JP2010261334A - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP2010261334A
JP2010261334A JP2009110928A JP2009110928A JP2010261334A JP 2010261334 A JP2010261334 A JP 2010261334A JP 2009110928 A JP2009110928 A JP 2009110928A JP 2009110928 A JP2009110928 A JP 2009110928A JP 2010261334 A JP2010261334 A JP 2010261334A
Authority
JP
Japan
Prior art keywords
injection
injection amount
learning
amount
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009110928A
Other languages
Japanese (ja)
Inventor
Yuki Tarusawa
祐季 樽澤
Takenobu Yamamoto
豪進 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009110928A priority Critical patent/JP2010261334A/en
Priority to FR1053218A priority patent/FR2945077B1/en
Priority to DE102010016736.3A priority patent/DE102010016736B4/en
Publication of JP2010261334A publication Critical patent/JP2010261334A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • F02D41/2448Prohibition of learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/022Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the clutch status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection control device reducing the number of learning injections to the minimum level. <P>SOLUTION: When learning conditions of the injection amount are established, the fuel injection control device commands a fuel injection valve to perform a single injection for learning the injection amount (S400), and senses the change amount of the engine speed as the change amount of the engine operation state by the single injection (S402). The fuel injection control device calculates an actual injection amount Qn, based on the engine speed. It also calculates the average value Qaven of the actual injection amount, and furthermore, it calculates the standard deviation σn as the variance of the actual injection amount so far (S404). The fuel injection control device counts up the number of learning injections (S412). If the standard deviation σn of the actual injection amount is in a range of a target accuracy (S414: Yes) and the number of learning injections is the same as or more than the minimum times of injections (S416: Yes), and a correction amount of a command injection amount of a single injection is calculated based on the deviation of the average value Qaven of the actual injection amount and the target injection amount (S418). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃料噴射弁の噴射量を学習する燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device that learns an injection amount of a fuel injection valve.

従来、機差または経時変化等により生じる燃料噴射弁の目標噴射量に対する実噴射量のずれ量を学習し、実噴射量が目標噴射量になるように燃料噴射弁に指令する噴射指令値を補正することが知られている(例えば、特許文献1参照。)。特に、NOxおよび燃焼騒音を低減するためにメイン噴射の前に微少量のパイロット噴射を実施するディーゼルエンジンの場合、微少噴射量を高精度に補正する噴射量学習が求められる。実噴射量は、学習用の噴射を実行したときの内燃機関の運転状態の変化、例えばエンジン回転数または空燃比の変化等に基づいて推定される。   Conventionally, the deviation of the actual injection amount from the target injection amount of the fuel injection valve caused by machine differences or changes over time is learned, and the injection command value commanded to the fuel injection valve is corrected so that the actual injection amount becomes the target injection amount (For example, refer to Patent Document 1). In particular, in the case of a diesel engine that performs a small amount of pilot injection before main injection in order to reduce NOx and combustion noise, injection amount learning for correcting the minute injection amount with high accuracy is required. The actual injection amount is estimated based on a change in the operating state of the internal combustion engine when the learning injection is executed, for example, a change in the engine speed or the air-fuel ratio.

ところで、機差および経時変化による燃料噴射弁の間の噴射量ばらつきに加え、各燃料噴射弁には、図7に示すように、噴射毎の噴射量ばらつき、および噴射毎の燃焼ばらつきが発生する。図7において、符号300は、噴射毎の噴射量ばらつきの上限値を示し、符号310は、燃焼ばらつきにより生じる推定噴射量ばらつきの上限値を示している。また、符号302は、噴射毎の噴射量ばらつきの下限値を示し、符号312は、燃焼ばらつきにより生じる推定噴射量ばらつきの下限値を示している。   Incidentally, in addition to the injection amount variation between the fuel injection valves due to machine differences and changes over time, as shown in FIG. 7, each fuel injection valve has injection amount variation for each injection and combustion variation for each injection. . In FIG. 7, reference numeral 300 indicates an upper limit value of the injection amount variation for each injection, and reference numeral 310 indicates an upper limit value of the estimated injection amount variation caused by the combustion variation. Reference numeral 302 represents a lower limit value of the injection amount variation for each injection, and reference numeral 312 represents a lower limit value of the estimated injection amount variation caused by the combustion variation.

噴射毎の噴射量ばらつきは、例えば、噴射時の燃圧のばらつきにより生じる。噴射量がばらつくと、内燃機関の運転状態の変化に基づいて推定される実噴射量がばらつく。
また、噴射毎の燃焼ばらつきは、各噴射における燃料噴射時期、噴霧形状、過給圧等のばらつきにより生じる。燃焼ばらつきが発生すると、同じ燃料量を噴射しても内燃機関の運転状態がばらつくので、内燃機関の運転状態の変化に基づいて推定される実噴射量がばらつく。
The injection amount variation for each injection is caused by, for example, variation in fuel pressure during injection. When the injection amount varies, the actual injection amount estimated based on the change in the operating state of the internal combustion engine varies.
Further, the combustion variation for each injection occurs due to variations in fuel injection timing, spray shape, supercharging pressure, etc. in each injection. When combustion variation occurs, the operating state of the internal combustion engine varies even when the same fuel amount is injected, and therefore the actual injection amount estimated based on the change in the operating state of the internal combustion engine varies.

このように、各燃料噴射弁において噴射毎に実噴射量の推定値のばらつきが発生するため、1回の学習用噴射を実行し、そのときに推定される実噴射量を目標噴射量と比較する代表値にすると、例えば学習用噴射を複数回実行した場合の実噴射量の平均値から代表値が大きくずれる可能性がある。このような代表値に基づいて、高精度な噴射量学習を実行することはできない。   As described above, since the estimated value of the actual injection amount varies for each injection in each fuel injection valve, one learning injection is executed, and the actual injection amount estimated at that time is compared with the target injection amount. For example, the representative value may deviate greatly from the average value of the actual injection amounts when the learning injection is executed a plurality of times. Based on such representative values, highly accurate injection amount learning cannot be executed.

そこで、特許文献1に開示されているように、噴射量学習毎に複数回の学習用噴射を実行し、複数回の学習用噴射においてそれぞれ推定される実噴射量から、例えば平均値を算出して実噴射量の代表値とすることが望ましい。   Therefore, as disclosed in Patent Document 1, a plurality of learning injections are executed for each injection amount learning, and, for example, an average value is calculated from the actual injection amounts estimated in the plurality of learning injections. Therefore, it is desirable to use a representative value of the actual injection amount.

噴射回数が多くなるほど、各燃料噴射弁において実噴射量のばらつきが目標精度の範囲内になり、平均値等から求める代表値が一定値に収束するので、各燃料噴射弁において実噴射量の代表値を高精度に求めることができる。   As the number of injections increases, the variation of the actual injection amount in each fuel injection valve becomes within the target accuracy range, and the representative value obtained from the average value converges to a constant value. Therefore, the representative of the actual injection amount in each fuel injection valve The value can be obtained with high accuracy.

これにより、実噴射量の代表値と目標噴射量とに基づいて、実噴射量が目標噴射量になるように燃料噴射弁に指令する噴射指令値を高精度に補正することができる。その結果、機差および経時変化により生じる目標噴射量と実噴射量とのずれを解消できる。   Thereby, based on the representative value of the actual injection amount and the target injection amount, the injection command value commanded to the fuel injection valve can be corrected with high accuracy so that the actual injection amount becomes the target injection amount. As a result, it is possible to eliminate the deviation between the target injection amount and the actual injection amount caused by machine differences and changes with time.

特開2005−146947号公報JP 2005-146947 A

ところで、各燃料噴射弁には、前述したように、噴射毎の噴射量ばらつき、および噴射毎の燃焼ばらつきにより、実噴射量の推定値にばらつきが発生する。そして、実噴射量の推定値のばらつきの範囲は、燃料噴射弁毎に異なっている。したがって、実噴射量のばらつきが目標精度の範囲内に収まるときの噴射回数も、燃料噴射弁毎に異なっている。   By the way, in each fuel injection valve, as described above, the estimated value of the actual injection amount varies due to the injection amount variation for each injection and the combustion variation for each injection. The range of variation in the estimated value of the actual injection amount is different for each fuel injection valve. Therefore, the number of injections when the variation in the actual injection amount is within the target accuracy range is also different for each fuel injection valve.

そこで、全ての燃料噴射弁について、実噴射量のばらつきが目標精度の範囲内に収まるように、実噴射量の最大のばらつきに合わせて学習用噴射の噴射回数を設定することが考えられる。   Therefore, it is conceivable to set the number of learning injections in accordance with the maximum variation of the actual injection amount so that the variation of the actual injection amount falls within the target accuracy range for all the fuel injection valves.

しかしながら、最大のばらつきに合わせて学習用噴射の噴射回数を設定すると、噴射量学習に要する時間が長くなるという問題がある。
本発明は、上記問題を解決するためになされたものであり、学習用噴射の噴射回数を極力低減する燃料噴射制御装置を提供することを目的とする。
However, when the number of learning injections is set in accordance with the maximum variation, there is a problem that the time required for injection amount learning becomes long.
The present invention has been made to solve the above problem, and an object of the present invention is to provide a fuel injection control device that reduces the number of injections of learning injection as much as possible.

請求項1から4に記載の発明によると、噴射量推定手段は、噴射指令手段の指令により燃料噴射弁から噴射量学習用の単発噴射を実施したときの内燃機関の運転状態の変化に基づいて単発噴射の実噴射量を推定し、ばらつき算出手段は、複数回実行される単発噴射において、噴射量推定手段が推定する実噴射量に基づいて単発噴射の実噴射量のばらつきを順次算出し、学習終了判定手段は、ばらつき算出手段が算出する実噴射量のばらつきと、実噴射量のばらつきの目標精度とに基づいて、学習用噴射を終了するときの噴射回数を判定する。   According to the first to fourth aspects of the present invention, the injection amount estimating means is based on a change in the operating state of the internal combustion engine when the single injection for learning the injection amount is performed from the fuel injection valve by the command of the injection command means. The actual injection amount of the single injection is estimated, and the variation calculating means sequentially calculates the variation of the actual injection amount of the single injection based on the actual injection amount estimated by the injection amount estimating means in the single injection executed a plurality of times. The learning end determination unit determines the number of injections when the learning injection is ended based on the variation in the actual injection amount calculated by the variation calculation unit and the target accuracy of the variation in the actual injection amount.

これにより、各燃料噴射弁における実噴射量のばらつきの範囲に応じて、学習用噴射を終了するときの噴射回数が決定される。つまり、実噴射量のばらつきが小さければ、噴射量学習のための噴射回数は少なくなる。その結果、噴射量学習用の噴射回数を極力低減できるので、噴射量学習に要する期間を短縮できる。したがって、例えば車両において、噴射量学習を開始してから終了するまでに走行する距離を極力短縮できる。   Thereby, the number of injections when the learning injection is terminated is determined according to the range of variation in the actual injection amount in each fuel injection valve. That is, if the variation in the actual injection amount is small, the number of injections for learning the injection amount is reduced. As a result, since the number of injections for learning the injection amount can be reduced as much as possible, the period required for learning the injection amount can be shortened. Therefore, for example, in a vehicle, the distance traveled from the start to the end of injection amount learning can be reduced as much as possible.

これにより、例えば、車両において前回の噴射量学習が終了してから所定の走行距離間隔で次回の噴射量学習を実行する場合、前回の噴射量学習を開始してから次回の噴射量学習を開始するまでの距離が短くなるので、一定の走行距離の間に噴射量学習を実行する頻度が高くなる。その結果、実噴射量が目標噴射量からずれた状態で燃料噴射弁の噴射量が制御される期間を極力短縮できる。   Thereby, for example, when the next injection amount learning is executed at a predetermined travel distance after the previous injection amount learning is completed in the vehicle, the next injection amount learning is started after the previous injection amount learning is started. Since the distance until this is shortened, the injection amount learning is performed more frequently during a certain travel distance. As a result, the period during which the injection amount of the fuel injection valve is controlled with the actual injection amount deviating from the target injection amount can be shortened as much as possible.

そして、全気筒の噴射量学習を終了するために要する時間は気筒数が多くなるにしたがい長くなるので、気筒数の多い内燃機関ほど、噴射量学習の実行期間を短縮することが求められる。   Since the time required to complete the injection amount learning for all the cylinders becomes longer as the number of cylinders increases, an internal combustion engine having a larger number of cylinders is required to shorten the execution period of the injection amount learning.

請求項2に記載の発明によると、学習終了判定手段は、実噴射量のばらつきが目標精度の範囲内であり、噴射量学習用に実行した噴射回数がばらつきを算出するために必要な最低噴射回数以上の場合、学習用噴射を終了すると判定する。   According to the second aspect of the present invention, the learning end determination means has the minimum injection required for calculating the variation in the variation in the actual injection amount within the target accuracy range and the number of injections performed for the injection amount learning. If the number is greater than or equal to the number of times, it is determined that the learning injection is terminated.

このように、実噴射量のばらつきを算出するために必要な最低回数以上の噴射を実行するとともに、実噴射量のばらつきが目標精度の範囲内になるときに学習用噴射を終了すると学習終了判定手段が判定するので、噴射量学習用の噴射回数を極力低減しつつ、目標噴射量と比較するための実噴射量の代表値を高精度に算出できる。   In this way, the minimum number of injections necessary to calculate the variation in the actual injection amount is executed, and when the learning injection is terminated when the variation in the actual injection amount is within the target accuracy range, the learning end determination is made. Since the means determines, the representative value of the actual injection amount for comparison with the target injection amount can be calculated with high accuracy while reducing the number of injections for injection amount learning as much as possible.

ところで、内燃機関の運転状態の変化から実噴射量を推定する場合、実噴射量のばらつきが大きいにも関わらず、例えば学習用噴射の2、3回目で実噴射量のばらつきが目標精度の範囲内に偶然に収まることがある。このような実噴射量に基づいて目標噴射量と比較するための実噴射量の代表値を算出すると、代表値を高精度に算出できないことがある。   By the way, when the actual injection amount is estimated from the change in the operating state of the internal combustion engine, the variation in the actual injection amount is within the target accuracy range in the second and third learning injections, for example, even though the variation in the actual injection amount is large. It may fit in by chance. If the representative value of the actual injection amount for comparison with the target injection amount is calculated based on such an actual injection amount, the representative value may not be calculated with high accuracy.

そこで、請求項3に記載の発明によると、学習終了判定手段は、噴射量学習用に実行した噴射回数が実噴射量のばらつきを算出するために必要な最低噴射回数よりも少ない場合、噴射指令手段に学習用噴射を継続させる。   Therefore, according to the third aspect of the present invention, the learning end determination unit determines that the injection command is used when the number of injections executed for learning the injection amount is less than the minimum number of injections necessary for calculating the variation in the actual injection amount. Let the means continue the learning injection.

このように、実噴射量のばらつきを算出するために必要な最低回数以上の噴射を実行することにより、実噴射量のばらつきが偶然に目標精度の範囲内に収まることを防止できる。   As described above, by executing the injection more than the minimum number of times necessary for calculating the variation in the actual injection amount, it is possible to prevent the variation in the actual injection amount from accidentally falling within the target accuracy range.

請求項4に記載の発明によると、代表値算出手段は、複数回実行した単発噴射の実噴射量に基づいて実噴射量の代表値を算出し、補正量算出手段は、実噴射量のばらつきが目標精度の範囲内になり学習用噴射を終了すると学習終了判定手段が判定すると、代表値算出手段により算出された代表値と実噴射量の目標噴射量との偏差に基づいて、燃料噴射弁に目標噴射量の燃料噴射を指令する噴射指令値の補正量を算出する。   According to the invention of claim 4, the representative value calculating means calculates the representative value of the actual injection quantity based on the actual injection quantity of the single injection executed a plurality of times, and the correction amount calculating means is the variation of the actual injection quantity. When the learning end determination unit determines that the learning injection is finished within the target accuracy range, the fuel injection valve is based on the deviation between the representative value calculated by the representative value calculation unit and the target injection amount of the actual injection amount. The correction amount of the injection command value for commanding the fuel injection of the target injection amount is calculated.

これにより、学習用噴射の噴射回数を極力低減しつつ、噴射指令値の補正量を高精度に算出できる。
尚、本発明に備わる複数の手段の各機能は、構成自体で機能が特定されるハードウェア資源、プログラムにより機能が特定されるハードウェア資源、またはそれらの組み合わせにより実現される。また、これら複数の手段の各機能は、各々が物理的に互いに独立したハードウェア資源で実現されるものに限定されない。
Thereby, the correction amount of the injection command value can be calculated with high accuracy while reducing the number of injections of the learning injection as much as possible.
The functions of the plurality of means provided in the present invention are realized by hardware resources whose functions are specified by the configuration itself, hardware resources whose functions are specified by a program, or a combination thereof. The functions of the plurality of means are not limited to those realized by hardware resources that are physically independent of each other.

本実施形態による燃料噴射システムを示すブロック図。The block diagram which shows the fuel-injection system by this embodiment. 噴射量学習工程を示す特性図。The characteristic view which shows an injection amount learning process. 噴射回数と実噴射量の推定値、ばらつき、平均値との関係を示す特性図。The characteristic view which shows the relationship between the frequency | count of injection and the estimated value, dispersion | variation, and average value of actual injection amount. 比較例による噴射回数と実噴射量の推定値、ばらつき、平均値との関係を示す特性図。The characteristic view which shows the relationship between the frequency | count of injection by the comparative example, the estimated value of an actual injection quantity, dispersion | variation, and an average value. 噴射回数と実噴射量のばらつきとの関係を示す特性図。The characteristic view which shows the relationship between the frequency | count of injection, and the dispersion | variation in an actual injection amount. 噴射量学習ルーチンを示すフローチャート。The flowchart which shows the injection quantity learning routine. 燃料噴射弁の機差および経時変化、噴射量のばらつき、燃焼ばらつきによる実噴射量のばらつきを説明する分布図。FIG. 5 is a distribution diagram for explaining the difference in actual injection amount due to machine differences and changes with time of fuel injection valves, variation in injection amount, and variation in combustion.

以下、本発明の実施の形態を図に基づいて説明する。
本発明の一実施形態による燃料噴射システムを図1に示す。
(燃料噴射システム10)
本実施形態の蓄圧式の燃料噴射システム10は、燃料供給ポンプ14、コモンレール20、圧力センサ22、プレッシャリミッタ24、燃料噴射弁30、および電子制御装置(Electronic Control Unit;ECU)40等から構成されており、4気筒のディーゼルエンジン(以下、単に「エンジン」とも言う。)2の各気筒に燃料を噴射する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A fuel injection system according to an embodiment of the present invention is shown in FIG.
(Fuel injection system 10)
The accumulator fuel injection system 10 of this embodiment includes a fuel supply pump 14, a common rail 20, a pressure sensor 22, a pressure limiter 24, a fuel injection valve 30, an electronic control unit (ECU) 40, and the like. Fuel is injected into each cylinder of a four-cylinder diesel engine (hereinafter also simply referred to as “engine”) 2.

燃料供給ポンプ14は、燃料タンク12から燃料を吸入するフィードポンプと、カムシャフトのカムの回転にともないプランジャが往復移動することによりフィードポンプから加圧室に吸入した燃料を加圧する高圧ポンプとからなる公知のポンプである。ECU40が燃料供給ポンプ14の調量弁16に供給する電流値を制御することにより、燃料供給ポンプ14が吸入行程で吸入する燃料吸入量が調量される。そして、燃料吸入量が調量されることにより、燃料供給ポンプ14の燃料吐出量が調量される。   The fuel supply pump 14 includes: a feed pump that sucks fuel from the fuel tank 12; and a high-pressure pump that pressurizes fuel sucked from the feed pump into the pressurizing chamber as the plunger reciprocates as the cam of the camshaft rotates. This is a known pump. By controlling the current value supplied to the metering valve 16 of the fuel supply pump 14 by the ECU 40, the fuel suction amount that the fuel supply pump 14 sucks in the suction stroke is metered. Then, by adjusting the fuel intake amount, the fuel discharge amount of the fuel supply pump 14 is adjusted.

コモンレール20は、燃料供給ポンプ14が圧送する燃料を蓄圧しエンジン運転状態に応じた所定の高圧に燃料圧力を保持する。コモンレール20の圧力(以下、「コモンレール圧」とも言う。)は、燃料供給ポンプ14の吐出量により制御される。圧力検出手段としての圧力センサ22は、コモンレール20の圧力を検出しECU40に出力する。   The common rail 20 accumulates the fuel pumped by the fuel supply pump 14 and maintains the fuel pressure at a predetermined high pressure according to the engine operating state. The pressure of the common rail 20 (hereinafter also referred to as “common rail pressure”) is controlled by the discharge amount of the fuel supply pump 14. The pressure sensor 22 as pressure detecting means detects the pressure of the common rail 20 and outputs it to the ECU 40.

プレッシャリミッタ24は、コモンレール圧が所定圧を超えると、コモンレール20内の燃料を燃料タンク12側に排出し、コモンレール圧が所定圧を超えることを防止する。
燃料噴射弁30は、4気筒のディーゼルエンジン50の各気筒に設置され、コモンレール20が蓄圧している燃料を気筒内に噴射する。燃料噴射弁30は、ディーゼルエンジンの1回の燃焼行程においてパイロット噴射、メイン噴射およびポスト噴射を含む多段噴射を行う。燃料噴射弁30は、ノズルニードルに閉弁方向に燃料圧力を加える制御室の圧力を制御することにより燃料噴射量を制御する公知の電磁駆動式の弁である。
The pressure limiter 24 discharges the fuel in the common rail 20 to the fuel tank 12 side when the common rail pressure exceeds a predetermined pressure, and prevents the common rail pressure from exceeding the predetermined pressure.
The fuel injection valve 30 is installed in each cylinder of the four-cylinder diesel engine 50, and injects the fuel accumulated in the common rail 20 into the cylinder. The fuel injection valve 30 performs multistage injection including pilot injection, main injection, and post injection in one combustion stroke of the diesel engine. The fuel injection valve 30 is a known electromagnetically driven valve that controls the fuel injection amount by controlling the pressure in a control chamber that applies fuel pressure to the nozzle needle in the valve closing direction.

ECU40は、CPU、ROM、RAM、およびフラッシュメモリ等の書換可能な不揮発性メモリを中心とするマイクロコンピュータ(マイコン)からなる。ECU40は、アクセルペダルの開度(ACC)を検出するアクセルセンサ(図示せず)、吸気温度センサ(図示せず)、圧力センサ22、エンジン回転数(NE)を検出するNEセンサ32等の各種センサの検出信号からディーゼルエンジン50の運転状態を取得する。ECU40は、ディーゼルエンジン50を最適な運転状態に制御するために、取得したエンジン運転状態に基づいて調量弁16、および燃料噴射弁30等への通電を制御する。   The ECU 40 is composed of a microcomputer (microcomputer) centered on a rewritable nonvolatile memory such as a CPU, ROM, RAM, and flash memory. The ECU 40 includes an accelerator sensor (not shown) that detects the opening (ACC) of the accelerator pedal, an intake air temperature sensor (not shown), a pressure sensor 22, a NE sensor 32 that detects the engine speed (NE), and the like. The operation state of the diesel engine 50 is acquired from the detection signal of the sensor. The ECU 40 controls energization to the metering valve 16, the fuel injection valve 30, and the like based on the acquired engine operating state in order to control the diesel engine 50 to an optimal operating state.

ECU40は、エンジン運転状態に応じて、調量弁16への通電量に対する燃料供給ポンプ14の吐出量の吐出量特性をマップとしてROMまたはフラッシュメモリ等の記憶装置に記憶している。ECU40は、記憶装置に記憶している燃料供給ポンプ14の吐出量特性に基づき、圧力センサ22から取得するコモンレール圧が目標コモンレール圧となるように調量弁16への通電をフィードバック制御している。   The ECU 40 stores a discharge amount characteristic of the discharge amount of the fuel supply pump 14 with respect to the energization amount to the metering valve 16 as a map in a storage device such as a ROM or a flash memory according to the engine operating state. The ECU 40 feedback-controls energization to the metering valve 16 so that the common rail pressure acquired from the pressure sensor 22 becomes the target common rail pressure based on the discharge amount characteristic of the fuel supply pump 14 stored in the storage device. .

また、ECU40は、アクセルセンサおよびNEセンサ32を含む各種センサから得たエンジン運転状態に応じて燃料噴射弁30の噴射時期および噴射量を制御する。ECU40は、燃料噴射弁30の噴射時期および噴射量を制御する噴射指令信号として噴射パルス信号を出力する。ECU40は、噴射パルス信号のパルス幅に対する噴射量の噴射量特性を、噴射圧であるコモンレール圧毎にマップとして前述したフラッシュメモリ等の記憶装置に記憶している。   In addition, the ECU 40 controls the injection timing and the injection amount of the fuel injection valve 30 according to the engine operating state obtained from various sensors including the accelerator sensor and the NE sensor 32. The ECU 40 outputs an injection pulse signal as an injection command signal for controlling the injection timing and the injection amount of the fuel injection valve 30. The ECU 40 stores the injection amount characteristic of the injection amount with respect to the pulse width of the injection pulse signal in a storage device such as the above-described flash memory as a map for each common rail pressure that is an injection pressure.

ECU40は、ROMまたはフラッシュメモリ等の記憶装置に記憶されている制御プログラムにより以下の各手段として機能する。
(学習条件判定手段)
ECU40は、図2の(A)に示すように、アクセルオフ時の無噴射減速状態であれば、噴射量の学習条件が成立していると判定する。さらに、エンジン運転状態に外乱が加わることを防止するために、マニュアルトランスミッション(MT)であればクラッチが断状態、オートマチックトランスミッション(AT)であれば摩擦係合要素の係合状態がニュートラルであることを学習条件に追加してもよい。
The ECU 40 functions as the following units according to a control program stored in a storage device such as a ROM or a flash memory.
(Learning condition judging means)
As shown in FIG. 2A, the ECU 40 determines that the injection amount learning condition is satisfied if it is a non-injection deceleration state when the accelerator is off. Further, in order to prevent disturbances in the engine operating state, the clutch is disengaged for manual transmission (MT), and the engagement state of the friction engagement element is neutral for automatic transmission (AT). May be added to the learning conditions.

(噴射指令手段)
ECU40は、エンジン運転状態に基づき、燃料噴射弁30に噴射時期および噴射量を指令する噴射パルス信号を出力する。噴射パルス信号のパルス幅が長くなると、噴射量が増加する。ECU40は、エンジン2にトルクを発生させるための通常の燃料噴射制御以外に、所定の走行距離毎に、前述した学習条件が成立すると、燃料噴射弁30を制御して、トルクを発生しない噴射量学習用の微少量の単発噴射を複数回実行する。噴射量学習用に噴射される微少量は、パイロット噴射量に相当する。
(Injection command means)
The ECU 40 outputs an injection pulse signal that instructs the fuel injection valve 30 on the injection timing and the injection amount based on the engine operating state. As the pulse width of the injection pulse signal becomes longer, the injection amount increases. In addition to the normal fuel injection control for causing the engine 2 to generate torque, the ECU 40 controls the fuel injection valve 30 when the learning condition described above is established for each predetermined travel distance, and the injection amount that does not generate torque. A small amount of single injection for learning is executed several times. The minute amount injected for the injection amount learning corresponds to the pilot injection amount.

このとき、ECU40は、目標噴射量に相当するパルス幅の噴射パルス信号を、パルス幅と噴射量との関係を表す噴射量特性マップ等から取得する。噴射量特性マップは、コモンレール圧の使用範囲を複数の領域に分けた圧力領域毎に設定されている。ECU40は、エンジン2の全ての気筒について、学習条件が成立しているときに、コモンレール圧の領域毎に微少量の学習用噴射を実行する。ECU40は、噴射量学習が終了していないコモンレール圧の圧力領域があれば、図2の(B)の点線200が示すように、その圧力領域にコモンレール圧を制御して学習用噴射210を実行する。   At this time, the ECU 40 acquires an injection pulse signal having a pulse width corresponding to the target injection amount from an injection amount characteristic map or the like representing the relationship between the pulse width and the injection amount. The injection amount characteristic map is set for each pressure region obtained by dividing the use range of the common rail pressure into a plurality of regions. The ECU 40 executes a small amount of learning injection for each region of the common rail pressure when the learning condition is satisfied for all the cylinders of the engine 2. If there is a pressure region of the common rail pressure for which the injection amount learning has not ended, the ECU 40 executes the learning injection 210 by controlling the common rail pressure in the pressure region as indicated by the dotted line 200 in FIG. To do.

(噴射量推定手段)
ECU40は、アクセルオフ時の無噴射減速状態で、かつ例えばMTでクラッチ断状態のときに、複数回の単発の学習用噴射210を全気筒について実行する。ECU40は、学習用噴射210を実行したときのエンジン運転状態の変化として、図2の(C)の点線220に示すエンジン回転数の変化をNEセンサ32の出力信号から検出する。
(Injection amount estimation means)
The ECU 40 executes a plurality of single-shot learning injections 210 for all the cylinders in a non-injection deceleration state when the accelerator is off and in a clutch disengaged state at MT, for example. The ECU 40 detects a change in the engine speed indicated by a dotted line 220 in FIG. 2C from the output signal of the NE sensor 32 as a change in the engine operating state when the learning injection 210 is executed.

ECU40は、エンジン回転数の変化をエンジントルクに換算し、さらにエンジントルクを噴射量に換算する。これにより、目標噴射量を指令するために噴射量特性マップから求めたパルス幅τ1(図2の(D)参照。)の噴射パルス信号に対する実際の実噴射量を推定できる。   The ECU 40 converts the change in the engine speed into engine torque, and further converts the engine torque into an injection amount. Thereby, the actual actual injection amount with respect to the injection pulse signal having the pulse width τ1 (see FIG. 2D) obtained from the injection amount characteristic map in order to command the target injection amount can be estimated.

(ばらつき算出手段)
ECU40は、噴射量学習毎に複数回の学習用噴射を実行する。そして、前述したように単発噴射による実噴射量Qn(図3の(A)参照。)を各回において推定するとともに、1回目よりも後の各回の単発噴射において、1回目から各回までの実噴射量のばらつき(図3の(B)参照。)を順次算出する。本実施形態では、ECU40は、実噴射量のばらつきとして標準偏差σnを算出する。
(Variation calculation means)
The ECU 40 executes learning injection a plurality of times for each injection amount learning. Then, as described above, the actual injection amount Qn (see FIG. 3A) by single injection is estimated each time, and in each single injection after the first, actual injection from the first to each time is performed. The amount variation (see FIG. 3B) is calculated sequentially. In the present embodiment, the ECU 40 calculates the standard deviation σn as the variation in the actual injection amount.

(学習終了判定手段)
ECU40は、図3の(B)に示すように、実噴射量のばらつきを表す標準偏差が予め設定された所定の目標精度を満たす範囲内に達すると、そのときに実行した噴射回数で学習用噴射を終了すると判定する。目標精度は、例えば目標精度に達したときに実行した複数回の学習用噴射の実噴射量と目標噴射量とに基づいて噴射指令値としての噴射パルス信号を補正し、補正された噴射パルス信号により燃料噴射を制御するときに、エンジン2が失火しない値に設定される。
(Learning end determination means)
As shown in FIG. 3B, when the standard deviation representing the variation in the actual injection amount falls within a range that satisfies a predetermined target accuracy, ECU 40 performs learning for the number of injections executed at that time. It is determined that the injection is finished. The target accuracy is corrected by correcting the injection pulse signal as the injection command value based on the actual injection amount and the target injection amount of the plurality of learning injections executed when the target accuracy is reached, for example. When the fuel injection is controlled by this, the engine 2 is set to a value that does not misfire.

尚、実噴射量のばらつきが大きいにも関わらず、例えば2回目の学習用噴射で実噴射量の標準偏差が偶然に所定の目標精度の範囲内に収まることがある。このような実噴射量に基づいて目標噴射量と比較するための実噴射量の代表値を算出すると、代表値を高精度に算出できないことがある。   Note that the standard deviation of the actual injection amount may accidentally fall within a predetermined target accuracy range, for example, in the second learning injection, although the variation in the actual injection amount is large. If the representative value of the actual injection amount for comparison with the target injection amount is calculated based on such an actual injection amount, the representative value may not be calculated with high accuracy.

そこで、本実施形態では、ECU40は、噴射量学習用に実行した噴射回数が実噴射量の標準偏差を所定の精度以上で算出するために必要な最低噴射回数よりも少ない場合、実噴射量の標準偏差が目標精度の範囲内に収まっても、最低噴射回数まで燃料噴射弁30に学習用噴射を実行させる。そして、実噴射量の標準偏差が目標精度の範囲内に収まり、そのときの噴射回数が最低噴射回数以上であれば、ECU40は、学習用噴射を終了すると判定する。   Therefore, in the present embodiment, the ECU 40 determines the actual injection amount when the number of injections executed for learning the injection amount is smaller than the minimum number of injections necessary for calculating the standard deviation of the actual injection amount with a predetermined accuracy or more. Even if the standard deviation falls within the target accuracy range, the fuel injection valve 30 is caused to execute the learning injection until the minimum number of injections. If the standard deviation of the actual injection amount is within the target accuracy range and the number of injections at that time is equal to or greater than the minimum number of injections, the ECU 40 determines to end the learning injection.

(代表値算出手段)
実噴射量の標準偏差が目標精度の範囲内に収まり、そのときの噴射回数が最低噴射回数以上であれば、図3の(C)に示すように、実噴射量の平均値Qavenはある値にほぼ収束する。そして、ECU40は、学習用噴射が終了すると、複数回実行した実噴射量の平均値Qavenを実噴射量の代表値とする。
(Representative value calculation means)
If the standard deviation of the actual injection amount is within the target accuracy range and the number of injections at that time is equal to or greater than the minimum number of injections, the average value Qaven of the actual injection amount is a certain value as shown in FIG. Almost converges. When the learning injection is completed, the ECU 40 sets the average value Qaven of the actual injection amount executed a plurality of times as a representative value of the actual injection amount.

(補正量算出手段)
ECU40は、図2の(D)に示すように、学習用噴射が終了したときの実噴射量の平均値と目標噴射量との偏差に基づいて噴射量の補正量を算出し、算出した補正量により目標のコモンレール圧における噴射量特性マップを補正する。具体的には、目標噴射量に対応する噴射パルス信号のパルス幅をτ1からτ2に変更する。
(Correction amount calculation means)
The ECU 40 calculates the correction amount of the injection amount based on the deviation between the average value of the actual injection amount and the target injection amount when the learning injection is ended, as shown in FIG. The injection amount characteristic map at the target common rail pressure is corrected by the amount. Specifically, the pulse width of the injection pulse signal corresponding to the target injection amount is changed from τ1 to τ2.

(比較例)
本実施形態に対し、図4の(B)の比較例では、燃料噴射弁30において、噴射毎の噴射量ばらつき、および噴射毎の燃焼ばらつきがそれぞれ最大となる場合の実噴射量の最大ばらつきを想定し、最大ばらつきの標準偏差Σn(符号240に示す。)が目標精度の範囲内に収まるように、最大ばらつきの標準偏差Σnに合わせて一律にn2回の学習用噴射を実行する。比較例の場合、本実施形態のように、図3に示すn1(n1<n2)回目で実噴射量のばらつきが目標精度の範囲内に収まる場合にも、n2回の学習用噴射が実行される。その結果、比較例では、本実施形態に対し学習用噴射の回数が増加する。
(Comparative example)
In contrast to the present embodiment, in the comparative example of FIG. 4B, in the fuel injection valve 30, the injection amount variation for each injection and the maximum variation of the actual injection amount when the combustion variation for each injection is maximized. Assuming that the standard deviation Σn of the maximum variation (indicated by reference numeral 240) falls within the target accuracy range, n2 learning injections are executed uniformly in accordance with the standard deviation Σn of the maximum variation. In the case of the comparative example, the learning injection is performed n2 times even when the variation in the actual injection amount is within the target accuracy range in the n1 (n1 <n2) times shown in FIG. 3 as in the present embodiment. The As a result, in the comparative example, the number of learning injections increases with respect to the present embodiment.

これに対し、本実施形態では、図5の上段に示すように、実噴射量のばらつきが最大の場合には、比較例と同じくn2回まで学習用噴射が実行されるが、多くの場合、実噴射量のばらつきは最大値よりも小さいので、図5の下段に示すように、実噴射量のばらつきが目標精度の範囲内に収まる噴射回数(n1)はn2よりも少なくなる。   On the other hand, in the present embodiment, as shown in the upper part of FIG. 5, when the variation in the actual injection amount is maximum, the learning injection is executed up to n2 times as in the comparative example. Since the variation in the actual injection amount is smaller than the maximum value, as shown in the lower part of FIG. 5, the number of injections (n1) in which the variation in the actual injection amount falls within the target accuracy range is smaller than n2.

尚、前述したように、本実施形態においては、実噴射量のばらつきが目標精度の範囲内に収まっても、噴射量学習用に実行した噴射回数が実噴射量の標準偏差を算出するために必要な最低噴射回数よりも少ない場合には、最低噴射回数まで燃料噴射弁30に学習用噴射を実行させる。   Note that, as described above, in the present embodiment, the number of injections performed for injection amount learning calculates the standard deviation of the actual injection amount even if the variation in the actual injection amount is within the target accuracy range. If it is less than the required minimum number of injections, the fuel injection valve 30 is caused to perform learning injection until the minimum number of injections.

(噴射量学習ルーチン)
次に、燃料噴射システム10における噴射量学習について、図6に基づいて説明する。図6において「S」はステップを表している。図6のルーチンは、噴射量の学習条件が成立したときに実行される。
(Injection amount learning routine)
Next, injection amount learning in the fuel injection system 10 will be described with reference to FIG. In FIG. 6, “S” represents a step. The routine of FIG. 6 is executed when the injection amount learning condition is satisfied.

S400においてECU40は、燃料供給ポンプ14の吐出量を制御して、噴射量学習が終了していない圧力領域にコモンレール圧を設定し、噴射量学習用の単発噴射を実行する。   In S400, the ECU 40 controls the discharge amount of the fuel supply pump 14, sets the common rail pressure in a pressure region where the injection amount learning has not ended, and executes single injection for injection amount learning.

S402においてECU40は、今回実行した単発噴射によるエンジン運転状態の変化量として、エンジン回転数の変化量を検出する。
S404においてECU40は、エンジン回転数の変化量をエンジントルクに換算し、エンジントルクを燃料噴射弁30の実噴射量Qnに換算するとともに、今回までの実噴射量の平均値Qavenを算出する。さらに、S404においてECU40は、1回目よりも後に実行される学習用噴射において、1回目から今回までの実噴射量のばらつきとして標準偏差σnを算出する。
In S402, the ECU 40 detects the change amount of the engine speed as the change amount of the engine operation state due to the single injection executed this time.
In S404, the ECU 40 converts the change amount of the engine speed into the engine torque, converts the engine torque into the actual injection amount Qn of the fuel injection valve 30, and calculates the average value Qaven of the actual injection amount so far. Further, in S404, the ECU 40 calculates the standard deviation σn as the variation in the actual injection amount from the first time to the current time in the learning injection executed after the first time.

S406においてECU40は、S404で算出した実噴射量が目標噴射量に対して所定値以上のずれがあるか否かを判定し、所定値以上のずれが所定回数連続した場合(S408:Yes)、目標噴射量に対する実噴射量の所定値以上のずれを解消してから噴射量学習を再開すべきであると判断する。そして、S410において実噴射量と目標噴射量との偏差に基づいて、単発噴射の噴射指令値の補正量を算出し、噴射指令値に反映する。そして、ECU40は、S400に戻り、今まで実行した噴射回数をクリアして学習用噴射を再実行する。   In S406, the ECU 40 determines whether or not the actual injection amount calculated in S404 has a deviation of a predetermined value or more with respect to the target injection amount. When the deviation of the predetermined value or more continues for a predetermined number of times (S408: Yes), It is determined that the injection amount learning should be resumed after eliminating the deviation of the actual injection amount from the target injection amount by a predetermined value or more. In S410, based on the deviation between the actual injection amount and the target injection amount, the correction amount of the injection command value for single injection is calculated and reflected in the injection command value. Then, the ECU 40 returns to S400, clears the number of injections executed so far, and re-executes the learning injection.

実噴射量と目標噴射量とのずれ量が所定値未満の場合(S408:No)、S412においてECU40は、同一の学習条件下で実行している学習用噴射の回数をカウントアップする。   When the deviation amount between the actual injection amount and the target injection amount is less than the predetermined value (S408: No), the ECU 40 counts up the number of learning injections executed under the same learning condition in S412.

そして、S404で算出した実噴射量のばらつきである標準偏差σnが目標精度の範囲内に収まっており、(S414:Yes)、実行した学習用噴射の回数が、実噴射量の標準偏差を所定の精度以上で算出するために必要な最低噴射回数以上であれば(S416:Yes)、S418においてECU40は、所定精度以上補の標準偏差が算出されたと判断し、S404で算出した実噴射量の平均値Qavenと目標噴射量との偏差に基づいて単発噴射の噴射指令値の補正量を今回の学習量として算出し、補正量を確定する。   Then, the standard deviation σn, which is the variation in the actual injection amount calculated in S404, is within the target accuracy range (S414: Yes), and the number of executed learning injections sets the standard deviation of the actual injection amount to a predetermined value. If the number of injections is equal to or greater than the minimum number of injections required for calculation with the accuracy of (S416: Yes), the ECU 40 determines in S418 that the complementary standard deviation is calculated with a predetermined accuracy or more, and the actual injection amount calculated in S404. Based on the deviation between the average value Qaven and the target injection amount, the correction amount of the injection command value for single injection is calculated as the current learning amount, and the correction amount is determined.

S404で算出した実噴射量の標準偏差σnが目標精度の範囲内に収まっていないか(S414:No)、実行した学習用噴射の回数が、実噴射量の標準偏差を所定の精度以上で算出するために必要な最低噴射回数未満であれば(S416:No)、ECU40は、学習用噴射を継続する必要があると判断し、S400に処理を戻す。   Whether the standard deviation σn of the actual injection amount calculated in S404 is not within the target accuracy range (S414: No), or the number of executed learning injections calculates the standard deviation of the actual injection amount with a predetermined accuracy or more. If it is less than the minimum number of injections required to perform (S416: No), the ECU 40 determines that it is necessary to continue the injection for learning, and returns the process to S400.

尚、燃料噴射弁30の異常等により、最大ばらつきを考慮した噴射回数に達しても実噴射量の標準偏差σnが目標精度の範囲内に収まっていない場合、本ルーチンとは別の異常判定ルーチンで異常が判定される。   If the standard deviation σn of the actual injection amount does not fall within the target accuracy range even when the number of injections considering the maximum variation is reached due to an abnormality of the fuel injection valve 30, an abnormality determination routine different from this routine. The abnormality is determined.

本実施形態では、ECU40が本発明の燃料噴射制御装置、噴射指令手段、噴射量推定手段、ばらつき算出手段、学習終了判定手段、代表値算出手段、補正量算出手段に相当する。また、本実施形態では、図7のS400が本発明の噴射指令手段が実行する機能に相当し、図7のS402およびS404が本発明の噴射量推定手段、ばらつき算出手段および代表値算出手段が実行する機能に相当し、図7のS414およびS416が本発明の学習終了判定手段が実行する機能に相当し、図7のS418が本発明の補正量算出手段が実行する機能に相当する。   In the present embodiment, the ECU 40 corresponds to a fuel injection control device, an injection command unit, an injection amount estimation unit, a variation calculation unit, a learning end determination unit, a representative value calculation unit, and a correction amount calculation unit of the present invention. In the present embodiment, S400 in FIG. 7 corresponds to the function executed by the injection command means of the present invention, and S402 and S404 in FIG. 7 indicate the injection amount estimation means, variation calculation means, and representative value calculation means of the present invention. 7 corresponds to the function executed by the learning end determination means of the present invention, and S418 of FIG. 7 corresponds to the function executed by the correction amount calculation means of the present invention.

以上説明した本実施形態では、学習用噴射を実行したときのエンジン回転数の変化量に基づいて実噴射量を推定し、推定された実噴射量のばらつきとして標準偏差が目標精度の範囲内に収まると、学習用噴射を終了する。これにより、学習用噴射を実行するときの実噴射量の最大ばらつきを考慮して一律に学習用噴射の回数を設定する場合に比べ、少ない回数で学習用噴射を終了できる。   In the present embodiment described above, the actual injection amount is estimated based on the amount of change in the engine speed when the learning injection is executed, and the standard deviation is within the target accuracy range as the variation in the estimated actual injection amount. When it is settled, the learning injection is terminated. Accordingly, the learning injection can be completed with a smaller number of times than when the number of times of the learning injection is uniformly set in consideration of the maximum variation in the actual injection amount when the learning injection is executed.

その結果、車両において前回の噴射量学習が終了してから所定の走行距離間隔で次回の噴射量学習を実行する場合、前回の噴射量学習を開始してから次回の噴射量学習を開始するまでの距離が短くなるので、一定の走行距離の間に噴射量学習を実行する頻度が高くなる。その結果、実噴射量が目標噴射量からずれた状態で燃料噴射弁30の噴射量が制御される期間を極力短縮できる。   As a result, when the next injection amount learning is executed at a predetermined travel distance interval after the previous injection amount learning is completed in the vehicle, the previous injection amount learning is started and the next injection amount learning is started. Therefore, the injection amount learning is frequently performed during a certain travel distance. As a result, the period during which the injection amount of the fuel injection valve 30 is controlled with the actual injection amount deviating from the target injection amount can be shortened as much as possible.

そして、本実施形態では4気筒のエンジン2について説明したが、4気筒よりも気筒数が多いエンジンほど全気筒の噴射量学習を終了するために要する時間が長くなるので、気筒数の多いエンジンほど、噴射量学習の実行期間を短縮する効果は大きくなる。   In the present embodiment, the four-cylinder engine 2 has been described. However, an engine having a larger number of cylinders than the four cylinders takes a longer time to complete the injection amount learning for all the cylinders. The effect of shortening the execution period of the injection amount learning is increased.

[他の実施形態]
上記実施形態では、学習用噴射を実行したときのエンジン運転状態の変化量としてエンジン回転数を採用した。これに対し、エンジン運転状態の変化量として、空燃比またはエンジンの筒内圧を採用してもよい。
[Other Embodiments]
In the above embodiment, the engine speed is adopted as the amount of change in the engine operating state when the learning injection is executed. On the other hand, an air-fuel ratio or an in-cylinder pressure of the engine may be employed as the amount of change in the engine operating state.

また、上記実施形態では、実噴射量の標準偏差が目標精度の範囲内に収まることに加え、学習用噴射の回数が実噴射量の標準偏差を所定の精度以上で算出するために必要な最低噴射回数以上になることを学習用噴射の終了条件とした。これに対し、噴射回数が最低噴射回数以上になることを学習用噴射の終了条件から除外してもよい。   In the above embodiment, in addition to the standard deviation of the actual injection amount falling within the target accuracy range, the number of learning injections is the minimum required for calculating the standard deviation of the actual injection amount with a predetermined accuracy or more. The end condition of the learning injection was set to be equal to or greater than the number of injections. On the other hand, the fact that the number of injections is equal to or greater than the minimum number of injections may be excluded from the learning injection end condition.

上記実施形態では、噴射指令手段、噴射量推定手段、ばらつき算出手段、学習終了判定手段、代表値算出手段、補正量算出手段の機能を、制御プログラムにより機能が特定されるECU40により実現している。これに対し、上記複数の手段の機能の少なくとも一部を、回路構成自体で機能が特定されるハードウェアで実現してもよい。   In the above embodiment, the functions of the injection command means, the injection amount estimation means, the variation calculation means, the learning end determination means, the representative value calculation means, and the correction amount calculation means are realized by the ECU 40 whose functions are specified by the control program. . On the other hand, at least some of the functions of the plurality of means may be realized by hardware whose functions are specified by the circuit configuration itself.

このように、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。   As described above, the present invention is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.

10:燃料噴射システム、14:燃料供給ポンプ、20:コモンレール、30:燃料噴射弁、40:ECU(燃料噴射制御装置、噴射指令手段、噴射量推定手段、ばらつき算出手段、学習終了判定手段、代表値算出手段、補正量算出手段) 10: fuel injection system, 14: fuel supply pump, 20: common rail, 30: fuel injection valve, 40: ECU (fuel injection control device, injection command means, injection amount estimation means, variation calculation means, learning end determination means, representative Value calculation means, correction amount calculation means)

Claims (4)

燃料噴射弁の単発噴射による噴射量の学習条件が成立している場合、前記燃料噴射弁に学習用噴射を指令する噴射指令手段と、
前記噴射指令手段の指令により前記燃料噴射弁から噴射量学習用の前記単発噴射を実施したときの内燃機関の運転状態の変化に基づいて、前記単発噴射の実噴射量を推定する噴射量推定手段と、
複数回実行される前記単発噴射において、前記噴射量推定手段が推定する前記実噴射量に基づいて前記実噴射量のばらつきを順次算出するばらつき算出手段と、
前記ばらつき算出手段が算出する前記ばらつきと、前記ばらつきの目標精度とに基づいて、学習用噴射を終了するときの噴射回数を判定する学習終了判定手段と、
を備えることを特徴とする燃料噴射制御装置。
An injection command means for instructing the fuel injection valve to perform learning injection when a learning condition for the injection amount by single injection of the fuel injection valve is satisfied;
Injection amount estimation means for estimating the actual injection amount of the single injection based on a change in the operating state of the internal combustion engine when the single injection for learning the injection amount is performed from the fuel injection valve according to the command of the injection command means When,
In the single injection executed a plurality of times, variation calculating means for sequentially calculating variations in the actual injection amount based on the actual injection amount estimated by the injection amount estimating means;
A learning end determination unit that determines the number of injections when the learning injection is ended based on the variation calculated by the variation calculation unit and the target accuracy of the variation;
A fuel injection control device comprising:
前記学習終了判定手段は、前記ばらつきが前記目標精度の範囲内であり、噴射量学習用に実行した噴射回数が前記ばらつきを算出するために必要な最低噴射回数以上の場合、学習用噴射を終了すると判定することを特徴とする請求項1に記載の燃料噴射制御装置。   The learning end determination means ends the learning injection when the variation is within the target accuracy range and the number of injections executed for injection amount learning is equal to or greater than the minimum number of injections necessary for calculating the variation. The fuel injection control device according to claim 1, wherein the determination is made. 前記学習終了判定手段は、噴射量学習用に実行した噴射回数が前記ばらつきを算出するために必要な最低噴射回数よりも少ない場合、前記噴射指令手段に学習用噴射を継続させることを特徴とする請求項1または2に記載の燃料噴射制御装置。   The learning end determination means causes the injection command means to continue the learning injection when the number of injections executed for injection amount learning is less than the minimum number of injections necessary for calculating the variation. The fuel injection control device according to claim 1 or 2. 複数回実行した前記単発噴射の前記実噴射量に基づいて前記実噴射量の代表値を算出する代表値算出手段と、
前記ばらつきが前記目標精度の範囲内になり学習用噴射を終了すると前記学習終了判定手段が判定すると、前記代表値算出手段により算出された前記代表値と前記実噴射量の目標噴射量との偏差に基づいて、前記燃料噴射弁に前記目標噴射量の燃料噴射を指令する噴射指令値の補正量を算出する補正量算出手段と、
を備えることを特徴とする請求項1から3のいずれか一項に記載の燃料噴射制御装置。
Representative value calculating means for calculating a representative value of the actual injection amount based on the actual injection amount of the single injection executed a plurality of times;
A deviation between the representative value calculated by the representative value calculating means and the target injection amount of the actual injection amount when the learning end determination means determines that the variation is within the target accuracy range and the learning injection is finished. Correction amount calculating means for calculating a correction amount of an injection command value for commanding fuel injection of the target injection amount to the fuel injection valve, based on
The fuel injection control device according to any one of claims 1 to 3, further comprising:
JP2009110928A 2009-04-30 2009-04-30 Fuel injection control device Pending JP2010261334A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009110928A JP2010261334A (en) 2009-04-30 2009-04-30 Fuel injection control device
FR1053218A FR2945077B1 (en) 2009-04-30 2010-04-27 DEVICE FOR CONTROLLING FUEL INJECTION
DE102010016736.3A DE102010016736B4 (en) 2009-04-30 2010-04-30 Fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110928A JP2010261334A (en) 2009-04-30 2009-04-30 Fuel injection control device

Publications (1)

Publication Number Publication Date
JP2010261334A true JP2010261334A (en) 2010-11-18

Family

ID=42813878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110928A Pending JP2010261334A (en) 2009-04-30 2009-04-30 Fuel injection control device

Country Status (3)

Country Link
JP (1) JP2010261334A (en)
DE (1) DE102010016736B4 (en)
FR (1) FR2945077B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108402A (en) * 2011-11-18 2013-06-06 Isuzu Motors Ltd Failure determination method for combustion injection of internal combustion engine, and internal combustion engine
JP2014034933A (en) * 2012-08-09 2014-02-24 Toyota Industries Corp Method for learning fuel injection quantity of internal combustion engine
EP2708727A1 (en) 2012-09-18 2014-03-19 Kabushiki Kaisha Toyota Jidoshokki Fuel injection control device
JP2015135219A (en) * 2014-01-20 2015-07-27 中国電力株式会社 Boiler fuel input determination device
JP2017115719A (en) * 2015-12-24 2017-06-29 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Fuel injection valve control device and fuel injection valve control method
JP2017201158A (en) * 2016-05-06 2017-11-09 株式会社デンソー Fuel injection control device
JP2020084851A (en) * 2018-11-20 2020-06-04 株式会社デンソー Fuel injection control device of internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884834B2 (en) * 2012-01-26 2016-03-15 トヨタ自動車株式会社 Control device for internal combustion engine
DE102018219028B4 (en) 2018-11-08 2020-06-25 Continental Automotive Gmbh Method for operating an internal combustion engine by performing an injection quantity correction

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10240476A1 (en) 2002-09-03 2004-03-04 Robert Bosch Gmbh Method of monitoring operation of motor vehicle internal combustion engine involves monitoring cylinder operating parameters over given number of engine rotations
JP2005146947A (en) 2003-11-13 2005-06-09 Denso Corp Device for controlling injection volume in internal combustion engine
DE102006006303B3 (en) 2006-02-10 2007-06-28 Siemens Ag Process to estimate the exact amount of fuel injected to a single automotive cylinder in a single operation
JP4858345B2 (en) * 2007-07-25 2012-01-18 株式会社デンソー Fuel injection control device and fuel injection system using the same
JP4710888B2 (en) * 2007-08-23 2011-06-29 株式会社デンソー Diesel engine fuel injection control device and diesel engine fuel injection amount learning method
JP4501974B2 (en) * 2007-08-31 2010-07-14 株式会社デンソー Fuel injection control device for internal combustion engine
JP4345861B2 (en) 2007-09-20 2009-10-14 株式会社デンソー Fuel injection control device and fuel injection system using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108402A (en) * 2011-11-18 2013-06-06 Isuzu Motors Ltd Failure determination method for combustion injection of internal combustion engine, and internal combustion engine
JP2014034933A (en) * 2012-08-09 2014-02-24 Toyota Industries Corp Method for learning fuel injection quantity of internal combustion engine
EP2708727A1 (en) 2012-09-18 2014-03-19 Kabushiki Kaisha Toyota Jidoshokki Fuel injection control device
JP2014058916A (en) * 2012-09-18 2014-04-03 Toyota Industries Corp Fuel injection control device
JP2015135219A (en) * 2014-01-20 2015-07-27 中国電力株式会社 Boiler fuel input determination device
JP2017115719A (en) * 2015-12-24 2017-06-29 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Fuel injection valve control device and fuel injection valve control method
JP2017201158A (en) * 2016-05-06 2017-11-09 株式会社デンソー Fuel injection control device
WO2017191731A1 (en) * 2016-05-06 2017-11-09 株式会社デンソー Fuel injection control device
US10731584B2 (en) 2016-05-06 2020-08-04 Toyota Jidosha Kabushiki Kaisha Fuel injection control device
JP2020084851A (en) * 2018-11-20 2020-06-04 株式会社デンソー Fuel injection control device of internal combustion engine

Also Published As

Publication number Publication date
DE102010016736A1 (en) 2010-11-04
FR2945077A1 (en) 2010-11-05
FR2945077B1 (en) 2018-11-16
DE102010016736B4 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
US6990958B2 (en) Injection control system of diesel engine
JP2010261334A (en) Fuel injection control device
JP4596064B2 (en) Internal combustion engine control device and internal combustion engine control system
JP2010275989A (en) Fuel injection control apparatus for internal combustion engine
JP5482532B2 (en) Fuel injection control device
US20170363036A1 (en) Fuel injection control device for internal combustion engine
JP5126196B2 (en) Fuel injection control device
JP5829954B2 (en) Fuel injection control device for internal combustion engine
JP4513757B2 (en) Fuel injection control device
JP2009002204A (en) Injection quantity control device and fuel injection system using the same
JP5644805B2 (en) Fuel injection control device
JP5648646B2 (en) Fuel injection control device
JP2009057898A (en) Fuel injection control device of internal combustion engine
JP2008309086A (en) Fuel injection control device for diesel engine
JP5640776B2 (en) Fuel injection control device
JP4882883B2 (en) Fuel injection control device and fuel injection system using the same
JP4706670B2 (en) Fuel injection control device for diesel engine
JP6036519B2 (en) Fuel injection control device
JP5110109B2 (en) Fuel pressure control device
JP6273904B2 (en) Pressure sensor abnormality detection device
JP2009057865A (en) Fuel injection control device and fuel injection system
JP6252327B2 (en) Fuel supply control device
JP6213351B2 (en) Injection amount learning device for internal combustion engine
JP5353670B2 (en) Fuel injection control device
JP6303992B2 (en) Fuel injection control device