en
Publication of JP2009057898A publication Critical patent/JP2009057898A/en
Application granted granted Critical
Publication of JP4840296B2 publication Critical patent/JP4840296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/502Neutral gear position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2448Prohibition of learning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection control device of an internal combustion engine capable of completing a correction with a fewer times of data acquisition, when correcting a fuel injection quantity of the internal combustion engine by learning. <P>SOLUTION: An addition average value of an injection quantity difference is determined every time when arithmetically operating the injection quantity difference, and its addition average value is compared with a threshold value α. When an absolute value of the specified number of addition average values is smaller than an absolute value of the threshold value α, its addition average value is set as the final injection quantity difference. Since the addition average value of the injection quantity difference is normally converged in response to an increase in the addition average number, the threshold value α is set in response to its convergence. Thus, when the injection quantity difference of an injector is large and the addition average value is not converged in a predetermined range divided by the threshold value α, since the absolute value of the addition average value exceeds the absolute value of the threshold value α in the few acquired data number, learning injection can be early corrected. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関の燃料噴射量を学習により補正する燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device that corrects a fuel injection amount of an internal combustion engine by learning.

出願人は、内燃機関でのパイロット噴射量の噴射精度を向上させるために、車両の減速状態(燃料噴射量の低減状態)にて学習用の微少噴射(学習用噴射)を行い、それによる内燃機関の状態の変化(例えば回転数上昇量)から噴射量ずれを検出して補正するという発明を出願した(特許文献1)。
特開2005−36788号公報
In order to improve the injection accuracy of the pilot injection amount in the internal combustion engine, the applicant performs a minute injection for learning (learning injection) in the deceleration state of the vehicle (the fuel injection amount is reduced), and the internal combustion An application was filed for an invention that detects and corrects an injection amount deviation from a change in the state of the engine (for example, an increase in the rotational speed) (Patent Document 1).
JP 2005-36788 A

特許文献1の発明を、インジェクタのTQ―Q特性(通電パルス幅に対する噴射量の特性)の補正に適用すると、狙いの噴射量Qtrgを噴射するために指令噴射パルス幅TQ1で学習用噴射を行い、そのときのエンジン状態変化から実噴射量Qrealを推定し、狙いの噴射量Qtrgを噴射するために必要な補正噴射パルス幅ΔTQを算出する。そして、学習用噴射により補正した噴射パルス幅TQ1+ΔTQでインジェクタに通電すると、狙いの噴射量Qtrgを噴射することができる。   When the invention of Patent Document 1 is applied to the correction of the TQ-Q characteristic of the injector (the characteristic of the injection amount with respect to the energization pulse width), the learning injection is performed with the command injection pulse width TQ1 in order to inject the target injection amount Qtrg. Then, the actual injection amount Qreal is estimated from the engine state change at that time, and the corrected injection pulse width ΔTQ necessary for injecting the target injection amount Qtrg is calculated. Then, when the injector is energized with the injection pulse width TQ1 + ΔTQ corrected by the learning injection, the target injection amount Qtrg can be injected.

ところで、インジェクタには、毎噴射ばらつき(同一のインジェクタであっても、噴射する毎に実噴射量Qrealが変動すること)があるため、次のようにしてばらつきによる影響を防止するようにしている。
(1)TQ1で実際に噴射されるQrealを決定するには、複数回(例えば10回)のデータ取得(学習用噴射→噴射量ずれの検出)により最終的に決定するようにしている。
(2)インジェクタのTQ―Q特性は非線形で固体ばらつきもあることを考慮して、学習用噴射はQrealがQtrg付近となる噴射パルス幅で行うことが望ましい。つまり、QrealがQtrg付近となるほど、ΔTQを高精度に求めることができる。
By the way, since there is an injection variation in the injector (the actual injection amount Qreal fluctuates every time it is injected even if it is the same injector), the influence of the variation is prevented as follows. .
(1) In order to determine Qreal actually injected at TQ1, it is finally determined by data acquisition (learning injection → detection of injection amount deviation) a plurality of times (for example, 10 times).
(2) Considering that the TQ-Q characteristics of the injector are non-linear and have individual variations, it is desirable that the learning injection be performed with an injection pulse width at which Qreal is near Qtrg. That is, ΔTQ can be obtained with higher accuracy as Qreal is closer to Qtrg.

そこで、QrealがQtrg付近となるように、学習用噴射をTQ1→TQ2(=TQ1+ΔTQ1)→TQ3(=TQ2+ΔTQ2)→……と変更していき、最終的な補正量ΔTQ(=ΔTQ1+ΔTQ2+……)を決定するようにしている。尚、学習用噴射を変更するか否かは、|Qtrg−Qreal|>αで判定する。αは目標とする噴射量精度のばらつき幅(例えば0.5mm3/st)である。 Therefore, the learning injection is changed from TQ1 → TQ2 (= TQ1 + ΔTQ1) → TQ3 (= TQ2 + ΔTQ2) →. I try to decide. Whether to change the learning injection is determined by | Qtrg−Qreal |> α. α is a variation width (for example, 0.5 mm 3 / st) of the target injection amount accuracy.

従来、上記(1)を考慮して、10点のデータを収集してQrealを決定し、上記(2)の|Qtrg−Qreal|>αの判定で学習用噴射を変更していくと、学習完了(補正量ΔTQの収束)に数十回のデータ取得が必要となり、学習が終了するまでの学習用噴射の回数が多くなるという問題があった。   Conventionally, in consideration of the above (1), 10 points of data are collected to determine Qreal, and learning is changed by changing the learning injection in the determination of | Qtrg−Qreal |> α in (2) above. There has been a problem that several tens of times of data acquisition is required for completion (convergence of the correction amount ΔTQ), and the number of learning injections is increased until learning is completed.

本発明は上記事情に鑑みてなされたもので、その目的は、内燃機関の燃料噴射制御を学習により補正する場合に、少ないデータ取得回数で補正を完了することができる内燃機関の燃料噴射装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fuel injection device for an internal combustion engine that can complete the correction with a small number of data acquisition times when the fuel injection control of the internal combustion engine is corrected by learning. It is to provide.

請求項1の発明によれば、学習用噴射により算出した補正量の分布は正規分布となるのが通常であることから、補正量を算出する毎に補正量の加算平均値を求めると、加算平均値は正規分布の中心に向かって収束するようになる。従って、補正量の加算平均値が加算平均数が多くなるほど収束するのに対応して閾値を設定することにより、目標とする噴射量精度から大きく外れた状態であるかを早期に判定することが可能となるので、学習用噴射の変更を少ないデータ取得で行うことができる。   According to the first aspect of the present invention, since the distribution of the correction amount calculated by the learning injection is normally a normal distribution, when the addition average value of the correction amount is obtained every time the correction amount is calculated, the addition is performed. The average value converges toward the center of the normal distribution. Accordingly, it is possible to determine at an early stage whether or not the state is greatly deviated from the target injection amount accuracy by setting a threshold corresponding to the convergence of the addition average value of the correction amount as the addition average number increases. Therefore, the learning injection can be changed with a small amount of data acquisition.

請求項2の発明によれば、補正量の加算平均値の分布幅は加算平均数が多くなるほど小さくなることから、閾値を、補正量の加算平均値が収束するのに合わせて適切に設定することができる。
請求項3の発明によれば、補正量の加算平均値は、加算平均数が所定数以上の場合は一定値とみなすことができるので、閾値を、補正量の加算平均値が収束する特性に合わせて効率よく設定することができる。
請求項4の発明によれば、本発明をディーゼル機関に適用する場合に大きな効果を発揮する。
According to the invention of claim 2, since the distribution width of the addition average value of the correction amount becomes smaller as the addition average number increases, the threshold value is appropriately set according to the convergence of the addition average value of the correction amount. be able to.
According to the invention of claim 3, since the addition average value of the correction amount can be regarded as a constant value when the addition average number is equal to or greater than a predetermined number, the threshold value has a characteristic that the addition average value of the correction amount converges. It can be set efficiently together.
According to the invention of claim 4, a great effect is exhibited when the present invention is applied to a diesel engine.

以下、本発明の一実施例について図面を参照して説明する。
図1はディーゼル機関の燃料噴射システムを示す全体構成図である。この図1に示す燃料噴射システムは、例えば4気筒のディーゼル機関(内燃機関に相当、以下、エンジン1と呼ぶ)に適用されるもので、高圧燃料を蓄えるコモンレール2と、燃料タンク3から汲み上げた燃料を加圧してコモンレール2に供給する燃料供給ポンプ4と、コモンレール2より供給される高圧燃料をエンジン1の気筒内(燃焼室1a)に噴射するインジェクタ5と、本システムを電子制御する電子制御ユニット(以下、ECU6と呼ぶ)とを備えている。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is an overall configuration diagram showing a fuel injection system of a diesel engine. The fuel injection system shown in FIG. 1 is applied to, for example, a four-cylinder diesel engine (corresponding to an internal combustion engine, hereinafter referred to as engine 1), and is pumped from a common rail 2 for storing high-pressure fuel and a fuel tank 3. A fuel supply pump 4 that pressurizes fuel to supply the common rail 2, an injector 5 that injects high-pressure fuel supplied from the common rail 2 into the cylinder (combustion chamber 1 a) of the engine 1, and electronic control that electronically controls the system. A unit (hereinafter referred to as ECU 6).

コモンレール2は、ECU6により目標レール圧が設定され、燃料供給ポンプ4から供給された高圧燃料を目標レール圧まで蓄圧する。このコモンレール2には、蓄圧された燃料圧力(以下、レール圧と呼ぶ)を検出してECU6に出力する圧力センサ7と、レール圧が予め設定された上限値を超えないように制限するプレッシャリミッタ8が取り付けられている。   The common rail 2 has a target rail pressure set by the ECU 6 and accumulates the high-pressure fuel supplied from the fuel supply pump 4 to the target rail pressure. The common rail 2 includes a pressure sensor 7 that detects the accumulated fuel pressure (hereinafter referred to as rail pressure) and outputs the pressure to the ECU 6, and a pressure limiter that limits the rail pressure so as not to exceed a preset upper limit value. 8 is attached.

燃料供給ポンプ4は、エンジン1に駆動されて回転するカム軸9、このカム軸9に駆動されて燃料タンク3から燃料を汲み上げるフィードポンプ10、カム軸9の回転に同期してシリンダ11内を往復運動するプランジャ12、フィードポンプ10からシリンダ11内の加圧室13に吸入される燃料量を調量する電磁調量弁14などを有している。   The fuel supply pump 4 is driven by the engine 1 and rotated by a cam shaft 9, the feed pump 10 that is driven by the cam shaft 9 to pump fuel from the fuel tank 3, and the inside of the cylinder 11 is synchronized with the rotation of the cam shaft 9. A reciprocating plunger 12 and an electromagnetic metering valve 14 for metering the amount of fuel drawn from the feed pump 10 into the pressurizing chamber 13 in the cylinder 11 are provided.

この燃料供給ポンプ4は、プランジャ12がシリンダ11内を上死点から下死点に向かって移動する際に、フィードポンプ10より送り出された燃料が電磁調量弁14で調量され、吸入弁15を押し開いて加圧室13に吸入される。その後、プランジャ12がシリンダ11内を下死点から上死点へ向かって移動する際に、プランジャ12によって加圧室13の燃料が加圧され、その加圧された燃料が、吐出弁16を押し開いてコモンレール2に圧送される。   In the fuel supply pump 4, when the plunger 12 moves in the cylinder 11 from the top dead center toward the bottom dead center, the fuel fed from the feed pump 10 is metered by the electromagnetic metering valve 14, and the suction valve 15 is pushed open and sucked into the pressurizing chamber 13. Thereafter, when the plunger 12 moves in the cylinder 11 from the bottom dead center to the top dead center, the fuel in the pressurizing chamber 13 is pressurized by the plunger 12, and the pressurized fuel passes through the discharge valve 16. Pushed open and pumped to the common rail 2.

インジェクタ5は、エンジン1の気筒毎に搭載され、それぞれ高圧配管17を介してコモンレール2に接続されている。このインジェクタ5は、ECU6の指令に基づいて作動する電磁弁5aと、この電磁弁5aへの通電時に燃料を噴射するノズル5bとを備える。
電磁弁5aは、コモンレール2の高圧燃料が印加される圧力室(図示せず)から低圧側に通じる低圧通路(図示せず)を開閉するもので、通電時に低圧通路を開放し、通電停止時に低圧通路を遮断する。
The injector 5 is mounted for each cylinder of the engine 1 and is connected to the common rail 2 via a high-pressure pipe 17. The injector 5 includes an electromagnetic valve 5a that operates based on a command from the ECU 6, and a nozzle 5b that injects fuel when the electromagnetic valve 5a is energized.
The solenoid valve 5a opens and closes a low-pressure passage (not shown) that leads from the pressure chamber (not shown) to which the high-pressure fuel of the common rail 2 is applied to the low-pressure side. Shut off the low pressure passage.

ノズル5bは、噴孔を開閉するニードル(図示せず)を内蔵し、圧力室の燃料圧力がニードルを閉弁方向(噴孔を閉じる方向)に付勢している。従って、電磁弁5aへの通電により低圧通路が開放されて圧力室の燃料圧力が低下すると、ニードルがノズル5b内を上昇して開弁する(噴孔を開く)ことにより、コモンレール2より供給された高圧燃料を噴孔より噴射する。一方、電磁弁5aへの通電停止により低圧通路が遮断されて、圧力室の燃料圧力が上昇すると、ニードルがノズル5b内を下降して閉弁することにより、噴射が終了する。   The nozzle 5b incorporates a needle (not shown) that opens and closes the nozzle hole, and the fuel pressure in the pressure chamber urges the needle in the valve closing direction (direction in which the nozzle hole is closed). Accordingly, when the low pressure passage is opened by energization of the electromagnetic valve 5a and the fuel pressure in the pressure chamber decreases, the needle rises in the nozzle 5b and opens (opens the nozzle hole), thereby being supplied from the common rail 2. High pressure fuel is injected from the nozzle hole. On the other hand, when the low pressure passage is blocked by stopping energization of the electromagnetic valve 5a and the fuel pressure in the pressure chamber rises, the needle descends in the nozzle 5b and closes, thereby terminating the injection.

ECU6は、エンジン回転数(1分間当たりの回転数)を検出する回転数センサ18と、アクセル開度(エンジン負荷)を検出するアクセル開度センサ(図示せず)、及び前記レール圧を検出する圧力センサ7等が接続され、これらのセンサで検出されたセンサ情報に基づいて、コモンレール2の目標レール圧と、エンジン1の運転状態に適した噴射時期及び噴射量等を演算し、その演算結果に従って、燃料供給ポンプ4の電磁調量弁14及びインジェクタ5の電磁弁5aを電子制御する。   The ECU 6 detects a rotational speed sensor 18 that detects an engine rotational speed (a rotational speed per minute), an accelerator opening sensor (not shown) that detects an accelerator opening (engine load), and the rail pressure. A pressure sensor 7 or the like is connected, and based on sensor information detected by these sensors, the target rail pressure of the common rail 2 and the injection timing and injection amount suitable for the operating state of the engine 1 are calculated. Accordingly, the electromagnetic metering valve 14 of the fuel supply pump 4 and the electromagnetic valve 5a of the injector 5 are electronically controlled.

また、ECU6による噴射量制御(噴射時期及び噴射量の制御)では、メイン噴射に先立って極小量のパイロット噴射を実施することがあるが、そのパイロット噴射に対する噴射量学習を行っている。なお、ECU6は、本発明に係わる噴射量制御手段、エンジン状態変化検出手段、実噴射量推定手段、学習判定手段、補正量算出手段などの機能を有している。   In addition, in the injection amount control (control of injection timing and injection amount) by the ECU 6, a minimum amount of pilot injection may be performed prior to the main injection, but injection amount learning for the pilot injection is performed. The ECU 6 has functions such as an injection amount control unit, an engine state change detection unit, an actual injection amount estimation unit, a learning determination unit, and a correction amount calculation unit according to the present invention.

以下に、噴射量学習を実行するECU6の処理手順を図2に示すフローチャートに基づいて説明する。
ステップ10…噴射量学習を実施するための学習条件が成立しているか否かを判定する。具体的には、以下の条件が挙げられる。
(a)インジェクタ5に対する指令噴射量がゼロ以下となる無噴射時であること。
(b)変速装置がニュートラル状態であること(例えば、シフトチェンジ時)。
(c)所定のレール圧が維持されていること。
Below, the process sequence of ECU6 which performs injection quantity learning is demonstrated based on the flowchart shown in FIG.
Step 10: It is determined whether or not a learning condition for performing the injection amount learning is satisfied. Specifically, the following conditions are mentioned.
(A) The time of no injection when the command injection amount for the injector 5 is zero or less.
(B) The transmission is in a neutral state (for example, during a shift change).
(C) A predetermined rail pressure is maintained.

また、EGR装置、ディーゼルスロットル、可変ターボ等を装備する場合は、EGRバルブの開度、ディーゼルスロットルの開度、可変ターボの開度等を学習条件に加えることもできる。この判定結果が「YES」の場合は、次のステップ20へ進み、判定結果が「NO」の場合は、本処理を終了する。   In addition, when an EGR device, a diesel throttle, a variable turbo, or the like is provided, the opening degree of the EGR valve, the opening degree of the diesel throttle, the opening degree of the variable turbo, and the like can be added to the learning conditions. If this determination result is “YES”, the process proceeds to the next step 20, and if the determination result is “NO”, this process is terminated.

なお、変速装置がニュートラル状態であるためには、例えば、シフトポジション(シフトレバーの操作位置)がニュートラル位置にあること、あるいは、クラッチペダルが踏まれた状態、つまり、駆動輪に対してエンジン動力が遮断されている状態にあること(この場合、シフトポジションは、必ずしもニュートラル位置にある必要はない)。   In order for the transmission to be in the neutral state, for example, the shift position (shift lever operating position) is in the neutral position, or the clutch pedal is depressed, that is, the engine power with respect to the drive wheels. Is in a closed state (in this case, the shift position does not necessarily have to be in the neutral position).

ステップ20…学習用噴射(以下、単発噴射と呼ぶ)を実施する(図4(a)参照)。この単発噴射により噴射される燃料量は、パイロット噴射の指令噴射量に相当する。
ステップ30…単発噴射の実施によって発生するエンジントルク(以下、発生トルクと呼ぶ)に比例した特性値(トルク比例量)を検出する。この特性値の検出方法は、後に詳述する。
Step 20: A learning injection (hereinafter referred to as a single injection) is performed (see FIG. 4A). The amount of fuel injected by this single injection corresponds to the command injection amount of pilot injection.
Step 30: A characteristic value (torque proportional amount) proportional to an engine torque (hereinafter referred to as generated torque) generated by the single injection is detected. A method for detecting this characteristic value will be described in detail later.

ステップ40…特性値を検出するまでの処理が狙った条件下(ステップ10に示した学習条件下)で実行されたか否かを判定する。この処理は、特性値を検出する間に、噴射が復帰したり、レール圧が変化したりすることなく、ステップ10に示された学習条件が守られていたか否かを判定している。この判定結果が「YES」の場合は、次のステップ50へ進み、判定結果が「NO」の場合は、ステップ60へ進む。   Step 40: It is determined whether or not the processing until the characteristic value is detected is executed under the target condition (the learning condition shown in Step 10). This process determines whether or not the learning condition indicated in step 10 is satisfied without detecting that the injection is restored or the rail pressure is changed while the characteristic value is detected. If the determination result is “YES”, the process proceeds to the next step 50, and if the determination result is “NO”, the process proceeds to step 60.

ステップ50…ステップ30で検出した特性値をメモリに保存する。
ステップ60…ステップ30で検出した特性値を廃棄し、本処理を終了する。
ステップ70…メモリに保存された特性値を基に、噴射補正量(補正噴射パルス幅ΔTQ)を算出する。この噴射補正量は、単発噴射によって実際に噴射された燃料量(実噴射量Qreal)と、インジェクタ5に単発噴射を指令した指令噴射量Qtrgとのずれ量より求められる。また、実噴射量Qrealは、エンジン1の発生トルクより推定することが可能である。
ステップ80…ステップ70で算出された噴射補正量に応じて、インジェクタ5に指令する指令噴射量Qtrgを補正する。
Step 50: The characteristic value detected in step 30 is stored in the memory.
Step 60: The characteristic value detected in step 30 is discarded, and the process is terminated.
Step 70: The injection correction amount (corrected injection pulse width ΔTQ) is calculated based on the characteristic values stored in the memory. This injection correction amount is obtained from a deviation amount between the fuel amount actually injected by the single injection (actual injection amount Qreal) and the command injection amount Qtrg instructing the injector 5 to perform the single injection. The actual injection amount Qreal can be estimated from the torque generated by the engine 1.
Step 80... The command injection amount Qtrg commanded to the injector 5 is corrected according to the injection correction amount calculated in Step 70.

続いて、上記ステップ30の特性値の検出方法を図3に示すフローチャートを基に説明する。
ステップ31…回転数センサ18の信号を取り込んでエンジン回転数ωを検出する。なお、本実施例の4気筒エンジン1では、クランクシャフトが2回転(720°CA)する間に4回(各気筒の噴射タイミング毎に1回ずつ)検出される。この検出されたωに、噴射順番に対応して噴射気筒番号を付けると、取得されるデータは、時系列順にω1(i)、ω2(i)、ω3(i)、ω4(i)、ω1(i+1)、ω2(i+1)…の様になる(図4(b)参照)。このようにクランクシャフトが2回転(720°CA)する間に検出しているのは、エンジン1の回転数を検出する際の誤差が極力小さくなるようにしたからである。つまり、4サイクルのエンジン1では、クランクシャフトが2回転する毎(720°CA毎)に、回転検出位置が同一(360°CA毎に同一とみなすことができる)となると共に、燃焼室1aのコンプレッション状態が同一(720°CA毎に同一とみなすことができる)となることから、検出条件が同一となる720°CAに設定したのである。
Next, the characteristic value detection method in step 30 will be described with reference to the flowchart shown in FIG.
Step 31: The signal of the rotational speed sensor 18 is taken in and the engine rotational speed ω is detected. In the four-cylinder engine 1 of the present embodiment, detection is performed four times (once every injection timing of each cylinder) while the crankshaft rotates twice (720 ° CA). When this detected ω is given an injection cylinder number corresponding to the injection order, the acquired data is ω1 (i), ω2 (i), ω3 (i), ω4 (i), ω1 in chronological order. (i + 1), ω2 (i + 1)... (see FIG. 4B). The reason why the crankshaft is detected during two revolutions (720 ° CA) is that the error in detecting the rotational speed of the engine 1 is minimized. That is, in the four-cycle engine 1, the rotation detection position is the same every time the crankshaft rotates twice (every 720 ° CA) (can be regarded as the same every 360 ° CA), and the combustion chamber 1a Since the compression state is the same (can be regarded as the same every 720 ° CA), the detection condition is set to 720 ° CA.

但し、エンジン回転数ωの検出は、図5に示す様に、インジェクタ5の噴射タイミング(図中の期間a)の直前に実施される。つまり、インジェクタ5から噴射された燃料が着火するまでに要する着火遅れ期間(図中の期間b)を過ぎてから、実際に燃焼が行われる燃焼期間(図中の期間c)を終了した後に、回転数検出期間(図中の期間d)が設定されている。これにより、単発噴射によるエンジン回転数の変動を精度良く検出できる。   However, the detection of the engine speed ω is performed immediately before the injection timing of the injector 5 (period a in the figure), as shown in FIG. That is, after the ignition delay period (period b in the figure) required until the fuel injected from the injector 5 ignites, the combustion period (period c in the figure) in which combustion is actually performed ends. A rotation speed detection period (period d in the figure) is set. Thereby, the fluctuation | variation of the engine speed by single injection can be detected accurately.

ステップ32…各気筒の噴射タイミング毎に回転数変動量Δωを算出する。例えば、第3気筒を例に挙げると、図4(b)に示す様に、ω3(i)とω3(i+1)との差Δω3を算出する。このΔωは、図4(c)に示す様に、無噴射時には単調に減少していくが、単発噴射を実施した直後は、各気筒の噴射タイミングで1回ずつの合計4回Δωが上昇する(ちなみに、図4では、第4気筒で単発噴射を実施している)。これは、エンジン1が2回転(クランクシャフトが720°CA)する期間中に単発噴射による回転数上昇が含まれているからである。   Step 32... The rotational speed fluctuation amount Δω is calculated for each injection timing of each cylinder. For example, taking the third cylinder as an example, as shown in FIG. 4B, the difference Δω3 between ω3 (i) and ω3 (i + 1) is calculated. As shown in FIG. 4 (c), Δω decreases monotonously when there is no injection, but immediately after the single injection is performed, Δω rises a total of four times, one at the injection timing of each cylinder. (Incidentally, in FIG. 4, single injection is performed in the fourth cylinder). This is because an increase in the rotational speed due to single injection is included during the period in which the engine 1 rotates twice (crankshaft is 720 ° CA).

ステップ33…単発噴射による回転数上昇量δを各気筒毎に算出し、その平均値δxを求める。回転数上昇量δは、単発噴射を実施しなかった場合のΔω(推定値)と、ステップ32で算出されたΔωとの差として求められる。なお、単発噴射を実施しなかった場合のΔωは、無噴射時において単調に減少するので、単発噴射以前のΔω、または回転数上昇前後のΔωから容易に推定できる。   Step 33: A rotational speed increase amount δ by single injection is calculated for each cylinder, and an average value δx is obtained. The rotational speed increase amount δ is obtained as a difference between Δω (estimated value) when single injection is not performed and Δω calculated in step 32. Note that Δω when the single injection is not performed decreases monotonously when there is no injection, and therefore can be easily estimated from Δω before the single injection or Δω before and after the rotation speed increase.

ステップ34…ステップ33で算出したδxと単発噴射を実施した時のエンジン回転数ω0との積をトルク比例量Tpとして算出する。このTpは、単発噴射によって発生するエンジン1の発生トルクに比例した量となっている。即ち、エンジン1の発生トルクTは、下記の数式(1)によって求められるので、δxとω0との積であるTpは、Tに比例した量となる。   Step 34: The product of δx calculated in step 33 and the engine speed ω0 when single injection is performed is calculated as the torque proportional amount Tp. This Tp is an amount proportional to the torque generated by the engine 1 generated by single injection. That is, since the generated torque T of the engine 1 is obtained by the following equation (1), Tp, which is the product of δx and ω0, is an amount proportional to T.

T=K・δx・ω0 ………… (1)
K:比例定数
本実施例のエンジン1、即ちディーゼル機関では、図6に示す様に、学習したい噴射量範囲においては、発生トルクと実噴射量Qrealとが比例するため、ステップ34で算出されたTpも実噴射量Qrealに比例することになる。従って、Tpから発生トルクを算出し、その発生トルクから実噴射量Qrealを推定することが可能である。
T = K ・ δx ・ ω0 (1)
K: Proportional constant In the engine 1 of this embodiment, that is, the diesel engine, as shown in FIG. 6, the generated torque and the actual injection amount Qreal are proportional to each other in the injection amount range to be learned. Tp is also proportional to the actual injection amount Qreal. Accordingly, it is possible to calculate the generated torque from Tp and estimate the actual injection amount Qreal from the generated torque.

以上説明したように、本実施例の燃料噴射システムでは、エンジン1に掛かる負荷(例えばエアコンやオルタネータ等)の変動に影響されることなく、単発噴射によって発生するエンジントルクを算出できる。つまり、単発噴射の実施により上昇するエンジン回転数ωの変動量(ステップ33で算出される回転数上昇量δ)は、単発噴射が実施された時のエンジン回転数ω0が同じであれば、エンジン1に掛かる負荷の変動に係わりなく、同一である。これにより、算出された発生トルクから実噴射量Qrealを推定し、その実噴射量Qrealと指令噴射量Qtrgとの差を噴射量ずれとして検出することにより、トルクセンサ等の追加装備を必要とすることなく、噴射量学習を高精度に実施できる。   As described above, in the fuel injection system according to the present embodiment, the engine torque generated by the single injection can be calculated without being affected by the fluctuation of the load applied to the engine 1 (for example, an air conditioner or an alternator). That is, if the engine speed ω0 when the single injection is performed is the same as the fluctuation amount of the engine speed ω that is increased by the single injection (the rotational speed increase δ calculated in step 33), the engine It is the same regardless of the load fluctuation applied to 1. As a result, the actual injection amount Qreal is estimated from the calculated generated torque, and the difference between the actual injection amount Qreal and the command injection amount Qtrg is detected as an injection amount deviation, thereby requiring additional equipment such as a torque sensor. Therefore, the injection amount learning can be performed with high accuracy.

以上のようにして実噴射量Qrealを推定することができるものの、インジェクタ5には毎噴射ばらつきがあるため、実際に噴射される実噴射量Qrealを決定するには、複数回(例えば10回)のデータ取得(学習用噴射→噴射量ずれの検出)し、10回の噴射量ずれの平均値が所定の許容範囲内となった場合に噴射量ずれを最終的に決定すると共に、所定の許容範囲外となった場合にはデータ取得を最初から実行するようにしている。   Although the actual injection amount Qreal can be estimated as described above, since the injector 5 has injection variations, the actual injection amount Qreal to be actually injected is determined a plurality of times (for example, 10 times). Data is acquired (learning injection → injection amount deviation detection), and when the average value of the 10 injection amount deviations falls within a predetermined allowable range, the injection amount deviation is finally determined and predetermined allowable If it goes out of range, data acquisition is executed from the beginning.

しかしながら、このように複数回のデータ取得により決定する方法により噴射量ずれ(補正量に相当)を最終的に求めるには、数十回のデータ取得が必要となり、学習時間が長くなる。
そこで、本実施例では、噴射量ずれをデータ取得する毎に加算平均した場合、その加算平均値は加算平均数が多くなるほど収束していくことに着目し、単発噴射の変更または終了を判定するための閾値を、加算平均値が収束することに対応して設定するようにした。
However, in order to finally obtain the injection amount deviation (corresponding to the correction amount) by the method of determining by acquiring the data a plurality of times as described above, it is necessary to acquire several tens of times and the learning time becomes long.
Therefore, in the present embodiment, when the injection amount deviation is averaged every time data is acquired, the addition average value converges as the addition average number increases, and the change or end of the single injection is determined. The threshold value is set in correspondence with the convergence of the addition average value.

図7は、本実施例で設定した閾値を示している。この図7に示すように、閾値αは、正側と負側にそれぞれ設定されている。本実施例では、必要なデータ取得数(規定数)を例えば10に設定しており、閾値αは、取得データの数が多くなるほどその絶対値が小さくなるように設定されている。これは、データ取得した複数の噴射量ずれは正規分布しているのが通常であることから、データ取得する毎に算出した噴射量ずれの加算平均値は、データ取得数が多くなるほどその分布幅が小さくなるからである。
尚、本実施例における10番目の閾値αは、学習によって達成したい噴射精度範囲(例えば0.5mm3/st)であり、取得データ数が10に達した時の噴射量ずれの加算平均値は、従来の10回の噴射量ずれの平均値と一致することになる。
FIG. 7 shows the threshold values set in this embodiment. As shown in FIG. 7, the threshold value α is set on the positive side and the negative side, respectively. In the present embodiment, the necessary number of data acquisition (specified number) is set to 10, for example, and the threshold value α is set so that the absolute value decreases as the number of acquired data increases. This is because the multiple injection amount deviations that have been acquired normally have a normal distribution, so the average value of the injection amount deviations that are calculated each time data acquisition is performed increases as the number of data acquisitions increases. This is because becomes smaller.
The tenth threshold value α in this embodiment is an injection accuracy range (for example, 0.5 mm 3 / st) that is desired to be achieved by learning, and the addition average value of the injection amount deviation when the number of acquired data reaches 10 is This coincides with the average value of the conventional 10 injection amount deviations.

図9は、ECU6による学習動作を示すフローチャートである。この図9に示すように、ECU6は、単発噴射(学習用噴射)を実施したときは(T10)、エンジン状態変化量を検出し(T20)、過去の取得データから実噴射量を推定し(T30)、噴射量ずれの絶対値が閾値を下回っているかを判断する(T40)。   FIG. 9 is a flowchart showing a learning operation by the ECU 6. As shown in FIG. 9, when the single injection (learning injection) is performed (T10), the ECU 6 detects the engine state change amount (T20), and estimates the actual injection amount from the past acquired data ( T30), it is determined whether the absolute value of the injection amount deviation is below the threshold (T40).

図7に示す黒丸は、噴射量ずれ(Qtrg−Qrezl)の加算平均値を取得順に示している。インジェクタの噴射量ずれが小さい場合は、図7に示すように噴射量ずれの加算平均値は所定の許容範囲内(学習用噴射変更領域外)で収束することになるから、噴射量ずれの加算平均値の絶対値は閾値αの絶対値を下回る。   Black circles shown in FIG. 7 indicate the addition average value of the injection amount deviation (Qtrg−Qrezl) in the order of acquisition. When the injection amount deviation of the injector is small, the addition average value of the injection amount deviation converges within a predetermined allowable range (outside the learning injection change region) as shown in FIG. The absolute value of the average value is less than the absolute value of the threshold value α.

図9に戻って、データ取得数が規定数(本実施例では10回)未満の場合は(T50:NO)、上述した動作を繰り返し、規定数(10回)となったときは(T50:YES)、最終噴射補正量を算出することにより(T60)、学習を終了する。つまり、10回目の取得データの絶対値が閾値αの絶対値を下回った場合は、10回の噴射量ずれの加算平均値を最終の噴射量ずれとするのである。   Returning to FIG. 9, when the number of data acquisition is less than the specified number (10 times in this embodiment) (T50: NO), the above-described operation is repeated, and when the number of data acquisition reaches the specified number (10 times) (T50: (YES) By calculating the final injection correction amount (T60), the learning is finished. That is, when the absolute value of the tenth acquired data is less than the absolute value of the threshold value α, the addition average value of the ten injection amount deviations is set as the final injection amount deviation.

一方、インジェクタの噴射量ずれが大きい場合は、噴射量ずれの加算平均値も所定の許容範囲外(学習用噴射変更領域内)に収束し、加算平均値の絶対値が閾値αの絶対値を上回ることがある。例えば図8に示すように、5回目の取得データにより算出した噴射量ずれの加算平均値の絶対値が閾値αの絶対値を上回った場合は、噴射量ずれが無くなるように単発噴射量を変更した状態でデータ取得を最初から実行し、10回の噴射量ずれの加算平均値の絶対値が最終的に閾値αの絶対値を下回ったことを条件として噴射量ずれを最終的に決定する。従って、単発噴射の変更或いは学習の終了までの取得データ数を抑制することができる。   On the other hand, when the injection amount deviation of the injector is large, the addition average value of the injection amount deviation also converges outside the predetermined allowable range (within the learning injection change region), and the absolute value of the addition average value becomes the absolute value of the threshold value α. May exceed. For example, as shown in FIG. 8, when the absolute value of the addition average value of the injection amount deviation calculated from the fifth acquisition data exceeds the absolute value of the threshold value α, the single injection amount is changed so that the injection amount deviation is eliminated. In this state, data acquisition is executed from the beginning, and the injection amount deviation is finally determined on the condition that the absolute value of the addition average value of the ten injection amount deviations finally falls below the absolute value of the threshold value α. Therefore, the number of acquired data until the change of single injection or the end of learning can be suppressed.

このような実施例によれば、データ取得毎に噴射量ずれの加算平均値を求め、その加算平均値と、加算平均数が多くなるほど収束することに対応して設定された設定値αとを比較することにより、大きな噴射量ずれを少ない取得データ数で判定するようにしたので、規定数だけデータ取得したところで噴射量ずれを平均して閾値と比較する従来例のものと違って、少ない取得データ数で学習用噴射の変更の必要性を適切に判断することができ、学習を早期に完了することができる。   According to such an embodiment, an addition average value of the injection amount deviation is obtained for each data acquisition, and the addition average value and a set value α set corresponding to convergence as the addition average number increases. By comparing, a large injection amount deviation is determined with a small number of acquired data, so when the specified number of data is acquired, the injection amount deviation is averaged and compared with a threshold value, so that a small acquisition is obtained. The necessity of changing the learning injection can be appropriately determined based on the number of data, and learning can be completed early.

本発明は、上記実施例に限定されることなく、次のように変形または拡張できる。
噴射量ずれの加算平均値と閾値αとを比較する回数は10回に限定されることはない。
学習用噴射を変更することが連続して行わる場合は、異常があると判断して異常を報知するようにしてもよい。
本発明を、ディーゼル機関に限らず、筒内燃料噴射タイプのガソリンエンジンに適用するようにしてもよい。
The present invention is not limited to the above embodiment, but can be modified or expanded as follows.
The number of comparisons between the addition average value of the injection amount deviation and the threshold value α is not limited to ten.
When the learning injection is continuously changed, it may be determined that there is an abnormality and the abnormality is notified.
The present invention may be applied not only to a diesel engine but also to an in-cylinder fuel injection type gasoline engine.

本発明の一実施例におけるディーゼル機関の燃料噴射システムを概略的に示す図The figure which shows schematically the fuel-injection system of the diesel engine in one Example of this invention. ECUによる噴射量学習処理を示すフローチャートThe flowchart which shows the injection quantity learning process by ECU ECUによるトルク比例量の算出手順を示すフローチャートThe flowchart which shows the calculation procedure of the torque proportional amount by ECU 単発噴射による各検出値の変化を示す図The figure which shows the change of each detection value by single injection エンジンの回転数の検出点を示す図Diagram showing detection points of engine speed 噴射量と発生トルクとの関係を示す図Diagram showing the relationship between injection quantity and generated torque 噴射量ずれの加算平均値が所定の許容範囲内(学習用噴射変更領域外)で収束する場合における噴射量ずれと閾値αとの関係を示す図The figure which shows the relationship between the injection quantity shift | offset | difference and the threshold value (alpha) in case the addition average value of the injection quantity deviation converges within a predetermined allowable range (outside the learning injection change area). 噴射量ずれの加算平均値が所定の許容範囲内(学習用噴射変更領域外)で収束しない場合を示す図7相当図FIG. 7 equivalent diagram showing a case where the addition average value of the injection amount deviation does not converge within a predetermined allowable range (outside the learning injection change region). 最終噴射補正量を算出するための手順を示すフローチャートFlow chart showing the procedure for calculating the final injection correction amount

符号の説明Explanation of symbols

図面中、1はエンジン(内燃機関、ディーゼル機関)、5はインジェクタ、6はECU(噴射量制御手段、エンジン状態変化検出手段、実噴射量推定手段、学習判定手段、補正量算出手段)である。   In the drawings, 1 is an engine (internal combustion engine, diesel engine), 5 is an injector, and 6 is an ECU (injection amount control means, engine state change detection means, actual injection amount estimation means, learning determination means, correction amount calculation means). .

Claims (4)

学習用噴射を実行する噴射量制御手段と、
前記学習用噴射による内燃機関のエンジン状態変化を検出するエンジン状態変化検出手段と、
前記エンジン状態変化から実噴射量を推定する実噴射量推定手段と、
前記実噴射量から前記学習用噴射の変更または学習の終了を判定する学習判定手段と、 前記実噴射量と前記学習用噴射時の指令噴射量との差から補正量を算出する補正量算出手段とを備え、
前記学習判定手段は、前記補正量が算出される毎に補正量の加算平均値を規定数まで算出すると共に、当該加算平均値と比較することにより前記学習用噴射の変更または学習の終了を判定するための閾値を備え、
前記閾値は、前記補正量の加算平均数が多くなることに伴って加算平均値が収束することに対応して設定されていることを特徴とする内燃機関の燃料噴射制御装置。
Injection amount control means for executing learning injection;
Engine state change detecting means for detecting an engine state change of the internal combustion engine by the learning injection;
An actual injection amount estimating means for estimating an actual injection amount from the engine state change;
Learning determination means for determining change of learning injection or end of learning from the actual injection quantity; Correction amount calculating means for calculating a correction quantity from a difference between the actual injection quantity and a command injection quantity at the time of learning injection And
The learning determining means calculates an addition average value of correction amounts up to a specified number every time the correction amount is calculated, and determines whether the learning injection has been changed or the learning has ended by comparing with the addition average value. With a threshold for
The fuel injection control device for an internal combustion engine, wherein the threshold value is set corresponding to the convergence of the addition average value as the addition average number of the correction amounts increases.
前記閾値は、前記補正量の加算平均数が多くなるほどその絶対値が小さくなるように設定されていることを特徴とする請求項1記載の内燃機関の燃料噴射制御装置。   2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the threshold value is set such that the absolute value decreases as the addition average number of the correction amounts increases. 前記閾値は、前記補正量の加算平均数が所定数以上では一定値に設定されていることを特徴とする請求項2記載の内燃機関の燃料噴射制御装置。   3. The fuel injection control device for an internal combustion engine according to claim 2, wherein the threshold value is set to a constant value when an average addition number of the correction amounts is a predetermined number or more. 前記内燃機関はディーゼル機関であることを特徴とする請求項1ないし3の何れかに記載の内燃機関の燃料噴射制御装置。   The fuel injection control device for an internal combustion engine according to any one of claims 1 to 3, wherein the internal combustion engine is a diesel engine.
JP2007226169A 2007-08-31 2007-08-31 Fuel injection control device for internal combustion engine Expired - Fee Related JP4840296B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007226169A JP4840296B2 (en) 2007-08-31 2007-08-31 Fuel injection control device for internal combustion engine
DE102008041710.6A DE102008041710B4 (en) 2007-08-31 2008-08-29 System for learning a difference between an actual injection quantity and a target injection quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007226169A JP4840296B2 (en) 2007-08-31 2007-08-31 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009057898A true JP2009057898A (en) 2009-03-19
JP4840296B2 JP4840296B2 (en) 2011-12-21

Family

ID=40459096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007226169A Expired - Fee Related JP4840296B2 (en) 2007-08-31 2007-08-31 Fuel injection control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4840296B2 (en)
DE (1) DE102008041710B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024160A (en) * 2011-07-22 2013-02-04 Toyota Industries Corp Engine control method
JP2015140664A (en) * 2014-01-27 2015-08-03 マツダ株式会社 Fuel injection controller
JP2015197073A (en) * 2014-04-01 2015-11-09 株式会社デンソー Internal combustion engine injection quantity learning device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012015493B4 (en) * 2012-08-04 2015-10-15 Mtu Friedrichshafen Gmbh Method for determining at least one actual injection parameter of at least one injector in an internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155273A (en) * 1991-12-05 1993-06-22 Mazda Motor Corp Learning controlled automobile
JP2004176611A (en) * 2002-11-26 2004-06-24 Toyota Motor Corp Catalyst deterioration determining device
JP2005155360A (en) * 2003-11-21 2005-06-16 Denso Corp Injection quantity control device for internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4277677B2 (en) * 2003-06-27 2009-06-10 株式会社デンソー Injection quantity control device for diesel engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155273A (en) * 1991-12-05 1993-06-22 Mazda Motor Corp Learning controlled automobile
JP2004176611A (en) * 2002-11-26 2004-06-24 Toyota Motor Corp Catalyst deterioration determining device
JP2005155360A (en) * 2003-11-21 2005-06-16 Denso Corp Injection quantity control device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024160A (en) * 2011-07-22 2013-02-04 Toyota Industries Corp Engine control method
JP2015140664A (en) * 2014-01-27 2015-08-03 マツダ株式会社 Fuel injection controller
JP2015197073A (en) * 2014-04-01 2015-11-09 株式会社デンソー Internal combustion engine injection quantity learning device

Also Published As

Publication number Publication date
DE102008041710A1 (en) 2009-04-23
DE102008041710B4 (en) 2020-04-16
JP4840296B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4277677B2 (en) Injection quantity control device for diesel engine
JP4501974B2 (en) Fuel injection control device for internal combustion engine
US6990958B2 (en) Injection control system of diesel engine
JP4218496B2 (en) Injection quantity control device for internal combustion engine
US20170363036A1 (en) Fuel injection control device for internal combustion engine
JP2010261334A (en) Fuel injection control device
JP5126196B2 (en) Fuel injection control device
JP5482532B2 (en) Fuel injection control device
JP4840296B2 (en) Fuel injection control device for internal combustion engine
JP4710888B2 (en) Diesel engine fuel injection control device and diesel engine fuel injection amount learning method
JP4760804B2 (en) Fuel injection control device for internal combustion engine
JP2009057853A (en) Fuel injection control device and fuel injection quantity learning method of internal combustion engine
JP4513895B2 (en) Fuel injection system control device
JP4788557B2 (en) Fuel injection control device
JP4747211B2 (en) Fuel injection control device for internal combustion engine
JP5256922B2 (en) Injection quantity control device for internal combustion engine
EP1447546B1 (en) Engine control unit including phase advance compensator
JP6252327B2 (en) Fuel supply control device
JP5648646B2 (en) Fuel injection control device
JP5994677B2 (en) Fuel injection control device
JP5195698B2 (en) Fuel injection device for vehicle internal combustion engine
JP6213351B2 (en) Injection amount learning device for internal combustion engine
JP6303992B2 (en) Fuel injection control device
JP4834755B2 (en) Fuel injection control device for internal combustion engine
JP6011264B2 (en) Discharge amount learning control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R151 Written notification of patent or utility model registration

Ref document number: 4840296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees